21 research outputs found

    Digging into acceptor splice site prediction : an iterative feature selection approach

    Get PDF
    Feature selection techniques are often used to reduce data dimensionality, increase classification performance, and gain insight into the processes that generated the data. In this paper, we describe an iterative procedure of feature selection and feature construction steps, improving the classification of acceptor splice sites, an important subtask of gene prediction. We show that acceptor prediction can benefit from feature selection, and describe how feature selection techniques can be used to gain new insights in the classification of acceptor sites. This is illustrated by the identification of a new, biologically motivated feature: the AG-scanning feature. The results described in this paper contribute both to the domain of gene prediction, and to research in feature selection techniques, describing a new wrapper based feature weighting method that aids in knowledge discovery when dealing with complex datasets

    Analyzing sensory data using non-linear preference learning with feature subset selection

    Get PDF
    15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004The quality of food can be assessed from different points of view. In this paper, we deal with those aspects that can be appreciated through sensory impressions. When we are aiming to induce a function that maps object descriptions into ratings, we must consider that consumers’ ratings are just a way to express their preferences about the products presented in the same testing session. Therefore, we postulate to learn from consumers’ preference judgments instead of using an approach based on regression. This requires the use of special purpose kernels and feature subset selection methods. We illustrate the benefits of our approach in two families of real-world data base

    Deep Learning Methods for Protein Family Classification on PDB Sequencing Data

    Full text link
    Composed of amino acid chains that influence how they fold and thus dictating their function and features, proteins are a class of macromolecules that play a central role in major biological processes and are required for the structure, function, and regulation of the body's tissues. Understanding protein functions is vital to the development of therapeutics and precision medicine, and hence the ability to classify proteins and their functions based on measurable features is crucial; indeed, the automatic inference of a protein's properties from its sequence of amino acids, known as its primary structure, remains an important open problem within the field of bioinformatics, especially given the recent advancements in sequencing technologies and the extensive number of known but uncategorized proteins with unknown properties. In this work, we demonstrate and compare the performance of several deep learning frameworks, including novel bi-directional LSTM and convolutional models, on widely available sequencing data from the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics (RCSB), as well as benchmark this performance against classical machine learning approaches, including k-nearest neighbors and multinomial regression classifiers, trained on experimental data. Our results show that our deep learning models deliver superior performance to classical machine learning methods, with the convolutional architecture providing the most impressive inference performance

    Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens

    Get PDF
    BACKGROUND: The moss Physcomitrella patens is an emerging plant model system due to its high rate of homologous recombination, haploidy, simple body plan, physiological properties as well as phylogenetic position. Available EST data was clustered and assembled, and provided the basis for a genome-wide analysis of protein encoding genes. RESULTS: We have clustered and assembled Physcomitrella patens EST and CDS data in order to represent the transcriptome of this non-seed plant. Clustering of the publicly available data and subsequent prediction resulted in a total of 19,081 non-redundant ORF. Of these putative transcripts, approximately 30% have a homolog in both rice and Arabidopsis transcriptome. More than 130 transcripts are not present in seed plants but can be found in other kingdoms. These potential "retained genes" might have been lost during seed plant evolution. Functional annotation of these genes reveals unequal distribution among taxonomic groups and intriguing putative functions such as cytotoxicity and nucleic acid repair. Whereas introns in the moss are larger on average than in the seed plant Arabidopsis thaliana, position and amount of introns are approximately the same. Contrary to Arabidopsis, where CDS contain on average 44% G/C, in Physcomitrella the average G/C content is 50%. Interestingly, moss orthologs of Arabidopsis genes show a significant drift of codon fraction usage, towards the seed plant. While averaged codon bias is the same in Physcomitrella and Arabidopsis, the distribution pattern is different, with 15% of moss genes being unbiased. Species-specific, sensitive and selective splice site prediction for Physcomitrella has been developed using a dataset of 368 donor and acceptor sites, utilizing a support vector machine. The prediction accuracy is better than those achieved with tools trained on Arabidopsis data. CONCLUSION: Analysis of the moss transcriptome displays differences in gene structure, codon and splice site usage in comparison with the seed plant Arabidopsis. Putative retained genes exhibit possible functions that might explain the peculiar physiological properties of mosses. Both the transcriptome representation (including a BLAST and retrieval service) and splice site prediction have been made available on , setting the basis for assembly and annotation of the Physcomitrella genome, of which draft shotgun sequences will become available in 2005

    Feature selection for splice site prediction: A new method using EDA-based feature ranking

    Get PDF
    BACKGROUND: The identification of relevant biological features in large and complex datasets is an important step towards gaining insight in the processes underlying the data. Other advantages of feature selection include the ability of the classification system to attain good or even better solutions using a restricted subset of features, and a faster classification. Thus, robust methods for fast feature selection are of key importance in extracting knowledge from complex biological data. RESULTS: In this paper we present a novel method for feature subset selection applied to splice site prediction, based on estimation of distribution algorithms, a more general framework of genetic algorithms. From the estimated distribution of the algorithm, a feature ranking is derived. Afterwards this ranking is used to iteratively discard features. We apply this technique to the problem of splice site prediction, and show how it can be used to gain insight into the underlying biological process of splicing. CONCLUSION: We show that this technique proves to be more robust than the traditional use of estimation of distribution algorithms for feature selection: instead of returning a single best subset of features (as they normally do) this method provides a dynamical view of the feature selection process, like the traditional sequential wrapper methods. However, the method is faster than the traditional techniques, and scales better to datasets described by a large number of features

    Artificial intelligence used in genome analysis studies

    Get PDF
    Next Generation Sequencing (NGS) or deep sequencing technology enables parallel reading of multiple individual DNA fragments, thereby enabling the identification of millions of base pairs in several hours. Recent research has clearly shown that machine learning technologies can efficiently analyse large sets of genomic data and help to identify novel gene functions and regulation regions. A deep artificial neural network consists of a group of artificial neurons that mimic the properties of living neurons. These mathematical models, termed Artificial Neural Networks (ANN), can be used to solve artificial intelligence engineering problems in several different technological fields (e.g., biology, genomics, proteomics, and metabolomics). In practical terms, neural networks are non-linear statistical structures that are organized as modelling tools and are used to simulate complex genomic relationships between inputs and outputs. To date, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNN) have been demonstrated to be the best tools for improving performance in problem solving tasks within the genomic field

    Features generated for computational splice-site prediction correspond to functional elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate selection of splice sites during the splicing of precursors to messenger RNA requires both relatively well-characterized signals at the splice sites and auxiliary signals in the adjacent exons and introns. We previously described a feature generation algorithm (FGA) that is capable of achieving high classification accuracy on human 3' splice sites. In this paper, we extend the splice-site prediction to 5' splice sites and explore the generated features for biologically meaningful splicing signals.</p> <p>Results</p> <p>We present examples from the observed features that correspond to known signals, both core signals (including the branch site and pyrimidine tract) and auxiliary signals (including GGG triplets and exon splicing enhancers). We present evidence that features identified by FGA include splicing signals not found by other methods.</p> <p>Conclusion</p> <p>Our generated features capture known biological signals in the expected sequence interval flanking splice sites. The method can be easily applied to other species and to similar classification problems, such as tissue-specific regulatory elements, polyadenylation sites, promoters, etc.</p

    A simple and efficient method for variable ranking according to their usefulness for learning

    Get PDF
    The selection of a subset of input variables is often based on the previous construction of a ranking to order the variables according to a given criterion of relevancy. The objective is then to linearize the search, estimating the quality of subsets containing the topmost ranked variables. An algorithm devised to rank input variables according to their usefulness in the context of a learning task is presented. This algorithm is the result of a combination of simple and classical techniques, like correlation and orthogonalization, which allow the construction of a fast algorithm that also deals explicitly with redundancy. Additionally, the proposed ranker is endowed with a simple polynomial expansion of the input variables to cope with nonlinear problems. The comparison with some state-of-the-art rankers showed that this combination of simple components is able to yield high-quality rankings of input variables. The experimental validation is made on a wide range of artificial data sets and the quality of the rankings is assessed using a ROC-inspired setting, to avoid biased estimations due to any particular learning algorith

    MESSM: a framework for protein threading by neural networks and support vector machines

    Get PDF
    Protein threading, which is also referred to as fold recognition, aligns a probe amino acid sequence onto a library of representative folds of known structure to identify a structural similarity. Following the threading technique of the structural profile approach, this research focused on developing and evaluating a new framework - Mixed Environment Specific Substitution Mapping (MESSM) - for protein threading by artificial neural networks (ANNs) and support vector machines (SVMs). The MESSM presents a new process to develop an efficient tool for protein fold recognition. It achieved better efficiency while retained the effectiveness on protein prediction. The MESSM has three key components, each of which is a step in the protein threading framework. First, building the fold profile library-given a protein structure with a residue level environmental description, Neural Networks are used to generate an environment-specific amino acid substitution (3D-1D) mapping. Second, mixed substitution mapping--a mixed environment-specific substitution mapping is developed by combing the structural-derived substitution score with sequence profile from well-developed amino acid substitution matrices. Third, confidence evaluation--a support vector machine is employed to measure the significance of the sequence-structure alignment. Four computational experiments are carried out to verify the performance of the MESSM. They are Fischer, ProSup, Lindahl and Wallner benchmarks. Tested on Fischer, Lindahl and Wallner benchmarks, MESSM achieved a comparable performance on fold recognition to those energy potential based threading models. For Fischer benchmark, MESSM correctly recognise 56 out of 68 pairs, which has the same performance as that of COBLATH and SPARKS. The computational experiments show that MESSM is a fast program. It could make an alignment between probe sequence (150 amino acids) and a profile of 4775 template proteins in 30 seconds on a PC with IG memory Pentium IV. Also, tested on ProSup benchmark, the MESSM achieved alignment accuracy of 59.7%, which is better than current models. The research work was extended to develop a threading score following the threading technique of the contact potential approach. A TES (Threading with Environment-specific Score) model is constructed by neural networks
    corecore