268 research outputs found

    Segmentation Of Ultisequence Medical Images Using Random Walks Algorithm And Rough Sets Theory

    Get PDF
    Segmentasi imej Magnetic Resonance (MR) merupakan satu tugas klinikal yang mencabar. Selalunya, satu jenis imej MR tidak mencukupi untuk memberikan maklumat yang lengkap mengenai sesuatu tisu patologi atau objek visual dari imej Accurate Magnetic Resonance (MR) image segmentation is a clinically challenging task. More often than not, one type of MRI image is insufficient to provide the complete information about a pathological tissue or a visual object from the imag

    Segmentation of Brain Magnetic Resonance Images (MRIs): A Review

    Get PDF
    Abstract MR imaging modality has assumed an important position in studying the characteristics of soft tissues. Generally, images acquired by using this modality are found to be affected by noise, partial volume effect (PVE) and intensity nonuniformity (INU). The presence of these factors degrades the quality of the image. As a result of which, it becomes hard to precisely distinguish between different neighboring regions constituting an image. To address this problem, various methods have been proposed. To study the nature of various proposed state-of-the-art medical image segmentation methods, a review was carried out. This paper presents a brief summary of this review and attempts to analyze the strength and weaknesses of the proposed methods. The review concludes that unfortunately, none of the proposed methods has been able to independently address the problem of precise segmentation in its entirety. The paper strongly favors the use of some module for restoring pixel intensity value along with a segmentation method to produce efficient results

    A framework for tumor segmentation and interactive immersive visualization of medical image data for surgical planning

    Get PDF
    This dissertation presents the framework for analyzing and visualizing digital medical images. Two new segmentation methods have been developed: a probability based segmentation algorithm, and a segmentation algorithm that uses a fuzzy rule based system to generate similarity values for segmentation. A visualization software application has also been developed to effectively view and manipulate digital medical images on a desktop computer as well as in an immersive environment.;For the probabilistic segmentation algorithm, image data are first enhanced by manually setting the appropriate window center and width, and if needed a sharpening or noise removal filter is applied. To initialize the segmentation process, a user places a seed point within the object of interest and defines a search region for segmentation. Based on the pixels\u27 spatial and intensity properties, a probabilistic selection criterion is used to extract pixels with a high probability of belonging to the object. To facilitate the segmentation of multiple slices, an automatic seed selection algorithm was developed to keep the seeds in the object as its shape and/or location changes between consecutive slices.;The second segmentation method, a new segmentation method using a fuzzy rule based system to segment tumors in a three-dimensional CT data was also developed. To initialize the segmentation process, the user selects a region of interest (ROI) within the tumor in the first image of the CT study set. Using the ROI\u27s spatial and intensity properties, fuzzy inputs are generated for use in the fuzzy rules inference system. Using a set of predefined fuzzy rules, the system generates a defuzzified output for every pixel in terms of similarity to the object. Pixels with the highest similarity values are selected as tumor. This process is automatically repeated for every subsequent slice in the CT set without further user input, as the segmented region from the previous slice is used as the ROI for the current slice. This creates a propagation of information from the previous slices, used to segment the current slice. The membership functions used during the fuzzification and defuzzification processes are adaptive to the changes in the size and pixel intensities of the current ROI. The proposed method is highly customizable to suit different needs of a user, requiring information from only a single two-dimensional image.;Segmentation results from both algorithms showed success in segmenting the tumor from seven of the ten CT datasets with less than 10% false positive errors and five test cases with less than 10% false negative errors. The consistency of the segmentation results statistics also showed a high repeatability factor, with low values of inter- and intra-user variability for both methods.;The visualization software developed is designed to load and display any DICOM/PACS compatible three-dimensional image data for visualization and interaction in an immersive virtual environment. The software uses the open-source libraries DCMTK: DICOM Toolkit for parsing of digital medical images, Coin3D and SimVoleon for scenegraph management and volume rendering, and VRJuggler for virtual reality display and interaction. A user can apply pseudo-coloring in real time with multiple interactive clipping planes to slice into the volume for an interior view. A windowing feature controls the tissue density ranges to display. A wireless gamepad controller as well as a simple and intuitive menu interface control user interactions. The software is highly scalable as it can be used on a single desktop computer to a cluster of computers for an immersive multi-projection virtual environment. By wearing a pair of stereo goggles, the surgeon is immersed within the model itself, thus providing a sense of realism as if the surgeon is inside the patient.;The tools developed in this framework are designed to improve patient care by fostering the widespread use of advanced visualization and computational intelligence in preoperative planning, surgical training, and diagnostic assistance. Future work includes further improvements to both segmentation methods with plans to incorporate the use of deformable models and level set techniques to include tumor shape features as part of the segmentation criteria. For the surgical planning components, additional controls and interactions with the simulated endoscopic camera and the ability to segment the colon or a selected region of the airway for a fixed-path navigation as a full virtual endoscopy tool will also be implemented. (Abstract shortened by UMI.

    Using Fuzzy Inference system for detection the edges of Musculoskeletal Ultrasound Images

    Get PDF
    Edge detection in Musculoskeletal Ultrasound Imaging readily allows an ultrasound image to be rendered as a binary image. This facilitates automated measurement of geometric parameters, such as muscle thickness, circumference and cross-sectional area of the tendon. In this work, we introduced a new method of edge detection based on a fuzzy inference system and apply it to the ultrasound image. An anisotropic diffusion filter was used to reduce speckle noise before implementation of the edge detection method, which consists of three characteristic steps. The first step entailed fuzzification, for which three fuzzy membership functions were applied to the image. The parameters of these functions were selected based on an analysis of the standard deviation of grey level intensities in the image. Secondly, 12 fuzzy rules for identifying edges were constructed. Thirdly, defuzzification was carried out using the Takagi-Sugeno method. Furthermore, a reference-based edge measurement was quantitatively determined by comparing edge characteristics with a standard reference. We made two inferences from our observations. Firstly, the ability to automatically identify the important details of a musculoskeletal ultrasound image in a very short time is possible. Secondly, this method is effective compared with other methods

    Synergistic Visualization And Quantitative Analysis Of Volumetric Medical Images

    Get PDF
    The medical diagnosis process starts with an interview with the patient, and continues with the physical exam. In practice, the medical professional may require additional screenings to precisely diagnose. Medical imaging is one of the most frequently used non-invasive screening methods to acquire insight of human body. Medical imaging is not only essential for accurate diagnosis, but also it can enable early prevention. Medical data visualization refers to projecting the medical data into a human understandable format at mediums such as 2D or head-mounted displays without causing any interpretation which may lead to clinical intervention. In contrast to the medical visualization, quantification refers to extracting the information in the medical scan to enable the clinicians to make fast and accurate decisions. Despite the extraordinary process both in medical visualization and quantitative radiology, efforts to improve these two complementary fields are often performed independently and synergistic combination is under-studied. Existing image-based software platforms mostly fail to be used in routine clinics due to lack of a unified strategy that guides clinicians both visually and quan- titatively. Hence, there is an urgent need for a bridge connecting the medical visualization and automatic quantification algorithms in the same software platform. In this thesis, we aim to fill this research gap by visualizing medical images interactively from anywhere, and performing a fast, accurate and fully-automatic quantification of the medical imaging data. To end this, we propose several innovative and novel methods. Specifically, we solve the following sub-problems of the ul- timate goal: (1) direct web-based out-of-core volume rendering, (2) robust, accurate, and efficient learning based algorithms to segment highly pathological medical data, (3) automatic landmark- ing for aiding diagnosis and surgical planning and (4) novel artificial intelligence algorithms to determine the sufficient and necessary data to derive large-scale problems

    An automatic system for classification of breast cancer lesions in ultrasound images

    Get PDF
    Breast cancer is the most common of all cancers and second most deadly cancer in women in the developed countries. Mammography and ultrasound imaging are the standard techniques used in cancer screening. Mammography is widely used as the primary tool for cancer screening, however it is invasive technique due to radiation used. Ultrasound seems to be good at picking up many cancers missed by mammography. In addition, ultrasound is non-invasive as no radiation is used, portable and versatile. However, ultrasound images have usually poor quality because of multiplicative speckle noise that results in artifacts. Because of noise segmentation of suspected areas in ultrasound images is a challenging task that remains an open problem despite many years of research. In this research, a new method for automatic detection of suspected breast cancer lesions using ultrasound is proposed. In this fully automated method, new de-noising and segmentation techniques are introduced and high accuracy classifier using combination of morphological and textural features is used. We use a combination of fuzzy logic and compounding to denoise ultrasound images and reduce shadows. We introduced a new method to identify the seed points and then use region growing method to perform segmentation. For preliminary classification we use three classifiers (ANN, AdaBoost, FSVM) and then we use a majority voting to get the final result. We demonstrate that our automated system performs better than the other state-of-the-art systems. On our database containing ultrasound images for 80 patients we reached accuracy of 98.75% versus ABUS method with 88.75% accuracy and Hybrid Filtering method with 92.50% accuracy. Future work would involve a larger dataset of ultrasound images and we will extend our system to handle colour ultrasound images. We will also study the impact of larger number of texture and morphological features as well as weighting scheme on performance of our classifier. We will also develop an automated method to identify the "wall thickness" of a mass in breast ultrasound images. Presently the wall thickness is extracted manually with the help of a physician

    Contributions of Continuous Max-Flow Theory to Medical Image Processing

    Get PDF
    Discrete graph cuts and continuous max-flow theory have created a paradigm shift in many areas of medical image processing. As previous methods limited themselves to analytically solvable optimization problems or guaranteed only local optimizability to increasingly complex and non-convex functionals, current methods based now rely on describing an optimization problem in a series of general yet simple functionals with a global, but non-analytic, solution algorithms. This has been increasingly spurred on by the availability of these general-purpose algorithms in an open-source context. Thus, graph-cuts and max-flow have changed every aspect of medical image processing from reconstruction to enhancement to segmentation and registration. To wax philosophical, continuous max-flow theory in particular has the potential to bring a high degree of mathematical elegance to the field, bridging the conceptual gap between the discrete and continuous domains in which we describe different imaging problems, properties and processes. In Chapter 1, we use the notion of infinitely dense and infinitely densely connected graphs to transfer between the discrete and continuous domains, which has a certain sense of mathematical pedantry to it, but the resulting variational energy equations have a sense of elegance and charm. As any application of the principle of duality, the variational equations have an enigmatic side that can only be decoded with time and patience. The goal of this thesis is to show the contributions of max-flow theory through image enhancement and segmentation, increasing incorporation of topological considerations and increasing the role played by user knowledge and interactivity. These methods will be rigorously grounded in calculus of variations, guaranteeing fuzzy optimality and providing multiple solution approaches to addressing each individual problem

    Desarrollo de un algoritmo de visión artificial: un enfoque a la identificación y evaluación temprana de heridas de pie diabético

    Get PDF
    Diabetic foot is one of the most devastating consequences related to diabetes. It is relevant because of its incidence and the elevated percentage of amputations and deaths that the disease implies. Given the fact that the existing tests and laboratories designed to diagnose it are limited and expensive, the most common evaluation is still based on signs and symptoms. This means that the specialist completes a questionnaire based solely on observation and an invasive wound measurement. Using the questionnaire, the physician issues a diagnose. In this sense, the diagnose relies only on the criteria and the specialists’ experience. For some variables such as the lesions area or their location, this dependency is not acceptable. Currently bioengineering has played a key role on the diagnose of different chronic degenerative diseases. A timely diagnose has proven to be the best tool against diabetic foot. The diabetic’s foot clinical evaluation increases the possibility to identify risks and further complications. The main goal of this paper is to present the development of an algorithm based on digital image processing techniques, which enables to optimize the results on the diabetic’s foot lesion evaluation. Using advanced techniques for object segmentation and adjusting the sensibility parameter, allows the correlation between the algorithm’s identified wounds and those observed by the physician. Using the developed algorithm it is possible to identify and asses the wounds, their size, location, in a noninvasive way.El pie diabético es una de las complicaciones más devastadoras de la diabetes. Su trascendencia es significativa por su alta incidencia y por el elevado porcentaje de amputaciones y decesos que implica. Dado que las pruebas de laboratorio para su diagnóstico son limitadas y costosas, la evaluación típica sigue basándose en signos y síntomas. Esto es, el médico llena un cuestionario basado en la medición de sus instrumentos de apoyo y su propia observación. Con base en tal cuestionario emite un diagnóstico. En el sentido de lo anterior, se tiene un diagnóstico dependiente del criterio y experiencia del evaluador. Para algunas variables, como el área de las lesiones o la ubicación de éstas, esta dependencia no es aceptable. El presente trabajo pretende, mediante la introducción de técnicas de procesamiento de imágenes digitales, convertirse en un primer eslabón para la optimización de los resultados en la evaluación del pie diabético. La aplicación del algoritmo sobre un grupo de imágenes de prueba dio resultados aceptables en la detección de las heridas, así como su tamaño y ubicación, gracias al empleo de técnicas avanzadas de segmentación de objetos y al parámetro que permite ajustar la sensibilidad del sistema hasta obtener los resultados deseados. La aportación de esta tesis es un sistema de evaluación de lesiones del pie diabético que, sin duda, puede ser una herramienta muy útil para el especialista que permite la detección automática de las lesiones y la extracción de sus características de forma no invasiva, además de facilitar el manejo de los datos de forma digital

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes
    corecore