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ABSTRACT 

Protein threading, which is also referred to as fold recognition, aligns a 

probe amino acid sequence onto a library of representative folds of known 

structure to identify a structural similarity. Following the threading 

technique of the structural profile approach, this research focused on 

developing and evaluating a new framework - Mixed Environment

Specific Substitution Mapping (ME SSM) - for protein threading by 

artificial neural networks (ANNs) and support vector machines (SVMs). 

The MESSM presents a new process to develop an efficient tool for protein 

fold recognition. It achieved better efficiency while retained the 

effectiveness on protein prediction. 

The MESSM has three key components, each of which is a step in the 

protein threading framework. First, building the fold profile library-

given a protein structure with a residue level environmental description, 

Neural Networks are used to generate an environment-specific amino acid 

substitution (3D-ID) mapping. Second, mixed substitution mapping--a 

mixed environment-specific substitution mapping is developed by 

combing the structural-derived substitution score with sequence profile 

from well-developed amino acid substitution matrices. Third, confidence 

evaluation--a support vector machine is employed to measure the 

significance of the sequence-structure alignment. Four computational 

experiments are carried out to verify the performance of the MESSM. They 

are Fischer, ProSup, Lindahl and Wallner benchmarks. Tested on Fischer, 

Lindahl and Wallner benchmarks, MESSM achieved a comparable 

performance on fold recognition to those energy potential based threading 
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models. For Fischer benchmark, MESSM correctly recognise 56 out of 68 

pairs, which has the same performance as that of COBLATH and SPARKS. 

The computational experiments show that MESSM is a fast program. It 

could make an alignment between probe sequence (150 amino acids) and a 

profile of 4775 template proteins in 30 seconds on a PC with IG memory 

Pentium IV. Also, tested on ProSup benchmark, the MESSM achieved 

alignment accuracy of 59.7%, which is better than current models. 

The research work was extended to develop a threading score following 

the threading technique of the contact potential approach. A TES 

(Threading with Environment-specific Score) model is constructed by 

neural networks. 
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Chapter I:Introduction 

CHAPTER 1 INTRODUCTION 

1.1 Overview 

Since the start of the whole genome sequencing projects in the 1990's 

(Fleischmann et al., 1995; Bult et al., 1996) and the recent completion of 

the human genome project (Jasny and Roberts, 2003; Collins et al., 2003), 

both the nucleotide sequence databases (e.g. GenBank, Benson et al., 2000; 

EMBL, Stoesser et al., 2001) and the protein sequences databanks (e.g. 

SWISSPROT, Bairoch and Apweiler, 1996; Bairoch and Apweiler, 2000) 

have been growing at an exponential rate. This deluge of information has 

necessitated theoretical, algorithmic and software advances in storing, 

retrieving, networking, processing, analyzing and visualizing biological 

information. As a result, information science has been applied to biology, 

which has generated a new research field called Bioinformatics. 

1.1.1 Bioinfonnatics 

Bioinformatics is a scientific discipline that uses a computational approach 

to understand and organize the information associated with biological 

macromolecules (Luscombe, et al., 2001). In the beginning of the genomics 

era, bioinformatics was mainly concerned with the creation and 
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Chapter I :Introduction 

maintenance of databases for storing biological information, such as 

nucleotide and protein sequences. More recently, emphasis has shifted 

towards the question of how to analyse large data sets in order to 

ultimately present a complete representation of the cell and the organism, 

and to predict the interaction networks in cellular processes (Kanehisa and 

Bork, 2003). 

1.1.2 Protein structure prediction 

Since the first protein structure was crystallized by Perutz and Kendrew 

(Nobel Prize in Chemistry, 1962), protein folding remains the most 

complex problem in bioinformatics. This is due to the complexity of the 

three-dimensional structure of a protein, and the fact that the protein 

structure is defined by many degrees of freedom (Sternberg, 1996). Protein 

structure prediction is one of the most important tasks in bioinformatics 

because the three-dimensional (3D) structure of a protein determines its 

biological function - for reviews, see (Thornton et al., 1999; Orengo et al., 

2001). Based on the knowledge of the correlation between the protein 

sequences and known proteins, the structure, function as well as the 

evolutionary features of unknown protein sequences can be predicted by 

computational methods. 

There are various relationships between proteins, from the case of almost 

identical sequences to apparently unrelated sequences sharing only a 

rough three-dimensional structure. This presents a challenge for protein 

structure prediction. One method, excellent at finding sequence similarity, 

might not perform very well in the case of only a structural relationship 

(or vice versa). Based on the similarity between the query sequence and 

the proteins of known structure, three possible theoretical approaches to 

predict protein structure for a given protein sequence of unknown 

structure are available (Lesk, 2002; Gibas and Jambeck, 2001). They are: 

2 
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1) Comparative modelling method (Peitsch, 1996; Schwede et a1., 

2003): This is focused on predicting a 3D structure of protein 

from the known structures of one or more related proteins. It is 

used for sequences with a high homologue (30% or more 

sequence similarity) in the Protein Data Bank (PDB). 

2) Threading method (Jones, 1999; Kim et a1., 2003): If there is an 

absence of a significantly similar sequence (sequence similarity 

less than 30 %) with known structure, the threading method is 

used to identify the proper fold pattern which the sequence 

might plausibly adopt. 

3) Ab initio method (Park and Levitt, 1995; Bonneau et a1., 2001): 

This is based on the I thermodynamic hypothesis', which states 

that the native structure of a protein is the one for which the free 

energy achieves the global minimum. Without using the 

template of a known protein, the Ab initio method is used in the 

case when the fold of the query protein is significantly different 

from any known protein folds. 

1.1.3 Threading 

The threading method has been recognized as an effective protein 

structure prediction method since the threading program PROSPECT (Xu 

et a1., 2001) performed the best in the CASP4 (Critical Assessment of 

techniques for protein Structure Prediction) competition. The threading 

method "threads" a query protein sequence into a set of known structural 

templates (constructed based on proteins with known structures) and 

finds the most suitable sequence-template fit. During this process, a 

scoring function is applied as an evaluation criterion to assess the 

compatibility of the sequence to the template structure. To date, numerous 
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Chapter 1 :Introduction 

threading programs with different scoring schemes have been proposed 

(e.g. Bowie et al., 1991; Jones et al., 1992; SippI, 1995; Russell et al., 1996; 

Rice and Eisenberg, 1997; Jones, 1999; Thiele et al., 1999; Xu and Xu, 2000; 

Shi et al., 2001; Mallick et at 2002; Kim et al., 2003). However, for these 

distantly related query and template proteins sharing the same fold, it 

remains a difficult task to develop an accurate scoring function to reflect 

the diverse biological constraints. The threading methods with atom level 

structure environmental descriptions have been proven to be more 

accurate than those with amino acid residue level descriptions (Lu and 

Skolnick, 2001), but they require a higher computational cost. 

1.2 Motivations and Objectives 

1.2.1 Problems and challenges 

Although threading has been shown to be a powerful method for protein 

structure prediction, the success of it often relies on expert human 

interpretation of the results (Karplus et al., 2001). Due to the genome 

sequencing projects, the gap widens between the number of known 

sequences and the number of experimentally determined protein 

structures. To decrease the disparity between the amount of available 

protein sequences data and the number of solved protein structures, it is 

essential that threading methods are fully automated if they are intended 

to be used for genomes annotating. 

Several automatic threading methods have been developed so far, such as, 

GenTHREADER (Jones, 1999), 3D-PSSM (Kelley et al., 2000), FUGUE (Shi 

et al., 2001) and PROSPECT (Kim et al., 2003). These threading programs 

perform well in either fold recognition or sequence to structure 

alignments. However, the overall performance of these models is rather 
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disappointing. For example, the alignment accuracy for GenTHREADER 

(Jones, 1999) is comparatively low; FUGUE (Shi et al., 2001) can only 

recognize 25% of homologous protein pairs with high confidence (99% 

specificity); PROSPECT (Xu et al., 2001) runs very slowly for long query 

sequences because of the large amount of computation involved in the 

model. To design a fast, reliable and automated threading framework is 

the focus of this research. 

1.2.2 Approaches 

The aim of this research is to build a new framework - Mixed 

Environment-Specific Substitution Mapping (MESSM) - for protein 

threading. The proposed framework is expect to achieve a better efficiency 

while retain the effectiveness on protein prediction. Figure 1.1 shows the 

components of the proposed framework, MESSM. 

5 



Chapter I:Introduction 

Database Step 1: (SCOP) 

I-G Neural Environment 
description Networks 
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Predefined Fold library 
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(amino acid Query sequence r- r+ derived substitution 
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t Step 3: 
Sequence-structure 
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Figure 1.1 MESSM, a framework for protein threading. It includes three main 

steps. Step one is to build the fold profile library, step two is to linearly combine 

the structural profile with the sequence profile and step three is the confidence 

evaluation. 

The MESSM has three main steps, briefly explained below: 

1) Building the fold profile libran). Given an amino acid residue with its 

environmental description, neural networks (NNs) are used to train 

the substitution probability of each pair of amino acids. A 
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predefined representative fold library is built as profiles on the 

substitution probabilities. 

2) Mixed substitution mapping. According to consensus theory*, 

information is linearly combined from both the structurally-derived 

substitution score (obtained from the first part) and a sequence 

profile. 

3) Confidence evaluation. A Support Vector Machine (SVM) is employed 

to measure the alignment significance between the protein query 

sequence and fold profile. 

In summary, MESSM, uses machine learning approaches (ANNs and 

SVMs) in the framework to extract information from a large amount of 

data through a process of training from examples, and predictions on 

future test data. 

1.2.3 Aims and Objectives 

The focus of this research is on the cases where the protein query 

sequences do not have an apparent sequence similarity in the Protein Data 

Bank (PDB) thus comparative modelling methods for protein structure 

prediction cannot be used. There are a large number of proteins that 

belong to this case. According to Gerstein (1998), in a newly sequenced 

genome it is estimated that 30-50% of protein sequences can be detected to 

have weakly homologous with known protein structure. 

This research proposes a new framework (MESSM) for protein threading 

* The consensus theory, originated by Charles Sanders Peirce who called it 
pragmatism, and later pragmaticism, holds that a statement is true if it 
would be agreed to by all those who investigate it. 
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Chapter 1 :Introduction 

based on residue level environmental description. The use of machine 

learning approaches, ANN and SVM, enable more biological knowledge 

to be exploited in the prediction process compared with those statistically

based threading methods. The new framework for protein threading is 

expected to have a comparable performance to those more computational 

intensive, atom level structure environmental description models. 

The proposed framework requires two properties: 

1) Effectiveness: Using residue level environmental descriptions, NNs 

are adopted in the threading framework to extract more precise 

structural information of the protein. For such a framework, both 

the alignment accuracy and the fold recognition rate should be 

comparable to state-of-the-art structure prediction models. It 

should generate a higher prediction rate and better alignment 

accuracy than those models with the same residue-level 

environmental description. It is expected to have a comparable 

performance with those models using atom level structure 

environment description. 

2) Efficiency: No heavy atom level pairwise contact potential is 

imported in the proposed threading framework so that a highly 

efficient dynamic programming algorithm can be used for 

alignment optimization. Also, as a SVM is used in the proposed 

threading framework for choosing the best template from the fold 

library, such a threading model should run quickly and 

automatically. Only a fast and automated protein structure 

prediction model is capable of matching the fast genome 

sequencing in the post-genome era. 
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The objectives of this research are: 

~ Design an effective residue contact measuring scheme based on 

protein residue level environmental description. The threading 

framework with atom level structure environment description 

needs more computational cost than the one with residue level 

description. To design a fast threading framework, residue level 

structure environment description will be used in this research. 

Furthermore, an effective residue contact measuring scheme 

need to be built to decrease computational load. 

~ Use NNs to train an amino acid substitution mapping. In 

contrast to those amino acid substitution tables designed by 

other researchers, a substitution mapping is given by NNs. By 

doing this, the prediction accuracy is expected to be increased. 

~ Build a representative protein fold library. Each representative 

fold in the protein fold library will be built as a ID profile, 

which generated from the output of trained NN model. For each 

query sequence, the time used in finding the best match 

template will only depend on the time required by dynamic 

programming. Therefore, the MESSM can be a fast framework. 

~ Combine the protein structural profile with sequence profile. 

Sequence profile includes sequence evolutionary information. 

By combining structural information with sequences 

information, the MESSM is expected to be a reliable framework. 

That is, the fold recognition performance is expected to be 

retained if it can not be improved. 

~ Adopt a SVM to evaluate protein sequence-structure alignment. 

In contrast to the traditional expert human interpretation on 

9 



Chapter 1 :Introduction 

recognising the best fit templates, a SVM will be used to select 

the best template for each target sequence. By doing so, an 

automatic threading framework is expected. 

~ Validate the performance of the MESSM based on several 

benchmarks and compare the results with those of other current 

threading models. 

1.3 Contribution to the Field 

The main contribution of this research project is to propose a new 

framework for protein threading using a machine learning approach, and 

to outline the design and evaluation of the framework which uses a Mixed 

Environment-Specific Substitution Mapping as a scoring function. From 

the results, it is shown that the protein threading problem can be solved 

efficiently, in practice, by the MESSM. The detailed contributions of the 

research are summarized as follow: 

1) Residue contact measurement with residue level environmental 

description. It has been generally agreed that the residue contact 

calculation is the most important factor in protein prediction 

models. Inaccurate calculation of protein residue contacts may 

reduce the efficiency of the model. This research proposes a new 

residue contact measurement with an amino acid residue level 

environmental description. It is built to reflect the fact that if the 

space between two amino acids is larger than one water molecule or 

a third residue, then they are too far to have contact. Thus, two 

kinds of contacts are considered, side-chain to side-chain contact 

and side-chain to main chain contact. The different measuring 

scheme of residue contact presented in this research is simple and 
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effective. The calculation of each residue contact is inexpensive. For 

each amino acid pair, only the distances between side chain centres 

and from a carbon to side chain centres are considered for 

computing. 

2) Environment-Specific Substitution Mapping generated by neural 

networks (Step 1 in Figure 1.1). Given an amino acid with its 

structural environment, the NN is trained to predict the 

probabilities that it could be replaced by other amino acid types. In 

traditional amino acid substitution matrices or environment-specific 

amino acid substitution tables defined by other researchers, each 

structure position of a protein is defined as one of several groups 

according to the property of the amino acid. Unlike those 

approaches, each amino acid with its specific structural 

environment is described by its neighbour contacts and local 

structure in this research. This more precise structural information 

is extracted by the NN. Thus, the substitution probability of each 

pair of amino acids at any chosen structural environment can be 

generated and transformed into a log-odds score*. 

3) Representative fold library (Step 1 in Figure 1.1). The fold library 

consists of 4775 representative folds - built on the basis of 3D-PSSM 

(Kelley et al., 2000). The size of the library is appropriate for 

experimental evaluation. A matrix of n x 20 (lD profile) is built for 

each fold in the library to represent amino acid substitution 

generated from the trained NN model. 

4) Mixed substitution scores (Step 2 in Figure 1.1). According to the 

consensus theory, a mixed substitution score is proposed by 

* The log-odds score, is the log-odds ratio, s(i,j) = log qi/eij. Here "log" stands 
--j for natural logarithm. See formula 4.3 and formula 6.2 in this thesis for details. 
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combining the structurally-derived substitution score with the 

sequence profile from well-developed amino acid substitution 

matrices. The amino acid substitution matrices provided useful 

evolutionary information of protein sequences. The environment

specific amino acid substitution mapping generated by the NN is 

based on known protein structural information. Experiments show 

that the threading framework, with mixed substitution scores, has a 

better performance than the one with either structure or sequence 

profile only. 

5) The support vector machines (SVMs) approach for evaluation 

alignment accuracy (Step 3 in Figure 1.1). After threading the 

query sequence to each template in the fold library, it is then 

required to choose the most probable templates for the structural 

model building. A SVM is employed instead of the traditional z

score (Flockner et al., 1995), p value (Karlin et al., 1990) or NNs 

(Jones, 1999) for the task of evaluation on alignment accuracy. The 

SVM approach is favoured for its effectiveness in choosing the 

correct templates over the other approaches. 

6) The TES (Threading with Environment-specific Score) score to 

measure the residue-structure compatibility. Following the contact 

potential approach for protein threading (Jones et al., 1992; Bryant, 

1996; Xu and Xu, 2000; Kim et al., 2003), this research is extended to 

design a threading score (TES) for measuring the residue-structure 

compatibility with the residue contact measurement used in 

MESSM model. A threading score is constructed by log-odds scores 

of predicted probabilities from a trained NN to determine which 

residue best fits its environment. Without the employment of 

contact energy commonly used in knowledge based potentials, the 

proposed threading score is demonstrated to be an effective score 
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on discrimination of native and decoy protein three-dimensional 

structure. 

1.4 Organization of the Thesis 

This thesis consists of seven chapters. Chapter one begins by introducing 

the motivation for carrying out this research. Then the objectives of this 

research are outlined. A briefly summary of the main contributions of this 

research is followed. The rest of the thesis is organized as follow. 

Chapter two introduces some background knowledge concerning protein 

and machine learning methods. The three types of protein prediction 

methods are introduced. The concepts of two machine learning methods, 

NNs and SVMs, are presented. The applications of NNs and SVMs in 

bioinformatics are reviewed in this section. 

Chapter three presents a detailed survey of the state-of-the-art protein 

threading models. A theoretical analysis of the protein threading is given. 

The research framework is proposed. 

In Chapter four, the design of the ME SSM framework for protein 

threading is discussed. A structural profile approach for protein threading 

is adopted. Three essential components of the MESSM are described. They 

are: the building of the fold profile library, the formulation of the mixed 

threading score and the SVM approach to perform fold recognition. 

Chapter five evaluates the proposed MESSM with four benchmarks. They 

are: Fischer et al. (1996) test sets, ProSup benchmark (Domingues et al., 

2000), Lindahl (Lindahl and Elofsson, 2000) data sets and Wallner et al. 

(2004) data sets. Both the alignment accuracy and the fold recognition rate 
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are tested and compared with the state-of-the art protein threading 

models. 

In Chapter six, the research work is extended by using a contact potential 

approach for protein threading. A threading score is designed by NNs. 

The score function is tested by discriminating of protein native and 

decoys. The performance of the proposed threading score is evaluated by 

two benchmarks. The results are compared with the most recent and best 

performance threading scores based on energy potentials. 

The final chapter summarizes the thesis, discusses the strengths, 

extensions and limitations of the research. Some suggestions are given for 

the directions of future work. 
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CHAPTER 2 CONCEPT AND THEORY 

The concepts of proteins and protein prediction methods will be 

introduced in this chapter. Two machine learning methods, NNs and 

SVMs, are adopted to build the proposed protein threading framework. 

Therefore, the concepts of ANNs will be introduced with the emphasis on 

the BPNN model. A brief introduction to SVMs will be given in this 

chapter as well. An overview of the architecture of protein structures and 

the database for protein known structures is provided in Section 2.1. The 

summary of three categories of protein structure prediction methods 

together with the sequence-structure alignment algorithms are described in 

Section 2.2. Section 2.3 and section 2.4 contain an introduction to NNs and 

SVMs, as well as their applications in bioinformatics. 

2.1 Proteins 

Biochemically, all characteristic properties of life are affected by proteins 

(Lesk, 2002): for example, the conversion of chemical energy to mechanical 

energy, respiratory systems, photosynthesis, gene expression, genome 

replication, the immune system and the senses. Proteins participate in 

many different ways in these processes, and the precise tasks they carry 

out vary widely: they store and transport molecules (e.g. haemoglobin), 

catalyze chemical reactions (e.g. enzymes), transmit information between 
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cells, control the passage of molecules across cell and organelle 

membranes, bind to specific sequences of nucleic acids in DNA molecules, 

and they can simply act as structural building blocks. 

Despite their diverse functions, all proteins are large molecules consisting 

of amino acids, the basic building blocks of proteins. The spatial 

conformation of a protein is dominated by the order of the amino acids 

contained in it, and their side chain chemical properties. Protein spatial 

conformations can be described at four different levels (Lesk, 2002): 

1) Primary structure - a set of primary chemical bonds which build the 

amino acid sequence; 

2) Secondary structure - the assignment of helices and sheets through 

the hydrogen-bonding pattern of the main chain; 

3) Tertiary structure-the assembly and interactions of the helices and 

sheets; 

4) Quaternary structure-the assembly of the monomer. 

2.1.1 Protein Primary structure 

Proteins are linear polymer chains of between tens to several thousands of 

subunits, where the subunits are 20 amino acids. All of these amino acids 

have a carboxyl group (COOH, also called C terminal), an amino group 

(NH2, also called N-terminal), a central carbon (C a) and a side chain (R) 

(Figure 2.1). The amino acids differ in the chemical composition of the side 

chain R, which contains between 1 (glycine) and 18 (arginine) atoms (see 

Table 2.1). Amino acids are connected together end-to-end in protein 

synthesis by the formation of peptide bonds between amino groups and 

carboxyl groups. Each amino acid in a protein is called the amino acid 
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residue or just residue, as its flanking atoms have been stripped off during 

the translation process. 

Side Chain 
Central a Carbon 

NH2 

Amino Group H Carboxyl Group 

Figure 2.1Structure of an amino acid 

Single Three letter 
Name 

Residue 
Side chain letter code code mess (D) 

R ARG Arginine 156.2 -CH2CH2CH2NHCNH2NH2 

D ASP Aspartic Acid 115.1 -CH2COO 

E GLU Glutamic Acid 129.1 -CH2CH2COO 

N ASN Asparagine 114.1 -CH2CONH2 

K LYS Lysine 128.2 -CH2CH2CH2CH2NH3 

Q GLN Glutamine 128.1 -CH2CH2CONH2 

H HIS Histidine 137.1 -CH2IMIDAZOLE 

S SER Serine 87.1 -CH20H 

T THR Threonine 101.1 -CH (CH3) OH 

Y TYR Tyrosine 163.2 -CH2PHENOL 

G GLY Glycine 57.0 -H 

P PRO Proline 97.1 -CH2CH2CH2 [NJ 

C CYS Cysteine 103.1 -CH2SH 

A ALA Alanine 71.1 -CH3 

W TRP Tryptophan 186.2 -CH2INDOLE 

M MET Methionine 131.2 -CH2CH2SCH3 

F PHE Phenylalanine 147.2 -CH2PHENYL 
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-CH (CH3) 2 

-CH (CH3) CH2CH3 

L LEU Leucine 113.2 -CH2CH (CH3) 2 

Table 2.1 The 20 types of amino acids 

It is generally assumed that a protein sequence folds to a native 

conformation or ensemble of conformations that is at, or near, the global 

free-energy minimum. All the necessary information for a protein to fold 

into its native secondary and tertiary structure is coded in its amino acid 

sequence (Anfinsen, 1973). Thus, it is fair to say that the three-dimensional 

structure of a protein is determined by its primary sequence. The problem 

of how the amino acid sequence determines the structure of a protein is 

called the protein folding problem (see Figure 2.2). 

Primary sequence 
Folding 

MNGTEGPIIFYVPFSNKI~VVRSPFEAII;)YYIAEPlI;!FSMIMYMFLLIVL 
GFPINFLTLYVrVQHKKLRTPLNY ILLNIA VADLFMVFGGFTITLYTSLH 
GYFVFGPl'(;CNLEGFFATLGGEIALWSLVVLAIERYVWCKPMSHFRFGE 
NHA IMGVAFIiIVMAIACMPPLVGWSRY IPQ:;MQCSCGALYFTLKPEINN 

• 3D Structure 

Figure 2.2 the protein folding problem 

Proteins fold up into complex shapes due to the bonds formed between 

side chains. Not only are there strong bonds among two residues which 

are nearby along the primary sequence, but there can be strong bonds 

between two residues which are far away from each other. The former 

ones are called local interactions or short-range interactions; and the latter 

ones are called non-local interactions or long-range interactions. 

Interactions between two residues are also called pairwise contacts. 

A segment of protein primary sequence can fold into a secondary structure 

because of the short-range interactions. Due to the long-range interactions, 

all secondary structures in a protein can form a specific tertiary structure 

with the loops connecting one secondary structure to another. 
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2.1.2 Protein tertiary structure 

As mentioned above, proteins fold up because of the different properties of 

side chains. The different properties of side chains lead to five major inter

atomic forces that format the compact native tertiary structure of a protein. 

These are hydrophobic bonds, electrostatic bonds, hydrogen bonds, van 

der Waals force and sulphur bonds. A protein tertiary structure is 

hierarchically organized (Honig, 1999). The highest level is constituted by 

the complete protein, which can be considered through domains to 

secondary structures. Domains are stable, compact evolutionary units of a 

protein structure, which can fold autonomously and perform their 

functions semi-independently (Bork, 1991; Holm and Sander, 1998). 

Protein secondary structures are continuous fragments in a protein 

sequence showing distinct geometrical features (Ramachandran et al., 

1974). Two basic secondary structures are the a helix and fJ strand (see 

Figure 2.3). Their structural features can be easily recognized (Kabsch and 

Sander, 1983). The major database that stores the 3-D coordinates of each 

atoms of protein is the Protein Data Bank (Bernstein et al., 1977; Berman, et 

al.,2000). 

(a) Alpha helix (b) Beta strand 
Figure 2.3 The basic secondary elements of a protein 

Protein structure determination is the first step towards understanding of 

its function. Protein misfolding sometimes may cause fatal disease in 

organisms. One of the challenges for bioinformatics is to predict the 

protein structure and extract useful biological information, regarding its 
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biochemical function and role in the organism, from its amino acid 

sequence. 

2.1.3 Protein Data Bank (PDB) 

The Protein Data Bank (PDB) <http://www.rcsb.org/pdb/ >, originally 

established at Brookhaven National Laboratories in 1971, is now managed 

and maintained by the Research Collaboratory for Structural 

Bioinformatics (RCSB). At the start the archive only held seven structures 

of macromolecules and was only distributed by magnetic media. When the 

technologies of nuclear magnetic resonance (NMR) and crystallography for 

structure determination improved in the early eighties, the number of 

entries increased exponentially (see Figure 2.4). Now, the database 

contains all publicly available three-dimensional structures of proteins, 

nucleic acids, carbohydrates, and a variety of other complexes 

experimentally determined by X-ray crystallographers and· NMR 

spectroscopists. An example of a PDB structure summary web page is 

shown in Figure 2.5. As of May 2005, the database holds about 30857 

structures and is continually being updated. 
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Figure 2.4 the growth of protein data in PDB (from 
http:// www.rcsb.org/pdb/holdings.html) 
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Figure 2.5 An example of structure query from RCSB with the structure 
lNRE (Nielsen et al., 1997). 
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2.1.4 Protein structure comparison and classification 

Several publicly available classifications of protein architectures are 

available including SCOP (Structural Classification of Proteins; Murzin et 

al., 1995; Lo Conte, L., et al., 2002), CATH (Class Architecture Topology 

Homology; Orengo, et al., 1997) and FSSP / DALI (Families of Structurally 

Similar Proteins; Holm and Sander, 1997). The aim of protein structure 

classification is to provide a detailed and comprehensive description of the 

structural and evolutionary relationships for all the entries in the Protein 

Data Bank. 

SCOP was established by the careful manual approach of Dr. Alexei 

Murzin with published description of their structures, while CATH and 

FSSP are built more or less automatically from structural alignments. 

While the CATH and FSSP classifications use protein chains as the object of 

interest, SCOP breaks proteins into domains as a result of eliminating the 

problem of placing multi-domain proteins in the classification hierarchy. 

SCOP has a complicated hierarchy with manually assigned domains 

classified into seven fold classes first, then classified into common folds, 

superfamilies and families. Each hierarchical level has the following 

explanation (Lindahl and Elofsson, 2000): proteins sharing family have a 

clear evolutionary relationship; those within a superfamily are probably of 

common evolutionary origin; while the fold level is characterised by major 

structure similarity. 

2.2 Protein structure prediction 

As stated in Section 2.1.1, the protein structure prediction problem is to 

predict the tertiary structure of a protein from its amino acid sequence. The 
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protein tertiary structure prediction problem could be regarded as 

transforming information. The input is a string of 20 alphabetic characters; 

each represents one of 20 types of amino acid. The desired output consists 

of the three XYZ coordinates in a three-dimensional fold shape correspond 

to each character. There is an increasing gap between the number of 

existing protein sequences and that of the known protein structures due to 

various genome sequencing projects around the world. In an attempt to 

identify protein structures quickly, researchers are trying to predict protein 

tertiary structures from their sequences by using existing biological 

knowledge and computational methods. There are three possible 

theoretical approaches to do this task, depending on the similarity of the 

query sequence to proteins of known structure, as shown in Figure 2.6. 

sequence 
similarity> 30% 

Comparative 
modelling 

Yes 

Query Protein Sequence 

Multiple sequence alignment 

Homologe in 
PDB? 

No significant 
similar 

Fold recognition 
(Threading) 

PDB 

No 

ab initio prediction 
(Engery based) 

Figure 2.6 Methods for Protein Structure Prediction 

Given a protein sequence of unknown structure, sequence alignment / 

multiple sequence alignment is applied through the known protein 

database (PDB) first, then, according to the homology of the query 

sequence and a known database, the comparative modelling, fold 

recognition (threading) or ab initio prediction methods could be used to 

predict an unknown protein. 
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2.2.1 Comparative modelling 

Comparative modelling is currently the most reliable method for protein 

structure prediction. This method is also frequently referred to as 

"homology modeling". Successful predictions based on comparative 

models have been reviewed by Baker and Sali (2001). The technique is 

based on the observation that two proteins with very similar sequences 

tend to have similar backbone structures (Chothia and Lesk, 1986). So, it 

can only be applied when there are protein structure templates that share 

clear sequence similarity with the probe sequence. When the pairwise 

sequence identity between a probe and the template is higher than a 

certain threshold (e.g. 30%), the comparative modelling program can be 

used to build very accurate predictions for unknown proteins (Moult et al., 

1995). The process of comparative modelling often includes building 

alignments between the templates and the probe sequence, copying the 

backbone structures from the templates according to the alignment, 

building a framework structure for the probe, adding loops and side 

chains, and refining and validation the model (Gibas and Jambeck, 2001). 

Comparative modelling methods are highly developed. Even an automatic 

sever is capable of generating good models (Peitsch, 1996; Schwede et al., 

2003). But with more remotely related template and probe, the building of 

loops and especially the alignment between the templates and the probe 

are still problematic. Protein fold recognition methods have been applied 

in comparative modelling to select structure templates and generate 

alignments between templates and probe sequence (Bates et al., 2001). 

2.2.2 Sequence alignment and scoring matrices 

Sequence alignment is the key step in protein structure prediction using 

the comparative modelling method. It is the most common way of 
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describing similarity between protein sequences. A dynamic Programming 

algorithm (such as Needleman-Wunsch (1970) and Smith-Waterman 

(1981)) is the most popular algorithm used in alignment programs. 

Needleman and Wunsch (1970) first introduced the dynamic programming 

algorithm into bioinformatics. With an assumption that the substitution of 

each residue is independent, the dynamic programming algorithm finds a 

single optimal alignment path given an amino acid substitution scoring 

matrix and a gap penalty function. In the alignment, the most similar 

segments of two sequences are aligned while the gap regions between 

them are minimized. Gotoh (1982) implemented a more efficient version. 

Smith and Waterman (1981) developed a slightly different algorithm. This 

algorithm detects the best alignment between subsequences of two 

sequences, which is often called local alignment, compared to the global 

alignment used in the Needleman-Wunsch algorithm (1970). 

To align sequences by dynamic programming, it is often necessary to 

introduce relative insertion and deletions to attain a maximum matching of 

amino acids. Alignment gap penalties, which can also be viewed as a 

relative log likelihood of deletion or insertion, should be introduced in 

dynamic programming algorithms. The earliest gap penalty was a fixed 

one for each residue deleted or inserted, or a fixed penalty for a gap of any 

length (Needleman and Wunsch, 1970). The former often involved a large 

number of short insertions or deletions while the latter one could lead to 

extremely long gaps. Both were not biologically ideal. The most common 

form of gap penalty used now is the affine gap penalty, which can be 

written as g = a + bn, where g is the applied penalty, a and b are opening 

and extending parameters while 11 is the number of spaces in the gap. 

Often b is much closer to zero than a (Gotoh, 1982; Altschul and Erickson, 

1986). Algorithms for constructing optimal global or local pairwise 

algorithms require O(mn) time with these gap penalty functions, where m 

and 11 are lengths of sequences being compared. The O(mn) means the 
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computing time of the algorithm is roughly proportional to the product of 

111 and n. More complicated gap costs have been defined (e.g. Myers and 

Miller, 1988). For the class of concave gap penalties, we can still build 

optimal alignment algorithms that require only O(mn) time. However, the 

implementation of such algorithms is more complex and error-prone. 

Almost all popular alignment programs use affine gap penalties. 

Overall, dynamic programming algorithms are effective alignment 

methods. However, as the computing time of these algorithms is roughly 

proportional to the product of the length of two sequences, they are not 

very fast algorithms compared to most heuristic database searching 

algorithms. 

The scoring system employed in dynamic programming is through the use 

of a substitution matrix. The substitution matrices have been generated 

from a variety of data sources on the basis that certain amino acids can 

substitute easily for another with similar physiochemical properties during 

evolution. Two kinds of matrices, PAM (Dayoff et al., 1978) and BLOSUM 

(Henikoff and Henikoff, 1992), are commonly used. The PAM (point 

accepted mutation) model of amino acid substitution was first introduced 

by Dayhoff and co-workers (1978). It has been a standard for protein 

sequence comparison for more than 20 years (Blake and Cohen, 2001). It is 

designed to score alignments between sequences that have diverged by a 

particular degree of evolutionary distance. In their Markov model, it was 

assumed that each mutational event was independent of previous events. 

A table of 20 x 20 mutation probabilities of amino acids at an evolution 

distance of 1 PAM (Point Accepted Mutation) was estimated using 

algorithms of sequences of closely related proteins. Substitution matrices 

appropriate for greater evolutionary distances can then be generated by 

repeated multiplication of 1 PAM matrix. The BLOSUM substitution 

matrices (Henikoff and Henikoff, 1992) have been constructed in a similar 
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fashion, but make use of a different strategy for estimating the target 

frequencies. The matrix values are built on much larger data sets than 

PAM matrices to find their conserved domain and involved distantly 

related sequences. Currently, BLOSUM is perhaps the most popular 

substitution matrix for pairwise alignment. It provides the foundation for a 

number of database search techniques including BLAST and PSI-BLAST 

(Altschul et al., 1997). 

2.2.3 Threading/Fold recognition 

The fold recognition method, which is also called protein threading, is 

used when there is an absence of a significantly sequence similarity with 

known structure. This is the case for the research in this thesis. A more 

detailed analysis on protein threading is given in Chapter 3. The basis of 

threading is the fact that there may only be a finite number of protein folds 

in nature (Govindarajan et al., 1999) and certain kinds of structure seem to 

be remarkably popular among apparently unrelated sequences (Chothia 

and Lesk, 1986; Rost, 1999; England et al., 2003). Although some new folds 

still can be obtained every year from structure determination experiments, 

the number of new folds is relatively small compared to the number of 

folds observed (Orengo et al., 2001). For a probe protein sequence with an 

unknown structure, it is likely that its fold has been seen, and proteins 

with similar structures are available in structural databases. At sequence 

identity levels beyond the twilight zone «30%), comparative modelling 

methods are not reliable. And indeed, homologous sequences are often not 

found in present sequence database. So, fold recognition methods are 

designed to detect structure similarities and generate alignments. 

A threading means a specific alignment between sequence and structure. 

Normally a scoring function is formulated in terms of the knowledge

based pseudo-energy potentials to evaluate protein sequence-structure 
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fitness. For the knowledge-based pseudo-energy potentials (for reviews, 

see SippI, 1995; Jones and Thornton, 1996; Moult, 1997; Lazaridis and 

Karplus, 2000), quite often the statistical analysis of known protein 

structure is used to measure the free energy between the interaction of 

residues or atoms. The results of such analysis are commonly known as 

contact energies. In most cases, the knowledge-based potential is built on 

the assumption that pairwise contact between atoms or residues have 

independent contributions to the potential energy. 

Both comparative modelling and fold recognition methods require 

appropriate templates to be present in the structure library. When there is 

no template that can be confidently identified, ab initio modelling methods 

can generate models without using full templates. 

2.2.4 Ab initio modelling 

Perhaps the most intuitive way of simulating protein folding is via 

molecular dynamic simulations with a physical potential function, because 

the physical interactions between atoms are clearly the driving force of 

protein folding. Obviously, the protein structure can be predicted via this 

approach without using structure templates. However, explicit 

representation of molecules and complex potential functions employed in 

such approaches require huge computing power. Also, accurate modelling 

of the potential function is a challenging problem itself. Only groups with 

a giant cluster of supercomputers like the IBM Blue Gene Project could be 

capable of performing such simulations for proteins of reasonable sizes. 

With limited computing resources, most ab initio modelling methods work 

with greatly simplified models, which can be divided into two classes: 

lattice (Skolnick and Kolinski, 1991) and off-lattice models (Park and 

Levitt, 1995). By using these models, the complexity of the conformational 
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search can be sufficiently reduced because many details of protein 3D 

structures, including the coordinates of most atoms, are ignored. Once the 

representation of protein structure is specified, a scoring function must be 

developed to measure the quality of the different predicted models. The 

traditional one, which models the atomic force fields (Brooks et al., 1990), is 

not feasible with these reduced complexity representations. Many methods 

utilize scoring functions derived from the protein structure database that 

were adjusted to favour the native conformation over others. Such so

called knowledge-based pseudo-energy is also employed in the threading 

programs as mentioned above. With simplified representations and 

scoring functions, ab initio modelling programs search for near-native 

structures with Monte Carlo (Simons et al., 1997), simulated annealing and 

genetic algorithms (Jones, 2001). 

In spite of encouraging recent improvements (Simons et al., 1999; Bonneau 

et al., 2001), most ab initio modelling methods are still limited to short 

protein sequences. Also, to build accurate models with ab initio methods 

remains a challenge. 

2.3 Neural networks 

2.3.1 Concepts of artificial neural networks 

Artificial neural networks (ANNs) were first designed by McCulloch and 

Pitts (1943). They are computational models inspired by the modelling of 

the human brain. ANNs have a large number of highly interconnected 

processing elements (nodes) that usually operate in parallel and are 

configured in regular architectures. The simple processing units are often 

called artificial neurons or nodes. The connections between processing 

units are often called links. Each link is associated with a weight that 
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presents information being used by the net to solve a problem. The 

training of a NN is the procedure of finding the proper weights of the 

network. 

The architecture of NNs is typically organized in layers; most applications 

have three normal types of layers-an input layer, a hidden layer and an 

output layer. The layer that receives input signals is called the input layer. 

The outputs of the network are generated from the output layer. Any layer 

between the input and output layers is called a hidden layer. Layers are 

made up of a set of interconnected nodes, as shown in Figure 2.7. It can be 

described as a directed graph in which each node i performs a transfer 

function J; of the form 

11 

Yi = J;('Lwijx j -Bi) 
j=l 

(2.1) 

where Yi is the output of the node i, x j is the jth input in the input layer to 

the node in the hidden layer, and wij is the connection weight between 

nodes i and j. Bi is the threshold (or bias) of the node. The /; is called 

transfer function (or activation function) that can be linear or nonlinear 

function such as step function, hard limiter function, sigmoid function and 

Gaussian function, etc. 
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Figure 2.7 Architecture of ANNs 

According to the connectivity of the neurons, ANNs can be divided into 

feed-forward and recurrent classes. The feed-forward networks have no 

output from processing elements being an input to another node in the 

same layer or in a preceding layer. When outputs can be directed back as 

inputs to the same layer, or preceding layer nodes, and have closed loops, 

the networks are named recurrent networks. The architecture of an ANN is 

determined by its topological structure, such as the layers, the overall 

connectivity and the transfer function of nodes in the network. 

Most ANNs contain some form of learning rule that modifies the weights 

of the connections according to the presented input patterns. In general, 

learning rules are classified into two categories: supervised learning and 

unsupervised learning. In supervised learning, it is assumed that the 

correct "target" output values are known for each input pattern. The 

weights are usually obtained by minimizing some error functions, which 

measure the difference between the "target" and the values computed by 

the NNs. In unsupervised learning, there is no teacher to provide any 

feedback information. The network must discover for itself the patterns, 

features, regularities, corrections, or categories in the input data and code 

for them in the output. Although there are many different kinds of 

learning rules used by NNs, the most common one is a gradient descent-
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based optimization algorithm called the back propagation learning rule, 

which is a supervised process that occurs with each epoch through a 

forward activation flow of outputs, and the backwards error propagation 

of weight adjustments. 

Though the initial intent of ANNs was to explore and reproduce human 

information processing tasks such as speech, vision, and knowledge 

processing; ANNs also demonstrated their superior capability for 

classification and function approximation problems. This has great 

potential for solving complex problems such as system control, data 

compression, optimization problems, pattern recognition, and system 

identification. Recently, NNs have been widely applied in bioinformatics 

to solve complicated problems that are difficult to solve by traditional 

methods. 

2.3.2 Backpropagation neural networks 

The backpropagation neural networks (BPNNs) were proposed by 

Rumelhart et al. (1986). BPNNs are multilayer feed-forward networks 

combined with a back-propagation learning algorithm. BPNNs are 

currently the most general-purpose and commonly used NN paradigm, 

which achieve their generality because of the gradient-descent technique 

used to train the networks. 

A feed-forward network has a layered structure. Each layer consists of 

units that receive their input from units in a layer directly below and send 

their output to units in a layer directly above the unit. There are no 

connections within a layer. As shown in Figure 2.8, the Ni inputs are fed 

into the first layer of Nil'] hidden units. The activation of a hidden unit is a 

function fi of the weighted inputs plus a bias. The output of the hidden 

units is distributed over the next layer of NIl,2 hidden units, until the last 
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layer of hidden units, from which the outputs are fed into a layer of No 

output units. 

input 
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Figure 2.8 A multi-layer network with I layers of units 

output 
layer 

No 

Although backpropagation can be applied to networks with any number of 

layers, it has been shown by Cybenko (1989) and Hartman et al. (1990) that 

one layer of hidden units suffices to approximate any function with finitely 

many discontinuities to arbitrary precision, provided the activation 

functions of the hidden units are non-linear. 

In BPNNs, the central idea is that the errors for the units of the hidden 

layer are determined by backpropagating the errors of units of the output 

layer. This is called the backpropagation learning rule. Usually, a network 

is trained over a number of training pairs, which can be thought of as a set 

of ordered vector pairs {(II' d 1), (I2' d 2)'" " (I p' d p)} where each Ii 

represents an input vector and each di represents the output vector 

associated with the input vector Ii . The learning algorithm for the training 

of a BPNN is as follows: 

1) Initialization: Decide the number of layers and neurons of BPNNs; 

initialize the weights and thresholds to some random values. 
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2) Training loop: Apply the ith input vector Ii to the input layer and 

specify the desired output vector di • 

3) Forward propagation: At each node, calculate the weighted sum of 

the inputs and apply the appropriate activation function, calculate 

the actual output. The sigmoid function is a widely used activation 

function 

1 
X = ---(xj-Bj ) 

J 1 + e (2.2) 

where x j is the weighted sum of inputs coming to the jth node, 

Xj is the output of the jth node, 

Bj is the threshold for the jth node. 

4) Error back propagation: Propagate the errors backward to update the 

weights and adjust the weights by 

Wu (t + 1) = Wu (t) + 7]OjXj + P[Wu(t) - Wu (t -1)] (2.3) 

where Wu is the weight from ith node to the jth node, 

OJ is the error at the jth node, 

7] is the learning rate, 

P is the moment, 

If j is an internal hidden layer node, 
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O"j = X/I-X)L(OkWk) 
k (2.4) 

where the summation is performed over all the nodes in the layers 

above the node j. 

If j is an output layer node, 

o f' 0 o j=(dj-Yj) (net j ) (2.5) 

5) Repeat step 2 through step 4 for as many epochs as it takes to reduce 

the sum squared error to a minimal value, If the training error is 

acceptable, terminate the training process. 

6) Testing: Substitute the testing data into the network for testing. 

Calculate the error between the actual output value and the target 

output value of testing data. 

7) Total error checking: If the error for testing data is acceptable, output 

the final weights; otherwise, adjust the architecture of the network 

and initiate the new training epoch by going to step 1. 

After sufficient iterations of step 2 to step 5, the BPNNs can successfully 

learn to replicate all the training output vectors given any of the input 

patterns. Then the learning phase is stopped and the connection-weight 

values are frozen. The network is ready to be used in the specific 

application. 

2.3.3 Neural networks in bioinfonnatics 

It has been shown that NNs, as an automatic and intelligent learning 

technique, can be widely applied in bioinformatics and have had a lot of 
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success in this research area (Baldi and Brunak, 2001). The early 

application of NN algorithms to problems within the field of biological 

sequence analysis can be traced back to 1982, when the perceptron was 

applied to the prediction of ribosome binding sites based on amino acid 

sequence input (Stormo, et al., 1982). A perceptron without hidden units 

was able to generalize, and could find translational initiation sites within 

sequences that were not included in the training set. 

The linear architecture of a perceptron is clearly insufficient for many 

sequence recognition tasks. The early pioneering work involved the use of 

BPNNs for protein structure prediction (e.g. Qian and Sejnowski, 1988; 

Holley and Karplus, 1989; Kneller et al., 1990) or DNA sequence 

discrimination (e.g. Lapedes et al., 1989; Uberbacher and Murat 1991; 

Brunak, et aL 1991). As the field continues to develop, researchers have 

broadened the choices of NNs architecture and learning algorithms to 

solve a wider range of problems (reviewed by Wu, 1997). 

In the early work of Qian and Sejnowski (1988), a NN is used to predict 

protein secondary structure. The input window is an optimal size of 13 

amino acids. An orthogonal encoding scheme is used for input with size 

21, corresponding to 20 amino acids and one for N- or C-terminal. Thus, 

the input layer has 13 x 21 = 273 units. The output layer of NNs has three 

units, with orthogonal encoding of the alpha-helix, the beta-sheet and the 

coil classes. The NN is trained to classify the residue located in the centre 

of the input window, into one of three secondary classes. The overall 

performance of their model reaches 64.3 %. Most of the subsequent work on 

protein secondary prediction using NNs (Holley and Karplus, 1989; 

Kneller et al., 1990; Rost and Sander, 1993; Rost et al., 1994) has been based 

on the architecture of Qian and Sejnowski's (1988) model. The most 

significant performance improvement on protein secondary prediction 

compared to previous work has been done by Rost and Sander (1993), 

which resulted in the PHD prediction server (Rost et al., 1994). The PHD 
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method reached a performance level of 74%. The key features of the PHD 

approach are the use of multiple sequence alignments information (instead 

of single sequence) and a multi-level system instead of one NN. Recently, 

McGuffin et al. (2000) developed the PSI-PRED server for protein 

secondary structure prediction using NNs. They used an iterative 

approach to generate profiles as the improved input to the NN. These 

profiles were based on position-specific scoring matrices. It has been 

shown that using these profiles as input, significantly increased the 

accuracy of protein secondary structure prediction. To date, PSI-PRED 

(McGuffin et aI., 2000) method is the best method for protein secondary 

structure prediction, reaching a performance of 77%. 

A NN used for DNA sequence discrimination is treated as a pattern 

recognition model. The early work of NetGene (Brunak, et aI., 1991) 

applied three BPNNs to predict acceptor and donor site positions in 

human genomic DNA sequences. Two NNs are used to predict local splice 

sites and joined with one NN to predict an exon. Snyder and Stormo (1995) 

developed the GeneParser system to predict gene structure using the 

combination of the NNs with dynamic programming. In the GeneParser, 

intron/ exon and splice site indicators are weighted by a NN to 

approximate the log-likelihood that a sequence segment exactly represents 

an intron or exon. A dynamic programming algorithm is then applied to 

this log-likelihood to find the combination of introns and exons that 

maximizes the likelihood function. GeneParser precisely identifies 75 % of 

the exons and shows as good a generalized performance as with the 

training set. 

The earliest NN used in protein tertiary structure prediction was done by 

Bohr et al. (1990), who predicted the distance between amino acids of 

homologous protein sequences. Wilcox et al. (1991) and Xin et al. (1993) 

applied a large-scale NN to learn the PDB protein tertiary structures 

represented by 140x 140 distant matrices. The produced network predicted 
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well the distance matrices from homologous sequence, but had a limited 

generalisation capability due to the small size of training set relative to the 

. network size. Milik et al. (1995) developed a NN system for the evaluation 

of side-chain packing in. protein structures. Instead of using protein 

sequence as input, the protein structure was represented by a side-chain

side-chain contact map. Recently, Lin et al. (2002) proposed a NN approach 

on protein threading score. A BPNN is trained to predict the compatibility 

of amino acid residue side chain with its tertiary structure environments. 

Other applications of NN in bioinformatics include early sequence analysis 

studies (Hirst and Sternberg, 1992; Reczko and Suhai, 1994); 

transmembrane helices (Rost et al., 1996) and folding initiation sites 

(Compiani et al., 1998). Also NNs have been successfully applied to predict 

whether distances between pairs of amino acids are above or below a given 

variable threshold (Lund et al., 1997) and contact maps of proteins 

(Fariselli and Casadio, 1999; Fariselli, et al., 2001; Pollastri and Baldi, 2002). 

As a well-known and well used method in bioinformatics, NN will 

continue to be a valuable tool in the analysis of the large volume of 

molecular sequence data being generated by the Human Genome Project. 

The advantage of ANNs are capable of learn and solve many real-world 

problems. They are very flexible and can alter their internal curve-fitting 

function to handle discrete-valued and vector-valued functions from 

different examples. They are very well suited to the "noisy" bimolecular 

data. That is why they have gained a lot success in the application of 

bioinformation. 
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2.4 Support vector machines 

Support vector machines (SVMs) are a new generation of machine learning 

algorithm (Boser et al., 1992; Vapnik, 1998), which have received much 

consideration because of their superior performance in a wide variety of 

application domains such as handwriting recognition, object recognition, 

speaker identification, face detection and text categorization (Cristianini 

and Shawe-Taylor, 2000). Generally, the SVMs are universal approximators 

that can be used to learn a variety of representations from a set of 

positively and negatively labeled training samples. A complete description 

to the theory of the SVMs could be found in Vapnik's book (Vapnik, 1998). 

Here a brief introduction of basic ideas behind the SVMs is described 

below. 

2.4.1 Basic Idea of SVM 

A SVM is a margin classifier. It attempts to construct a separating 

hyperplane between training data separating class members (positive 

examples) from non-members (negative examples). Using this separating 

hyperplane, an unknown sample can be identified as a member or non

member of the class based on whether it is on the member or non-member 

side of the hyperplane. Unfortunately, for most real-world problems it is 

impossible to construct a separating hyperplane, as the input space of 

Figure 2.9 demonstrates. The SVM solves this inseparability problem by 

mapping data from its original k-dimensional space into a higher

dimensional space and defines a separating hyperplane there. The original 

k-dimensional data space is called the input space and the higher

dimensional space is called the feature space, as shown in Figure 2.9. 
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Figure 2.9 An illustration of SVM: Given a nonlinear classification problem in the input 

space, the SVM method defines a mapping <I>, and constructs the optimal separating 

hyperplane in the higher-dimensional feature space. Black and white circles indicate 

positive and negative samples to be classified. 

2.4.2 SVM Mathematics 

In this section, linear learning machines are introduced first, which are the 

foundation of SVMs, and then the non-linear cases are described. 

2.4.2,1 The linear separable case 

As shown in Figure 2.10, giving a weight vector 111 and a threshold b, 

there exists a separating hyperplane whose function is w· x + b = 0, which 

implies: 

Yi(11<ii +b) ~ 1, i = 1, 2, .. ·,n (2.6) 
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)11 . XI + b = + 1 

W w,x2 +b =-1 

=> W . (XI - x2 ) = 2 
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\ .-- w·x+b=-l w·x+h=O 

Figure 2.10 Definition of hyper-plane and margin. The black and white circles represent 

samples of class -1 and class +1, respectively. The optimal hyperplane is the orthogonal to 

the shortest line connecting to the convex hulls of the two classes (dotted lines), and 

2 
inselis it half way. The margin, measured perpendicular to the hyperplane, equals 1111111 . 

For each group of training data, there exist a number of hyper-planes. The 

classification objective of the SVM is to determine an optimal weight and 

an optimal bias such that the selected hyperplane separates the training 

data with maximum margin. To maximize the margin, Ilwll needs to be 

minimized subject to the constraint (formula 2.6). By introducing 

Largrange multipliers ai' the SVM training procedure amounts to solve a 

convex Quadratic Programming (QP) problem. It turns out, due to the 

nature of the QP problem, that only those points situated a i > 0 are called 

support vectors, Xi' i = 1, 2, ... , N,. Thus, given an input training samples 

{ - - - -} mel 
X!,X2,"Xi ,"'XIl E ~ with known class 

labels {Yt>Y2,"'Yi,"'YIl},Yi E {+1, -I}, a new data point X could be 

assigned a label by the trained SVM according to the decision function: 

N, 

f(x) = sgn[LaiYi . Xi' X + b] (2.7) 
i=! 
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2.4.2.2 The non-separable case 

As real-world problems are usually non-linear, the following approach has 

been introduced into SVM to deal with these problems. 

).> " soft margin" technique 

In this case, some training examples are allowed to fall on the wrong side 

of the hyperplane. By introducing slack variables ~i > 0, i = 1, .. " n, a 

relaxed separation constraint is given as: 

Yi (1V . Xi + b) ;::: 1- ~i' i = 1, 2,,,,, n (2.8) 

and the optimal separating hyperplane can be found by minimizing 

1/
1v

l1

2 

+ C:t~i 
2 i=l 

(2.9) 

where C is a regularization parameter used to decide a tread-off between 

the training error and the margin. 

).> "kernel function" technique 

The input vector x from the input space md is mapped into a higher 

dimensional feature space n by a nonlinear kernel function. The 

motivation for mapping the data into high-dimensional feature space is 

that linear decision boundaries constructed in the high-dimensional feature 

space correspond to non-linear decision boundaries in the input space. The 

form of the decision function is: 

N, 

I(x) = sgn[LaiYik(xi . x) + b] (2.10) 
i=! 
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where 

k(Xi . x) = (<D(xi),<D(x») (2.11) 

is the kernel function. <D(x) is a nonlinear mapping function from the input 

space to feature space (<D: ~d H tz). The idea of the kernel function is to 

enable operations to be performed in the input space rather than the 

potentially high dimensional feature space. Thus, the mapping function <D 

need not be explicitly defined because the algorithm only requires the 

evaluation of the inner product in (2.11). Several typical kernel functions 

are listed: 

k(xi ·x./) = (Xi ·x./ +l)d (2.12) 

k(Xi . x) = exp(-rIiXi - x./112) (2.13) 

k( Xi . x) = tanh( k( Xi . x) + B) (2.14) 

1 

k(Xi ·x./)= ~IIXi _x./112 +c 2 

(2.15) 

Equation (2.12) is the polynomial kernel function of degree d which revert 

to the linear function when d = 1 . Equation (2.13) is the radial basic 

function (RBF) kernel with one parameter r. Equation (2.14) is the sigmoid 

kernel and equation (2.15) is the inverse multi-quadric kernel. 

2.4.3 Properties of SVM 

A SVM model, an efficient classifier, has a number of properties: 

~ It is based on statistical learning theory. Its unique ability to 

develop a model with superior generalization capabilities makes it 
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the most suitable tool among various supervised learning 

algorithms when the number of input features is large compared to 

the number of training samples. 

~ It is practical as it reduces to a quadratic programming problem 

with a unique solution. The solution of the QP problem is globally 

optimised while some other training algorithms only guarantee 

finding a local minimum. 

~ It can effectively avoid over-fitting by choosing the maximum 

margin separating hyperplane from among the many that can 

separate the positive from negative examples in the feature space. 

~ It contains a number of heuristic algorithms as a special case. 

That is, by the choice of different kernel functions, different 

architectures could be obtained. The dot product represented by 

kernel functions in feature space avoids the " curse of 

dimensionality" . 

~ It can automatically identify a small subset from the input 

samples as support vectors, thus avoid the computational burden. 

2.4.4 Support Vector Machines Application in Bioinformatics 

The SVM approaches in bioinformatics include the recognition of 

translation start sites in DNA (Zien et al., 2000), the gene and tissue 

classifications from microarray expression data (Brown et al., 2000; Fuery 

et al., 2000; Guyon et al., 2002; Vert and Kanehisa, 2003), protein remote 

homology detection (Jaakkola et al., 1999a; Liao and Noble, 2002; Leslie et 

al., 2003), protein fold recognition (Ding and Dubchak, 2001), protein 

secondary structure prediction (Hua and Sun, 2001b), protein subcellular 

localization prediction (Park and Kanehisa, 2003) and peptide 
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identification from mass spectrometry data (Anderson et al., 2003). As a 

new learning technique, the broad applications in bioinformation by SVM 

are due to the efficient features and good generalisation performance of 

SVM. Some successful applications are listed below. 

2.4.4.1 Gene classification 

The first application of SVMs to microarray data involved the classification 

of yeast genes into functional categories (Brown et al., 2000). A total of 2467 

genes of the budding yeast S. cerevisiae were represented by a 79 

dimensional gene expression vector, and classified according to six 

functional classes. The SVM yields very good performance on this task in 

comparison with some selected traditional machine learning techniques. 

This application successfully used the SVM both for the task of classifying 

unseen genes and for cleaning existing datasets by identifying genes in the 

training sets that had been mislabeled. 

Pavlidis et al. (2001) applied a SVM to infer gene functional classification 

from heterogeneous data sets consisting of DNA microarray expression 

measurements and phylogenetic profiles from whole-genome sequence 

comparisions. This work assumes that genes with similar switching 

mechanisms are likely to operate in response to same environmental 

stimulation and hence are likely to have similar or related function roles. 

2.4.4.2 Tissue classification 

Mukherjee et al., (1999) first demonstrated the application of the SVM to a 

tissue classification task. Because of the high dimensionality of the 

examples, a linear kernel is applied. Mukherjee et al., (1999) also describe a 

technique for assigning confidence values to the SVM prediction. The 

method assumes that the probability of a particular class, given a 

particular example, is approximately equal to the probability of the class 
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given the corresponding SVM's discriminant value. Discriminant values 

are estimated using leave-one-out cross-validation, and their distribution is 

estimated using a SVM-based, non-parametric density estimation 

algorithm (Mukherjee and Vapnik, 1999). 

In work carried out concurrently, Moler et al., (2000) describe the 

application of SVMs to the recognition of colon cancer tissues. This work 

describes a general, modular framework for the analysis of gene 

expression data, including generative Bayesian methods for unsupervised 

and supervised learning, and the SVM for discriminative supervised 

learning. 

In a similar set of experiments, Furey et al., (2000) apply linear SVMs with 

feature selection to three cancer data sets. The SVM successfully identified 

a mislabeled sample in the ovarian set, and is able to produce a perfect 

classification. 

Lee and Lee (2003) extended these two classes classification into multiple 

cancer type by introducing multicategory SVMs. The approach was tested 

on the AML (acute myeloid leukemia)/ ALL (acute lymphoblastic 

leukemia) and small round blue cell tumours and showed perfect 

performance. 

Segal et al., (2003a) use the SVM to develop a genome-based classification 

scheme for clear cell sarcoma. This type of tumor displays characteristics of 

both soft tissue carcoma and melanoma. Using 256 genes selected via a t

test, a linear SVM is trained to recognize the distinction between 

melanoma and soft tissue sarcoma. In leave-one-out setting, the classifier 

correctly classifies 75 out of 76 examples. Related work has also been 

carried out by Segal et al. (2003b). This time, a SVM is used to investigate 

the complex histopathology of adult soft tissue sarcomas. 
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By considering the gene-gene correlations occurring in the gene data, 

Guyon et al., (2002) proposed a SVM-based learning method, called SVM 

recursive feature elimination (SVM-RFE). This SVM-RFE algorithm is 

tested on the AMLj ALL and colon cancer data sets. 

Besides the application of SVMs on tissue classification above, Su et al. 

(2003) describe a tool called RankGene that produces gene ranking. One of 

the ranking metrics available in RankGene is the discriminant of a one

dimensional SVM trained on a given gene. Yeang et al. (2001) addressed 

many tissue classification problems with SVMs. 

2.4.4.3 DNA and RNA 

Zien et al. (2000) compare SVMs to a previously described NN approach 

on the recognition of translation start sites in DNA. A fixed-length window 

of DNA is encoded in redundant binary form, and the SVM and NN are 

trained on the resulting vectors. Using a simple polynomial kernel 

function, the SVM improves upon the NN's error rate (from 15.4% down to 

13.2%). A similar application is described by Degroeve et al. (2002). Here, 

rather than recognizing the starts of gene, the SVM learns to recognize the 

starts of introns. 

In contrast with the two methods above, which aim to recognizing specific 

sites in a DNA, Carter et al. (2001) have demonstrated the application of 

SVMs to the problem of recognizing functional RNAs in genomic DNA. 

Functional RNAs (fRNAs) are RNA molecules that have a functional role 

in the cell and do not code for a protein molecule. In the approach used by 

Carter et al. (2001), the SVM performs well and slightly better compared to 

aNN. 
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2.4.4.4 Protein analysis 

SVMs have been less prevalent in protein analysis compared with NNs 

(Baldi and Brunak, 2001). The first application of SVMs on proteins was 

proposed by Jaakkola et al. (1999a; 1999b) and the described algorithm was 

called SVM-Fisher. The SVM-Fisher method couples an iterative HMM 

(Hidden Markov Model) training scheme with the SVM. For any given 

family of related proteins, the HMM provides a kernel function. By 

combining HMMs and SVMs, SVM-Fisher offers an interpretable model 

with an excellent recognition performance. Subsequent work by Karchin et 

al. (2002) demonstrates the successful application of the SVM-Fisher 

methodology to the recognition of large, pharmaceutically important class 

of protein, the G-protein coupled receptors. 

For protein remote homology, Ding and Dubchak (2001) define a 

composition based kernel function that characterizes a given protein via 

the frequency with which various amino acids occur therein. In this work, 

each protein is characterized by a simple vector of letter frequencies. Each 

protein sequence is represented via six different alphabets, corresponding 

to amino acids, predicted secondary structure, hydrophobic, normalized 

van der Waals volume, polarity and polarizability. A single protein is 

represented by the letter frequencies across each of these alphabets, for a 

total of 125 features. Ding and Dubchak introduce a method called the 

unique one-vs-others method, which performs additional SVM 

optimizations in order to sort out disagreements among SVMs training 

using the standard, one-vs-others method. They show that their method 

leads to significant improvement in the test set accuracy. The work also 

shows that a SVM outperforms a similarity trained NN on this task. 

A similar SVM model is used by Cai et al. (2001) to recognize broad 

structure classes of proteins (all a , all f3 , a I f3 and a + f3 ). On this task, 
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the SVM also shows a better discrimination performance than a NN 

method. 

Hua and Sun (200la) use SVMs to perform protein classification with 

respect to subcellular localization. In this work, the SVM is shown to 

produce more accurate classifications than competing methods, including 

aNN. 

Zavaljevski and Reifman (2002) describe the application of a SVM to a 

clinically important, binary protein classification problem. The class of 

human antibody light chain proteins is large and is implicated in several 

types of plasma cell diseases. In particular, Zavaljevski and Reifman use 

SVMs to classify the k family of human antibody light chains into benign 

or pathogenic categories. The resulting classifier yields an accuracy of 

around 80%, measured using leave-one-out cross-validation, which 

compares favourably with the error rate of human experts. 

In addition, Hua and Sun (200lb) have demonstrated how to predict 

protein secondary structure with SVMs. The resulting classifier achieves a 

pre-residue accuracy of 73.5% on a standard data set, which is comparable 

to existing methods based upon NNs. 

Koike and Takagi (2004) use SVMs to identify the protein-protein 

interaction sites, which is essential for the mutant design and prediction of 

protein-protein networks. The interaction sites of residue units were 

predicted using profiles of sequentially/spatially neighbouring residues, 

plus additional information. This prediction performance appeared to be 

slightly higher than a previously reported study. 
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2.5 Summary 

Artificial intelligence techniques, especially NNs and SVMs, have been 

successfully used in interpreting and analyzing the large volume of 

biological data (Baldi and Brunak, 2001; Hua and Sun, 2001a; Ding and 

Dubchak, 2001). This research is focused on protein threading by artificial 

intelligence techniques. The related concepts and theory to this research 

project have been reported in this chapter. 

Firstly, an overview of the spatial conformations of protein with the focus 

on protein primary and tertiary structure is given. With the understanding 

of protein structure, three possible protein prediction methods are 

summarized. They are comparative modelling, fold recognition (threading) 

and ab initio prediction method. Fold recognition method, also called 

protein threading, is used when the target sequence has an absence of a 

significantly sequence similarity and there is no homologous proteins with 

known structures. Currently, protein threading has become an important 

research area. 

Secondly, from the reviewed applications of NNs and SVMs on 

bioinformatics, it has been shown that both NNs and SVMs have been 

successfully used for the analysis of biological problems. They learn a 

pattern based on training data and predict on future data. They are very 

well suited for domains with an abundance of data and lack of clear 

theory, which is precisely the case in protein structure prediction problem. 

In this thesis, a framework for protein threading is proposed by using NNs 

and SVMs. With the above background introduction, the theory of protein 

threading will be analyzed in the following Chapter. A literature review 

will be given on the most recent and best performance threading servers. 
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CHAPTER 3 THREADING ANALYSIS 

AND RESEARCH FRAMEWORK 

Protein threading (fold recognition) is proposed for those target sequences 

that have the same fold as some proteins with known three-dimensional 

structures but do not have homologous proteins with known structures. 

Protein threading makes a structure prediction through placing (aligning) 

the residues of the target sequence sequentially to the positions in the 

template to see whether the target can have the same fold as the template 

or not. Gaps are allowed in the alignment to some extent. Not all sequence 

residues are aligned to a template position and not all template positions 

are aligned by a sequence residue. 

In addition to the introduction of threading in Section 2.3.3, a more 

detailed knowledge of the threading method and literature review are 

given in this chapter. The current research work on protein threading is 

reviewed in Sections 3.2 and 3.3, and Section 3.4 presents the research 

framework. 

51 



Chapter3: Threading Analysis and Research Framwork 

3.1 Analysing the Threading Program 

Threading, which is also referred to as fold recognition, attempts to assign 

folds to sequences which show very low sequence identity to a known 

structure. Figure 3.1 shows a simple outline of how threading methods 

generally work. The amino acid sequence of a query protein (target 

protein) is examined for compatibility with the structural core (a helix, fJ 

strand and other structural element) of a known protein structure against 

a library of fold templates. If a reasonable degree of compatibility (with 

the highest similarity score or the lowest energy potential) is found with a 

given structural core, the protein is predicted to fold into a similar three

dimensional configuration. There are two common methods for 

determining whether or not a given protein sequence is compatible with a 

known structural core. They are the structural profile method and the 

contact potential method. 

Query sequence/ 
Target sequence 

Fold library 

Similarity measure 

Scores / potential 

KMRVVDDAGCIGCGVENCLCDPVFQLFQDVGDDGKVPQLVRDAD 

~ 

0.2 0.5 0.9 0.3 

Figure 3.1 A simple outline of protein threading procedure. 

The structural profile method was firstly developed by Bowie et al. (1991). 

By describing the structural environment of each amino acid residue in the 

structure templates, they attempted to match the templates with 

sequences using the preferences of amino acids in different environments. 
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The environment was described in terms of local secondary structure, 

solvent exposure and degree of burial by polar rather than a-polar atoms. 

On the basis of these environment descriptions, each amino acid is 

assessed into one of each group. For example, an amino acid with a 

hydrophobic side chain may fit best into the structure of buried group at 

that position. The query sequence is then aligned with a series of such 

environmentally defined positions in the structure to see whether a series 

of amino acids in the sequence can be aligned with the assigned structural 

environments of a template protein. The procedure is then repeated for 

each template in the structural database, and the best matches of the query 

sequence to the template are identified. It is assumed that the residue 

structural environment is more conserved than the residue itself, so the 

method can detect more remote relationships than pure sequence based 

methods. The method has been improved by much research (Rost, 1995; 

Russell et al., 1996; Rice and Eisenberg, 1997). Because of the 

improvements in secondary structure prediction accuracy, the predicted 

secondary structure and residue exposures of probe sequence were also 

included into the scoring scheme (Fischer and Eisenberg, 1996; Mallick et 

al.,2002). 

The contact potential method was firstly introduced by Jones et al. (1992). 

The method was built upon the threading concept of Bowie et al. (1991), 

but differed from the method of Bowie et al. (1991) in that it considered 

the detailed network of pairwise interactions between individual residues 

rather than just assigning them to a basic environmental class (Jones and 

Hadley, 2000). In their method, a given protein fold is modeled as a 

network of pairwise interactions between amino acid residues. A sequence 

is matched to a structure by considering pairwise interactions, rather than 

local residue structural environments only. By including non-local 

interactions, threading models aim to detect even more remote 

relationships between templates and probes. However, the inclusion of 
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non-local interactions prohibits the use of the classic dynamic 

programming algorithm, because the assumption of independence in the 

dynamic programming algorithm is no longer valid. Thus, an iterative 

approach, which was developed for protein structure alignment (Taylor 

and Orengo, 1989), was introduced for making structure-sequence 

alignments. Recursive dynamic programming (Thiele et al., 1999), Gibbs 

sampling algorithm (Bryant, 1996), and other heuristic algorithms (Huber 

et al., 1999; Xu and Xu, 2000) have been developed to generate alignments 

in more efficient ways. 

In Sections 3.2 and 3.3, the existing works on both approaches are 

reviewed and discussed. 

3.1.1 Why Threading? 

After a long period of evolution, the sequences of the proteins are 

extremely varied, whereas the three-dimensional structures are much 

more restricted because a fraction of residue exchange does not affect the 

stability of structures. The number of unique structural folds is fairly small 

(approximately 1000 folds; Govindarajan et al., 1999; Orengo et al., 2001). 

That means, amino acid types have different preferences for occupying 

different structural environments, and they might have distinct 

preferences for side-chain contact. Therefore, it is possible to quantify 

these interaction preferences of amino acids and produce a score function. 

This score function could identify the extent of those amino acids from the 

sequence located in preferred environments and adjacent to preferred 

neighbours. By doing this, the sequence can be threaded into the structure 

by searching for the best alignment that optimizes the score function. It is 

estimated that up to 70% of new protein sequences, their structure have a 

similar fold in the PDB, from which a suitable model could be constructed 

(Jones and Hadley, 2000). 

54 



Chapter3: Threading Analysis and Research Framwork 

It is generally assumed that comparative modelling methods are only able 

to recognize closely related sequences (Jones, 1999). When there are no 

obvious sequence similarities between a target and a template, a threading 

program can be adopted instead. Currently, threading has become a 

popular technique for protein structure prediction and achieved some 

success. For example, the threading program PROSPECT (Xu et al., 2001) 

performed the best in the CASP4 (Critical Assessment of Techniques for 

Protein Structure Prediction) competition. 

3.1.2 Threading overview 

For a threading program, there are some common elements: 

A sequence of interest and a library of templates or known structure with all 

known folds (coordinate and angle). 

To construct a library of potential core folds or structural templates is one 

of the basic components for getting good performance for a practical 

threading program. If the library is too large, the threading calculation 

could be very slow. If the library is too small, the correct template may not 

be included in the library and lead to the wrong conclusion of discovering 

a new fold. The members in the library usually consist only of abstractions 

of known structures, which is annotated with environmental features, 

such as, spatial adjacencies and distance between amino acids, solvent 

ability of amino acid itself, backbone parameters, secondary structure, and 

so on. 

Arranging the sequence on each location of template, searching the best fit by 

some score with gaps and insertions. 

Each distinct threading is assigned a score by a specific score function. The 

score function usually describes the degree of sequence-structure 
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compatibility between sequence amino acids and their corresponding 

positions in the core template as indicated by the alignment. It should 

have the ability to evaluate individual sequence residue preferences for 

the structural environment. For example, such a function should reflect 

the fact that a hydrophobic sequence residue may be more likely to occur 

in a buried structural environment than in an exposed one. 

The alignment of the sequence to a given template usually is selected by 

searching the best alignment under the score function. It is an 

optimization problem from the viewpoint of mathematics. There are 

several possible approaches including dynamic programming 

(Needleman and Wunsch, 1970; 5mith and Waterman, 1981), double 

dynamic programming (Jones et al., 1992) and Monte Carlo (Bryant and 

Altschul, 1995) / simulated annealing method (Kirkpatrick et al., 1983). 

Going through the entire library, collecting the scores for all the candidate 

models, taking the best scoring one as the prediction model. 

For each threading application, an optimal alignment between a query 

sequence and each structure in the template library needs to be calculated. 

Then a decision needs to be made on which sequence-structure alignment 

is the correct fold recognition. Until now, it is still a highly challenging 

and unsolved problem (Xu, et al., 2002). 

3.2 Existing threading programs - structural profile 

approach 

Within the structural profile method, it is assumed that if the query 

protein folds the same way as a target structure, the environments of the 

amino acids will be in the same linear order as they are in the target. Thus, 
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the structure of protein is encoded as a sequence of residue environments. 

A profile that describes the 3D environment of the template structure is 

made for each fold in the library. These profiles are used to score the 

compatibility between the query sequence and the representative fold. 

Various dynamic programming algorithms (global, semi-global, local and 

global-local) are used to identify an optimal, best-scoring alignment 

between sequence and profile. Bowie et al. (1991) firstly developed the 

structural profile method. Since then, many threading programs have 

been designed follow the structural profile approach. Some of the most 

recent well-designed threading programs are reviewed here. 

3.2.1 UCLA-DOE fold server 

The former UCLA-DOE fold server (http:j / fold.doe-mbi.ucla.edu/) is a 

fold-recognition server using 3D profiles and secondary structure 

prediction method as described by Fischer and Eisenberg (1996). The 

current server imported some new techniques like PSI-PRED (McGuffin et 

al., 2000) and DASEY (Mallick et aI, 2002) to assign a structure for query 

sequence. DASEY (Directional Atomic Solvation energY) is an atom-based 

threading method and will be introduced in Section 3.2.5 below . 

.In the original approach, Fischer and Eisenberg (1996) defined a new 

sequence-structure compatibility function. The function combines the 

previously developed amino acid to structure compatibility scores (e.g. 

3D-1D scores of Bowie et al., 1991) with the sequence-derived properties of 

the probe sequence. Various combined compatibility functions have been 

tested in their work. They are the combination of four different 

substitution tables (Henikoff and Henikoff, 1992; Gonnet et al., 1992), 

Bowie's 3D-1D scores plus the sequence-derived properties of the probe 

sequence. The sequence-derived properties of the probe sequence, such as 

the predicted secondary structure and solvent accessibility, are 
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demonstrated to be useful in protein fold recognition. The query sequence 

with the derived properties is aligned to the template using the global

local alignment algorithm. The predicted secondary structure and solvent 

accessibility are obtained from the PHD server (Rost et al., 1994). In the 

current UCLA-DOE server, PSI-PRED (McGuffin et al., 2000) is used for 

the secondary structure prediction. 

3.2.2 GenTHREADER 

GenTHREADER (Jones, 1999) is a fast and powerful protein fold 

recognition program. The method can be divided into three stages. First, a 

sequence-structure alignment is generated by global-local dynamic 

programming alignment algorithm. Alternatively, a query sequence 

profile is built to align with the structure profile in fold library. The one 

with the highest scoring alignment is taken as the preferred one. Then the 

alignment is evaluated by statistical potentials derived from THREADER 

program (Jones et al., 1992). The pairwise potential of mean force and the 

solvation potential are used by GenTHREADER model. Finally, the 

GenTHREADER uses a simple feedforward NN to produce a single score 

measuring the confidence in the prediction. The NN is trained with six 

scores. They are: sequence alignment score, number of aligned residues, 

length of query and template protein sequence, pairwise energy sum and 

solvation energy sum. The output of the NN is the binary CATH (Orengo 

et al., 1997) relationship. That is, pairs of proteins are randomly selected 

from CATH database. If the two domains of a pair are from the same 

topology family in CATH, the target value of NN is set to 1, otherwise to 

O. The GenTHREADER server can be accessed from the link of 

http://bioinf.cs.ucl.ac.uk/psipred/. 
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3.2.3 3D-PSSM (three-dimensional position-specific scoring matrix) 

3D-PSSM (Kelley et al., 2000) is a program to recognize remote protein 

sequence homologues. It implements the combination of multiple 

sequence profiles with structural-based profiles. Three different 

alignments between a target sequence and a template by using different 

scoring functions and different alignment policies are calculated. The 

alignment with the highest standardized score is taken as the final result. 

In each alignment, the scoring function contains secondary structure 

information, solvent accessibility, 1D-PSSM and 3D-PSSM information, as 

well as a gap penalty. The 1D-PSSM is generated from the multiple 

sequence alignment of a family of proteins as implemented in PSI-BLAST. 

The 3D-PSSM is constructed from the structural alignment program SAP 

(Orengo et al., 1992) for a superfamily of proteins. The three different 

alignments are: the target sequence is aligned to the lD-PSSM of the 

template; the target sequence is aligned to the 3D-PSSM of the template; 

and the template sequence is reversely aligned to the 1D-PSSM of the 

target sequence. Since all alignments are involved with only sequence to 

profile alignment, a dynamic programming algorithm can be used to 

search for the optimal alignment. 

The 3D-PSSM program is the first contemporary method to explicitly use 

information from structural alignments to aid protein fold recognition. 

The 3D-PSSM sever is available at 

http://www.sbg.bio.ic.ac.uk/~3dpssm!, where a user may submit a 

query sequence to be scanned against the 3D-PSSM database. The server 

performs a secondary structure prediction, and permits interactive 

viewing of alignment, and automatically generated preliminary models. 
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3.2.4 FUGUE 

FUGUE (Shi et al., 2001) aims at the recognition of distant homologous by 

sequence-structure comparison. It aligns multiple sequences to multiple 

structure profiles. The multiple sequence alignment is generated by PSI

BLAST. The structural profile is derived from HOMSTRAD (Mizuguchi et 

al., 1998), which is a database of protein structure alignments for 

homologous families. At each template position, the structure profile is an 

environment substitution table. Three features are selected to describe 

local environment of a known protein structure. They are: main-chain 

conformation and secondary structure, solvent accessibility and hydrogen 

bonding status. The environment-specific substitution tables are built with 

the three groups of features. In the FUGUE program, a position-dependent 

gap penalty is used in the scoring function. At each position, the gap 

penalty is dependent on the solvent accessibility at this position, and its 

position relative to the secondary structure elements. FUGUE used the 

global-local algorithm to align a sequence-structure pair when they greatly 

differ in length and use the global algorithm in other case. 

FUGUE is one of the better performing threading programs currently 

available (http://www-cryst.bioc.cam.ac.uk/~fugue!). Given a query 

sequence (or a sequence alignment), FUGUE scans a database of structural 

profiles, calculates the sequence-structure compatibility scores and 

produces a list of potential homologues and alignments. 

3.2.5 DASEY 

DASEY (Directional Atomic Solvation EnergY; Mallick et al., 2002) is an 

atom-based threading program. It extends the residue environmental 

definition introduced by Bowie et al. (1991). The environment of each 

protein position is encoded as the distribution of nonhydrogen atom types 
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along four tetrahedral directions from the a -carbon of the residue in that 

position. DASEY adopted the previous work of Sequence Derived 

Properties (SDP) used in UCLA-DOE server to mimic the fold assignment 

process. That is, the preference of a query sequence residue and its 

predicted secondary structure are computed for scoring function. DASEY 

has been demonstrated to perform better than some earlier procedures 

due to the atom-based more elaborate structure environmental 

description. 

3.2.6 WURST 

WURST (Torda et al., 2004) is a protein thre<;l.ding program with an 

emphasis on high quality sequence to structure alignments. The server is 

available at http://www.zbh.uni-hamburg.de/wurst/. First, a 

conservative sequence profile is built for the target sequence using PSI

BLAST. Then the sequence profile is aligned to about 9765 PDB template 

structures using local dynamic programming alignment algorithm. A 

sequence to structure score is calculated at each sequence position. Three

dimensional protein models, with side-chain only, are built from all 

alignments and evaluated using a more expensive quasi-energy function. 

The gap penalty is based on the distances within the model. The final 

score associated with each model is the combination of the alignment 

score, rescored model and gap penalties. Currently the final ranking of 

structure and confidence measurement employed in WURST is the same 

as the one used in GenTHREADER (Jones, 1999). 

3.2.7 SPARKS 

SPARKS (Sequence, secondary structure Profile And Residue-level 

Knowledge-based energy Score; Zhou and Zhou, 2004) is a threading 

program with an elaborately designed knowledge-based potential 
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function. Unlike 3D-PSSM (Kelley et al., 2000) that the score function only 

takes the secondary structure and solvent exposure into account, SPARKS 

developed a profile-energy score with a torsion-angle term for backbone 

interaction, a combined buried surface term and a contact-energy term for 

residue-residue and residue-solvent interactions. SPARKS also combines 

the elaborately designed score with the sequence profiles generated from 

PSI-BLAST (Altschul et al., 1997) and the secondary structure information 

predicted from PSI-PRED (McGuffin et al., 2000) for fold recognition. A 

global-local dynamic programming algorithm is employed to align query 

sequence profile to structural template profile in the fold library. SPARKS 

gains some improvement on sensitivity and alignment accuracy compared 

to several other methods mentioned in their paper. The improvement may 

due to the sophisticated backbone and side interactions imported into the 

score function. 

3.3 Existing threading programs - contact potential 

approach 

Typically, the contact potential method models interactions in a protein 

structure as sum over pairwise interactions. The formalization of the 

problem is: 

Given a template structure T with positions tpt2'" ·tn , and a query 

sequence S with amino acids Gp G2 , .. ·,Gn , to find an A = A(1),A(2), .. ·,A(n) 

(where 1 ~ A(1) < A(2) < '" < A(n) ~ m and A (i) indicates the index of 

11 11 

amino acid from Sthat occupies t i ) such that LLscore(i,j,GA(i)GA(J») is 
i=1 j=1 

maximized. 
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The method was first introduced by Jones et al. (1992). In the residue

residue contact potential method, the number and closeness of contacts 

between amino acids in the core are analyzed. The query sequence is 

evaluated for amino acid interactions that will correspond to those in the 

core and that will contribute the stability of the protein. The most 

energetically stable conformations of query sequence thereby provide 

predictions of the most likely three-dimensional structure. The inclusion 

of non-local interactions between amino acid pairs prohibits the use of the 

dynamic programming algorithm, because the assumption of 

independence in dynamic. programming algorithms is no longer valid. 

Therefore, the contact potential approaches generally . require more 

complicated algorithms to deal with the residue-residue contact term. 

They are more computationally expensive than the structural profile 

approach. Most existing programs employ heuristic approaches to solve 

the sequence-structure alignment problem. These approaches include 

double dynamic programming (Jones et al., 1992), frozen approximation 

(Godzik et al., 1992), Monte Carlo sampling algorithm (Bryant, 1996) and a 

divide-and-conquer algorithm (Xu and Xu, 2000). In the following, one of 

the best performing threading programs PROSPECT (Xu and Xu, 2000; 

Kim et al., 2003) is introduced. Some of the most recent well-designed 

knowledge-based energy potentials are given. 

3.3.1 PROSPECT 

PROSPECT (PROtein Structure Prediction and Evaluation Computer 

Toolkit) was developed by a research group at the Oak Ridge National 

Laboratory. It has two versions. The first version of PROSPECT (Xu and 

Xu, 2000) uses a divide-and-conquer algorithm to treat the pairwise 

potential strictly in aligning the target sequences to the templates. The 

divide-and-conquer algorithm solves the entire optimal alignment 

problem by recursively solving a series of sub-alignment problems 
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between sub-structures and sub-sequences, under various constraints, and 

then combining these sub-alignments in a consistent and optimal way. By 

using the divide-and conquer algorithm, PROSPECT could efficiently find 

a globally optimal threading alignment between the query and template 

proteins. Both pairwise contacts between spatially nearby residues and 

variable length alignment gaps are considered in the alignment algorithm. 

Four terms are included in the scoring function of the first version of 

PROSPECT. They are mutation potential, singleton energy potential, 

distance-independent pairwise contact potential and gap penalties. The 

singleton energy potential represents the structural environment fitness 

defined by secondary structure and solvent accessibility. The first version 

of PROSPECT performs very well in recognizing the fold recognition 

targets. However, it runs very slowly if the templates have complex 

interaction topologies and the target sequences are long. 

PROSPECT-IT (Kim et al., 2003) discards the strict treatment of pairwise 

interactions to speed up the search for the optimal alignment in order to 

fulfill the genome-wise structure prediction. A two-stage threading 

strategy is developed. First, a query sequence is aligned to the templates 

by a dynamic programming algorithm regardless of pairwise contact 

potential. Both global and global-local alignment algorithms are 

employed. Then PROSPECT-IT calculates the distance-dependant pairwise 

score based on the existing alignment. The divide-and-conquer algorithm 

is used with all the energy terms including singleton and pairwise 

energies. Besides the non-pairwise z-score, the pairwise z-score is also 

calculated by randomly shuffling the sequence. A linearly combined z

score is calculated to select the best-fit templates. PROSPECT-IT runs very 

fast and greatly improves the alignment accuracy. Unfortunately, 

according to the CAFASP3 evaluation results (Fischer et al., 2003), 

PROSPECT-IT does not seem to work as well as the first version of 

PROSPECT in recognizing the fold recognition targets. The server of 
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PROSPECT is available at 

htlp://www.bioinformaticssolutions.com/products/prospect.php. 

3.3.2 Potential energy functions 

Besides the threading program PROSPECT (Xu and Xu, 2000; Kim et al., 

2003), most current work is focused on the scoring functions only 

(Samudrala and Moult, 1998; Skolnick et al., 2000; Gatchell et al., 2000; Lu 

and Skolnick, 2001; Zhou and Zhou 2002; Lee and Duan, 2004). 

Basically, there are two types of potential energy functions. The first class 

of potentials is called physical-based potential. They are built on the 

fundamental analysis of forces between atoms and they can be derived 

from the laws of physics. However, physical-based potentials have not 

been widely considered practical for protein threading due to the high

computation cost required for the calculation of free energy which should 

include an atomic description of the protein and surrounding solvent. To 

date, because of the continued improvement in computer speed, physical

based energy functions are showing signs of revival (Felts et al., 2002; Lee 

and Duan, 2004). The second class of potentials is called the knowledge

based potential. Compare to the physical-based potential, they are the 

mainstay in protein prediction programs. They extract information on the 

forces and energies from experimentally solved protein structures and 

measure the probability distribution of possible conformational 

arrangements of a protein sequence. Traditionally, they are also called 

1/ energy function" even if the scoring function does not reflect the real 

energy of proteins. 

Knowledge-based potentials are derived from a statistical analysis of 

known protein structures. Normally, Bayesian method is used to deduce 

the knowledge-based potentials/ energy function (Lathrop et al., 1998). Let 
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peT I S) be the probability of the query sequence S having in the same 

fold as the template T and peA I B) is the conditional probability of A 

given B. Let A = A(1),A(2),,, ·,A(n) be an alignment between the query 

sequence and the template where residue in the sequenee position i is 

aligned to the template position A(i). Let peT I S,A) be the probability of 

the query sequence being aligned to the template according to the given 

alignment A . Then we have 

peT I S) = maxP(T I S,A) 
A 

(3.1) 

According to probabilistic Bayesian theory, we have: 

peT I S,A) = peT,S I A) = pes I T,A)P(T) 
peS) peS) 

(3.2) 

If we assume that peT) is a uniform distribution, given a specific query 

sequence, then based on Equation 3.1 and 3.2, we have 

peT I S) IX maxP(S I T,A) 
A 

(3.3) 

Assuming the query sequence S is aj , a2 ,' •• , an and the template sequence 

is T = tp t2,"',tm , peS I T,A) can be expanded as follows: 

peS I T,A) = P(ap a2 ,,,·an I t p t2 ,"·,tm ,A) 

TI TI 
P(ai,aj I tA(i),tA(J)) 

= P(ailtA(i)) 
i i<j P(ai I tA(i))P(a j I tA(J)) 

x TIP(apai,ak ItA(i),tA(J),tA(k))P(ai ItA(i))P(aj ItA(J))P(ak ItA(k))". 

i<j<k P(apaj ItA(i),tA(J))P(apak ItA(i),tA(k))P(aj,ak ItA(J)'tA(k)) 

(3.4) 

The first item of the right hand side of Equation 3.4 is the probability of 

one particular amino acid residue ai being aligned at position A(i) 

regardless of the alignment of other residues. The second item is the 
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probability of two residues Gi and Gj simultaneously being aligned to two 

specific template positions A(i) and A(j). The remaining items refer to the 

probability of the multiple sequence residues simultaneously occurring at 

multiple specific template positions. Since there is not enough 

experimental data to generate the other items apart from the first two in 

the right hand side of Equation 3.4, these items are often ignored. For 

computational convenience, peS I T, A) is often converted into its negative 

logarithm form, which is: 

f(S I T,A) = -logP(S I T,A) (3.5) 

The resulting f is called the energy function for protein threading. It is 

normally a sum of several items and often written as: 

f(S I T, A) = I;; (i, A(i)) + I 12 (ij, i2, A(ij )A(i2)) (3.6) 
[1,i2 

In Equation 3.6, J;(i,A(i)) is the singleton score when the amino acid in the 

sequence position t is placed to the template position A(i) . The singleton 

score could refer to the mutation term, secondary structure term and 

solvent accessibility. The mutation term is the probability of template 

residue at position A(i) mutating to the sequence residue Gi • The 

secondary structure term refers to the probability of the sequence residue 

Gi occurring at the local secondary structure type. 

12 (ip i2,A(ij)A(iJ) represents the pairwise score when A(ij) and A(i2) are 

specially nearby and the residue in the sequence position i j is placed to 

the template position A(tj) while the residue in the sequence position i2 is 

placed to the template position A(i2) . 

Depending on the different ways of generating singleton and pairwise 

scores, different knowledge-based potentials had been defined by 
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researchers. For example, GDV (Gatchell et al., 2000) is an atom-based free 

energy potential. It combines molecular mechanics with empirical 

solvation and entropic terms. KBP is a heavy atom distance-dependent 

knowledge-based pairwise potential developed by Lu and Skolnick (2001). 

KBP is designed with higher-resolution than those models using one or _ 

two points for each residue to represent a protein (Sun, 1993; Kolinski et 

al., 1998). Totally 167 different atom types are considered in KBP model. 

Zhou and Zhou (2002) developed an all-atom knowledge-based potential, 

DFIRE-A. A new reference state DFIRE (Distance-scaled, Finite Ideal-gas 

ReferencE) was established to construct the all-atom knowledge-based 

potential. 

The performances of these knowledge-based potentials can be tested in 

two ways. They are the z-score from gapless threading and the ability to 

discriminate native structure from decoys. 

3.3.5 TUNE 

Different from those knowledge-based potential approaches, Lin et al. 

(2002) proposed a new approach on threading score. A BPNN is trained to 

predict the compatibility of amino acid residue side chain with its tertiary 

structure environments. A new scoring function is presented. The model is 

tested on benchmark problems of discrimination of native and decoy 

protein tertiary structures. It seems that the NN model is comparable with 

those pseudo-energy function approaches. 

In their approach, each amino acid is described as main chain sphere and 

side chain sphere. The information entropy theory is used to get the 

optimal default radius of each side chain. The centre of the main chain 

sphere is placed on the carbonyl carbon. The residue contact is measured 

by the volume between amino acid side chain and its neighbours. A NN 
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model is trained on CATH (v2.0) database. The output of NN is 

transformed into log-odds score, which has the same formation as other 

threading scores based on potential energy. The model is called TUNE and 

two benchmark problems are used to evaluate the model. 

In their paper (Lin et al., 2002), different NN models are considered and 

discussed with or without local structure and exposure description. A 

conclusion is given that both local structure and exposure characters of 

amino acid should be considered while making a threading program. 

3.4 Research Framework 

As stated above, when there are good templates in the protein structure 

library, good protein threading methods become very useful to reveal 

structural information for sequences. The vast amount of recent 

publications indicates the active research in the field of threading. 

However, the overall performance of current threading models is rather 

disappointing. For example, one of the better performing threading 

programs FUGUE (Shi et al., 2001), can only recognize 25% of homologous 

protein pairs with high confidence (99% specificity); GenTHREADER 

(Jones, 1999) can recognize correct fold with a low false-positive rate, but 

the alignment accuracy is comparatively low; PROSPECT (Xu et al., 2001) 

performed the best in the CASP4, but it runs very slow for long query 

sequences. Thus, more research work needs to be done to improve the 

performance of current threading model. 

The structural profile method performs 3D-1D matching from structure 

templates. It is an established method for protein threading (Johnson et al., 

1993; Rice and Eisenberg, 1997; Kelley et al., 2000; Shi et al., 2001). This 

research follows the structural profile approach to build a framework for 

69 



Chapter3: Threading Analysis and Research Framwork 

protein threading. The aim of this research is to develop a rapid, reliable, 

and automated protein threading model for a more comprehensive 

annotation of genomic sequences. 

The literature review shows that the different threading approaches use at 

least one different threading component to improve the overall threading 

performance, such as, the representative of the protein, the scoring 

function, the alignment algorithm and the way alignment significance is 

assessed. Within the structural profile approach, Bowie et al. (1991) 

described the structure environment in term of solvent accessibility, 

contact with polar protein atoms and secondary structure type. Rice and 

Eisenberg (1997) defined structure position by one of seven residue 

classes, three secondary structure classes and two burial classes. In 

FUGUE (Shi et al., 2001), the structure environments are defined in three 

groups, which are main-chain conformation and secondary structure, 

solvent accessibility and hydrogen bonding status. They demonstrated 

that by including structural information, the performance of fold 

recognition could be improved. However, the features selected as classes 

or groups cannot precisely describe all the complex 3D structures. These 

coarse-grained descriptions can be refined by a 3D-1D mapping. Inspired 

by TUNE model (Lin et al., 2002) in which a NN is used at the amino acid 

residue level to map residue-structure compatibility, an idea of generating 

environment-specific amino acid substitution probabilities (3D-1D 

mapping) by NNs is proposed. More precise structural information can be 

extracted by NNs. The performance of the threading model is therefore 

expected to be improved. 

Unlike those atom-based threading models (for example, DASEY, Mallick 

et al., 2002), in which the threading computation is expensive, the 

framework for protein threading is proposed on residue level. A fast 

threading model is expected. 

70 



Chapter3: Threading Analysis and Research Framwork 

The research work is outlined in Figure 3.2. Basically the research work 

can be divided into two parts. The left part is the main research focus. To 

improve the performance of current threading models, a framework for 

automated protein threading (MESSM; Mixed Environment-Specific 

Substitution Mapping) is designed with NNs and SVMs. The main 

research is extended to design a threading score (TES; Threading with 

Environment-specific Score) following contact potential approach, which 

is the right part of Figure 3.2. 

" " 
"-

Protein Threading 

I 
Chapter 4 &5 I I Chapter 6 

Structural Profile ( Contact Potential 
Approach Approach 

I I 
Threading framework-

Threading Score-TES 
MESSM 

+ I 
r-

----- I 
TES: 

I Discriminate 
Protein Query Sequence-structure Known Protein 3D-Native native and Protein 

Sequence alignment Structure Protein decoy protein Decoys 
Library 

Figure 3.2 Schematic diagram of this research 

In this thesis, chapters four and five report the main research work, which 

is to design and evaluate a framework for protein threading following 

structural profile approach. The designed threading score following 

contact potential approach will be reported in Chapter 6. A brief 

description of the two parts of the research work is given: 

Aframeworkfor protein threading by structural profile approach (MESSM). 

For developing and evaluation a framework for protein threading, the 

following steps will be adopted. 

71 



Chapter3: Threading Analysis and Research Frannvork 

1) Unlike previous work (Fischer and Eisenberg, 1997; Shi et al., 2001) 

in which the structural environments are defined as classes or 

groups, NNs will be adopted in this research to generate the amino 

acid substitution probabilities at any structural environment. NNs 

have been shown to be an efficient tool in solving several kinds of 

problems in bioinformatics (reviewed in Chapter 2, Section 2.3.3). 

Lin et al. (2002) successfully applied NNs at residue level to predict 

residue-structure compatibility. Thus, choosing a NN can be a right 

choice to generate the environment-specific substitution 

pro babilities in this research. 

In the first step, given a residue with its structure environment, the 

probability that it can be replaced by other residues will be 

obtained by NNs. A substitution mapping for protein threading 

will be constructed by log-odds score from the output of NNs. A 

representative fold library will be built in the formation of log-odds 

score matrixes. To do this, sequences with representative fold are 

selected from SCOP first; then amino acids of each selected protein 

sequences are encoded according to their environment description; 

and finally, a NN model is used to give the output as a profile for 

each sequences. Each profile in the library is a matrix with size of 

(protein length) x 20. Each line of the matrix represents an amino 

acid with its environment, the probabilities it can be substituted by 

20 kinds of amino acids. 

2) Previous research (3D-PSSM, Kelley et al., 2000; SPARKS, Zhou and 

Zhou, 2004) demonstrated that by including more information of 

known proteins, the threading performance can be improved. The 

environment-specific substitution mapping generated from NN 

only includes protein structural information. Amino acid 

substitution matrices (such as, PAM & BLOSUM) are built from 

sequences database with useful evolutionary information of protein 
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sequences. Following consensus theory, a mixed substitution 

mapping can be created by linearly combining the two parts. 

In step two, a mixed environment-specific substitution mapping 

(MESSM) will be built with an optimized parameter. Dynamic 

programming (Needleman and Wunsch, 1970; Smith and 

Waterman, 1981) will be employed to align the probe sequence with 

structures in the fold library. 

3) GenTHREADER (Jones, 1999) and WURST (Torda et al., 2004) both 

use NNs instead of a z-score or P-value to evaluate the sequence

structure alignment. In their model, the template selection is treated 

as a classification problem. Their experimental results showed that 

both models can automatically predict the correct fold with a 

comparatively low false-positive rate. Since SVMs are a new binary 

classification method and have been demonstrated to have superior 

performance in various problems compared to NNs (Ding and 

Dubchak, 2001), in this research, each alignment will be evaluated 

bySVMs. 

In step three, a SVM will be trained to evaluate the significance of 

sequence-structure alignment. The one with the highest score will 

be chosen as the best template for the query sequence. 

4) With the combination of the three steps introduced above, a new 

framework for protein threading will be built. To evaluate the 

effectiveness of the proposed framework, benchmarks will be used. 

Both the fold recognition performance and alignment accuracy will 

be verified. The results will be compared with current threading 

models. 
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Threading score following contact potential approach (TES). 

Although the structural profile approach is the established method for 

protein threading, the most successful protein threading method is based 

on contact potential techniques (Xu and Xu, 2000; Kim et al., 2003). Thus, 

this research will be extended to build a threading score following contact 

potential approach. 

Since residue contact calculation is the most important factor in protein 

prediction, a good calculation of residue contacts would play a 

fundamental role in protein threading models. In this research, using the 

new residue contact measuring scheme developed in the MESSM model, 

the compatibility of a residue in sequence with its structural environment 

will be presented by NNs. The probabilities from the NN output will be 

transformed into a log-odds score that can determine which residue best 

fits its environment. The effectiveness of the score will be tested on 

benchmarks to discriminate protein native and decoy sets. The results will 

be compared with other threading scores based on energy potentials. Also, 

the results will be compared with the NN based TUNE model (Lin et al., 

2002), which use a different residue contact measuring scheme. 

With the proposed research framework, the new threading method is 

expected to be effective and efficiency. That means, both the threading 

framework (MESSM) and the threading score (TES) should have a 

comparable performance with current research work if not better. Also, 

the MESSM should be a rapid, automated threading method to match the 

requirement of fast genome sequencing in the post-genome era. 
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CHAPTER 4 THREADING 

(STRUCTURAL PROFILE APPROACH) 

USING NEURAL NETWO,RKS AND 

SUPPORT VECTOR MACHINES 

As reviewed in Chapter 3, threading techniques could broadly be divided 

into two categories: one performing 3D-1D matching using evolutionary 

relationship, which is normally called the structural profile method; the 

other using pairwise interaction potentials, which is called contact 

potential method. Since the former handles the proteins in family and 

superfamily level, it is also called "homology recognition" (Williams et al., 

2001). Profile (Bowie et al., 1991) and Hidden Markov model techniques 

(Eddy, 1998) commonly fall into this category. In the homology 

recognition method, a sequence can be aligned to known protein folds 

using energy functions or probabilistic scoring schemes (e.g. Bowie et al., 

1991; Rice and Eisenberg, 1997; Jones, 1999; Shi et al., 2001). 

This chapter proposes to design a new framework for protein threading 

following the structural profile approach. Thus, the protein threading 

problem could be considered in the following version: 
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Step one, given a protein sequence called the target (query) and a protein 

structure called the template, it is required to look for a suitable alignment 

of the target sequence onto the template structure. Therefore, a structural 

profile of a template should be built first. Then a sequence-profile 

alignment should be implemented. Finally, a score function will be needed 

to be given for the alignment. 

Step two, given a protein target sequence and a representative fold 

database, a list of sequence-template alignments with scores is obtained. 

The best template is chosen based on the alignments' score. In order to do 

this, a representative fold library need to be built first. Then an evaluation 

method is used to choose the best template for the target. 

In section 4.1, an overview of the proposed framework for protein 

threading is given. The outline and the key features of the framework are 

introduced. The details of the threading framework design are described 

in sections 4.2 to section 4.6. A summary is given in section 4.7. 

4.1 Overview 

In this research, a new framework of automated protein threading with 

Mixed Environment-Specific Substitution Mapping, MESSM, is proposed 

using NNs and SVMs (as shown in Figure 1.1). The proposed framework 

has three key features consisting of three main parts. They are: building 

the fold profile library, mixed substitution mapping and confidence 

evaluation, as outlined in Figure 4.1, Figure 4.2 and Figure 4.3 separately. 
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Step 1: Building Fold Profile Library 

Known protein 
database 

Representative fold 

c,. 

~. 

c~ 

Environment description 

• Environment specific 
substitution mapping 

Neural network model 

" 
~ 

~ 

Figure 4.1 Step one of MESSM, building the fold profile library. 

1) Building the fold profile libran;. Given a known protein structure 

database, the structural information of a protein is described by 

each amino acid with its environment description. Unlike the 

environment-specific amino acid substitution tables in which the 

structural environments are defined as groups, NNs are trained to 

extract more precise structural information with amino acid 

residue-level environmental description. The substitution 

probability of each pair of amino acids at any chosen structural 

environment can be generated from the trained NN and 

transformed into log-odds scores. A predefined representative fold 

library is built as profiles on the substitution probabilities. The 

details will be discussed in Section 4.2 to Section 4.4. 
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Step 2: Mixed Substitution Mapping 
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Amino acid substitution matrix 
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VLSPADRT. ..... VL TSKYR 

Sequence-structure alignment 
Mixed substitution. -I (sequence-profile comparison) 

mapping 
(Fold) 

Figure 4.2 Step two of MESSM, mixed substitution mapping. 

2) Mixed substitution mapping. According to consensus theory, linearly 

combine information from both the structurally-derived 

substitution score (obtained from the Step 1 of the MESSM) and the 

sequence profile from well-developed amino acid substitution 

matrices (for example, BLOSUM30) to produce a mixed substitution 

mapping. Thus, given a query sequence, the sequence structure 

alignment could be acquired by dynamic programming with the 

mixed substitution mapping. The details will be discussed in 

Section 4.5. 
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Step 3: Confidence Evaluation 

Query Sequence 

Fold Library 
. -[ VLSPADRTDT. ..... VL TSKYRAS 

, 
Sequence-structure alignment 

---.~~I (Scores, sequence and r--+ 
templates length, gaps) 

Support Vector Machines Target Template Fold 

Figure 4.3 Step three of MESSM, confidence evaluation. 

3) Confidence evaluation. A SVM is employed to measure the alignment 

significance between the protein query sequence and fold profile 

(obtained from Step 2 of the MESSM). The best template is chosen 

for the query sequence. The details will be discussed in Section 4.6. 

4.2 Protein Environmental Description and Residue 

Contact 

In this research, our framework is proposed using the residue level 

structural environment description. 

4.2.1 Description of Structural Environments 

According to the work of Bryant and Lawrence (1993) in developing 

contact potentials for protein threading, each amino acid residue is 

considered to be composed of a side chain fragment, which is different for 

each of the 20 amino acids, and a main chain fragment that is the same for 

all the amino acids. Two amino acids interact when their side chains are in 
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contact or the side chain of one amino acid is in contact with the main 

chain of the other's. 

In this research, each amino acid residue is also described using two 

spheres: the sphere of main chain and the sphere of the side chain (Figure 

4.4). 

XW,yP',ZW 
I 

Xa,Ya,Za 

• I. Cj3' 

main-chain sphere side-chain sphere 

Amino acid residue 

Figure 4.4 Description of structure environment. Each residue is 
represented by a main chain sphere with centre C a and a pseudo side-

chain sphere with centre C fl' . 

The calculation of the side chain radius follows Lin's approach (Lin, et al., 

2002): All spheres are considered to have the same density, so the radius of 

each is proportional to the cube roots of its mass. The main chain mass is 

56.0D. The radius of an Alanine side-chain sphere is 1.7 A and its mass is 

15.1D, so the radius of other amino acid residue can be computed. The 

side chain radius of all the amino acids are listed in Appendix 1. The 

pseudo side-chain centre is built by extending the bond between the alpha 

and beta carbon to the radius of the side-chain. 

As shown in Figure 4.4, two pairs of coordinates are used to determine the 

two spheres and describe the structural environment of each residue. They 

are: 
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1) The coordinates of backbone alpha carbon are used to determine 

the main chain sphere as most of other research work does (Bryant 

and Lawrence, 1993). The coordinate values are extracted from the 

high-resolution structure file in PDB (xa,ya,za; Bernstein et al., 

1977; Berman, et al., 2000). 

2) The coordinates of pseudo side-chain centres (x fl" Y fl" Z fl' ; Lin, et al., 

2002) are used to determine the side-chain sphere. 

4.2.2 Residue contact measurement 

In general, it has been agreed that contacts among residues constrain 

protein folding and characterize different protein structures. Therefore, the 

residue contact calculation is the most important factor in protein 

prediction, especially for those interactions between residues that are 

distant in the sequence (long-range interactions). The basic assumption is 

that the conformation of protein structure follows the Boltzmann 

distribution: the probability of observing the contact is proportional to log 

energy states, and native protein structures should have lowest energy 

states. Provided that residue contacts are known for a protein sequence, 

the major features of its 3D structure could be deduced by applying 

reconstruction method (Bohr et al., 1993). A good calculation of residue 

contacts would play a fundamental role in protein threading models 

(SippI, 1990; Huang et al., 1995; Lathrop and Smith, 1996; Taylor, 1997). 

With less contact environmental description, the model may miss 

important information and lead to the wrong solution. With too much 

contact description, the model may import some noise, which may reduce 

the efficiency of the model. 

In some early work, the two amino acids' contact is calculated by a simple 

distance cutoff (for example, loA by Jones et al., 1995). This is improved 
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by importing pseudo-side chain position (Taylor, 1997). Further 

development in this area leads to a specific research topic of residue 

contact map prediction (Lund et aI, 1997; Olmea and Valencia, 1997; 

Fariselli and Casadio, 1999; Pollastri and Baldi, 2002). In Lin's (2002) 

TUNE model, the contact is measured by the overlapping volume between 

side chain and its neighbours. 

In this research, a new residue contact measurement is proposed. It is built 

to reflect the fact that if the space between two amino acids is larger than 

one water molecule or a third residue, then it means they are too far to 

have contact. Thus, for each residue under consideration, other residues in 

the protein sequence are regarded as its neighbours and are considered to 

have a contact when either one of the following two conditions are true: 

1) Side chain -side chain contact: the distance between two side-chain 

centres is less than the sum of radius of both side-chains plus twice 

the radius of the solvent molecule (Figure 4.5); 

Amino acid (2) 

Solvent molecule 

~ 

Amino acid (1) D; = 2Rs + R, + R2 

Figure 4.5 Side chain to Side chain contact: the distance between two 
pseudo side-chain centres of two amino acid residues is less than 
D: := 2R, + RI + R2 , which is the sum of side-chain radius of two amino acid 

residues (1 and 2) plus twice the radius of the solvent molecule (R,.). 
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2) Side chain - main chain contact: the distance between side-chain 

centre of one residue and the main-chain centre of others is less than 

the sum of radius of one side-chain and one main-chain plus twice the 

radius of the solvent molecule (Figure 4.6). 

Amino acid (2) 

Solvent molecule 

\ 

Amino acid (1) 

D a 
b 

D: = 2Rs +RfJ +Ra 

Figure 4.6 Side chain to main chain contact: the distance between pseudo side-chain 

centre of one amino acid residue and the backbone centre of the other amino acid residue 

is less than D: ::=: 2R, + RfJ + Ra' which is the sum of side-chain radius of one amino acid 

(1) plus the main chain radius of amino acid (2) and twice the radius (R ) of the solvent s 

molecule. 

The solvent radius is set to l.4A (the radius of water molecule) in this 

research. 

4.3 The Artificial Neural Network model for 

environment-specific substitution 

As introduced in Chapter 2, ANNs are a new generation of information 

processing systems that are deliberately constructed to make use of some 

of the organization principles that characterize the human brain. They are 

parallel computational models comprised of densely interconnected 
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adaptive processing units. It has been shown that NNs are more efficient 

tools in solving several kinds of problems than other approaches (Baldi 

and Brunak, 2001). For example, NNs are shown to be the first protein 

secondary structure prediction method to surpass a level of 70% overall 

three-state accuracy (Rost et al., 1994). They have also significantly 

improved the accuracy of structural classes prediction (Chandonia and 

Karplus, 1995). 

ANNs are very well suited for domains with an abundance of data and 

,lack of clear theory, which is precisely the case in the protein threading 

problem. Thus, in this research, a three-layered fully connected BPNN 

with 45 input neurons, 20 output neurons and 30 hidden neurons is used 

to predict an amino acid residue with its environmental description, and 

the probabilities that it could be replaced by other amino acid types, as 

shown in Figure 4.7. The reason for choosing the BPNNs in this research is 

that the BPNNs are currently the most general-purpose and commonly 

used NN paradigms, which achieve their generality because of the 

gradient-descent technique used to train the networks. 
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Local structure 
(4 neurons) 

Neighbour contact r 
(20 neurons) 1 

Amino acid type A r · 
(20 neurons) 1 

o 
o 
o 
o 
o 

Amino acid type C 
(20 neurons) 

Input layer 
(Amino Acid Type - A 

Hidden layer Output layer Training target 

with Structural Environment Description) 

Protein sequence with 
structural environment ~ 

description 

· - . · - . · - . · - . · - . · - . · - . 
A-C · - . · - . · - . · - . 

(Amino Acid Type -C) 

~ Amino acid type 

Figure 4.7 The NN model for training. Three layered feedforward NN: 45 input neurons 

describing amino acid with its environmental structure, 30 hidden neurons and 20 output 

neurons. 

4.3.1 Input representation 

Unlike most of the NN approaches to protein fold recognition (Ding and 

Dubchak, 2001; Baldi and Brunak, 2001), whose input of NN represents a 

whole protein sequence, the input of the NN in MESSM is an amino acid. 
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Since on average each protein has 200~300 amino acids, our training data 

is 200~300 times more than those methods based on whole protein 

sequence. 

In total, 45 input units are used to describe the features of amino acid 

residue with its structural environment. Given an amino acid ai on 

protein sequence S = a]a2 ••• an with known structure, Cij represents the 

other amino acid aj has contact with ai • One input unit is used for residue 

solvent ability, measured by the sum of all the residue contacts, which is 

I Cij . Four units are used to represent a local structure, which is 
j 

calculated by the distances from the alpha carbon to the alpha carbons of 

amino acid pairs of (a i _4 ,ai ) , (a i _2 ,ai ) , (a i+2 ,ai ) and (a i+4 ,ai ). Twenty 

units are represented the twenty amino acids of ai' which is encoded by 

orthogonal encoding scheme. The left twenty input units are employed to 

encode the neighbour contacts of ai • For each neighbour a;, a value of 

"one" is added to the corresponding unit according to its amino acid type. 

A value wij is computed as the weight of "one" to re~ect neighbour 

contact Cij' so the closer the neighbours are the greater the contact 

influence they have. 

{D b _ db 
b !I 

W = a a ij D-d 
b !I 

(4.1) 

where D:, D: are distance thresholds according to two kinds of 

neighbour contacts described in section 4.2.2 (Figure 4.5 and Figure 4.6), 

d~ and d; are the distances between the two amino acids (ai' a j ) side

chain centres and one side-chain and one main-chain centres separately. 
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4.3.2 Methodology for Neural Network Training 

The methodology used in the training of NN is summarized as follows: 

1) As one hidden layer with sufficient neurons can map a training set 

with arbitrary precision (Cybenko, 1989), the proposed ANN model 

is focused on one hidden layer, one input layer and one output 

layer. As shown in Figure 4.7, a three-layered feed-forward NN 

with 45 inputs and 20 outputs was used in this study. The input of 

45 real numbers describes the amino acid type with its structural 

environment, as described above. The target of NN is the amino 

acid type from the results of structural alignment, which is encoded 

by the orthogonal encoding scheme (20 units). Various network 

architectures were tested by changing the number of neurons in 

hidden layer from 10 to 40. The 30-hidden-neuron model was 

selected due to its best performance. 

2) In order to ensure that the solution is reasonably close to the global 

minimum, the NN is trained with 10~20 different starting 

conditions, that is, random initial weights and biases. 

3) The standard logistic sigmoid activation function is used for the 

hidden layer and the softmax activation function for the output 

layer due to the output range (0 to 1). The relative entropy error is 

used to measure the performance of NNs (Baldi and Brunak, 2001). 

4) The training algorithm employed here is the back-propagation 

algorithm to minimize the mean difference between the predictions 

and real amino acid types. 

5) The training is stopped using an eight-fold cross-validation 

approach. In eight fold cross-validation, the data is divided into 
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eight subsets of approximately equal size. The data is partitioned 

into training and test data in eight different ways. After training the 

NN with a collection of seven subsets, the performance of the NN is 

tested against the eighth subset. This process is repeated eight times 

so that every subset is once used as the test data. 

6) Each input value is scaled to lie in the range of 0~1 using standard 

logistic function: 

1 
Input = -a(x-b) 

l+e 
(4.2) 

where x is the raw input value and a and b are constants. In this 

work, a=l and b=10 (McGuffin and Jones, 2003). 

4.3.3 Datasets 

As mentioned in Section 3.2.4 above, several classifications of protein 

architectures are publicly available including SCOP (Murzin et al., 1995; 

Lo Conte, L., et al., 2002), CATH (Orengo, et al., 1997) and FSSP/ DALI 

(Holm and Sander, 1997). SCOP is manually constructed by Dr. Alexei 

Murzin, thus it is independent of any specific sequence or structure 

comparison algorithm. Both CATH and FSSP, on the other hand, are built 

more or less automatically from structural alignments. While the CATH 

and FSSP classifications use protein chains as the object of interest, SCOP 

breaks proteins into domains as a result of eliminating the problem of 

placing multi-domain proteins in the classification hierarchy. The reason 

for choosing SCOP as the training and testing data, instead of using CATH 

and FSSP, is due to the high quality of the database and the use of 

domains instead of complete protein chains. 

Therefore, the structure classification database of SCOP (v1.65) (Lo Conte 

et al., 2002) is used to select the training and testing data sets for NNs. 
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Since the aim of this research is to discover the relationship of proteins 

with long distance evolution, only those proteins with lower than 40% 

sequences similarities are considered. Thus, 1150 pairs of non-redundant 

domains are selected. 881 pairs are in the family level, 269 pairs in the 

superfamily level. 

All the protein pairs are aligned using structural alignment program

FLASH (East a1ignment Algorithm for finding §.tructural Homology of 

proteins; Shih and Hwang, 2003). An example of protein pair's alignment 

using FLASH could be found in Appendix IT. Totally 190,603 residue pairs 

are used to train NNs. 

4.3.4 Neural network training result 

The BPNN is trained by using various network architectures with the 

number of neurons in hidden layer from 10 to 40. Each architecture is 

trained with 10~20 different starting conditions. The average training and 

test error for the different architecture is shown in Table 4.1. The best 

performance NN is the one with 30 hidden neurons. Figure 4.8 shows the 

curve of its training error. 
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Hidden neuron Average training error Average test error 
10 2.35846 2.36202 
12 2.35318 2.35981 
14 2.34086 2.35284 
16 2.32908 2.33862 
18 2.33466 2.34070 
20 2.32209 2.33098 
22 2.32111 2.32841 
24 2.32002 2.32651 
26 2.31332 2.31970 
28 2.31076 2.31819 
30 2.30772 2.30982 
32 2.30905 2.31124 
34 2.31254 2.32268 
36 2.31967 2.32563 
38 2.32721 2.33016 
40 2.32814 2.33569 

Table 4.1 The training and test error for the different ANN architectures 
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Figure 4.8 Relative entropy errors of the training. The training stopped at 145 epochs and 

the error is 2.304 (the best performance NN). 
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4.3.5 Substitution scores 

Let P(x I y,E) be the frequency of observing residue yin environment E 

replaced by residue x. Given a residue y in a protein structure E, its type 

and structure environment are encoded as input of the trained NN model. 

The output of the NN is the predicted substitution probability P(x I y,E). 

A log-odds score of the substitution is given by: 

S(y, E ~ x) = In(P(xJY~ E)) (4.3) 

where P(x) is the occurrence of the residue x in the sequence. The higher 

the logarithm likelihood score is, the better y residue is replaced by x in 

the structure environment E . 

4. 4 Representative fold profile library 

To do protein sequence-structure alignment, the additional structure 

information from protein structure templates should be included in order 

to detect remote evolutionary relationships, which could not be detected 

by sequence alignment program. A popular method is to generate a 

Position-Specific Scoring Matrix (PSSM), also called one-dimensional (lD) 

profile, from protein structure templates (Brenner et al., 1998; Lackner et 

al.,1999). 

Different methods have been developed to generate PSSMs (Henikoff and 

Henifoff, 1994) using multiple alignment, predicted secondary structures 

and other features (e.g. Henikoff and Henifoff, 1997; Elofsson, et al., 1996; 

Rost, et al., 1997; Zhang and Eisenberg, 1994). Bowie et al. (1991) first 

proposed the threading method using a 1D profile. They calculated amino 
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acid preferences for structural environments defined in terms of solvent 

accessibility, contact with polar protein atoms and secondary structure 

type. Based on these preferences, one-dimensional profiles were generated 

from protein structure and used to align to sequence by dynamic 

programming algorithm. 

In the 3D-1D substitution matrix approach by Rice and Eisenberg (1997), 

each structure position was defined by one of seven residue classes, three 

secondary structure classes and two burial classes. Each sequence position 

was defined by one of seven residues classes and three predicted 

secondary structure classes. The matrix scores the substitution between 

residues of different classes. A dynamic programming algorithm is used 

with these scores to align a probe sequence with representative structures 

in the fold library after the prediction of probe secondary structure (Rost, 

et al., 1997). In their program, information from multiple sequence 

alignment of probe sequence is used to predict secondary structure and 

residue exposure. Recently, multiple alignments of probe sequence and 

target structure are used for building of 1D profiles (e.g. Kelley, et al., 

2000; Shi, et al., 2001). 

In this research, the PSSM is generated in a different way from previous 

work in which the structural environments are defined as groups. A 

BPNN is trained to extract more precisely structural information with a 

protein residue-level environmental description. With the additional 

structural information from protein 3D templates, predicted residue 

substitution probabilities are expected to be improved. All the template 

protein structures could be transformed into 1D profile. 

The representative fold library is built on the basis of 3D-PSSM (Kelley et 

al., 2000) but keeps only SCOP (Lo Conte et al., 2002) sequences. Also the 

proteins with low resolution (lower than 4A) are not included. So, in total 

4775 protein templates are selected as representative folds for our fold 
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library. The fold library in 3D-PSSM is an up-to-date fold library with 

SCOP-l.53. It has a good coverage on current available folds. By filtering 

out the low resolution proteins and the personal designed folds by 3D

PSSM, the representative fold library in this research is good enough for 

the experimental evaluation. For each sequence S = a1a2 ••• an in the fold 

library of length n, where a i is one of the 20 amino acids, a i and its 

structural environment are encoded as input of a trained NN. The 

probabilities of a i replaced by each of the 20 types of amino acids are 

generated from the outputs of NN and the values are transformed into 

log-odds scores as described in equation 4.3. A matrix of n x 20 (ID 

profile) is built for each fold in the library. An example is shown in Figure 

4.9. 

20 Type of Amino Acid 

A R N 0 C Q S T W Y V 

F(E) 0.12 0.28 -0.30 0.75 1.16 -0.10 0.08 -0.11 0.89 -0.05 -0.97 

E(E) ~0.26 -0.21 -0.08 -0.01 0.96 0.07 0.01 0.08 1.06 0.15 -0.15 

N(E) -0.33 0.42 0.16 0.23 1.03 0.25 -0.73 0.44 1.04 0.03 -0.81 

A(E) -2.08 -0.84 -3.23 0.19 -0.27 -1.80 -0.24 1.04 2.05 1.44 0.64 

V(E) -0.24 -0.16 -0.06 0.10 0.90 0.13 -0.05 -0.04 1.07 0.57 -0.01 

K(E) -2.26 -2.03 -0.03 -1.17 -1.25 -1.72 -4.59 -3.42 -0.25 -0.83 1.81 

sequence with structure 

Figure 4.9 An example of predefined fold profile 
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4.5 Mixed Substitution Mapping 

4.5.1 Substitution Scores 

Amino acid substitution matrices are built from sequences database with 

useful evolutionary information of sequences and provide the foundation 

for many search techniques. In the lD profile generated above by NNs, the 

environment-specific substitution mapping import structural information 

into the residue alignment. Follow consensus theory, a mixed substitution 

mapping is proposed to combine the environment-specific mapping and 

the BLOSUM30 amino acid substitution matrix. Thus, for each alignment, 

if these two measurements agree, then positive consensus create a good 

alignment; if one gives a strong objection, the alignment is in doubt even if 

the second one shows a positive signal. 

Suppose Sex I y) represents the amino acid substitution matrix 

BLOSUM30, and the environment-specific substitution mapping given 

from the output of NNs is S(y,E ~ x) . The combined substitution 

mapping M(x I y,E) is defined as a linear combination of S(y,E ~ x) 

andS(x I y): 

M(x I y,E) = j.1S(y,E ~ x) + (1- fl)S(X I y) (4.3) 

The parameter fl is a constant between zero and one and is optimized by 

Fischer's benchmark (descried Chapter 5) in this research. 

4.5.2 Dynamic Programming 

With the 3D-1D substitution mapping described above, the template 3D 

protein structures could be transformed into lD profiles with mixed 
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substitution scores. So, the alignment of a sequence S = a]a2 " • all of length 

11, where ai is one of the 20 amino acids, into a structure X = X]X2" 'Xm with 

111 residues, where Xj is the 1D profile, could be considered as sequence 

alignment. To obtain the optimal alignment between two sequences, 

dynamic programming (Needleman and Wunsch, 1970; Smith and 

Waterman, 1981) can be used (as introduced in Section 2.3.2). Dynamic 

programming is a good method for finding an optimal alignment when 

the substitution score can be obtained at each position of the alignment. 

Many fold recognition methods use the dynamic programming algorithm 

in various forms, including local alignment (Jones et al., 1992), global 

alignment (Bowie et al., 1990) and the global-local alignment (Fischer and 

Eisenberg, 1996; Rice and Eisenberg, 1997). In this research, a probe 

sequence is aligned to 1D profiles using a global-local dynamic 

programming algorithm (Fischer and Eisenberg, 1996). This algorithm is 

shown to have better performance than both global dynamic 

programming (Needleman and Wunsch, 1970) and local dynamic 

programming (Smith and Waterman, 1981). 

The global-local alignment algorithm does not penalize unmatched N- or 

C- termini segments in the probe sequence (as in the local alignment), but 

it does penalize any gaps in the target structure (as in the global alignment 

with ends penalization). Thus, as a result, the global-local alignment has 

two features: 

1) The possibility of obtaining higher scores for relatively short, local 

matches is reduced since all the positions in the structure are 

counted in the alignment; 

2) If the fold is larger than the probe sequence, more gaps need to be 

included, and the score of this match would be low. Therefore, the 
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tendency of obtaining higher scores for large structures is also 

reduced. 

The constructed fold profile library contains only SCOP (Lo Conte et al., 

2002) sequences whose structures are largely composed of domains, 

whereas the query sequence may contain more than one domain. In other 

words, folds are generally shorter than probes in this research. That is why 

the global-local alignment algorithm is chosen. The entire sequence of a 

library entry should be aligned within the query sequence. 

4.5.3 Gap Penalty 

In general, the gap penalty could be a constant or a function. In this 

research, the affine gap penalty is used. The score for a gap of length x can 

be presented as: 

, 
GAP = g+gx (4.4) 

where g is the cost of opening a gap and g'is the cost of extending a gap. 

The parameters g and g' could be optimized by alignment evaluation in 

the following section (Section 4.6.3). 

4.6 Confidence evaluation 

4.6.1 Overview 

In a fold recognition program, a target sequence is aligned with all 

structures in a fold library using dynamic programming. However, how to 

choose the best template based on alignments is also critical to the success 

of protein threading. The sequence-template alignment score cannot be 
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directly used to rank the templates due to the bias introduced by the 

residue composition and the number of alternative sequence-template 

alignment. To evaluate the best fit templates, an early statistical method is 

to use z-score (Flockner et al., 1995). However it has been shown that the 

z-score is not effective (Marchler-Bauer and Bryant, 1997). So, statistical P

value (Karlin et al., 1990) have been used to do the task. A P-value 

estimates the probability of having alignment scores between two random 

sequences higher than a particular value, and has been successfully 

applied to sequence alignment (Xu, et al., 2002). Recently, NNs have been 

used to evaluate alignment (Jones, 1999; Xu et al., 2002; McGuffin and 

Jones, 2003). The neural-network based assessment capability has been 

implemented in CASP4 and gained success. 

The NN method treats the template selection problem as a classification 

problem. It required no human intervention in the prediction process. The 

automated method makes it possible to analyze many thousands of 

genomic sequences. In GenTHREADER model (Jones, 1999), a NN model 

is trained with the length of two protein domains, alignment length, the 

alignment score, and the scores of sequence-structure compatibility from 

pseudo energy function to predict the significance of the alignment. 

SVMs are a new binary classification method developed by Vapnik and 

coworkers (Vapnik, 1995; Burges, 1998) and successively extended by a 

number of other researchers (Osuna et al., 1997; Joachims, 1999). During 

the past few years, the SVM has been broadly applied in the area of 

bioinformatics based on two main motivations (Noble, 2004). First, many 

biological problems involve high-dimensional, noisy data, and the 

difficulty of a learning problem increases exponentially with dimension. It 

has been a common practice to use dimensionality reduction to resolve 

these problems. The SVM can cope with high dimensional problems by 

maximizing the margin, which is characterized by the distance between 

the nearest training point and the optimal separating hyperplane. 
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Empirically, it has been shown to work in high dimensional spaces with 

remarkable performance (Cristianini and Shawe-Taylor, 2000). Second, in 

contrast to most machine learning methods, SVM can easily handle non

vector inputs, such as variable length sequences or graphs. These types of 

data are common in biology applications. 

Since SVMs have been demonstrated to have superior performance in 

various problems compared to NNs (Ding and Dubchak, 2001), in this 

research, a SVM is employed to evaluate the sequence-structure 

alignment. 

4.6.2 SVM model 

Generally the SVM is a margin classifier. It draws an optimal separating 

hyperplane (decided by w, b) in a high-dimensional feature space between 

positive examples and negative examples. To avoid over-fitting, the SVM 

finds the maximum margin hyperplane, the hyperplane that maximizes 

the minimum distance from the hyperplane to the closest training point. 

For cases in which no linear separation is possible, the SVM can work in 

combination with kernel function (indicated by ¢(x)) that automatically 

gives a non-linear mapping to a feature space. The decision boundary is 

defined by the function: 

f(x) = sgn(w· ¢(x) + b) (4.5) 

Given a new data point x to classify, depending on the sign of the 

function, the protein alignment could be classified into true and false. 

Therefore, given a sequence-structure alignment of two domains in SCOP, 

if the two domains are from the same family or superfamily, it is counted 

as positive samples (true), otherwise as negative samples (false). For the 
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negative samples, the protein pairs at the same fold level are not included. 

Feature vectors are extracted from the outputs of sequence-structure 

alignment, which are alignment length, mixed profile length, query 

sequence length and alignment score. In total, 14,533 pairs are randomly 

chosen from SCOP to train the SVM. 

4.6.3 SVM training and parameters optimization 

The SVMlight (Joachims, 1999) is downloaded in this research, which is an 

implementation of SVM for the problem of pattern recognition. The 

original code is available at 

http://www.cs.comell.edu/People/ti/svm light/. The SVMlight still has 

a few adjustable parameters to be determined. The SVM training includes 

the selection of the· proper kernel function parameters and the 

regularization parameter C. Both linear and RBF kernel functions are 

investigated in this research. The polynomial kernel function is not 

selected due to its slow training. The result of predicted accuracy with 

different types of kernel functions is summarized in Table 4.2. The 

predicted accuracy on test data reached 87.2% with the linear kernel 

function. However, the accuracy is improved to 90.7% using the RBF 

kernel function. Thus, the RBF kernel function is used with r = 5.0 and 

C=1000 for alignment evaluation. 

Kernel function Predicted accuracy 

Linear 87.2% 

RBF r = 1.0, C=1000 89.1% 

r = 5.0, C=1000 90.7% 

Table 4.2 The performance of SVM with different kernel function 

The gap penalty parameter (see Section 4.3.3) could also be optimized by 

increase the predicted accuracy. The results are listed in Table 4.3. 
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GAP g 

g' 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 

0.0 89.76% 90.01% . 90.60% 90.58% 90.44% 90.52% 89.86% 89.95% 

0.1 89.98% 90.52% 90.68% 90.72% 90.59% 89.89% 90.30% 89.72% 

0.2 90.03% 89.87% 90.23% 90.34% 90.23% 90.14% 90.54% 90.21% 

0.3 89.95% 89.76% 89.94% 90.45% 89.79% 89.86% 90.28% 89.86% 
--

Table 4.3 The performance of SVM with gap penalty parameter optimization 

4.6.4 Neural network model 

For comparison purpose, a three-layered BPNN with 4 input neurons 

(alignment length, profile length, query sequence length, alignment score) 

and two output neuron (related and unrelated proteins) is also trained for 

evaluating protein alignment significance, namely MESSM_NN (as shown 

in Figure 4.10). Six-fold cross-validation test is used for training. The same 

14533 pairs are used for NN training as for SVM training. The 

performance of MESSM_NN is compared with MESSM_SVM (the one 

with the SVM as confidence evaluation) on benchmark problems. The 

results are discussed in Chapter 5. 

Length of Query Sequence -

Length of Target Sequence 
(profile length) --

Length of Alignment --

Alignment Score --

Input layer 
(alignment parameter) Hidden layer 

e--- Protein related 

e--- Protein unrelated 

Output layer 
(alignment significant) 

Figure 4.10 The NN model for confidence evaluation 
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4.7 Summary and discussion 

This chapter has presented a new process of developing an efficient tool 

for protein threading. With a residue level environmental description, the 

contact measurement is re-adjusted from previous work. A NN is 

employed to generate structurally-derived substitution mapping rather 

than the commonly used environment-specific amino acid substitution 

tables. A mixed substitution scores is proposed by the inclusion of the 

structurally-derived substitution mapping and the well-developed amino 

acid substitution matrix. A SVM is used to evaluate the alignment 

significance. With these three key steps, the new framework for protein 

threading is developed as an automated method for annotation of 

genomic sequences. 

The performance of the MESSM will be evaluated on four benchmarks, as 

described in the next chapter. The results will be compared with current 

threading models based on energy potentials. 
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CHAPTER 5 EVALUATION OF THE 

MESSM 

To evaluate a protein threading model, several factors should be 

considered: the method should be fast; it should detect the correct fold 

near the top with a score of at least moderate significance and it should 

give a reasonably good alignment. Thus, to verify the performance of the 

proposed MESSM framework, experiments are carried out on four 

benchmark data sets. They are: the Fischer et al. (1996) test sets, the 

ProSup benchmark (Domingues et al., 2000), the Lindahl (Lindahl and 

Elofsson, 2000) data sets and the Wallner et al. (2004) data sets. The early 

benchmark of Fischer is used to optimize the f.1 parameter in mixed 

substitution score. The alignment accuracy of MESSM is tested by the 

ProSup benchmark. The Lindahl (Lindahl and Elofsson, 2000) and the 

Wallner et al. (2004) data sets are used to assess the fold recognition 

sensitivity. Both the Lindahl and Wallner data sets are designed by 

Elofsson's group. Several well-established threading methods have been 

tested on Lindahl's benchmark. The WallDer set has much larger newly

designed data sets with 4,972 proteins. Currently there are no published 

results on Wallner's data set. 
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5.1 Fischer's benchmark 

5.1.1 Data sets 

Fischer's benchmark (Fischer et al., 1996) comprises a variety of structural 

types. They are 13 a proteins, 25 fJ , 20 a I fJ , 7 a + fJ 1 multi-domain 

and 2 small proteins, as shown in Table 5.1. Each sequence-fold pair is 

listed according to its type of fold. The lengths of the proteins vary from 

62 to 581 residues. Fischer's 68 data sets have very low sequence similarity 

(below 30%), but with highly similar folds, which is extremely suitable for 

testing the MESSM. 

Fold Probe Target SeqlD Fold Probe Target SeqlD 

p: 25 pairs 

a: 13 pairs IG-fold 1pfc 3hlab 22 

EF-hand 10sa 4cpv 24 IG-fold 1tlk 2rhe 24 

EF-hand 2sas 2scpa 17 IG-fold 3cd4 2rhe 25 

Globin-like 1dxtb 1hbg 19 IG-fold 1cid 2rhe 13 

Globin-like 1cpcl 1cola 17 IG-fold 1ten 3hhrb 18 

Cytochrome 1c2ra 1ycc 23 IG-fold 2fbjl 8fabb 22 

Cytochrome 2mtac 1ycc 15 IG-fold 1fc1a 2fb4h 19 

Helix bundle 1aep 256ba 14 IG-fold 3hlab 2rhe 15 

4-Helix bundle 1 rcb 19mfa 21 Cupredoxin 1afna 1aoza 19 

4-Helix bundle 1bbha 2ccya 21 Cupredoxin 2azaa 1paz 11 

4-Helix bundle 1bgeb 19mfa 12 Cupredoxin 1aaj 1paz 31 

DNA-binding (HTH) 1hom 11fb 19 Jelly roll 1caub 1caua 18 

Peroxidase 11gaa 2cyp 16 Jelly roll 4sbva 2tbva 19 

Peroxidase 2hpda 2cpp 18 Jelly roll 1 bbt1 2plv1 20 . 

Jelly roll 1saca 1ayh 14 

alp: 20 pairs Beta propellor 1sim 1nsba 12 

TIM barrel 1chra 2mnr 20 Upocalin 1mdc 1 ifc 21 

TIM barrel 2mnr 4enl 18 Upocalin 1mup 1rbp 14 
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TIM barrel 3rubl 6xia 18 Trypsin 1arb 4ptp 20 

Hydrolase 1taha 1tca 16 Trypsin 2snv 4ptp 15 

Hydrolase 1crl 1ede 17 Trypsin 2sga 4ptp 21 

Thioredoxin 1aba 1ego 21 Trefoil fold 1tie 4fgf 14 

Thioredoxin 1dsba 2trxa 13 Trefoil fold 8i1b 4fgf 18 

Thioredoxin 19p1a 2trxa 17 OB fold 1ltsd 1bova 19 

Ribonuclease-H 1hrha 1rnh 24 Porin 20mf 2por 17 

Actin 1atna 1 atr 15 a+p: 7 pairs 

Open sheet 1npx 3grs 20 UB fold 1fxia 1ubq 18 

Open sheet 2cmd 61dh 23 Alpha + beta 2sara 9rnt 12 

Open sheet 19ky 3adk 24 Ribonuclease 10nc 7rsa 26 ; 

Open sheet 1eaf 4c1a 21 SH2 2pna 1shaa 29 
• Open sheet 19a1 3cox 18 Ferredoxin 5fd1 2fxb 21 

Open sheet 2pia 1fnr 18 Monellin 1cew 1mola 10 
. 

Open sheet 2gbp 21iv 16 Monellin 1 stfi 1mola 8 

Open sheet 3chy 4fxn 14 Multi-domain and small proteins: 3 pairs 

Open sheet 1mioc 1minb 16 Small 1isua 2hipa 

Small 1hip 2hipa 
Open sheet 1ak3a 19ky 24 

Mixed 2hhma 1fbpa 

Table 5.1 Fischer's 68 benchmark pairs. Fold, query sequence's type of 

fold; Probe, query sequence; Target, expected match protein; Seq ID, 

percentage identical residue in sequence between probe and target. 

5.1.2 Results 

5.1.2.1 Optimisationparameterf-J in combined substitution score 

For the MESSM approach proposed in this research, there is an adjustable 

parameter (f-J) in the substitution score (function 4.3, page 94). Since the 

parameter f-J lies in the range of O~l, the simple grid search method is 

adopted. The procedure of optimization is as following: 
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1) Divide the zone [0, 1] into a coarse grid of trial parameters; 

compute a combined substitution score with each trial parameter. 

2) Test Fischer's data sets on the MESSM model: For each target 

sequence in Fischer's data, a correct hit is achieved if the MESSM 

model ranks the correct matching template protein at the first rank. 

The MESSM model is tested on this benchmark with each 

substitution score by dynamic programming. The number of 

correct hits is counted for each trial parameter. 

3) Look for the region that seems to contain the maximum number of 

hits and zoom in on it. 

4) Repeat step 1 through step 3 but with a smaller range and a finer 

grid. 

5) Stop the optimisation when there is no more improvement on the 

maximum number of correct hits by Fischer's benchmark. 

Three levels of success are defined based on the number of Fischer's pairs 

in the top 1, top 5 and top 10 positions. As shown in Figure 5.1, the 

number of correct hit with sequence substitution only (Ji =0) and 

structural derived substitution mapping only (Ji =1) are also computed. 
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Figure 5.1 the number of hit by Fischer's benchmark with different f-i 

In Figure 5.1, the fold recognition model with sequence substitution only 

(BLOSUM30, f-i =0, called SSM) could correctly identify 30/36/39 Fischer 

pairs in the top 1/5/10. Whereas the model with the structural 

substitution derived mapping (f-i =1, called ESM) could successfully 

identify 50/56/56 Fischer pairs in the top 1/5/10. It demonstrated that, 

due to the structural information extracted by NNs, the performance of 

the ESM is far better than the SSM. Figure 5.1 also showed that a peak of 

performance was observed around the values of parameter 

0.70 < f-i < 0.75 . The improvement over both the ESM and the SSM is 

significant up to about 38%. The highest success rate for the proposed 

MESSM on Fischer's data sets was 56/68 when f-i =0.725. 

5.1.2.2 Recognition performance 

Several well-established fold recognition methods were also tested on 

Fischer's benchmark. For example, PSI-BLAST (Altschul et al., 1997) is a 

well-known sequence alignment method; GenTHREADER (Jones, 1999) 

use a classical sequence alignment algorithm to generate query-template 
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alignments, and then evaluates the alignments by a threading potential. It 

provides a confidence measure for each predicted fold recognition using a 

NN; COB LATH (Shan et al., 2001) uses a combined approach of PSI

BLAST and threading techniques to fold recognition; SPARKS (Zhou and 

Zhou, 2004) is a fold recognition model built on a knowledge-based 

energy score combining with sequence-profile and secondary structure 

information. The testing results of MESSM are compared with them and 

listed in Table 5.2. It shows that the proposed MESSM has the same 

performance as that of COBLATH and SPARKS, but it is worse than a 

computationally more intensive, hierarchical threading method called 

PROSPECTOR (Skolnick and Kihara, 2001), which could correctly 

recognize 58-61 out of 68 pairs. 

Method Number of correct hits 

PSI-BLASTa 41 

GenTHREADERb 50 

COBLATHc 56 

SPARKSc 56 

PROSPECTORa 58-61 

MESSM_SVMd 56 

MESSM_NNe 53 

Table 5.2. Performance of different methods for fold recognition on 
Fischer's benchmark 

a Result from Skolnick and Kihara (2001). 

b Result from Jones (1999). 

c Result from Zhou and Zhou (2004). 

d This is the proposed framework with SVM for confidence evaluation. 

e This is the proposed framework with NN for confidence evaluation. 

MESSM_SVM is the proposed framework with a SVM trained for 

confidence evaluation. For comparison purpose, a NN with a six-fold 

cross validation approach is also trained to predict the alignment 

107 



Chapter5: Evaluation a/the MESSM 

significance. The same 14533 pairs as training data for the SVM are chosen 

from SCOP to train this NN. The comparison results between 

MESSM_SVM and MESSM_NN are shown in Table 5.2. It is clear that the 

MESSM_SVM performs better than MESSM_NN. Thus, SVMs are shown 

to be superior to NNs for this specific problem. In the following section, 

MESSM refers to the proposed model with the SVM for confidence 

evaluation (MESSM_SVM). 

5.2 Alignment Accuracy Test with ProSup benchmark 

In a fold recognition program, a target sequence is aligned with all 

structures in a fold library. Incorrect alignments may result in unfavorable 

scores and a failure to recognize relationships among proteins. Also, 

structural models derived from incorrect alignments might be misleading 

in subsequent structural and function studies. Therefore, correct 

alignments are fundamental for the success of the fold recognition 

techniques. Generally it is found that fold recognition method produce 

very inaccurate alignment when protein pairs have very low sequence 

similarity (Jones, 1999). 

ProSup benchmark (Domingues et al., 2000) was prepared by SippI's 

group to test the alignment accuracy of fold recognition methods. It can be 

found publicly available at: 

http://lore.came.sbg.ac.at/Services/Benchmark/Prosup/. The ProSup 

data set consists of 127 pairs of proteins derived from PDB. These pairs of 

protein have clear structure similarity and no pairs have a sequence 

identity greater than 30%. The correct alignments for these pairs are 

obtained by the structural comparison program ProSup. The accuracy of 

an alignment was obtained by calculating the percentage of matches 

between the correct alignment and the alignment made by a fold 
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recognition method. Since generally the structure-derived alignments 

(correct alignments) have multiple solutions, the percent of matches is the 

maximum value obtained from a comparison to all alternatives. 

Suppose N is the number of protein pairs in the ProSup benchmark, Li is 

the number of residue pairs in the correct alignment, AtXaCI is the number 

. of residue aligned exactly the same as in the structural alignment 

(ProSup), the alignment accuracy of each pairs is (Ji = AtXaCI 
/ Li . The 

average percentage of correctly aligned residue per protein pair is 

(J = Li(Ji / N . 

Table 5.3 compares the alignment performance of MESSM with several 

other methods. The structural alignment results of ProSup benchmark 

downloaded in this research is updated by 18/Jan/2001. Several 

published methods before year 2001 listed in Table 5.3 may adopt 

different sequence and structure database. Although this is not a strict 

comparison, it can serve as an approximate indicator for the accuracy of 

the MESSM. In Table 5.3, a significantly better performance than the 

current models indicates that the ME SSM method is promising to provide 

a more accurate fold-recognition alignment. This result is consistent with a 

previously reported study (Jones, 1999) that the sequence-profile 

alignment algorithms that utilize the profile information can generate 

reasonably good alignments among the remotely related proteins. 
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Method Accuracy (%) 

PSI-BLASTa 35.6 

FASTAb 31.4 

Sequenceb 34.1 

Threadingb 48.0 

SPARKSa 57.2 

PROSPECT II c 57.7 

MESSMd 59.7 

Table 5.3 The average alignment accuracy for ProSup benchmark per pair 
of proteins 

a Result from Zhou and Zhou (2004). 

b Result from from Domingues et al. (2000). 

c Result from Kim et al. (2003). 

d This is the proposed framework. 

5.3 Lindahl benchmark 

5.3.1 Data sets 

The Lindahl set (Lindahl and Elofsson, 2000) was designed to assess the 

recognition performance of protein fold recognition algorithms. It was 

created from a subset of the SCOP version 1.37. It has 976 proteins where 

no two proteins have more than 40% sequence identity. There are 555, 434 

and 321 pairs of proteins in the same family, superfamily and fold, 

respectively. (Proteins sharing a family have a "clear evolutionary 

relationship"; those within a superfamily are of "probable common 

evolutionary origin"; while the fold level is characterized by "major 

structure similarity".) The complete benchmark is available from: 
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http://www.sbc.su.se/%7Earne/protein-id/. The fold recognition 

method is tested by checking whether or not the method can recognize the 

member of same family, superfamily or fold as the first rank or within the 

top five ranks. 

5.3.2 Results 

The performance on all against all comparisons of Lindahl's 976 sequences 

is measured at three different similarity levels: family, superfamily and 

fold. The results of MESSM are summarized in Table 5.4 and compared 

with several well-established methods. FUGUE (Shi, et al., 2001) and 

SPARKS (Zhou and Zhou, 2004) represent two of the better performing 

threading programs currently available. Table 5.4 shows that the 

performance of MESSM is better than THREADER (Jones, 1999) and PSI

BLAST (Altschul et al., 1997). The overall performance of the MESSM is 

similar to FUGUE and SPARKS. MESSM performs better on the n~mber of 

fold as first rank, worse on others. 

FUGUE and SPARKS are two elaborate designed methods with multiple 

sequence alignment information integrated with threading techniques. 

Multiple sequence alignments can provide the identification of conserved 

sequence regions, which reveal the evolutionary information of proteins. 

Proteins in family level have a clear evolutionary relationship and proteins 

in superfamily level may have a common evolutionary origin. With the 

multiple sequence alignment information included in the FUGUE and 

SPARKS, the two models perform better than MESSM on family and 

superfamily level. Unfortunately, the current framework of MESSM didn't 

include multiple sequence alignments. It is hope that by adding the 

multiple sequence aHgnment information into the MESSM (see Section 7.2 

future work), MESSM can outperform FUGUE and SPARKS on family and 

superfamily level as well. 
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Method Family Only Superfamily Only Fold Only 

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 

THREADERa 49.2% 58.9% 10.8% 24.7% 14.6% 37.7% 

PSI-BLASP 71.2% 72.3% 27.4% 27.9% 4.0% 4.7% 

FUGUEa 82.2% 85.8% 41.9% 53.2% 12.5% 26.8% 

SPARKSa 81.6% 88.1% 52.5% 69.1% 24.3% 47.7% 

ME 55Mb 76.87% 83.36% 51.52% 65.34% 25.23% 45.48% 

Table 5.4. Performance of different method for fold recognition on Lindahl 
benchmark. 

a Result from Zhou and Zhou (2004). 

b Our proposed framework. 

Table 5.4 gives the percentage of correct matches, but it does not tell the 

reliability of the match. For example, a match could be the top rank but 

have a very low score as long as all others have even lower scores. 

Therefore, sensitivity-specificity plots (Rice and Eisenberg, 1997; Lindahl 

and Elofsson, 2000) are drawn to measure the reliability of the match. 

Given a threshold value, the sensitivity is defined as: 

TP(threshold) 
SENS(threadhold) = TP(threshold) + FN(threshold) (5.1) 

where TP(threshold) is the number of correct hits having a score above the 

threshold; FN (threshold) is the number of correct hits with a score less 

than the threshold. The specificity is defined as: 

TP(threshold) 
SP EC(threadhold) = TP(threshold) + FP(threshold) (5.2) 

where FP(threshold) is the number of false hits that have a score above the 

threshold. The specificity measures the probability that a pair of sequences 
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with a score greater than a certain threshold really is a true hit. The 

sensitivity is plotted as a function of specificity, each point corresponding 

to a certain threshold. 

The sensitivity-specificity curves of the Lindahl benchmark are drawn in 

Figure 5.2, Figure 5.3 and Figure 5.4. For comparison purpose, the results 

of other fold recognition models are also presented in the three Figures. At 

the family level, the MESSM obtained a sensitivity of 52% at 99% 

specificity, while the best performance of the other methods, was obtained 

by FUGUE, hit 49% sensitivity at 99% specificity (Figure 5.2). In Figure 5.3, 

MESSM recognized 5.6% of homologous pairs at the superfamily level 

with high confidence (99% specificity). At 50% specificity, MESSM 

achieved 21.7% sensitivity at superfamily level. In contrast, none of the 

methods compared was able to achieve sensitivity of more than 5% at 99% 

specificity. FUGUE achieved 4% and 13% sensitivity respectively at the 

same specificity level. The results at fold level reveal that none of the 

current methods are capable of reliably recognizing the similarity between 

two proteins that have major structural similarities only (Figure 5.4). 

However, the MESSM shows better performance in both ranking protein 

pairs at the top and the specificity-sensitivity curves than other fold 

recognition models. MESSM could achieve 17% sensitivity at 50% 

specificity . 
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Figure 5.2 specificity-sensitivity curves using Lindahl's benchmark on family 

level: (a) The results of other fold recognition models from Shi et al.'s (2001) 

paper; (b) The performance of the proposed MESSM model. 
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Figure 5.3. specificity-sensitivity curves using Lindahl's benchmark on 

superfamily level: (a) The results of other fold recognition models from Shi et 

al.'s (2001) paper; (b) The performance of the proposed MESSM model. 
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Figure 5.4. specificity-sensitivity curves using Lindahl's benchmark on fold level: 

(a) The results of other fold recognition models from Shi et al.'s (2001) paper; (b) 

The performance of the proposed MESSM model. 

The specificity-sensitivity curves offer an overview of the quality of 

confidence score in the MESSM model. For example, for all those 

homologous proteins that come out as the top rank in superfamily level, 

the MESSM can recognize 5.6% of homologous protein pairs confidently, 

whereas FUGUE can only recognize 4% with 99% confidence. Though 

MESSM could not identify more correct matches in the top rank compared 

with other methods, the quality of the confidence score is highly 

improved. This improvement is highly likely to be caused by the 

employment of SVM in the MESSM, which derives an apparently highly 

reliable score function. 

5.4 W aHner's benchmark* 

* This benchmark test is suggested and provided by Dr. Arne Elofsson 
from Stockholm Bioinformatics Center, Stockholm, Sweden. 
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5.4.1 Data sets 

The Wallner's benchmark (Wallner et al., 2004) is a significantly large and 

newly well-created data set. The data set is built on a subset of SCOP 

(version 1.57) in which no protein domains have more than 75% sequence 

identity to any other member of data set. It contains 4972 proteins whose 

domains from SCOP class a to e (ignoring membrane protein, small 

proteins, coiled-coiled proteins, low-resolution structures, peptides and 

designed proteins). The detailed number of Wallner's benchmark is shown 

in Table 5.5. 

Description 

Number of protein domains 

Number of different families 

Number of different superfamilies 

Number of different folds 

Number of pairs on family level 

Number of pairs on superfamily level 

Number of pairs on fold level 

Number 

4,972 

1,543 

905 

579 

52,532 

101,954 

125,090 

Table 5.5 Description of the Wallner's benchmark set (Wallner et al., 2004) 

Though the MESSM is a threading model, it should also detect all protein 

domain pairs with >30% sequence identity. The Wallner's benchmark data 

set is not affected to test the performance on superfamily and fold level, 

because there are no proteins from two different families with >30% 

sequence identity. Thus, this benchmark set is suitable for verifying the 

MESSM. 

5.4.2 Evaluation results 

The identified pairs at different similarity levels are shown as top ranks 

listed in Table 5.6. The sensitivity-specificity curves are drawn in Figure 
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5.5 and 5.6. For comparison purpose, the results of SSM (the fold 

recognition model with sequence substitution only) and ESM (the model 

with the structural substitution derived mapping only) are also computed. 

Figure 5.5 and 5.6 demonstrate that with the structural information 

extracted by NNs, the model ESM could obtain a better performance than 

the SSM with sequence substitution only. MESSM also performs better 

than both ESM and SSM. At the family level, the MESSM model obtains a 

sensitivity of 72% at 99% specificity, whereas ESM achieves a sensitivity of 

69% and SSM achieves a sensitivity of 63% at 99% specificity respectively. 

At the superfamily level, the MESSM model obtains a sensitivity of 34 % at 

90% specificity. In contrast, ESM achieves a sensitivity of 27% and SSM 

achieves a sensitivity of 19% at 90% specificity respectively. Figure 5.6 

shows that at fold level, MESSM achieves a sensitivity of 20%, whereas 

ESM achieves a sensitivity of 18 % and SSM achieves a sensitivity of 14 % at 

90% specificity respectively. Our results are compared with the best 

results of profile-profile method reported by Wallner et al. (2004), which 

have a sensitivity of 72% at 99% specificity on family level and a 

sensitivity of 22% at 90% specificity on the superfamily level. Though this 

is not a strict comparison due to the different confidence-evaluation 

method used by each model, it shows that the MESSM model has a good 

performance on protein fold recognition. 

Method 
Family Only Superfamily Only Fold Only 

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 

MESSM 74.94% 76.37% 54.03% 64.86% 20.03% 35.92% 

Table 5.6. Performance of ME SSM on Wallner's benchmark (identified 

pairs at different similarity level) 

117 



Chapter5: Evaluation a/the MESSM 

1.0 

0.9 L Family 

0.8 

0.7 

>- 0.6 Superfamily 
:!: 
> 0.5 E 
(J) 
c 

0.4 Q) 
(j) 

0.3 - iJ=O.725 
0.2 ---------- iJ=1.0 

0.1 iJ=O.O 

0.0 
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

Specificity 
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5.5 Discussion 

MESSM is a threading framework with sequence-profile alignment and 

the SVM as a significant assessor. It is a fast program. It could make an 

alignment between probe sequence (150 amino acids) and a profile of 4775 

template proteins in 30 seconds on a PC with IG memory Pentium IV. In 

MESSM, the protein representative fold library is predefined as n x 20 

matrices. Once the whole library is loaded into the PC memory, the 

computational time is mainly the searching time for global-local alignment 

algorithm. Thus, MESSM is less computationally expensive and fast 

program. 

Tested on four benchmark problems, MESSM shows comparable 

performance on protein fold recognition to those more computational 

intensive, energy potential based fold recognition models. The quality of 

the score function is improved compared to the current models. The 

alignment accuracy is better than those models. The improvements are 

due to the three key features imported in the MESSM framework. 

Currently, the MESSM is a simple model. It presents a new process to 

develop an efficient tool for protein fold recognition. By considering 

secondary structure and integrating multiple alignments into the current 

model of MESSM, a further improvement on the MESSM model is 

expected. 

In the following Chapter, this research is extended to build a threading 

score by following the contact potential approach. 
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Chapter 6: Protein Decoy and Native Discrimination by Threading Scores 

CHAPTER 6 PROTEIN DECOY AND 

NATIVE DISCRIMINATION BY 

THREADING SCORES (CONTACT 

POTENTIAL APPROACH) 

Threading using the contact potential approach differs from the structural 

profile approach. It considers a detailed network of pairwise interactions 

between individual residue rather than just assigning them to a basic 

environmental class (Jones and Hadley, 2000). In general, the most 

successful protein threading methods are based on contact potential 

techniques (Xu and Xu, 2000; Kim et al., 2003), although contact potential 

approaches generally require more computational cost than the structural 

profile approach. 

In this project, besides the work of MESSM based on structural profile 

technique (Chapters 4 and 5), a study of protein threading is extended to 

the contact potential approach by using the new residue contact 

measuring scheme developed in MESSM. As shown in the right part of the 

Figure 3.2, the design and evaluation of a threading score (TES; Threading 

with Environment-specific Score) will be carried out and reported in this 

Chapter. The threading score is tested by discrimination of the protein 

native structure from decoys. 
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6.1 Introduction 

Protein threading through the contact potential approach always contains 

a scoring function formulated in terms of knowledge-based potentials. For 

such a knowledge-based potential, generally, the statistical analysis of 

known protein structure is used to measure the free energy between the 

interaction of residues or atoms. As a result of such analysis, the so called 

contact energies are used to evaluate the protein sequence-structure 

fitness. 

In this Chapter, a model named TES (Threading with Environment

specific Score) is developed to build a new threading score function with 

the use of ANNs. The TES model is constructed on the basis that each 

amino acid residue in a protein tertiary structure stays in a particular 

structural environment. Since different protein sequences may adopt the 

same fold, different amino acid residues may stay in a similar structural 

environment. The focus of this method is on the environment surrounding 

an amino acid residue in a protein structure and how this environment 

serves to determine the identity of that residue without the measurement 

of the free energy between the interactions of residues commonly used in 

pairwise contact potentials. Thus, given a protein structure with a residue 

level environment description, the compatibility of residue in sequence 

with its structural environment is presented. A threading score is 

constructed by log-odds scores of predicted probabilities from the trained 

NN to determine which residue best fits its environment. 

Differing from the TUNE model proposed by Lin et a1. (2002) which 

encoded the contacts between residue side-chain and its neighbours as the 

overlapping volume of their contact regions, the TES model is built on the 

new contact measuring scheme developed in the MESSM. Two 
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computational experiments are carried out to verify the TES model on 

discrimination of protein decoy and native structures, The results are 

compared with knowledge-based energy potentials and TUNE model in 

Section 6.3. 

6.2 Data and Methods 

6.2.1 Description of structural environments 

The representation of the protein is an essential component in a protein 

threading program. The representation of the protein structure can be an 

all atom structure, a backbone structure, a string of fJ carbon atoms, a set 

of inter-residue distances or a string of amino acid names. It was 

demonstrated that the efficiency of a potential energy function depends on 

the degree of the details of the structural description. The atom distance

dependent pairwise potential has been shown to be more accurate than 

those with residue-based potential (Samudrala and Moult, 1998; Lu and 

Skolnick, 2001) but with a higher computational cost. 

In this research, the same residue level environmental description of 

proteins and contact measuring scheme are adopted as the one used in 

MESSM model (Chapter four). Each amino acid residue is described using 

main chain and pseudo side-chain spheres; residue neighborhood and 

contact are built on the fact that if the space between two amino acids is 

larger than one water molecule or a third residue, then they are 

considered to be too far to have contact. Thus, two kinds of contacts are 

considered. They are side-chain to side chain contact and side chain to 

main chain contact. 
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6.2.2 Neural network model 

Reported by Lin et al. (2002), NNs are very well suited for mapping the 

probabilities of observing each amino acid residue in its structural 

environment. In this research, a standard one hidden layer feed-forward 

BPNN is adopted for protein sequence-structure mapping. Environment

specific sequence-structure compatibility is captured by the NN model. A 

log-odds score of predicted probabilities from the trained NN model is 

constructed to determine which residue in the sequence best fits its 

environment. 

A three-layered fully connected back-propagation feed-forward NN with 

25 input neurons, 20 output neurons and 22 hidden neurons is used to 

predict the probabilities of observing different amino acid type in a 

structural environment. As shown in Figure 6.1, a total of 25 input 

neurons represent the features of the structural environment of each 

amino acid residue on the protein sequence chain. One input unit is used 

for residue solvent ability, measured by the sum of all the contacts. Four 

units are used to represent the distances from the alpha carbon to the 

alpha carbons, describing the local structure. Based on twenty types of 

amino acids, the twenty inputs that remain are employed to encode the 

neighbour contacts. For each neighbour, a value of one is added to the 

corresponding unit according to its amino acid type. A weight wij (see 

formula 4.1) is added to reflect the influence of the neighbour contact. In 

this work, various network architectures are tested by changing the 

number of neurons in the hidden layer from 10 to 30. The 22-hidden

neuron model is selected due to its lower training error. The targeted 

output of the NN is the amino acid type in the structural environment, 

which is encoded by the orthogonal encoding scheme (20 units). 
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Figure 6.1 The NN model for training (structure-sequence mapping). Three 

layered feedforward NN: 25 input neurons describing the structural environment 

of an amino acid, 22 hidden neurons and 20 output neurons. 

The standard logistic sigmoid activation function is used for the hidden 

layer and the softmax activation function for the output layer due to the 

output range (0 to 1). The relative entropy error is used to measure the 

performance of NNs (Baldi and Brunak, 2001). Each input value was 

scaled to be in the range of O~ 1 using the function: 

1 
Input = 1 + e -a(x-

(6.1) 

where x is the raw input value and a and b are constants. a is given to 

make the average input value to be zero and b is chosen to scale most of 

the input into the range of 0~1. In this research, a=l and b=10 (McGuffin 

and Jones, 2003). 
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A back-propagation algorithm is employed to minimize the mean 

difference between the predictions and the real amino acid types. A ten

fold cross-validation approach was used in the training. The NN is trained 

with 10~20 different starting conditions, that is, the same ten-fold cross

validation experiments were run 10~20 times with random initial weights 

and biases. After training, the performance of the NN is tested using an 

unseen test set. The NN with the least error is chosen as the appropriated 

model for the evaluation. The training results are shown in Appendix Ill. 

6.2.3 The back-propagation neural networks model to calculate 

environment-specific score 

Let P (x I E) be the frequency of observing residue x in an environment E. 

Given a residue in a protein structure, its structure environment is 

encoded and entered as the input to the trained three-layered NN. The 

output is the prediction of the probability P(x I E). A log-odds score of the 

compatibility is given by (Rice and Eisenberg, 1997; Lin, et al., 2002): 

S = In(P(x I E) 
P(x) ) 

(6.2) 

where P(x) is the occurrence probability of the residue x in the sequence. 

The higher the logarithm likelihood score is, the better x residue fits its 

structure environment E. 

6.2.4 Datasets 

The structure classification database of SCOP (vl.611, September 2002) is 

used to select training and testing data sets for the NNs. From the 2900 

protein family representatives, whose sequence identity are less than 40%, 

the structural environment description of each amino acid is obtained for 
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535,525 residues. Nine tenths of all the domains (2610 domains, 487,328 

residues) are randomly selected for training, the remaining one tenth 

domains (290 domains, 48,197 residues) are used as testing data for NN. 

6.3 Experiments and Results 

For residue-based potentials, two kinds of measurement are typically 

used: z-scores for gapless threading, and the ability to discriminate native 

structures from decoys (Lu and Skolnick, 2001). A decoy set includes the 

near-native conformations of a protein together with a large ensemble of 

misfolded models. In this section, two experiments with the benchmark 

are carried out to verify the performance of our TES model by 

discriminating native structure from decoys. First, three early decoy sets 

are selected from the PROSTAR website (http://prostar.carb.nist.gov I) to 

verify the accuracy of the TES model. They are asilomar (CASP2) 

(Mosimann et al., 1995), misfold (EMBL_misfold) (Holm and Sander, 1992) 

and ifu (Unger and Moult, 1991). Then seven decoy sets obtained from the 

Decoys 'R'Us (http://dd.stanford.edul) are adopted to evaluate the 

performance of TES. The two evaluations are worked on PCIV Linux 

system using C++ and Perl language. 

For each structure of evaluation data, the sum of the compatibility scores 

of every residue is calculated. If the summed compatibility score of the 

native structure is higher than that of the decoys, it demonstrates that the 

TES model performed correctly in the discrimination of these native-decoy 

pairs of protein. 
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6.3.1 PROSTAR decoy sets 

For comparison with other published works, three early decoy sets of 

misfold, asilomar and ifu are chosen from PROSTAR website. The misfold 

decoy set is generated by Holm and Sander (1992), consists 24 pairs of 

proteins with the same number of residues in the chain, but different 

sequences and conformations. The asilomar decoy set is formed by 41 

comparative models of six different proteins (Mosimann et al., 1995) in the 

first experiment on the Critical Assessment of protein Structure Prediction 

methods (CASP2). The ifu decoy set is based on a set of 44 peptides which 

are proposed to be independent folding units as determined by local 

hydrophobic burial and experimental evidence (Unger and Moult, 1991). 

Using the trained NN, the summed environment-specific compatibility 

score for the each structure in the decoy sets of Asilomar, misfold and ifu are 

computed. The results are shown in Appendix IV. If the compatibility 

value of decoy is less than that of native protein, then it means the model 

could successfully distinguish the native and decoy protein and vice versa. 

In the misfold subset, the proposed model selected the native structure 

100% correctly from decoy structure. In the test set of asilomar, the 

proposed model failed to pick out 7 of 41 test sets. For the ifu decoy set, 

the model missed 10 of 44 native structures. So, of the total 109 structure

decoy pairs, the proposed model successfully detected 92 pairs (Table 6.1). 

In Table 6.1, the performance of the TES is compared with potential based 

models (DFIRE-A, KBP, RAPDF, RKBP and CDF) and TUNE model. 

Though the overall performance of the TES is not better than KBP, which 

is the mean force potentials with atomic structure description, it is 

comparable to it. Table 6.1 shows that the performance of TES is better 

than those residue contact potentials, like RKBP and CDF. Also TES is 

better than the TUNE model which is also a NN model but with different 

residue contact description. 
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Table 6.1 Evaluation of proposed model TES with other published potentials on 

decoy sets from PROSTAR 

a DFIRE-A is the mean-force atomic potential from Zhou and Zhou (2002). 

bThe atomic KBP is the atomic potential developed by Lu and Skolnick (2001). 

c RAPDF and CDF are atomic and residue-based potentials respectively, from 

Samudrala and Moult (1998). 

d RKBP is a residue-based quasichemical potential from Skolnick et al.(2000). 

e TUNE is ANN model from Lin et al. (2002). 

f This is the proposed model in this research. 

g The first number in each cell is the number of correctly identified decoys, and 

the second number is the total number of decoys. The first column lists the 

subsets of decoys. 

6.3.2 Decoys'R'Us 

The seven decoy sets obtained from the Decoys 'R' Us database are as 

follows: 

1) The 4state_reduced set which is generated using a four-state off

lattice model together with a relaxation model. This decoy set 

consists of seven small protein sequences, each with ~600-700 

decoys whose RMSD (root-mean-square-deviation) ranges from oA 

(native structure) to 10Afrom the native structure (Park and Levitt, 

1996). All the decoy structures in this set have the native secondary 

structures (Lu and Skolnick, 2001). 
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2) The fisa set which contains decoys from four small alpha-helical 

proteins. The main chains for these decoys were generated using a 

fragment insertion simulated annealing procedure to assemble 

native-like structures from fragments of unrelated protein 

structures with similar local sequences using Bayesian scoring 

functions (Simons et al., 1997). 

3) The fisa_casp3 set, which contains decoys of proteins predicted by 

the Baker group for CASP3 using the same method as in fisa set 

(Simons et al., 1997). 

4) The hg_structal set, which contains decoys for 29 globins. Each 

globin has been built by comparative modelling using 29 other 

globins as templates with the program segmod (Samudrala et al., 

1998). 

5) The lattice_ssfit set, which contains conformations for eight small 

proteins generated by ab initio methods (Samudrala et al., 1999; Xia 

et al., 2000). 

6) The lmds (Local minima decoy set), which contains decoys that 

were derived from the experimental secondary structures of ten 

small proteins that belong to diverse structural classes (Samudrala 

and Levitt, 2000). 

7) The semfold set which contains six proteins generated at CASP4 by 

incorporating multiple functions and uses hierarchical filtering to 

reduce the number of conformations from a large sample to a tiny 

fraction to enhance the signal and eliminate false positives 

(Samudrala and Levitt, 2002). 
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Previous studies of scoring functions all tried to correlate RMSD with 

energy scores although the relationship between the two is less than clear. 

So, in this study, the correlation coefficients between the RMSD (root

mean-square-deviation) and the environment-specific score are computed 

for seven decoy sets from Decoys'R'Us. 

Taking the PDB code lctf from 4state_reduced as an example, the summed 

environment-specific score for the each structure in the decoy set is 

computed with the trained NN model first. Some example results are 

shown in Table 6.2. The last one in the Table 6.2, which has zero RMSD 

value, is the native structure of letf and has the largest compatibility score. 

Numbera 
0 

Compatibility? RMSD( A)b 

1 6.441 15.2985 

2 4.581 10.8786 

3 4.52 8.66074 

4 4.471 5.07709 

5 5.871 9.66547 

6 2.793 19.1413 

7 4.084 21.8528 

8 6.522 -12.8234 

9 5.592 -3.69314 

10 5.773 12.1679 

... ... .. . 

... ... ... 

625 4.534 21.9827 

626 1.67 28.7662 

627 5.284 10.8742 

628 7.06 -2.78423 

629 2.096 27.0661 

630 6.525 8.06203 

631 0 35.9776 

Table 6.2 Example results of compatibility vs. RMSD of PDB code --lctf from 

4state_reduced decoy sets 
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a The number of proteins. For the case of lctf, there are totally 630 decoy sets with 

one native protein. 

b Root-mean-square-deviation. In this case, the last one with zero RMSD is native 

protein. 

C The compatibility value of each protein, which is calculated by adding all the 

compatibility scores of every residue in protein sequence. In this example, if the 

compatibility value of the last one (native protein) is the largest value in this 

column, then it means the proposed TES model could successfully distinguish 

native and decoy proteins. 

Then, the correlation coefficients between the RMSD and the environment

specific score are computed with the statistical formula 6.3. 

II/x - -
r=-L(~·Yi-Y) 

n i=1 (J' (J' x y 

(6.3) 

where x is the average of Xi and (J'x is the standard deviation of Xi' (y is 

the same). 

Following the example above, the correlation coefficients are computed for 

all the seven decoy sets and the results are presented from Table 6.3 to 

Table 6.9. Among all the decoy sets, only the 4state_reduced data set and 

hg_structal data set show strong correlations between the RMSD and the 

environment-specific score. In Table 6.3 and Table 6.6, the RMSD

environment specific score correlation coefficients for 4state_reduced and 

hg_structal sets range from 0.27 to 0.91. For the other decoy sets, as shown 

in Table 6.4, Table 6.5, Table 6.7 ~ Table 6.9, the correlation coefficients 

only range from 0.02 to 0.41. The performance of TES model is in 

significant differences between the decoy sets. It may be due to the 

different generation methods used for those decoys. These results are in 

line with studies reported by others (Zhou and Zhou, 2002). 
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PDB ID Description Decoy Residue RMSD R 
number number range 

1ctf C-terminal domain of ribosomal 631 68 2.2-10.2 0.623 
protein L7/L 12 

1 r69 
N-terminal domain of phage 434 
repressor 676 63 2.3-9.5 0.555 

1sn3 Scorpion toxin variant 3 661 65 2.5-10.5 0.419 

2cro Phage 434 Cro Protein 675 65 2.1-9.7 0.437 

3icb Vitamin D-dependent calcium-binding protein 654 75 1.8-10.7 0.685 

4pti Trypsin inhibitor 688 58 2.8-10.8 0.443 

4rxn Rubredoxin 678 54 2.6-9.3 0.586 

Table 6.3 The correlation coefficients (R) values between RMSD and 

environment-specific score for 4state_reduced (Park and Levitt, 1996) from Decoy 

'R'Us 

PDB ID Description 
Decoy Residue RMSD R 
number number range 

1fc2 Human Fc Fragment 501 43 3.1-10.3 0.411 

1 hdd-C Engrailed Homeodomain 501 57 2.8-12.9 0.315 

2cro Phage 434 Cro Protein 501 65 4.3-12.6 0.320 

4icb Calbindin-binding Protein 501 76 4.8-14.1 0.191 

Table 6.4 The correlation coefficients (R) values between RMSD and 

environment-specific score for Fisa (Simons et al., 1997) from Decoy 'R'Us 

PDB ID Description Decoy Residue RMSD R number number range 

1 bg8-A E.coli Hde A 1201 76 6.0-15.8 0.133 

1blO DNA binding motif in MarA 972 99 3.6-18.2 0.353 

1eh2 Eps15 Homology domain 2414 79 4.0-15.3 0.334 

1jwe E.coli Dnab Helicase 1408 114 7.8-20.9 0.245 

L30 Unknown 1400 104 6.5-24.6 0.216 

Smd3 D3B ~ubcomplex of the human core Snrnp 
domam 1201 71 8.5-17.0 0.104 

Table 6.5 The correlation coefficients (R) values between RMSD and 

environment-specific score for Fisa casp3 (Simons et al., 1997) from Decoy 'R'Us 
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PDB ID Description Decoy Residue RMSD 
R number number range 

1 ash Ascaris hemoglobin domain I 30 147 2.2-7.0 0.479 

1 bab-B Hemoglobin Thionville 30 146 0.7 -6.9 0.787 

1 col-A Core-forming domain of colicin A 30 197 12.3-30.2 0.523 

1cpc-A C-phycocyanin from Fremyella diplosiphon 30 162 6.8-14.0 0.266 

1ecd Erythrocruorin 30 136 1.5-6.2 0.782 

1 emy Asian elephant cyanometmyoglobin 30 153 0.7-9.3 0.847 

1flp 
Sulfide-reactive hemoglobin from the clam 

30 142 1.7-7.2 0.846 
Lucina pectinata 

1 gdm Leghemoglobin 30 153 2.6-8.4 0.802 

1 hbg Glycera dibranchiata hemoglobin 30 147 2.1-6.9 0.781 

1hbh-A 
Deoxyhemoglobin of the Antarctic fish 

30 142 1.0-6.3 0.786 
Pagothenia bernacchii 

1 hbh-B 
Deoxyhemoglobin of the Antarctic fish 

30 146 1.0-7.3 0.827 
Pagothenia bernacchii 

1 hda-A Bovine deoxyhemoglobin 30 141 0.5-5.8 0.790 

1 hda-B Bovine deoxyhemoglobin 30 145 0.5-5.6 0.794 

1hlb Hemoglobin from Caudina arenicola 30 157 2.9-7.0 0.626 

1 him Hemoglobin from Caudina arenicola 30 158 3.0-8.7 0.398 

1 hsy Myoglobin H64T Mutant 30 153 0.8-9.7 0.909 

1 ith-A Hemoglobin from Urechis caupo 30 141 1.6-6.1 0.857 

11ht Myoglobin from Loggerhead Sea Turtle 30 153 0.8-9.7 0.562 

1 mba Aplysia limacina myglobin 30 146 1.8-7.3 0.787 

1 mbs Seal myoglobin 30 153 1.7-9.3 0.757 

1 myg-A Pig metmyoglobin 30 153 0.5-9.6 0.859 

1 myj-A Aquomet Myoglobin 30 153 0.6-7.9 0.806 

1 myt Myoglobin from Yellow Tuna 30 146 1.0-10.0 0.681 

2dhb-A Horse deoxyhemoglobin 30 141 0.6-6.4 0.817 

2dhb-B Horse deoxyhemoglobin 30 146 0.9-7.1 0.794 

21hb 
Lamprey-hemoglobin from Petromyzon 

30 149 3.0-8.1 0.606 
marinus 

2pgh-A Aquomet porcine hemoglobin 30 141 0.7-6.5 0.687 

2pgh-B Aquomet porcine hemoglobin 30 146 0.8-7.5 0.804 
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14sdh-A Deoxy hemoglobin I averages 30 145 2.3-6.4 0.6631 

Table 6.6 The correlation coefficients (R) values between RMSD and 

environment-specific score for Hg_sh'uctal (Samudrala et al., 1998) from Decoy 

'R'Us. 

PDB ID Description 

1 beo Beta-cryptogein 

1ctf L7/L 1250 S ribosomal protein 

Decoy Residue RMSD 
number number range R 

1 dkt-A Type 1 human cyclin-dependent kinase subunit 

2001 

2001 

2001 

2001 

2001 

2001 

2001 

2001 

95 

68 

72 

55 

78 

56 

62 

76 

7.0-15.6 0.115 

5.5-12.8 0.035 

6.7-14.1 0.029 

5.1-11.4 0.036 

5.3-13.6 0.044 

5.8-12.9 0.035 

5.4-12.5 0.022 

4.7-12.9 0.036 

1fca Ferredoxin from clostridium Acidurici 

1 nkl Nk-Iysin from Pig 

1 pgb Protein G (B1 IgG-binding domain) 

1trl-A Thermolysin fragment 

4icb Cal bind in-binding Protein 

Table 6.7 The correlation coefficients (R) values between RMSD and 

environment-specific score for Lattice ssfit (Samudrala et al., 1999; Xia et aI., 2000) 

from Decoy 'R'Us. 

PDB ID Description 

1 bOn-B Sinr protein/Sini protein complex 

1 bba Bovine pancreatic polypeptide 

1 ctf L7 IL 12 50 S ribosomal protein 

1dtk Dendrotoxin K 

Immunoglobulin Fc and fragment B of 
1fc2 

protein A complex 

1 igd Protein G 

1 shf-A Fyn proto-oncogene tyrosine kinase 

2cro 434 cro protein 

2ovo Ovomucoid third domain 

4pti Trypsin inhibitor 

Decoy Residue RMSD R number number range 

498 

501 

498 

216 

501 

501 

438 

501 

348 

344 

31 

36 

68 

57 

43 

61 

59 

65 

56 

58 

2.45-6.03 0.352 

2.78-8.91 0.279 

3.59-12.5 0.172 

4.32-12.6 0.149 

3.99-8.45 0.224 

3.11-12.6 0.165 

4.39-12.3 0.055 

3.87-13.5 0.146 

4.38-13.4 0.258 

4.94-13.2 0.244 

Table 6.8 The correlation coefficients (R) values between RMSD and 

environment-specific score for lmds (Samudrala and Levitt, 2000) from Decoy 

'R'Us. 
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PDBID Description 

1ctf L7/L 1250 S ribosomal protein 

1 e68 Bacteriocin As-48 

1eh2 Eps15 Homology domain 

1 khm Hnrnp K (Kh3) 

1 nkl Nk-Iysin from Pig 

1 pgb Protein G (B1 IgG-binding domain) 

Decoy Residue RMSD 
R number number range 

11402 

11362 

11442 

21081 

11662 

11282 

68 4.44-13.0 0.051 

70 2.98-12.5 0.108 

95 5.32-15.1 0.054 

73 3.46-14.6 0.059 

78 3.84-14.2 0.060 

56 4.67-13.0 0.120 

Table 6.9 The correlation coefficients (R) values between RMSD and 

environment-specific score for lsemfold (Samudrala and Levitt, 2002) from Decoy 
'R'Us. 

The correlation coefficient values of the 4state_reduced decoy set from 

those of atomic energy functions developed by Gatchell et al. (2000), Lu 

and Skolnick (2001), Zhou and Zhou (2002), the NN model of TUNE 

proposed by Lin et al. (2002) and TES are given in Table 6.10. The values in 

the Table are the correlation coefficients. It shows that the TES has a 

similar performance pattern with the NN model of TUNE than the other 

three atomic energy functions. The TES performs better than TUNE on the 

decoy set 1ctf, 1sn3 and 4pti, worse on 1r69, 2cro, 3icb and 4rxn. 

Compared with those three atomic energy functions, the TES only 

performs better on the decoy set 4rxn with KBP and GDV and on decoy 

set 1sn3 with DFIRE-A. KBP is a heavy atom distance-dependent 

knowledge-based pairwise potential. DFIRE-A is a residue-specific all

atom potential of mean force. GDV is an atomic energy function that 

combines molecular mechanics with empirical solvation and entropic 

terms. Both TES and TUNE are built on less detailed residue level 

description than KBP, GDV and DFIRE-A. Lu and Skolnick (2001) showed 

that the details of the potential construction are very important for 

building energy functions. The threading methods with atom level 

structure environmental descriptions are more accurate than those with 

residue level descriptions. That is why TES and TUNE perform worse on 

most of the decoy sets than KBP, GDV and DFIRE-A. However, due to the 
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NN model used in TES and TUNE, more information is extracted than 

normal residue level models. The TES and TUNE show comparable 

performance with KBP, GDV and DFIRE-A. 

"'-
Method 

PDBcod~ 
DFIRE-Aa KBpb GDVc TUNEd TESe 

1ctf 0.70 0.667 0.674 0.610 0.623 

1r69 0.68 0.675 0.641 0.642 0.555 

1sn3 0.32 0.463 0.524 0.354 0.419 

2cro 0.75 0.617 0.549 0.625 0.437 

3icb 0.83 0.829 0.769 0.771 0.685 

4pti 0.45 0.462 0.473 0.432 0.443 

4rxn 0.66 0.579 0.582 0.596 0.586 

Table 6.10 Evaluation of proposed model TES with TUNE, GDV and KBP on 
4state_reduced decoy set from Decoy'R'Us 

a DFIRE-A is the mean-force atomic potential from Zhou and Zhou (2002). 

b KBP is the atomic potential from Lu and Skolnick (2001). 

c GDV is the atomic potential developed by Gatchell, et al. (2000). 

d TUNE is NN model from Lin et al. (2002). 

e The proposed model in this research. 

For the seven decoy sets, the proposed model does not always give the 

highest score for the native model. Some decoy structures can have a 

higher score. The TUNE model (Lin et al., 2002) also suffers the same 

problem. The reason for the failure is not entirely clear. However, there 

are two studies related to the problem: (1) Decoys are deliberately 

designed protein sets contain conformations close «4A.) to the native 

structure. The TES model is built on the basis of structural information 

and does not measure the free energy between the interactions of residues. 

It is a difficult task for the TES model to recognize those decoys which 

have stabilised structures but not in the native structure energy basin. (2) 

The TES model is built on the database of SCOP. 535,525 residues are 

selected for training the TES model. Vendruscolo et al. (2000) mentioned 
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that for large enough databases, pairwise contact potentials could not 

stabilise all native folds equally well. 

Figure 6.2 shows the correlation between the RMSD and the environment

specific score for the 4state_reduced decoy set. It indicates that the closer 

the decoy structure is to the native structure, the higher its score is. For 

example, the last one in Figure 6.2 with the PDB code of 4rxn, the 

environment-specific score of native protein (with oA RMSD) is 38.4, 

which is the largest value among all those decoys. Most of the near native 

decoys (RMSD <4A) have larger environment specific scores than those of 

non-near native decoys (RMSD >4A). The Figure demonstrates that TES 

model has good performance on 4rxn decoy set. 
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Figure 6.2. RMSD (root-mean-square-deviation) vs. the environment
specific score from the proposed ANN model of seven decoy sets from 
Park and Levitt (1996). 

139 



Chapter 6: Protein Decoy and Native Discrimination by Threading Scores 

6.3.3 ROC curve* 

To compare with the other published work, the correlation coefficient is 

used to evaluate the quality of the score. An alternative way to evaluate 

the performance of the TES model is using the ROC (Receiver Operating 

Characteristics) curve (Baldi, et al., 2000). Each conformation of the decoy 

protein is classified as either "native-like" (RMSD less than 4A) or "non

native-like" (RMSD greater than 4A). In this research, given a threshold 

value, the TP (true positive), TN (true negative), FP (false positive) and FN 

(false negative) are defined as: 

TP = the number of proteins when TES score is larger than the threshold 

and the decoy protein is native-like; 

TN = the number of proteins when TES score is less than the threshold 

and the decoy protein is nonnative-like; 

FP = the number of proteins when TES score is larger than the threshold 

and the decoy protein is nonnative-like; 

FN = the number of proteins when TES score is less than the threshold and 

the decoy protein is native-like. 

Th . .. ( TP) h fl" (FP) . e sensItIvIty versus tea se posItIve rate IS 
~+ffl H+m 

plotted as an ROC curve. The performance of two-class prediction is 

measured by the area under a ROC curve (Hanley and McNeil, 1982). The 

ROC curve for a perfect prediction model shows no trade-off between 

* This part of work is done according to the feedback of submitted paper 
(Jiang et al., 2005c). ROC map is said to be more proper evaluation 
methods than correlation coefficient. It is becoming to be standard in 
bioinformatics field. Unfortunately, till now, no other published evaluation 
results could be found by ROC map for these benchmark problems applied 
in this research. 
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sensitivity and false positive rate, so the value of its area is 1.0. On the 

contrary, for a random prediction model, the ROC curve is a diagonal 

from (0, 1) to (I, 0) with the area of 0.5. So the useful range of ROC curve 

areas is 0.5~1. 

For the seven decoy sets from Decoys 'R' Us, the ROC curve is shown in 

Figure 6.3. The values of ROC area are shown in Table 6.11. They are 

ranged from 0.69 (4pti) to 0.89 (3icb). Since the ROC value of random 

prediction model is 0.5, it showed that the overall performance of TES 

model is considerably greater than random prediction model would 

produce. 
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Figure 6.3. False positive rate-sensitivity plots for TES model. 

PDS code 1 ctf 1r69 1sn3 2cro 3icb 4pti 4rxn 

ROC value 0.863 0.791 0.715 0.705 0.886 0.686 0.856 

Table 6.11 The ROC value of Decoys'R'Us, which is measured by the area under 
the ROC curve. 
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6.4 Discussion 

In this Chapter, the design and evaluation of a threading score following 

the contact potential approach is described. The performance of the TES 

score is evaluated with two benchmarks on the discrimination of protein 

native structure and decoys. The experimental results showed that the TES 

model with residue environmental description is compatible to those 

potential energy functions with the detailed atomic level structural 

environment description. It has also been demonstrated that the TES can 

outperform those of residue level contact potentials and the TUNE model. 

The threading scores derived from the TES model are log-odds, which are 

similar to widely applied amino acid substitution matrices such as 

BLOSUM62 (Henikoff and Henikoff, 1992). These residue-specific log

odds can be employed by protein alignment algorithms, such as double 

dynamic programming (Jones et al., 1992) and a divide-and-conquer 

algorithm (Xu and Xu, 2000), to built a threading program. 

In the following final Chapter of this thesis, the conclusions of the research 

work will be given. The possible future work of this thesis will be 

delineated. 
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CHAPTER 7 SUMMARY AND FUTURE 

WORK 

7.1 Summary 

This thesis has demonstrated that the machine learning approach (NNs 

and SVMs) is an effective way for solving the protein threading problem. 

An efficient and effective framework for protein threading is developed 

and its performance is validated. The results have shown that the machine 

learning approach helps to increase the prediction accuracy while 

potentially significantly decreasing tl:te computational load. Compared 

with one of the better performing threading model PROSPECT, which 

took about 45 hours to predict one target (t0174) in CASP4, the MESSM 

can make an alignment for sequence with 150 amino acids in 30 seconds. 

The threading model developed in this research may be considered as an 

alternative tool for protein prediction. Part of the research work has been 

published in both conferences and journals (Jiang et al., 2005a; 2005b; 

2005c; 2004). 

7.1.1 Achievement of the work 

The success of the developed threading model is due to four key factors. 
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Firstly, as NNs are suitable tools for finding statistical correlations, they 

are used to map the amino acid substitution relations in the framework of 

MESSM. With the more precise structural information extracted by the 

NN, the substitution probability of each pair of amino acids at any chosen 

structural environment can be generated. Furthermore, the NN is used in 

training the sequence-structure compatibility for our TES threading score. 

The BPNN is adopted with three layers. Different architectures of the NN 

are tested by changing the neurons in the hidden layer. The best 

performance NN is chosen to map the amino acid substitution and the 

sequence-structure compatibility. Unlike a normal computationally 

intensive energy potential process, the inclusion of the BPNN within the 

threading model appears to help increase accuracy while potentially 

significantly decreasing the computational load. 

Secondly, by combining the environment-specific information with the 

sequence-specific information, a mixed substitution score is built by the 

inclusion of the structurally-derived substitution mapping and the well

developed amino acid substitution matrix BLOSUM30. We have 

conducted some experiments on comparing the performances of models 

with the mixed substitution score and structure or sequence information 

alone. By optimizing a combined parameter, the experimental results 

demonstrate that the protein threading model with the mixed substitution 

mapping has a better performance than the one with either structure or 

sequence information only. The positive consensus combination allows 

this method to exhibit comparable results to threading models under 

various cases. 

Thirdly, in contrast to the traditional expert human interpretation on 

recognizing the best fit templates, the SVM as a new generation of 

machine learning algorithm is adopted to select the best templates for each 

target sequence. The experimental results (specificity-sensitivity curves) 

indicate that the SVM can help to derive a significant high reliable score 
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function (higher sensitivity than other models on the same specificity) for 

the template selection. Thus, comparable fold recognition results are 

achieved to those of models with expert human interpretation of results. 

Using a SVM in the MESSM framework makes it to be an automated 

model to suit the fast genome sequencing. 

Finally, with the extended research work on building a threading score 

TES, the results demonstrated that the residue contact measuring scheme 

is a simple and efficient measurement compared to most other threading 

programs. For each residue pair, only the two distances (side-chain to 

side-chain and side-chain to main-chain) are considered for computing. It 

helps to save a lot computational cost compared to those scoring functions 

with atom level structure environment description. The performance of 

the TES score is comparable to current potential energy models with 

detailed atomic level structure environment description, such as KBP (Lu 

and Skolnick, 2001), GDV (Gatchell, et al., 2000) and DFIRE-A (Zhou and 

Zhou, 2002). It outperformed those of residue contact potentials (for 

example, RKBP (Skolnick et al., 2000) and CDF (Samudrala and Moult, 

1998)) and TUNE model (Lin et al., 2002) which is also a NN based 

threading score but with a different residue contact measurement. 

7.1.2 Discussion 

Besides the four factors that contribute to the success of our threading 

model, two components are also important in determining the power of 

the developed threading model. They are the number of genuinely diverse 

sequences within a superfamily and the accuracy of the structural 

alignment. The first component is addressed by the efforts of many 

researchers to elucidate protein structures using physical techniques. The 

structure database is growing rapidly, and consequently so are the 

superfamilies. As the developed model is based on machine learning, it is 
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easy to be re-trained with new data. The threading framework can be 

easily updated with the growth of the structure database. However, the 

accuracy of the structural alignment poses many challenges. The concept 

of an "accurate structural alignment" is not clearly defined. For a given 

pair of structurally homologous proteins, there is rarely an 

unambiguously correct alignment. Even when there is such a rare case, 

automatic determination of the alignment is far from the experimental 

result. FLASH (Shih and Hwang, 2003) is adopted in this research. FLASH 

was argued to be one of the best performances structural alignment 

programs when this research was carried on, although there are several 

equally powerful programs available for structural alignment (e.g. SAP 

(Orengo et al., 1992), DALI (Holm and Sander, 1998), VAST (Madej et al., 

1995)). Instead of providing perfect alignments (and now there is an 

absence of an agreed definition of perfect), these protein structural 

alignment programs currently can only try to find an alignment that is 

close in quality to an expert's manual alignment. With the development of 

structural alignment programs, the performance of our designed 

framework would be expected to be improved as well. 

This thesis is concentrated on the improvement of efficiency while retain 

the accuracy of prediction. There is a trade-off between the computational 

cost reduced in the threading framework and the required prediction 

accuracy. The threading methods with atom level structure environmental 

descriptions are likely to improve the effectiveness but require a higher 

computational cost. Due to the machine learning approach, the MESSM 

framework achieves a comparable performance on protein prediction, 

though MESSM is built with residue level structure environmental 

description. However, with more structural and sequence evolutionary 

information to be imported into current MESSM framework, as described 

in future work of Section 7.2, an improvement on effectiveness is expected. 
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7.1.3 Limitation of the 'Work 

This thesis has described the development of a machine learning based 

threading framework MESSM. MESSM is the first version of the threading 

model. It can achieve only comparable fold recognition results with 

current threading models based on energy potentials. However, further 

improvement could be applied to our current MESSM model, as described 

in section 7.2. A better fold recognition performance is expected. 

Within contact potential approach, a threading score (TES) instead of a full 

threading program is developed. It can only be used to discriminate the 

protein native and decoys. Hopefully, in the future, a full threading 

program with heuristic algorithms will be implemented. 

7.2 Future work 

The novel machine learning approach to protein threading opens a new 

process to develop models in protein structure prediction. It has room to 

be further developed. 

The current MESSM framework reduced the computational load and 

gained a comparable performance on prediction accuracy. Thus, in the 

future, the main improvement of MESSM framework is concentrated on 

the increasing of the effectiveness. 

Residue contact measurement (increase prediction accuracy) The residue 

contact measuring scheme is a key factor to affect the performance of 

protein threading. The residue contact measurement of the current 

MESSM model depends on the distance. It shows some improvement 

compared to the previous work. However, there might exist such a case 
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that even the distance between two residues is larger than a water 

molecule, if there does not exist a third residue or water molecule sitting 

inside these two residues, they will has some distant contact, although in 

most of the case, these contact could be ignored. Considering such a 

situation, a three dimensional measurement could do a better job than the 

current one. 3D Voronoi Diagrams might be one of the choices. 

Given 11 points in space, Voronoi Diagrams divide the space into 11 regions 

such that each region contains exactly one point (generating point) and 

every point in the given region is closer to the generating point than to any 

other. Thus, suppose given each residue main chain center (a carbon) and 

side chain center in a protein three-dimensional structure space, the space 

could be partitioned into regions using Voronoi diagrams. Each region is 

generated by and contains one residue main chain center (a carbon) or 

side chain center. The residue contact only happens for each pair of 

neighbour regions when the two regions are not generated by the same 

residue. In this way, the residue contact could be counted accurately. A 

threading model based on this residue contact measuring scheme could 

get its performance improved. 

Secondary structure component (increase prediction accuracy) 

Secondary structure element alignment, using observed and predicted 

secondary structure, have previously been incorporated with protein 

threading (Kelley et al., 2000; Shi et al., 2001). Recently some studies have 

been carried on how the incorporation of secondary structure component 

can improve the fold recognition performance of the threading model 

(McGuffin and Jones, 2003). Since structure is better conserved than the 

sequence between distantly related proteins, the incorporation of such 

structure information could therefore benefit the accuracy of protein fold 

recognition. Thus, by considering secondary structure into the current 

framework of MESSM, a further improvement on MESSM can be 

expected. 
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Currently, there are several predictive methods available for protein 

secondary structure prediction, such as PSI-PRED (McGuffin et al., 2000), 

PHD (Rost et al., 1994) and DSC (King et al., 1997). The secondary 

structure information could be implemented for both the query and 

template proteins. A profile should be built for query sequence including 

the information of the predicted secondary structure and the 

corresponding sequence. The observed and predicted secondary structure 

information for protein templates could be added as a component of the 

scoring function. The sequence-profile alignment used in MESSM needs to 

be replaced by profile-profile alignment. 

Multiple alignments (increase prediction accuracy) In multiple 

alignments, protein sequences are aligned optimally by bringing the 

greatest number of similar characters into regions. Such regions may 

represent conserved functional or structural domains. It is generally 

agreed that information from multiple alignments can help to refine a 

pairwise alignment of sequences. During the last few years, it has been 

shown that the methods with the inclusion of multiple alignments are 

superior to methods using single sequence only (Wallner et al., 2004). 

Therefore, the MESSM program is expected to be improved by inclusion 

of multiple alignment information. 

There are two kinds of multiple alignment information for proteins. They 

are structural alignments and sequence alignments. The structural 

alignment of more proteins could provide more precise information than 

sequence alignments, but it is only possible when the three-dimensional 

structures of all the proteins to be aligned are known. Currently there are 

not enough known proteins in the database for structural alignments. 

Therefore, only multiple sequence alignments can be adopted for both the 

query and template proteins. There are several methods available for 

protein multiple sequence alignments, such as T-Coffee (Notredame et al., 

2000), ClustalW (Thompson et al., 1994) and MUSCLE (Edgar, 2004). Like 
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secondary structure component, the multiple alignment information for 

templates could be built as one of the components of scoring function. The 

multiple alignment information for query sequence needs to be added into 

a query profile. Several profile-profile alignment methods (e.g. Marti

Renom et al., 2004; Yona and Levitt, 2002) could be implemented. 

Threading program on contact potential approach (build a functional 

threading model) In this research, a TES model is built following contact 

potential approach. The TES model is not a threading program. However, 

the environment-specific scores from the TES method are log-odds. They 

can be employed for protein alignment algorithms to build a threading 

program. In the future, a heuristic algorithm, such as double dynamic 

programming (Jones et al., 1992) and a divide-and-conquer algorithm (Xu 

and Xu, 2000) are expected to be employed into TES model in order to 

develop a full threading program for protein prediction. 

Accuracy and efficiency study In this research, the main focus is to retain 

accuracy of prediction against the reduction of computation time involved 

in the protein threading. By doing so, a residue level environment 

description is used in the framework of MESSM though models with atom 

level environment description have been proved to be more accurate. In 

the future, a study will be carried out on the trade-off between the 

accuracy and efficiency. Another framework will be built on the atom 

level environment description. The computational time versus prediction 

accuracy between two frameworks will be analysed and discussed. A user 

menu for selection between the two frameworks will be built. For those 

applications require a fast but not as accurate as possible answer, the 

current MESSM could be used. For those applications require more 

accurate answer but not caring about computational time, the new 

framework can be applied. 
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Appendix J Side Chain Radius of Amino Acids 

APPENDIX I SIDE CHAIN RADIUS OF 

AMINO ACIDS 

The calculation of side chain radius is as follows: 

For all the amino acids, the residue messes are known. The main chain 

mass for all is 56.0D. So, the residue side chain mess equals residue mess 

minus main chain mess. For example, the residue mess of an Alanine is 

71.1D. The side chain mess is 71.1-56=15.1D. 

o 

The radius of an Alanine side-chain sphere is known as 1.7 A, and the 

radius is supposed to be proportional to the cube roots of its mass, the 

proportional value is 1.45 = V15'}{7' 

Thus, the side chain radius of other amino acids could be computed and 

list in Table 1. For example, Histidine (HIS), the side chain mess is 137.1-

56=81.1D, the side chain radius= V81.}{45 =2.98. 

Amino acid Residue mass(O) Side-chain mass(O) Side-chain radius(A) 

GLY(G) 57 1.0 0.69 

ALA(A) 71.1 15.1 1.70 

VAL(V) 99.1 43.1 2.41 

LEU(L) 113.2 57.2 2.65 
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ILE(I) 113.2 57.2 2.65 

MET(M) 131.2 75.2 2.90 

PRO(P) 97.1 41.1 2.37 

PHE(F) 147.2 91.2 3.10 

TRP(W) 186.2 130.2 3.49 

SER(S) 87.1 31.1 2.16 

THR(T) 101.1 45.1 2.45 

ASN(N) 114.1 58.1 2.66 

GLN(Q) 128.1 72.1 2.86 

TYR(Y) 163.2 107.2 3.27 

CYS(C) 103.1 47.1 2.48 

LYS(K) 128.2 72.2 2.86 

ARG(R) 156.2 100.2 3.19 

HIS(H) 137.1 81.1 2.98 

ASP(D) 115.1 59.1 2.68 

GLU(E) 129.1 73.1 2.88 

Table 1 The Side-chain radius of amino acid residue 
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APPENDIX n AN EXAMPLE OF PROTEIN 

STRUCTURAL ALIGNMENT BY FLASH 

FLASH (vl.D) is a package for finding similarity in the three-dimensional 

structures of proteins. It can be used to compare one protein structure against 

another. So, for each protein data pair we selected from SCOP, FLASH can be 

implemented to give a result of structural alignment. 

Aligning protein pairs with FLASH, two kinds of files are required. They are 

'pdb' file and 'sse' file. Here we take a protein pair, Ibfd_1 and Id40a, as an 

example to show how to align the two proteins with FLASH. 

First, 'pdb' files are built for each protein. FLASH requires the only CA atom 

records form the protein data stored in PDB, thus each 'pdb' file with the 

information of CA atoms are extracted from the files in PDB. The Ibfd_l.pdb 

is shown in following. 

1bfd_1.pdb 

ATOM 1384 CA SER 182 78.554 17.521 143.677 1.00 14.63 
ATOM 1392 CA VAL 183 80.804 16.472 140.831 1.00 14.27 
ATOM 1399 CA ARG 184 84.105 14.696 140.396 1.00 14.67 
ATOM 1410 CA LEU 185 86.687 13.990 137.700 1.00 16.11 
ATOM 1418 CA ASN 186 85.559 11.595 134.938 1.00 16.59 
ATOM 1426 CA ASP 187 86.586 7.922 135.256 1.00 19.65 
ATOM 1434 CA GLN 188 89.359 7.895 132.662 1.00 25.49 
ATOM 1443 CA ASP 189 91.237 10.899 134.046 1. 00 21. 66 
ATOM 1451 CA LEU 190 90.548 9.859 137.626 1.00 21.79 
ATOM 1459 CA ASP 191 92.210 6.512 136.914 1.00 26.16 
ATOM 1467 CA ILE 192 95.272 8.349 135.597 1.00 21.93 
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ATOM 1475 CA 
ATOM 1483 CA 

LEU 
VAL 

193 
194 

95.483 10.481 138.756 1.00 20.29 
95.092 7.385 140.981 1.00 21.14 

....................... 

....................... 
ATOM 2440 CA LEU 325 90.390 9.131 145.962 1.00 20.36 
ATOM 2448 CA ALA 326 90.265 7.574 149.456 1.00 22.80 
ATOM 2453 CA ASN 327 88.413 4.562 148.060 1.00 26.32 
ATOM 2461 CA LEU 328 90.443 4.018 144.890 1.00 23.12 
ATOM 2469 CA VAL 329 94.090 4.311 145.974 1.00 23.00 
ATOM 2476 CA GLU 330 95.998 1.152 146.894 1.00 27.78 
ATOM 2485 CA GLU 331 97.393 0.687 150.383 1.00 30.72 
ATOM 2494 CA SER 332 101.096 1.490 150.204 1.00 28.60 
ATOM 2500 CA SER 333 103.587 -0.957 151.710 1.00 30.04 
ATOM 2506 CA ARG 334 105.526 2.031 153.079 1.00 26.45 
ATOM 2517 CA GLN 335 105.622 2.477 156.841 1.00 23.31 
ATOM 2531 CA LEU 336 103.081 4.899 158.318 1.00 25.42 
ATOM 2539 CA PRO 337 104.717 8.206 159.370 1.00 24.31 
ATOM 2546 CA THR 338 105.601 8.560 163.060 1.00 25.03 
ATOM 2556 CA ALA 339 103.621 11.092 165.085 1.00 24.61 
ATOM 2561 CA ALA 340 105.279 14.389 165.918 1.00 25.05 
ATOM 2566 CA PRO 341 106.569 14.552 169.510 1.00 28.13 

Second, the 'sse' files are created for each protein. For each 'sse' file, the 

secondary structure information of Helix and Strand are extracted from the 

files in PDB. The example of sse files for 1bfd_1 and 1d4oa are shown: 

1bfd 1.sse 

H 187 199 209 213 217 227 257 264 302 307 318 328 
S 204 207 230 233 249 252 269 273 294 299 312 315 

1d4oa.sse 

H 11 22 30 36 38 52 69 79 81 83 88 92 93 98 107 111 112 117 129 133 
152 157 
S 24 29 55 60 85 87 100 104 136 140 160 164 

Taking 1bfd_1 as an example, the 'sse' file means that the protein (lbfd_1) 

contains six helices (187-199, 209-213, 217-227, 257-264, 302-307 and 318-328) 

and six strands (204-207,230-233,249-252,269-273,294-299 and 312-315). 

Third, after creating the 'pdb' and 'sse' files for the two proteins, FLASH 

program is executed to give the output of the structural alignment. The 

example of the alignment for 1bdfd_1 and 1d4oa is given below: 

First:1bfd_1.pdb Residue: 160 Helix: 6 Strand: 6 
Second:1d4oa_.pdb Residue: 177 Helix:11 Strand: 6 
Total solutions: 1 
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No. #AlnSSE Rough_Z Refine_z p-value #AlnRes 
1 9 6.16 24.78 1.7e-11 123 

No. 1 residue_alignment: 

RMSD Seq%Id 
2.05 21 

ID 1234567890 1234567890 1234567890 1234567890 1234567890 

hhhhh hhhhhhhh bbbb hhh hh hhhhh hhhhhh 
1bfd 1.pdb: SVRLNDQDLD ILVKALNSAS NPAIVLGPDV DAANANADCV MLAERLK---

- ·11 ....... ·1· .. '1' ·1·" ·11·1····· '1·· ·1' . . ............ , .... . ......... . 
1d4oa_.pdb: -GTHTEINLD NAIDMIREAN SIIITPGYGL CAAKAQYPIA DLVKMLSEQG 

hhh hhhhhhhhh bbbbbbhhhh hhh hhhhhh hhhhhhhhh 

bbbb bbbb hhhhhhhh 
1bfd_1.pdb: --APVWVAP- SAP----RC- -PFP--TRH- PCFRGLMPAG IAAISQLLEG 

. . . . . : . I . . . . . . .. . ... . I . .. : . .... 
1d4oa_.pdb: KKVRFGI-HP VAGRMPGQLN VLLAEAGVPY DIVL-EMD-- -EIN-HDFPD 

bbbbbb hhhh hhhhhhh bb bhh hhh hhhhh 

bbbbb bbbbbb h 
1bfd_1.pdb: HDVVLVIGAP --VF-RY--- -------HQY DPGQY-LKPG TRLISVTCDP 

: I : 111111 : I: . . : : I : ... I ...... . " ...... 
1d4oa_.pdb: TDLVLVIGAN DTVNSAAQED PNSIIAGMP- --VLEVWK-S KQVIVMKRSL 

h bbbbb h hhhhhhhhhh hhhh h bbbbb 

hh hhh bbb b hhhhhhh hhhh 
1bfd_1.pdb: LE---AARAP M-----GDAI VADIGAMASA LANLV--EES SRQLPTAAP 

. . .. I . . . . . . .. I .... "I ........ 1"·1 . .. 
1d4oa_.pdb: GVGYAAVDNP IFYKPNTAML LGDAKKTCDA LQAKVRES-- ---------

hh hhhh bbbb b hhhhhhhh hhhhhhh 
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APPENDIX ill THE NEURAL NETWORK 

TRAINING RESULTS FOR TES MODEL 

The BPNN for building TES model is trained by using various network 

architectures with the number of neurons in hidden layer and different 

starting conditions. The average training and test error is shown in Table 2. 

The best performance architecture of NN is the one with 22 hidden neurons. It 

can be seen from Table 2 that the one with 22 hidden neurons' network has 

the minimum average test error of 2.648. Table 3 showed the training and test 

error of the NNs (22 hidden neurons) with 10 times different initializations. 

The 2.NN is adopted as trained NN for benchmark problem evaluation due to 

its best performance. 
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Number Hidden neuron Average training error Average test error 

1 10 2.64333 2.67409 

2 12 2.63922 2.67396 

3 14 2.62806 2.66284 

4 16 2.64108 2.67862 

5 18 2.62466 2.66170 

6 20 2.62209 2.65798 

7 22 2.61111 2.64841 

8 24 2.61474 2.64922 

9 26 2.62078 2.65889 

10 28 2.64066 2.66782 

11 30 2.64704 2.67051 

Table 2 The training and test error for different ANN architectures 

NN name Training error Test error 

O.NN 2.62580 2.65477 

1.NN 2.62134 2.65658 

2.NN 2.61602 2.65162 

3.NN 2.62540 2.66203 

4.NN 2.62750 2.66080 

5.NN 2.62644 2.66113 

6.NN 2.63178 2.67051 

7.NN 2.62813 2.66424 

8.NN 2.61284 2.65005 

9.NN 2.61589 2.65943 

Table 3 The training and test error for different initialise 

In Table 3, the training and testing relative entropy errors of the 2.NN model 

are 2.616 and 2.652. Figure 1 shows the curve of training error. The training is 
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stopped at 429 epochs by using ten-fold cross validation approach and the 

error is 2.616. 

2.80 -11--'----'---'---'----'--'----'----'----'-----1 

..... 
e ..... 
w 2.75 

>-c.. 
e ..... 
c 
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2.70 

2.65 
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o 
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~-training 
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Training Epoch 

Figure 1 Relative entropy errors of training. The training stopped at 429 epochs and the error 

is 2.62. 

180 



Appendix IV The Testing Results ofTES on PROSTAR Decoy Sets 

APPENDIX IV THE TESTING RESULTS OF 

TES ON PROST AR DECOY SETS 

There are three decoy sets in PROSTAR website. They are misfold, asilomar 

and ifu. The performance of our TES model is tested on discrimination the 

native and decoys. The testing results are shown in the following. For each 

pairs of native/ decoy proteins, the compatibility scores are computed by our 

TES model. If the compatibility score of native is larger than decoy, then it 

means the TES model can correctly distinguish the native from decoy. The 

result is correct. If the compatibility score of native is smaller than decoy, then 

the TES model is not able to discriminate native and decoy. The result is 

wrong. 

Asilomar 

Native Compatibility decoy Compatibility Result 

CRYSTAL.CRABPI.POBa 43.7982b CRABPI-ABAGYAN .POBe 22.8044d Correct 

CRYSTAL. CRABPI. PDB 43.7982 CRABPI-MOUL T1.PDB 31.9539 Correct 

CRYSTAL.CRABPI.PDB 43.7982 CRABPI-MOUL T2.PDB 30.6625 Correct 

CRYSTAL. CRABPI. PDB 43.7982 CRABPI-SALl.PDB 34.5877 Correct 

CRYSTAL. CRABPI.PDB 43.7982 CRABPI-VINALS1.PDB 30.1783 Correct 

CRYSTAL.CRABPI.PDB 43.7982 CRABPI-VINALS2.PDB 41.3005 Correct 

CRYSTAL. CRABPI.PDB 43.7982 CRABP I-VI NALS3.PDB 33.6194 Correct 

CRYSTAL.CRABPI. PDB 43.7982 CRABPI-VRIEND.PDB 23.2239 Correct 

CRYSTAL. CRABPI. PDB 43.7982 CRABPI-WEBER1.PDB 38.3004 Correct 
-
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CRYSTAL.CRABPI. PDB 43.7982 CRABPI-WEBER2.PDB 35.9954 Correct I 

CRYSTAL.EDN.PDB 31.5908 EDN-BIOSYM.PDB 16.7033 " Correct I 

CRYSTAL.EDN.PDB 31.5908 EDN-KOEHL.PDB 22.939 Correct I 

CRYSTAL.EDN.PDB 31.5908 EDN-MOUL T.PDB 22.0546 Correct I 

CRYSTAL. EDN. PDB 31.5908 EDN-SALl1.PDB 23.0551 Correct I 

CRYSTAL.EDN.PDB 31.5908 EDN-SALl2.PDB 22.6822 Correct 

CRYSTAL.EDN.PDB 31.5908 EDN-SAQI1.PDB 13.6662 Correct 

CRYSTAL.EDN.PDB 31.5908 EDN-SAQI2. PDB 16.6963 Correct 

CRYSTAL.EDN.PDB 31.5908 EDN-VINALS1.PDB 11.8171 Correct 

CRYSTAL.EDN.PDB 31.5908 EDN-VINALS2.PDB 16.2098 Correct 

CRYSTAL. EDN. PDB 31.5908 EDN-VINALS3.PDB 23.6921 Correct 

CRYSTAL.EDN.PDB 31.5908 EDN-WEBERPDB 11.5041 Correct 

CRYSTAL. HALOF ER. POB 35.5703 HALOFER-WEBERPDB 14.3073 Correct 

CRYSTAL. MCHPR PDB 29.7597 MCHPR-ABAGYAN.PDB 29.9659 Wrong i 

CRYSTAL.MCHPRPDB 29.7597 MCHPR-BIOSYM.PDB 25.6795 Correct 

CRYSTAL.MCHPRPDB 29.7597 MCHPR-KOBAYASHI.POB 3.62302 Correct 

CRYSTAL. MCHPR PDB 29.7597 MCHPR-KOEHL 1.PDB 25.4808 Correct 

CRYSTAL.MCHPRPDB 29.7597 MCHPR-KOEHL2.PDB 26.2762 Correct 

CRYSTAL.MCHPRPDB 29.7597 MCHPR-MOSENKIS.PDB 30.2057 Wrong! 

CRYSTAL. MCHPR PDB 29.7597 MCHPR-MOULT.PDB 27.7987 Correct 

CRYSTAL.MCHPRPDB 29.7597 MCHPR-VIHINEN.PDB 25.7908 Correct 

CRYSTAL. MCHPRPDB 29.7597 MCHPR-VRIEND.PDB 28.4586 Correct 

CRYSTAL.MCHPRPDB 29.7597 MCHPR-WEBERPDB 31.3352 Wrong. 

CRYSTAL.NDK.PDB 43.7147 NDK-ABAGYAN.PDB 43.6039 Correct 

CRYSTAL. N DK. PDB 43.7147 NDK-KOEHL.PDB 47.4615 Wrong 

CRYSTAL.NDK.PDB 43.7147 NDK-SALI.PDB 40.4217 Correct 

CRYSTAL.NDK.PDB 43.7147 NDK-VIHENEN.PDB 50.3416 Wrong 

CRYSTAL.NDK.PDB 43.7147 NDK-VRIEND.PDB 45.6966 Wrong' 

CRYSTAL.NDK.PDB 43.7147 NDK-WEBER1.PDB 42.1895 Correct 

CRYSTAL.NDK.PDB 43.7147 NDK-WEBER2.PDB 43.8578 Wrong 

CRYSTAL.P450. PDB 143.114 P450-ABAGYAN. PDB 95.0603 Correct 

CRYSTAL.P450.PDB 143.114 P450-WEBERPDB 98.8035 Correct 

Table 4 The Compatibility score of native and decoy pairs in Asilomar set 
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a The name of native protein. 

b The compatibility value of native protein, which is calculated by adding all the compatibility 

scores of every residue in protein sequence. 

C The name of decoy protein. 

d The compatibility value of decoy protein. If the value in this column is less than that of 

native protein (b column), then it means the model could successfully distinguish the native 

and decoy protein and vice versa. 

Mis/old 

Native Compatibility Decoy Compatibility Result 

CRYSTAL. 1 BP2.PDB 27.1196 1 BP20N2PAZ.PDB -9.62587 Correct 

CRYSTAL. 1 CBH.PDB 20.3959 1CBHON1PPT.PDB -1.09364 Correct 

CRYSTAL.1 FDX.PDB 19.0866 1FDXON5RXN.PDB -6.816 Correct 

CRYST AL.1 HIP. PDB 30.6937 1 HIPON2B5C.PDB -10.5216 Correct 

CRYSTAL.1LH1.PDB 48.7715 1 LH1 ON211 B.PDB 1.0774 Correct 

CRYSTAL.1P2P.PDB 30.0617 1P2PON1RN3.PDB -1.04321 Correct 

CRYSTAL. 1 PPT.PDB -3.64951 1 PPTON1 CBH.PDB -11.7326 Correct 

CRYSTAL.1REI.PDB 34.0123 1REION5PAD.PDB -9.98275 Correct 

CRYST AL.1 RHD. PDB 104.336 1RHDON2CYP.PDB 26.5752 Correct 

CRYSTAL. 1 RN3. PDB 31.6757 1 RN30N1 P2P.PDB -0.585725 Correct 

CRYSTAL. 1 SN3. PDB 32.805 1 SN30N2C12. PDB -0.837851 Correct 

CRYST AL.1 SN3. PDB 32.805 1 SN30N2CRO.PDB -6.53431 Correct 

CRYSTAL.2B5C.PDB 25.6586 2B5CON1HIP.PDB -3.23917 Correct 

CRYSTAL.2CDV. PDB 21.0004 2CDVON2SS I. PDB 0.208361 Correct 

CRYSTAL.2CI2.PDB 9.4209 2CI20N1SN3.PDB -9.19357 Correct 

CRYST AL.2CI2. PDB 9.4209 2CI20N2CRO.PDB -11.8764 Correct 

CRYSTAL.2CRO. PDB 13.3881 2CROON 1 SN3. PDB -12.8286 Correct 

CRYSTAL.2CRO.PDB 13.3881 2CROON2CI2.PDB -10.7121 Correct 

CRYSTAL.2CYP.PDB 101.693 2CYPON1 RHD.PDB 26.4458 Correct 

CRYSTAL. 21 1 B.PDB 41.69 211 BON1 LH1.PDB 6.82112 Correct 

CRYSTAL.2PAZ.PDB 46.2042 2PAZON1BP2.PDB 5.72203 Correct 

CRYSTAL.2SSI.PDB 30.3193 2SSION2CDV. PDB -4.3581 Correct 

CRYSTAL.2TMN.PDB 95.1398 2TMNON2TS 1. PDB 15.9299 Correct 

CRYST AL.2TS 1. PDB 113.356 2TS10N2TMN.PDB -9.30169 Correct 
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CRYSTAL.5PAD.PDB 67.5755 5PADON1REI.PDB -24.0963 ICorr~ 

Table 5 The Compatibility score of native and decoy pairs in Misfold set 

ifu 

Native Compatibility Decoy Compatibility Result 

CRYSTAL.1ALC_21-32.PDB -8.54096 1ALC_21-32.PDB -8.60252 Correct 

CRYSTAL.1ALC_21-36.PDB -7.06592 1ALC_21-36.PDB -8.61842 Correct 

CRYSTAL. 1 BGS_1 0-22.PDB -2.51359 1 BGS_1 0-22.PDB -4.98938 Correct 

CRYSTAL. 1 BGS_88-98.PDB -8.49428 1 BGS_88-98.PDB -6.45713 Wrong 

CRYSTAL. 1 FKF _27 -38.PDB 3.37854 1 FKF _27 -38.PDB 2.92278 Correct 

CRYSTAL.1FKF _ 46-59.PDB -5.50734 1 FKF _ 46-59.PDB -6.4245 Correct 

CRYST AL.1 FKF _ 46-61. PDB -3.64236 1 FKF _ 46-61.PDB -4.47646 Correct 

CRYSTAL. 1 HGF _100-113.PDB -3.94131 1HGF_100-113.PDB -4.34226 Correct 

CRYSTAL.1 HRC_7 -18.PDB -5.53031 1HRC_7-18.PDB -8.26554 Correct 

CRYSTAL. 1 HRC_92-1 03.PDB -3.25679 1 HRC_92-1 03.PDB -2.95445 Wrong 

CRYSTAL.1ILB_99-110.PDB -5.22427 1ILB_99-110.PDB -4.92366 Wrong 

CRYSTAL. 1 LMB_15-26.PDB 0.257263 1 LMB_15-26.PDB 0.110398 Correct 

CRYSTAL.1MBC_131-142.PDB -3.19509 1MBC_131-142.PDB -3.83852 Correct 

CRYSTAL. 1 MBC_131-146.PDB -3.10427 1 MBC_131-146.PDB -3.54935 Correct 

CRYSTAL. 1 MBC_29-40.PDB -4.95975 1 MBC_29-40.PDB -5.12092 Correct 

CRYSTAL. 1 MBC_29-43.PDB -5.57476 1 MBC_29-43.PDB -12.0616 Correct 

CRYSTAL. 1 MBC_6-17.PDB -7.04666 1 MBC_6-17.PDB -7.2428 Correct 

CRYSTAL. 1 MBC_6-21.PDB -6.35491 1 MBC_6-21.PDB -6.46396 Correct 

CRYSTAL. 1 MBC_99-111.PDB -7.08498 1 MBC_99-111.PDB -10.2439 Correct 

CRYSTAL. 1 MBC_99-119.PDB -10.9675 1 MBC_99-119.PDB -13.3796 Correct 

CRYSTAL. 1 PGA_ 43-54. PDB -5.47716 1 PGA_ 43-54.PDB -4.53947 Wrong 

CRYSTAL. 1 UBQ_1-17.PDB -6.03729 1UBQ_1-17.PDB -4.74754 Wrong 

CRYSTAL. 1 UBQ_26-41.PDB 5.39729 1 UBQ_26-41.PDB 2.19549 Correct 

CRYSTAL. 1 UBQ_3-15.PDB -5.08568 1 UBQ_3-15.PDB -6.17751 Correct 

CRYSTAL.211 B_100-115.PDB -4.25778 211 B_1 00-115.PDB -6.06304 Correct 

CRYSTAL.211 B_1 03-112.PDB -3.73616 211 B_1 03-112.PDB -4.48068 Correct 

CRYSTAL.211 B_69-82.PDB -7.39211 211 B_69-82.PDB -3.55183 Wrong 

CRYSTAL.2MHR_102-113.PDB -5.91935 2MHR_102-113.PDB -6.3745 Correct 
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CRYSTAL.2MHR_ 44-59.PDB -4.67574 2MHR_ 44-59.PDB -4.67652 Correct 

CRYSTAL.2MHR_51-62.PDB -3.18436 2MHR_51-62.PDB -2.71314 Wrong 

CRYSTAL.2MHR_52-67.PDB -1.73013 2MHR_52-67.PDB -3.13186 Correct 

CRYSTAL.2MHR_65-84.PDB -3.70062 2MH R_ 65-84. PDB -5.10793 Correct 

CRYSTAL.2MHR_67 -78.PDB -2.2953 2MHR_67-78.PDB -3.18056 Correct 

CRYST AL.2MHR_ 67 -82. PDB -4.21179 2MHR_67-82.PDB -6.33454 Correct 

CRYSTAL.2PCY _18-29.PDB -5.23243 2PCY _18-29.PDB -4.59381 Wrong 

CRYSTAL.2PCY _ 41-56.PDB 5.48788 2PCY_ 41-56.PDB -0.279805 Correct 

CRYSTAL.3LZM_24-35.PDB -4.66696 3LZM_24-35.PDB -4.91039 Correct 

CRYSTAL.3LZM_99-111.PDB -3.10226 3LZM_99-111.PDB -5.35682 Correct 

CRYSTAL.3LZM_99-114.PDB -2.33292 3LZM_99-114.PDB -5.09899 Correct 

CRYSTAL.3SNS_16-29.PDB -4.78637 3SNS_16-29.PDB -2.0131 Wrong 

CRYSTAL.3SNS_6-21.PDB -5.59337 3SNS_6-21.PDB -5.64975 Correct 

CRYSTAL.4PTI_22-33.PDB -5.75293 4PTI_22-33.PDB -4.16059 Wrong 

CRYSTAL.5CYT _88-1 01.PDB -0.235017 5CYT _88-1 01.PDB -0.439144 Correct 

CRYSTAL.7RSA_2-13.PDB 0.622406 7RSA_2-13.PDB -0.891238 Correct 

Table 6 The Compatibility score of native and decoy pairs in ifu set 

185 



Appendix V Publication List 

APPENDIX V PUBLICATION LIST 

~ Nan Jiang, Wendy Xinyu Wu, Ian Mitchell (2005) Protein Fold 

Recognition Using Neural Networks and Support Vector Machines, 

Lecture Notes in Computer Science, Vol. 3578 (IDEAL 2005), 462-469. 

~ Nan Jiang, Wendy Xinyu Wu, Ian Mitchell (2005) Protein Fold 

Recognition by Mixed Environment-Specific Amino Acid Substitution 

Mapping Using Neural Networks, The first IEEE International 

Workshop on High Performance Computing in Medicine and Biology 

(HiPCoMB-2005), Proceeding of the Eleventh ICPADS, 341-345. 

~ Nan Jiang, Wendy Xinyu Wu and Ian Mitchell (2005) Threading 

with Environment-specific Score by Artificial Neural Networks, Soft 

Computing, In Press. 

~ Nan Jiang, Wendy Xinyu Wu and Ian Mitchell (2004) Protein 

Threading with Residue-environment Matching by Artificial Neural 

Networks, Proceedings of the 2004 ACM symposium on applied 

computing, Vol. I, 209. 

186 


	424261_0001
	424261_0002
	424261_0003
	424261_0004
	424261_0005
	424261_0006
	424261_0007
	424261_0008
	424261_0009
	424261_0010
	424261_0011
	424261_0012
	424261_0013
	424261_0014
	424261_0015
	424261_0016
	424261_0017
	424261_0018
	424261_0019
	424261_0020
	424261_0021
	424261_0022
	424261_0023
	424261_0024
	424261_0025
	424261_0026
	424261_0027
	424261_0028
	424261_0029
	424261_0030
	424261_0031
	424261_0032
	424261_0033
	424261_0034
	424261_0035
	424261_0036
	424261_0037
	424261_0038
	424261_0039
	424261_0040
	424261_0041
	424261_0042
	424261_0043
	424261_0044
	424261_0045
	424261_0046
	424261_0047
	424261_0048
	424261_0049
	424261_0050
	424261_0051
	424261_0052
	424261_0053
	424261_0054
	424261_0055
	424261_0056
	424261_0057
	424261_0058
	424261_0059
	424261_0060
	424261_0061
	424261_0062
	424261_0063
	424261_0064
	424261_0065
	424261_0066
	424261_0067
	424261_0068
	424261_0069
	424261_0070
	424261_0071
	424261_0072
	424261_0073
	424261_0074
	424261_0075
	424261_0076
	424261_0077
	424261_0078
	424261_0079
	424261_0080
	424261_0081
	424261_0082
	424261_0083
	424261_0084
	424261_0085
	424261_0086
	424261_0087
	424261_0088
	424261_0089
	424261_0090
	424261_0091
	424261_0092
	424261_0093
	424261_0094
	424261_0095
	424261_0096
	424261_0097
	424261_0098
	424261_0099
	424261_0100
	424261_0101
	424261_0102
	424261_0103
	424261_0104
	424261_0105
	424261_0106
	424261_0107
	424261_0108
	424261_0109
	424261_0110
	424261_0111
	424261_0112
	424261_0113
	424261_0114
	424261_0115
	424261_0116
	424261_0117
	424261_0118
	424261_0119
	424261_0120
	424261_0121
	424261_0122
	424261_0123
	424261_0124
	424261_0125
	424261_0126
	424261_0127
	424261_0128
	424261_0129
	424261_0130
	424261_0131
	424261_0132
	424261_0133
	424261_0134
	424261_0135
	424261_0136
	424261_0137
	424261_0138
	424261_0139
	424261_0140
	424261_0141
	424261_0142
	424261_0143
	424261_0144
	424261_0145
	424261_0146
	424261_0147
	424261_0148
	424261_0149
	424261_0150
	424261_0151
	424261_0152
	424261_0153
	424261_0154
	424261_0155
	424261_0156
	424261_0157
	424261_0158
	424261_0159
	424261_0160
	424261_0161
	424261_0162
	424261_0163
	424261_0164
	424261_0165
	424261_0166
	424261_0167
	424261_0168
	424261_0169
	424261_0170
	424261_0171
	424261_0172
	424261_0173
	424261_0174
	424261_0175
	424261_0176
	424261_0177
	424261_0178
	424261_0179
	424261_0180
	424261_0181
	424261_0182
	424261_0183
	424261_0184
	424261_0185
	424261_0186
	424261_0187
	424261_0188
	424261_0189
	424261_0190
	424261_0191
	424261_0192
	424261_0193
	424261_0194
	424261_0195
	424261_0196
	424261_0197
	424261_0198
	424261_0199
	424261_0200



