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Abstract. In this paper we attempt to extract information concerning percussive
instruments from a musical audio signal. High-dimensional vectors of descriptors
are computed from the signal and classified by means of Support Vector Machines
(SVM). We investigate the performance on 2 important classes of drum sounds in
Western popular music: bass and snare drums, possibly overlapping. The results
are encouraging: SVM achieve a high accuracy and F1-measure, with linear kernels
performing (nearly) as good as Gaussian kernels, but requiring 1000 times less
computation time.

1 Introduction

With the explosive growth of the amount of digital music available on the In-
ternet, Musical Information Retrieval has become a topic that has attracted
the attention of researchers in a wide range of disciplines. The quality of
content-based retrieval however depends heavily on how well the individual
components for representation and matching of the data perform. Most ex-
isting commercial music information retrieval systems use text as the main
supplier of meta-data of music, such as the name of the artist/performer and
the title of the song. For text, rapid matching methods are available and
are applied extensively in search engines on the World Wide Web. However,
as soon as such meta-data is incomplete or unavailable, all of the existing
commercial systems will fail to deliver.

The MAMI-project (Musical Audio MIning) aims at working out method-
ologies and software tools for content-based audio-mining by bundling the
efforts of musicologists, engineers, mathematicians and computer scientists.
MAMI is centered on the ‘query-by-imitation’ paradigm, where users can
retrieve a musical piece by means of its sound characteristics, either by de-
scribing, playing or vocally imitating the piece.

In order to supply a ranked list of candidate songs to the user, the system
has to match an intermediate representation of the (melodic or rhythmic)
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input with a similar representation of all the songs in the database; this will
typically be done by means of a (time-consuming) dynamic programming
technique. To speed up the query, any additional information that can narrow
down the search space is welcome; not only meta-data, but also a description
of the content of the target song or the musical genre to which it belongs can
be used for this purpose.

A user study (Lesaffre et al. (2003)) has shown that when users are asked
to imitate a song they are familiar with, some of them will reproduce the
rhythmic structure of the piece. This is one of the motivations for analyzing
the percussive content of musical audio; if a transcription can be obtained, it
can be matched with the description delivered by the user, used as a feature
for genre classification or provide valuable information for the determination
of beat, tempo and rhythmic structure.

For the recognition of drum sounds three levels of difficulty can be distin-
guished: (i) Isolated drum sounds; (ii) Overlapping drum sounds; (iii) Over-
lapping drum sounds layered with other instruments and voices.

Obtaining a full transcription of the percussive content of musical audio
is a challenging task and, to our best knowledge, has never been attempted
using SVM. We will therefore concentrate on two important classes of sounds
(omnipresent in Western popular music): bass drums (typically low-pitched
and strongly indicating the beat) and snare drums (with highly noisy compo-
nents, delivering important clues about the metrical structure of the song).
In this paper we will concentrate on musical audio situated at the first and
second level, since Virtanen (2001) has shown recently that it is possible to
extract drum tracks from musical audio by subtracting the harmonic parts
from the signal.

The rest of this paper is organized as follows. In Section 2 we give an
overview of previous work. In Section 3 we describe how data were generated
using samples gathered from commercial CD’s, standard MIDI songs and
sequencer software. In Section 4 relevant descriptors for audio data are pre-
sented and in Section 5 Support Vector Machines are formally introduced. In
Section 6 we report results for two experiments and in Section 7 we comment
on these results and give directions for future research.

2 Previous work

A recent overview of classification techniques for musical instrument sounds
in general can be found in Herrera-Boyer et al. (2003). Percussive instruments
represent a special case as they can be considered to be pitch-independent, so
their appearance throughout a musical piece is much more constant. Although
this makes them good candidates for localization/classification, they only
represent a small part of previous research and in most cases only recognition
of isolated sounds is investigated.
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McDonald and Tsang (1997) use Spectral Centre Trajectories to classify
percussive sounds but tests are only conducted on a very small database. In
Zils et al. (2002) a percussion transcription is obtained by an analysis by
synthesis technique, whereby the sound searched for is gradually synthesized
from the signal; a success rate of over 75% is reported. A large-scale study
in Herrera et al. (2003) uses different subsets of temporal and spectral de-
scriptors (up to 207) for the recognition of thirty different classes of isolated
percussion instruments. K-NN, Kernel Density (KD) estimation, canonical
discriminant analysis and decision trees (C4.5) were investigated as classi-
fication techniques. KD combined with correlation-based feature selection
yielded a 85% hit rate.

3 Data gathering

We have gathered samples belonging to two classes of percussive instruments
(bass drum and snare drum) from commercial sample CD’s. Such CD’s typ-
ically indicate the class to which a sound belongs by the name of the sample
or its location in the directory structure, but this information is not always
equally reliable. Listening to the sounds we realized that some of them were
mixed with other (percussive) instruments and therefore we had them clas-
sified by two users; only the samples that were considered to be “pure” and
correctly classified by both users were retained. This yielded 656 bass drums
and 604 snare drums; in all classes samples of the acoustic as well as of the
electronic type were selected.

To gather realistic data, MIDI (Musical Instrument Digital Interface) files
were exploited. Standard MIDI assigns classes of instruments to predefined
tracks which makes it possible for an electronic sound device supporting
standard MIDI to play songs with its own internal sounds. From 32 songs in
standard MIDI format we selected 16 measures of the drum track. These 32
files were loaded into a sequencer program; 8 variations for each track were
generated by selecting at random pairs of bass and snare drum from the set
of samples while the other drum sounds were drawn from a standard MIDI
drum set. The audio generated by playing back the MIDI files using these sets
of drum sounds was recorded, yielding 256 audio files in total. The isolated
drum sounds were added to the data set. This yielded a positive/negative
example ratio of 1472/2508 for the bass drums and 1315/2729 for the snare
drums. All files were saved as mono wave files sampled at 44.1 KHz.

In order not to introduce any errors due to the incorrect localization of
events, we did not perform any onset detection but instead used the timing
and labelling information available in the MIDI files to determine at what
position in time descriptors need to be extracted and whether an event is a
positive or negative instance for our binary classifiers. The information in the
MIDI files thus represents the “ground truth” for the corresponding recorded
audio renderings.
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4 Descriptors for audio

Digital audio corresponds to a very high data rate (88Kbyte/s for mono CD
quality). To arrive at a manageable data rate, one needs to select descriptors
that capture the characteristics of the audio while suppressing details that
are redundant for the problem at hand. This data reduction will typically be
done by sliding a window with a fixed step over the raw audio signal (e.g. a
20ms window every 10 ms) and by computing at every step descriptors over
that window.

The events we are trying to classify do not have a fixed length; the bass
drums in our database for example have a duration ranging from 71 ms to
1.892 s. Although SVM are able to handle variable temporal representations
by applying specific kernels, e.g. Shimodaira et al. (2001), determining the end
of an event in musical audio (offset detection) is difficult. We therefore decided
to use a fixed context at the beginning of the events over which descriptors
are to be computed. In Section 6 we determine the most appropriate context
length for each class. In order not to confuse the binary classifiers, we excluded
any negative examples that lie within the range of 50ms of a positive example.

A first set of descriptors concerns the energy in the signal computed by
means of a Root Mean Square (RMS) formula. When inspecting the accu-
mulated spectra of hundreds of bass drums and snare drums, it can be seen
that the spectral energy distributions of these different sounds are located in
more or less distinct frequency bands (although not completely separated).
Hence we divided the spectrum into three frequency bands and computed
energy-related descriptors over these bands: RMS in the whole signal, RMS
per frequency band, ratio of RMS to overall RMS (per band) and RMS per
band relative to RMS of other bands (1 to 2, 1 to 3 and 2 to 3).

Temporal descriptors are computed on the sample signal. The following
descriptors were withheld: Zero Crossing Rate (ZCR): number of times per
second the signal changes sign; Crest Factor: ratio of maximum absolute
value sample signal to RMS in the segment; Temporal Centroid: the center of
gravity of the distribution of the absolute values of the samples in the window.
Spectral descriptors are computed using the Fast Fourier Transform, which
converts the time domain data into the frequency domain: spectral centroid,
skewness and kurtosis; and the spectral rolloff.

Logan (2000) shows that Mel Frequency Cepstral Coefficients (MFCC),
short-term spectral-based features widely used for speech recognition, are
appropriate as a representation for music by examining the functionality of
a music/speech discriminator. MFCC are especially interesting for complex
music analysis because they combine low-dimensionality and the ability to
discriminate between different spectral content. The amount of detail in the
description depends on the number of coefficients extracted; for our exper-
iments 12 coefficients were computed. The temporal deployment of these
descriptors is further captured by computing their first and second order
derivatives. As a window size of 20 ms and frame step of 10 ms for the extrac-
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tion of this kind of descriptors is often advised, we used these settings and
we computed the mean and standard deviation of the coefficients and their
first and second order derivatives over the context.

5 Support Vector Machines

Formally, a data set T contains l instances xi (i = 1, . . . , l) with each xi

labelled as yi = 1 or yi = −1 (known as classes), indicating a positive or
negative instance, respectively. Each index xij (j = 1, . . . , n) in vector xi is
a descriptor as described above.

The Support Vector Machine (Vapnik (1995)) is a data-driven method for
solving two-class classification tasks. The Linear SVM (LSVM) separates the
two classes in T with a hyperplane in the input space such that:

(a) the “largest” possible fraction of instances of the same class are on the
same side of the hyperplane, and

(b) the distance of either class from the hyperplane is maximal.

The prediction of an LSVM for an unseen instance z is given by the decision
function

pred(z) = sgn(w · z + b) . (1)

The hyperplane is computed by means of a vector of Lagrange multipliers α
maximizing

W (α) =
l∑

i=1

αi − 1
2

l∑

i,j=1

αi αj yi yj (xi · xj) ,

subject to:

0 ≤ αi ≤ C and
l∑

i=1

αi yi = 0 , (2)

where C is a parameter set by the user to regulate the effect of outliers and
noise, i.e. it defines the meaning of the word “largest” in (a). Some tolerance
(denoted as ε) on the constraints in Equation 2 is acceptable.

A function K (called a kernel function) maps the descriptors in T , called
the input space, into a feature space defined by K in which then a linear class
separation is performed. For the LSVM this mapping is a linear mapping:

K(xi,xj) = xi · xj . (3)

The non-linear mapping used in this paper is the Gaussian-SVM (GSVM)

K(xi,xj) = e−|xi−xj|2/γ2
. (4)
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After calculating the αi’s in (2), the decision function (1) becomes:

pred(z) = sgn(
l∑

i=1

αi yi K(xi, z) + b) . (5)

An instance xi for which αi is not zero is called a Support Vector (SV).
Note that the prediction calculated in (5) uses the support vectors only. As
such, the support vectors are those instances that are closest to the decision
boundary in the feature space.

All SVM in our experiments were trained using SVMlight 5.0 (Joachims
(1999)1) in classification mode with all parameters at their default values,
except for C and the kernel-related parameter γ. The data were scaled so
that every descriptor lies within the range [−1, 1].

6 Experiments and results

In order to determine an appropriate context length for the two classes of
drum sounds we computed the descriptors over various lengths (50, 70, 100,
140, 170 and 200 ms) and performed 3-Fold Cross Validation (3-FCV) using
LSVM with C = 2i (i = −8, . . . , 0, . . . , 10). As a performance measure we
combined the obtained average precision and recall into

Fβ =
(β2 + 1) · precision · recall

β2 · precision + recall

with β a user-controlled parameter expressing the preference for either high
precision or high recall (β = 1 in the sequel). Table 1 shows the best F1

for various context lengths. For both bass drum and snare drum the best
performance was obtained using a context length of 100 ms.

Context (ms) 50 70 100 140 170 200
F1 BD 93.91 95.11 95.15 94.94 94.59 94.64
F1 SD 97.39 97.69 98.18 97.61 97.30 96.58

Table 1. F1 with 3-FCV on the whole data set for different context lengths

Using the obtained context lengths, we investigated the difference in per-
formance between a linear and (the more powerful) Gaussian kernel. It needs
to be pointed out that there is no guarantee that the optimal context length
for LSVM is also optimal for GSVM; ongoing research will have to clarify this
point.

1 http://svmlight.joachims.org/
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The data were split into a 87.5% training set (for model selection and
training) and a 12.5% test set (while respecting the balance between positive
and negative examples). We had the optimal parameters for Gaussian ker-
nels (C, γ) established by looms (Lee and Lin (2000)2) which estimates the
leave-one-out error rate over a grid of candidate values using a loose stop-
ping criterion in the optimization phase. For LSVM we obtained the optimal
C using 3-FCV on the training set and F1 as performance measure. The
results in Table 2 also contain overall accuracy and the number of support
vectors for the obtained models. These results show a very minor difference
in performance for BD and no improvement at all for SD; despite bigger com-
putational effort for model selection and the fact that the resulting model is
more complex (the number of support vectors has almost doubled), exactly
the same misclassifications are done with the Gaussian kernel as with the
linear one.

LSVM GSVM
BD SD BD SD

C 0.5 8 0.25 8
γ - - 0.256 0.064

accuracy 94.98 97.63 95.58 97.63
F1 93.30 96.34 94.12 96.34

#SV 391 179 965 350

Table 2. Classification of the 12.5% test set using LSVM (model selection by 3-
FCV) and GSVM (model selection by estimating leave-one-out error).

7 Conclusions and future work

The results show that our audio descriptors and SVM classifiers combine well
into a technique for the recognition of drum sounds in an audio signal. We
expect that the methodology can be extended for the detection of a wider
range of percussive instruments.

The observation that linear kernels perform only slightly worse than the
Gaussian ones is an important finding for applications in time-critical envi-
ronments. An LSVM with approximately 1300 support vectors classifies 5000
examples (89-dimensional) in less than 10 ms while it takes a GSVM with the
same number of SV close to 10 s (done on a mobile Pentium III 1.2 GHz with
256 DDR RAM); this difference could turn out to be crucial in a real-time
system that, besides classification, also needs to perform onset detection and
compute appropriate descriptors.

2 http://www.csie.ntu.edu.tw/˜cjlin/looms/
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As there is a vast amount of candidate descriptors for the modelling of
audio and various ways of encoding them, future research should try to extend
the set of descriptors and at the same time, for the sake of simplicity, reduce
it by means of variable selection methods (e.g. as in Degroeve et al. (2002)).
Findings related to what kind of descriptors are relevant for the recognition
of percussion would also provide interesting feedback to researchers in the
field of musicology and perceptual psychology.
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