281 research outputs found

    Accelerometry based detection of epileptic seizures

    Get PDF
    Epilepsy is one of the most common neurological disorders. Epileptic seizures are the manifestation of abnormal hypersynchronous discharges of cortical neurons that impair brain function. Most of the people affected can be treated successfully with drug therapy or neurosurgical procedures. But there is still a large group of epilepsy patients that continues to have frequent seizures. For these patients automated detection of epileptic seizures can be of great clinical importance. Seizure detection can influence daily care or can be used to evaluate treatment effect. Furthermore automated detection can be used to trigger an alarm system during seizures that might be harmful to the patient. This thesis focusses on accelerometry (ACM) based seizure detection. A detailed overview is provided, on the perspectives for long-term epilepsy monitoring and automated seizure detection. The value of accelerometry for seizure detection is shown by means of a clinical evaluation and the first steps are made towards automatic detection of epileptic seizures based on ACM. With accelerometers movements are recorded. A large group of epileptic seizures manifest in specific movement patterns, so called motor seizures. Chapter 2 of this thesis presents an overview of the published literature on available methods for epileptic seizure detection in a long-term monitoring context. Based on this overview recommendations are formulated that should be used in seizure detection research and development. It is shown that for seizure detection in home environments, other sensor modalities besides EEG become more important. The use of alternative sensor modalities (such as ACM) is relatively new and so is the algorithm development for seizure detection based on these measures. It was also found that for both the adaptation of existing techniques and the development of new algorithms, clinical information should be taken more into account. The value of ACM for seizure detection is shown by means of a clinical evaluation in chapter 3. Here 3-D ACM- and EEG/video-recordings of 18 patients with severe epilepsy are visually analyzed. A striking outcome presented in this chapter is the large number of visually detected seizures versus the number of seizures that was expected on forehand and the number of seizures that was observed by the nurses. These results underscore the need for an automatic seizure detection device even more, since in the current situation many seizures are missed and therefore it is possible that patients do not get the right (medical) treatment. It was also observed that 95% of the ACM-patterns during motor seizures are sequences of three elementary patterns: myoclonic, tonic and clonic patterns. These characteristic patterns are a starting point for the development of methods for automated seizure detection based on ACM. It was decided to use a modular approach for the detection methodology and develop algorithms separately for motor activity in general, myoclonic seizures and tonic seizures. Furthermore, clinical information is incorporated in the detection methodology. Therefore in this thesis features were used that are either based on the shape of the patterns of interest as described in clinical practice (chapter 4 and 7), or the features were based on a physiological model with parameters that are related to seizure duration and intensity (chapter 5 and 6). In chapter 4 an algorithm is developed to distinguish periods with and without movement from ACM-data. Hence, when there is no movement there is no motor seizure. The amount of data that needs further analysis for seizure detection is thus reduced. From 15 ACM-signals (measured on five positions on the body), two features are computed, the variance and the jerk. In the resulting 2-D feature space a linear threshold function is used for classification. For training and testing the algorithm ACM data along with video data are used from nocturnal recordings in mentally retarded patients with severe epilepsy. Using this algorithm the amount of data that needs further analysis is reduced considerably. The results also indicate that the algorithm is robust for fluctuations across patients and thus there is no need for training the algorithm for each new patient. For the remaining data it needs to be established whether the detected movement is seizure related or not. To this purpose a model is developed for the accelerometer pattern measured on the arm during a myoclonic seizure (chapter 5). The model consists of a mechanical and an electrophysiological part. This model is used as a matched wavelet filter to detect myoclonic seizures. In chapter 6 the model based wavelet is compared to three other time frequency measures: the short time Fourier transform, the Wigner distribution and the continuous wavelet transform using a Daubechies wavelet. All four time-frequency methods are evaluated in a linear classification setup. Data from mentally retarded patients with severe epilepsy are used for training and evaluation. The results show that both wavelets are useful for detection of myoclonic seizures. On top of that, our model based wavelet has the advantage that it consists of parameters that are related to seizure duration and intensity that are physiological meaningful. Besides myoclonic seizures, the model is also useful for the detection of clonic seizures; physiologically these are repetitive myoclonic seizures. Finally for the detection of tonic seizures, in chapter 7 a set of features is studied that incorporate the mean characteristics of ACM-patterns associated with tonic seizures. Linear discriminant analysis is used for classification in the multi-dimensional feature space. For training and testing the algorithm, again data are used from recordings in mentally retarded patients with severe epilepsy. The results show that our approach is useful for the automated detection of tonic seizures based on 3-D ACM and that it is a promising contribution in a complete multi-sensor seizure detection setup

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    Analysis and recognition of human gait activity based on multimodal sensors

    Get PDF
    Remote health monitoring plays a significant role in research areas related to medicine, neurology, rehabilitation, and robotic systems. These applications include Human Activity Recognition (HAR) using wearable sensors, signal processing, mathematical methods, and machine learning to improve the accuracy of remote health monitoring systems. To improve the detection and accuracy of human activity recognition, we create a novel method to reduce the complexities of extracting features using the HuGaDB dataset. Our model extracts power spectra; due to the high dimensionality of features, sliding windows techniques are used to determine frequency bandwidth automatically, where an improved QRS algorithm selects the first dominant spectrum amplitude. In addition, the bandwidth algorithm has been used to reduce the dimensionality of data, remove redundant dimensions, and improve feature extraction. In this work, we have considered widely used machine learning classifiers. Our proposed method was evaluated using the accelerometer angles spectrum installed in six parts of the body and then reducing the bandwidth to know the evolution. Our approach attains an accuracy rate of 95.1% in the HuGaDB dataset with 70% of bandwidth, outperforming others in the human activity recognition accuracy.Partial funding for open access charge: Universidad de Málag

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Efficient embedded sleep wake classification for open-source actigraphy

    Get PDF
    This study presents a thorough analysis of sleep/wake detection algorithms for efficient on-device sleep tracking using wearable accelerometric devices. It develops a novel end-to-end algorithm using convolutional neural network applied to raw accelerometric signals recorded by an open-source wrist-worn actigraph. The aim of the study is to develop an automatic classifier that: (1) is highly generalizable to heterogenous subjects, (2) would not require manual features’ extraction, (3) is computationally lightweight, embeddable on a sleep tracking device, and (4) is suitable for a wide assortment of actigraphs. Hereby, authors analyze sleep parameters, such as total sleep time, waking after sleep onset and sleep efficiency, by comparing the outcomes of the proposed algorithm to the gold standard polysomnographic concurrent recordings. The relatively substantial agreement (Cohen’s kappa coefficient, median, equal to 0.78 ± 0.07) and the low-computational cost (2727 floating-point operations) make this solution suitable for an on-board sleep-detection approach

    Seizure Detection, Seizure Prediction, and Closed-Loop Warning Systems in Epilepsy

    Get PDF
    Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy

    Comprehensive review of vision-based fall detection systems

    Get PDF
    Vision-based fall detection systems have experienced fast development over the last years. To determine the course of its evolution and help new researchers, the main audience of this paper, a comprehensive revision of all published articles in the main scientific databases regarding this area during the last five years has been made. After a selection process, detailed in the Materials and Methods Section, eighty-one systems were thoroughly reviewed. Their characterization and classification techniques were analyzed and categorized. Their performance data were also studied, and comparisons were made to determine which classifying methods best work in this field. The evolution of artificial vision technology, very positively influenced by the incorporation of artificial neural networks, has allowed fall characterization to become more resistant to noise resultant from illumination phenomena or occlusion. The classification has also taken advantage of these networks, and the field starts using robots to make these systems mobile. However, datasets used to train them lack real-world data, raising doubts about their performances facing real elderly falls. In addition, there is no evidence of strong connections between the elderly and the communities of researchers

    Evaluation of accelerometric and cycling cadence data for motion monitoring

    Get PDF
    Motion pattern analysis uses methods for the recognition of physical activities recorded by wearable sensors, video-cameras, and global navigation satellite systems. This paper presents the motion analysis during cycling, using data from a heart rate monitor, accelerometric signals recorded by a navigation system, and the sensors of a mobile phone. The set of real cycling experiments was recorded in a hilly area with each route about 12 km long. The associated signals were analyzed with appropriate computational tools to find the relationships between geographical and physiological data including the heart rate recovery delay studied as an indicator of physical and nervous condition. The proposed algorithms utilized methods of signal analysis and extraction of body motion features, which were used to study the correspondence of heart rate, route profile, cycling speed, and cycling cadence, both in the time and frequency domains. Data processing included the use of Kohonen networks and supervised two-layer softmax computational models for the classification of motion patterns. The results obtained point to a mean time of 22.7 s for a 50 % decrease of the heart rate after a heavy load detected by a cadence sensor. Further results point to a close correspondence between the signals recorded by the body worn accelerometers and the speed evaluated from the GNSSs data. The accuracy of the classification of downhill and uphill cycling based upon accelerometric data achieved 93.9 % and 95.0 % for the training and testing sets, respectively. The proposed methodology suggests that wearable sensors and artificial intelligence methods form efficient tools for motion monitoring in the assessment of the physiological condition during different sports activities including cycling, running, or skiing. The use of wearable sensors and the proposed methodology finds a wide range of applications in rehabilitation and the diagnostics of neurological disorders as well. AuthorResearch through the Development of Advanced Computational Algorithms for Evaluating Post-Surgery Rehabilitation [LTAIN19007]; National Sustainability Programme of the Ministry of Education, Youth and Sports of the Czech Republic [LO1303 (MSMT-7778/2014)]; Ethics commission, Neurocentre Caregroup, Center for Neurological Care in Rychnov nad Kneznou, Czech RepublicMinisterstvo Školství, Mládeže a Tělovýchovy, MŠMT: LO1303, MSMT-7778/201

    Engineering of an Extreme Rainfall Detection System using Grid Computing

    Get PDF
    This paper describes a new approach for intensive rainfall data analysis. ITHACA's Extreme Rainfall Detection System (ERDS) is conceived to provide near real-time alerts related to potential exceptional rainfalls worldwide, which can be used by WFP or other humanitarian assistance organizations to evaluate the event and understand the potentially floodable areas where their assistance is needed. This system is based on precipitation analysis and it uses rainfall data from satellite at worldwide extent. This project uses the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis dataset, a NASA-delivered near real-time product for current rainfall condition monitoring over the world. Considering the great deal of data to process, this paper presents an architectural solution based on Grid Computing techniques. Our focus is on the advantages of using a distributed architecture in terms of performances for this specific purpos
    • …
    corecore