1,308 research outputs found

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in todayā€™s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach

    Comparing CNN and Human Crafted Features for Human Activity Recognition

    Get PDF
    Deep learning techniques such as Convolutional Neural Networks (CNNs) have shown good results in activity recognition. One of the advantages of using these methods resides in their ability to generate features automatically. This ability greatly simplifies the task of feature extraction that usually requires domain specific knowledge, especially when using big data where data driven approaches can lead to anti-patterns. Despite the advantage of this approach, very little work has been undertaken on analyzing the quality of extracted features, and more specifically on how model architecture and parameters affect the ability of those features to separate activity classes in the final feature space. This work focuses on identifying the optimal parameters for recognition of simple activities applying this approach on both signals from inertial and audio sensors. The paper provides the following contributions: (i) a comparison of automatically extracted CNN features with gold standard Human Crafted Features (HCF) is given, (ii) a comprehensive analysis on how architecture and model parameters affect separation of target classes in the feature space. Results are evaluated using publicly available datasets. In particular, we achieved a 93.38% F-Score on the UCI-HAR dataset, using 1D CNNs with 3 convolutional layers and 32 kernel size, and a 90.5% F-Score on the DCASE 2017 development dataset, simplified for three classes (indoor, outdoor and vehicle), using 2D CNNs with 2 convolutional layers and a 2x2 kernel size

    Deep Sensing: Inertial and Ambient Sensing for Activity Context Recognition using Deep Convolutional Neural Networks

    Get PDF
    With the widespread use of embedded sensing capabilities of mobile devices, there has been unprecedented development of context-aware solutions. This allows the proliferation of various intelligent applications, such as those for remote health and lifestyle monitoring, intelligent personalized services, etc. However, activity context recognition based on multivariate time series signals obtained from mobile devices in unconstrained conditions is naturally prone to imbalance class problems. This means that recognition models tend to predict classes with the majority number of samples whilst ignoring classes with the least number of samples, resulting in poor generalization. To address this problem, we propose augmentation of the time series signals from inertial sensors with signals from ambient sensing to train deep convolutional neural network (DCNNs) models. DCNNs provide the characteristics that capture local dependency and scale invariance of these combined sensor signals. Consequently, we developed a DCNN model using only inertial sensor signals and then developed another model that combined signals from both inertial and ambient sensors aiming to investigate the class imbalance problem by improving the performance of the recognition model. Evaluation and analysis of the proposed system using data with imbalanced classes show that the system achieved better recognition accuracy when data from inertial sensors are combined with those from ambient sensors, such as environmental noise level and illumination, with an overall improvement of 5.3% accuracy

    A Review of Physical Human Activity Recognition Chain Using Sensors

    Get PDF
    In the era of Internet of Medical Things (IoMT), healthcare monitoring has gained a vital role nowadays. Moreover, improving lifestyle, encouraging healthy behaviours, and decreasing the chronic diseases are urgently required. However, tracking and monitoring critical cases/conditions of elderly and patients is a great challenge. Healthcare services for those people are crucial in order to achieve high safety consideration. Physical human activity recognition using wearable devices is used to monitor and recognize human activities for elderly and patient. The main aim of this review study is to highlight the human activity recognition chain, which includes, sensing technologies, preprocessing and segmentation, feature extractions methods, and classification techniques. Challenges and future trends are also highlighted.

    Deep Sensing: Inertial and Ambient Sensing for Activity Context Recognition using Deep Convolutional Neural Networks

    Get PDF
    With the widespread use of embedded sensing capabilities of mobile devices, there has been unprecedented development of context-aware solutions. This allows the proliferation of various intelligent applications, such as those for remote health and lifestyle monitoring, intelligent personalized services, etc. However, activity context recognition based on multivariate time series signals obtained from mobile devices in unconstrained conditions is naturally prone to imbalance class problems. This means that recognition models tend to predict classes with the majority number of samples whilst ignoring classes with the least number of samples, resulting in poor generalization. To address this problem, we propose augmentation of the time series signals from inertial sensors with signals from ambient sensing to train deep convolutional neural network (DCNNs) models. DCNNs provide the characteristics that capture local dependency and scale invariance of these combined sensor signals. Consequently, we developed a DCNN model using only inertial sensor signals and then developed another model that combined signals from both inertial and ambient sensors aiming to investigate the class imbalance problem by improving the performance of the recognition model. Evaluation and analysis of the proposed system using data with imbalanced classes show that the system achieved better recognition accuracy when data from inertial sensors are combined with those from ambient sensors, such as environmental noise level and illumination, with an overall improvement of 5.3% accuracy

    Trends in human activity recognition using smartphones

    Get PDF
    AbstractRecognizing human activities and monitoring population behavior are fundamental needs of our society. Population security, crowd surveillance, healthcare support and living assistance, and lifestyle and behavior tracking are some of the main applications that require the recognition of human activities. Over the past few decades, researchers have investigated techniques that can automatically recognize human activities. This line of research is commonly known as Human Activity Recognition (HAR). HAR involves many tasks: from signals acquisition to activity classification. The tasks involved are not simple and often require dedicated hardware, sophisticated engineering, and computational and statistical techniques for data preprocessing and analysis. Over the years, different techniques have been tested and different solutions have been proposed to achieve a classification process that provides reliable results. This survey presents the most recent solutions proposed for each task in the human activity classification process, that is, acquisition, preprocessing, data segmentation, feature extraction, and classification. Solutions are analyzed by emphasizing their strengths and weaknesses. For completeness, the survey also presents the metrics commonly used to evaluate the goodness of a classifier and the datasets of inertial signals from smartphones that are mostly used in the evaluation phase
    • ā€¦
    corecore