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1I N T R O D U C T I O N

Epilepsy is one of the most common neurological disorders. Worldwide,
epilepsy affects almost 60 million people [1]. The diagnosis of epilepsy is
made by the occurrence of at least 2 unprovoked seizures. Epileptic seizures
are the manifestation of abnormal hypersynchronous discharges of popula-
tions of cortical neurons. These discharges impair brain function. The signs
and symptoms of seizures depend upon the location and extent of the prop-
agation of the discharging cortical neurons. A seizure can express itself in
movements or one could experience sensorial sensations, like strange smells
or aura’s. The best known example of a seizure is a tonic-clonic seizure. Dur-
ing a tonic-clonic seizure the patient loses consciousness and can drop down
to the floor. A phase of tetanic muscle contraction (tonic phase), is followed
by a phase in which jerking of the body and limbs occur (clonic phase).
The perception that epilepsy was a neurological disorder was not widely
accepted until the 19th century. In the 20th century, the development of the
electroencephalograph (EEG) revealed the presence of electrical discharges in
the brain. It also showed different patterns of brainwave discharges associated
with different seizure types. The EEG also helped to locate the site of seizure
discharges and expanded the possibilities of neurosurgical treatments. Since
the 1960s, there has been an accelerating process of drug discovery, based
in part on a much greater understanding of the electrochemical activities of
the brain, especially the excitatory and inhibitory neurotransmitters. Most of
the people affected can be treated successfully with drug therapy (67%) or
neurosurgical procedures (7-8%). Nevertheless there is still 25% of the people
affected that can not be treated by any available therapy [1]. For refractory
patients who also continue to have frequent seizures, it is shown that inten-
sive monitoring with EEG and video over a longer period, contributes to the
management of daily care and the adjustment of drug therapy [2]. Intensive
monitoring with EEG and video can be very unpleasant for patients, and
analyzing large amounts of EEG/video-data is very labor intensive for medi-
cal personnel. Therefore it would be of great clinical value, if there was an
automated seizure detection system available that is both reliable and patient
friendly, that can be used for long-term monitoring of refractory patients
with frequent seizures in their living environment. A possibility for detecting
these seizures is to focus on motor signs since epileptic seizures are often
accompanied by motor signs.

In this context, this thesis describes the first results of accelerometry based
seizure detection. A detailed overview is provided on the perspectives for
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2 introduction

long-term epilepsy monitoring and automated seizure detection. The value
of accelerometry (ACM) for seizure detection is shown by means of a clinical
evaluation, and methods are developed for the detection of motor activity,
and two types of simple motor seizures to support off-line analysis. Naturally
there will always be seizures without motor signs, where only changes in
consciousness will take place. For the detection of these types of seizures the
EEG will always be necessary.

In summary, in this thesis the first steps are made for accelerometry based
detection of epileptic seizures. Besides extensive studies on the perspectives
for automated seizure detection in long-term monitoring purposes and the
value of accelerometry for seizure detection, new detection methods were
developed for the detection of motor activity, myoclonic seizures and tonic
seizures. Clinical information was incorporated in the feature extraction and
a new model based wavelet is developed that incorporates physiological
information.

1.1 simple motor seizures

With accelerometry (ACM) only seizures can be detected that express them-
selves in movements or seizures that disturb normal movement patterns.
Seizures in which the main clinical manifestations are movements are called
motor seizures [3]. These motor seizures can be divided into two major sub-
groups, simple motor seizures and complex motor seizures1. In simple motor
seizures, motor movements are relatively ’simple’ and unnatural and are
caused by a relatively massive discharge in the motor structures of the cortex.
Complex motor seizures are seizures in which the movements are relatively
complex and simulate natural movement, except that they are inappropriate
for the situation. These seizures often arise from the limbic system.
This thesis focusses on the detection of simple motor seizures. The move-
ments during simple motor seizures tend to be stereotypical, and when
movements are repetitive, they affect the same body segment [6]. Simple
motor seizures can be subdivided into the following types: myoclonic, clonic,
tonic, and tonic-clonic seizures. These types depend on the duration of the
muscle contractions, the frequency of movement repetition, and the muscles
involved.

1 To prevent confusion it should be mentioned here that the words ’simple’ and ’complex’
indicate the type of movement. According to the current seizure classification standard
’simple\complex’ generally means ’not accompanied by loss of consciousness\accompanied by
loss of consciousness’[4, 5]
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1.1.1 Myoclonic seizures

A myoclonic seizure is characterized by a sudden jerk. Each myoclonic jerk
typically involves only a few adjacent muscles, for example, only one antag-
onistic pair. Myoclonic jerks are most probably generated by activation of
the primary or secondary motor area’s in the cortex by epileptic discharges.
Most of these epileptic seizures begin in the frontal lobe and then spread
a.o. towards the motor cortex. The central area of the motor cortex (primary
motor area) is responsible for subtle myoclonic jerks. When the frontal area
of the motor cortex is involved (secondary motor area), this results in more
massive jerks.
The surface EEG associated with a myoclonic seizure shows a (poly)spike-
wave correlate [7]. EMG-signals reveal synchronous muscle activation in both
agonist and antagonist muscle of the affected muscle group. The duration
of this train of muscle action potentials is <100 ms and the frequency is ≈
50 Hz [8].
During a myoclonic jerk flexor muscles are generally more active than exten-
sor muscles. Also distal muscles are more affected than proximal muscles,
and the arms are more affected than the legs. This stereotype expression
is caused by the fact that the projection area of the motor cortex to these
segments of the body is larger.
A schematic representation of such an arm movement associated with a myo-
clonic seizure is depicted in Fig. 1 A.

A. Myoclonic: 
single jerk 

B. Clonic: 
rhythmic 
jerking 

 

C. Tonic: 
sustained contraction, 
positioning 

 
Figure 1: Schematic representation of arm movements during simple motor seizures.
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1.1.2 Clonic seizures

Clonic seizures consist of repeated myoclonic contractions that regularly
recur at a intervals between 0.2 and five times per second [6]. During a
clonic seizure the affected parts of the body show repetitive jerking. Tetanic
50 Hz electrical stimulation of the motor strip in wake humans can elicit
clonic muscle responses. Hamer et al. [9] used cortical electrical stimulation
to investigate the pathophysiology underlying the clonus generation. They
also analyzed spontaneous focal clonic seizures in humans by recording of
EEG in combination with surface EMG-recordings of muscles involved in
the epileptic clonus [10]. Stimulation of the motor cortex with frequencies of
20 Hz or more elicited clonic muscle response. The rhythmic clonic muscle
responses consisted of bursts of muscle action potentials which occurred
synchronously in agonistic and antagonistic muscles and were separated
by periods of complete muscle relaxation in all muscles despite continuous
stimulation. Alternating contractions of agonistic and antagonistic muscles
were never observed. The frequency of muscle action potentials within each
burst followed the stimulation frequency. During the spontaneous clonic
seizures (poly)spike-wave complexes were observed in the EEG (Fig. 2).

Figure 2: (Poly)spike-wave complexes in the EEG that are associated with clonic
seizures [10].

These (poly)spike-wave complexes were coinciding with the appearance
of clonic muscle activity. Here again the bursts of muscle action potentials
occurred synchronously in agonistic and antagonistic muscles and were
separated by periods of complete muscle relaxation in all muscles. Again,
alternating contractions of agonistic and antagonistic muscles were never
observed. The waveform of each (poly)spike-wave complex consisted of 2-6
spikes recurring with a frequency of 12-45 Hz. The series of muscle action
potentials (muscle contraction) follow the spikes and the periods of muscle
relaxation follow the waves of the (poly)spike-wave complexes. It is believed
that the rhythmic arrest of motor activity during clonic seizures is caused by
hyperpolarization of pyramidal tract cells [9, 10]. A schematic representation
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of the jerking arm movements associated with clonic seizure is depicted in
Fig. 1 B.

1.1.3 Tonic seizures

During tonic seizures a sudden sustained contraction of multiple muscle
groups is seen. Often the limbs undergo a slow change of posture, but de-
pending on how quickly the seizure starts it can also begin with a massive
jerk. Tonic seizures have a duration that lies typically between 10 and 20 sec-
onds, but can vary between 2 seconds and 60 seconds [3]. They are primarily
generated by the supplementary motor area frontal in the brain. The EEG
shows diffuse low voltage, fast frequency (20-40 Hz) activity, which may show
a gradual increase in amplitude with decreasing frequency (Fig. 3).
Hamer et al. showed that increasing the intensity of stimulation at the same

Figure 3: EEG associated with tonic seizure: diffuse low voltage, fast frequency (20-
40 Hz) activity, which may show a gradual increase in amplitude with
decreasing frequency [10].

frequency (50 Hz) converted an intermittent clonic muscle response to a
continuous tonic muscle response [9]. High intensity cortical stimuli appeared
to overcome the recurrent cortical inhibition occurring during clonus. This
indicates that during tonic seizures the level of epileptic activity in the brain is
so high, that the cortical inhibition that occurs during a clonic seizure fails. A
schematic representation of the slow change of posture of the arms associated
with tonic seizure is depicted in Fig. 1 C.

1.1.4 Tonic-clonic seizures

These seizures consist of an initial tonic phase during which the patient has
the legs and arms in extension with the arms adducted and crossed in front
of the body. The tonic phase lasts 5–10 seconds and is then followed by a
series of tremor-like muscle contractions. The movements of the arms increase
progressively in amplitude as the repetition rate diminishes. Eventually, this
evolves to clonic contraction (flexions at the elbow), initially of a frequency of
5 Hz, and then progressively decreasing in frequency to one contraction every
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1 to 3 seconds [3]. Finally the contractions disappear completely. The muscles
included in the tonic and clonic phase should be essentially the same.

1.2 accelerometry

1.2.1 State of the art

Accelerometers are used in many medical research areas for activity recog-
nition [11], [12]. Information about physical activity can be used in a.o. re-
habilitation medicine [13], [14], [15], geriatrics [16] and Parkinson’s disease
[17], [18], [19], [20]. Most recent literature focusses on physical activity in
obesity [21], and preventive healthcare [22]. In geriatrics accelerometers are
also applied for fall detection in the elderly [23]. Published literature con-
cerning epilepsy, seldom mentions accelerometry (ACM) and it has never
been used in a detection context [24], [25], [26]. Seizure detection literature
heavily depends on the EEG-signal. Only recently other sensor modalities
that focus more on the clinical symptoms and signs of seizures have become
more popular [27]. Thus detection of epileptic seizures based on ACM is a
research field that is open for exploration.2

1.2.2 Sensor type

The accelerometers used in this thesis, are created using the two-axis ac-
celerometer ADXL202E from Analog devices. The three-dimensional (3-D)
accelerometers described in this thesis, were created by mounting two 2D-
sensors at right angles to each other. One channel is not connected during the
recordings, and thus a 3-D accelerometer is created. In the studies presented
in these thesis, five 3-D sensors were placed on the body. Simple motor sei-
zures are most clearly visible on the extremities. To get a complete picture
of the movements of the limbs and the body accelerometers were placed on
both wrists, both ankles and on the sternum.
The output of an accelerometer attached to the human body consists of
different components:

1. noise from sensor and measurement system

2. noise sources from environment:

a. accelerations produced by external sources, like vehicles

b. accelerations due to bumping of the sensor or the body against
other objects

3. noise sources from the body:

2 An extensive overview on the literature concerning seizure detection is given in chapter 2 of this
thesis.
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a. muscle tremor

b. heart

c. respiration

d. blood flow

4. gravitational acceleration

5. accelerations due to movements of the body

In comparison to body movements, the noise from the sensor and measure-
ment system can be neglected. All data used in this thesis was recorded while
the patients were in their living environment, thus there were no accelerations
produced by external sources. When there is no movement, physiological
noise, like respiration and heart rate are clearly visible in the signal. In chapter
4, this information is used to set a threshold for motor activity. Gravitational
acceleration varies between -1 g and 1 g, depending on the orientation of the
measured direction of the sensor in the gravitational field.

1.3 signal processing methodology

This thesis describes signal processing methods that can be used to detect
simple motor seizures to assist off-line analysis of long-term recorded ac-
celerometer signals in clinical practice. The information that is obtained from
these off-line detections can then be used to evaluate medical treatment and
daily care.
As we shall see in chapter 3 of this thesis, patterns in accelerometry (ACM)
signals associated with simple motor seizures reflect the stereotypical move-
ments that can be observed during these seizures. This results in 3 types
of elementary patterns (myoclonic, tonic, clonic). Each pattern has its own
characteristics of duration, intensity and frequency. Therefore it was decided
to use a modular approach for the detection methodology as represented
in Fig. 4. The first step is to develop an algorithm that distinguish between
periods in the data with and without motor activity. When there is no motor
activity, there is no motor seizure, and in this way a large part of the data
can be excluded in a simple way. This results in a reduction of the amount of
data that needs to be further analyzed with stronger, more complex signal
processing tools. The second step is the development of separate detection
modules for each seizure type. This thesis covers strategies for the detection
of myoclonic and tonic seizures.

1.3.1 Supervised learning

For the algorithms described in this thesis a supervised learning approach
is chosen. This means that appropriate features, classification algorithms,
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no motor 
activity 

myoclonic other clonic tonic 

motor 
activity 

ACM-
signals 

Figure 4: Modular approach: Step 1: Screening data for motor activity. Following steps:
detecting presence of elementary patterns associated with seizures.

and a proper way of training the algorithms with labelled data need to be
chosen. It is known that the success of classification critically depends on the
choice of features and much less on the complexity of the type of classifier
[28]. Therefore one of the key principles of this thesis is its main focus on the
selection of suitable features. For classification straightforward classification
methods are used. Furthermore, it is known that features that incorporate
morphological or physiological characteristics of the pattern of interest are
most successful for pattern recognition [29]. Therefore in this thesis features
are used that are either based on the morphology of the patterns of interest,
as described in clinical practice, by experts, or the features are based on
physiological model that analytically describes the pattern of interest with
parameters that are related to seizure duration and intensity.

The detection methods suggested in this thesis are all evaluated using clinical
data. Figure 5 shows the setup that is used for this evaluation. ACM-signals
obtained from epilepsy patients are annotated (labelled) by three experts. Be-
sides the ACM-signals they also have acces to the gold standard EEG/video.
These annotations are used as a standard to evaluate the detection methods
described in this thesis. Here it has to be kept in mind that the evaluation
thus heavily depends on the experts and that results based on such standard
should be interpreted with care.
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ACM 

Feature 
Extraction 

Events 
Eexperts 

EEG\Video + ACM 

Events 
Ealgorithm 

Signal 
Validation 

Classification 

annotations 

Standard Algorithm 

Figure 5: Complete detection and evaluation setup. Two parallel schemes: one for the
video that is used for evaluation of the algorithm and one for the ACM-based
detection algorithm.

1.4 thesis outline

Seizure detection based on accelerometry (ACM) is a novel field of research.
This thesis describes a number of studies that were intended to evaluate the
use of accelerometers for the detection of epileptic seizures.
Chapter 2 gives an overview of the literature on seizure detection algorithms.
Here it is shown that for seizure detection in living environments not only
the adjustment of existing (EEG-based) techniques is important, but also the
development of new methods based on other sensor modalities (e.g. ACM)
and the incorporation of clinical information in the detection methodology.
Chapter 3 shows that 3-D ACM is a valuable sensing method for detection
of simple motor seizures. A clinical study is carried out where 18 mentally
retarded patients with severe epilepsy are intensively monitored over a period
of 36 hours, using the gold standard EEG/video and 5 3-D accelerometers.
It is found that 95% of the motor seizures in our population consist of one
or more of three elementary patterns that are associated with simple motor
seizures. The outcome of this clinical study is a good starting point for auto-
mated seizure detection.
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Chapter 4 presents the first step for an automated detection algorithm for
nocturnal seizures based on 3-D ACM. The main goal is to distinguish be-
tween data with and without subtle nocturnal motor activity. This results in
reducing the amount of data that needs further (more complex) analysis for
seizure detection.
In Chapter 5 a model for myoclonic seizures is presented. This model consists
of an electrophysiological and a mechanical part. From this model, an analyti-
cal expression is derived for the pattern that can be observed in ACM-signals
during myoclonic seizures. This analytical expression is the basis for a wavelet.
This wavelet can be used to analyse accelerometer signals and can contribute
to the detection of myoclonic seizures.
This is shown in Chapter 6, where the model based wavelet is evaluated in
a clinical data set. Furthermore three other time-frequency methods for the
detection of myoclonic seiuzres are studied. It is found that wavelet based
methods are useful for detection of myoclonic seizures. On top of that, our
model based wavelet has the advantage that it consists of parameters that are
related to seizure duration and intensity which is physiologically meaningful.
In Chapter 7 features are derived that are suitable for the detection of ACM-
patterns associated with tonic seizures. In contrast to the myoclonic jerks that
are fast and abrupt in appearance, and short in duration, tonic movements are
slow and gradual in appearance, and longer in duration. These characteristics
are incorporated in the features. The results show that our approach can
contribute to the detection of tonic seizures.
This thesis is concluded by Chapter 8 with recommendations for future re-
search.

This thesis consists to a large extent of material that over the past years is
published elsewhere by the author.

• Chapter 3 as [30], and

• Chapter 4 as [31], and

• Chapter 5 consists of two short papers, that are separately published as
[32] and [33].

Furthermore other parts of this thesis are submitted to scientific journals and
are currently under review.

• Chapter 2 as [27], and

• Chapter 6 as [34].



2S E I Z U R E D E T E C T I O N I N L O N G - T E R M M O N I T O R I N G ,
F R O M C L I N I C A L P R A C T I C E T O H O M E E N V I R O N M E N T

This chapter is submitted to the Journal of Clinical Neurophysiology as:
T.M.E. Nijsen, J.B.A.M. Arends, P.A.M. Griep, P.J.M. Cluitmans, and P.A.J.M. Boon, Seizure
detection in long-term monitoring, from clinical practice to home environment [27].

2.1 abstract

This chapter reviews the literature on epileptic seizure detection method-
ologies suitable for long-term monitoring. Both technological and clinical
aspects of seizure detection methodologies are explored varying from sensor
type and mathematical methods used to patient and seizure characteristics.
Implications of these data for future research and development for seizure de-
tection in clinical practice are considered. There are many methods developed
for seizure detection in established application areas such as the Epilepsy
Monitoring Unit and (Neonatal) Intensive Care Units. These methods are usu-
ally based on the EEG-signal. Recently, the need for seizure detection outside
intensive monitoring units has lead to the use of other sensor modalities that
are more patient friendly and thus more suitable for care at distance. Often
detection methods are developed for specific patient or seizure types, but the
extrapolation of these methods to a broader patient population is not evident.
Hence, the development of seizure detection methods for application areas
that are yet to be explored such as institutions and home environments is not
trivial. Furthermore for monitoring in living environments alternative physio-
logical measures such as movement and heart rate will be more important.
Signal processing methods that are commonly used, focus on the calculation
of features that have a physiological meaning or are morphological charac-
teristics of the signal pattern of interest. Nevertheless patient and seizure
characteristics are often omitted in the feature selection process. Hence for
seizure detection outside specialized hospital units not only the adjustment
of existing techniques is important, but also the development of new methods
based on other sensor modalities and the incorporation of clinical information
in the detection methodology.

2.2 introduction

There is a growing need for seizure detection systems that can be reliably used
in a mobile set up for monitoring refractory epilepsy patients in institutions

11
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to home environment

or home situations [35, 36, 37]. Seizure detection in patients with frequent
seizures will result in better management of daily care or adjustment of drug
therapy [38, 2, 39, 40]. Seizure detection can also trigger medical interven-
tion in life threatening situations such as a status epilepticus. Historically
automated seizure detection was first pursued in epilepsy monitoring units
(EMU), to facilitate the analysis of 24-hours EEG recordings, and to reduce the
workload of the EEG-technicians [41]. In this context information of seizure
frequency and type is used for diagnostic purposes and the evaluation of
candidates for epilepsy surgery. Later EEG measurements were also used in
intensive care units (ICU), to monitor brain function in critically ill patients,
and in neonatal intensive care units (NICU), where the occurrence of seizures
can indicate neurological complications. Recent technological developments,
such as wireless communication, low-power design and flexible sensors, make
it easier to continuously monitor patients from a distance [42, 43]. Therefore
seizure detection can be applied easier in other areas, that are outside special-
ized hospital units, such as institutions (INST), home situations (HOME) and
in- and outpatient clinical monitoring (CLIN), where patients are temporarily
monitored, for diagnostic purposes, with an ambulatory setup. In all the appli-
cation areas above, the term ’long-term monitoring’ is used. The meaning of
’long-term’ strongly depends on the application area. For epilepsy monitoring
units, (neonatal) intensive care units and outpatient clinical monitoring, the
monitoring duration varies from several hours to days. In an institution or
home environment the monitoring duration can be indefinite. In all these
situations, a suitable seizure detection method, also has to meet different
requirements for patient friendliness and costs as is depicted in Fig. 6.

EMU ICU NICU CLIN INST HOME 

Application area 
 
 

- Increasing time frame 
- Increasing need for patient friendliness 
- Decreasing costs 

Figure 6: Monitoring duration, need for patient friendliness and cost depend on
application area.

Presently, numerous alarm devices are already available, such as mechanically
triggered alarms in mattresses or audio-triggered alarms, but the reliability
and performance of these devices for seizure detection are not described in
literature. Most published seizure detection approaches are originally based
on the EEG-signal. EEG/video-monitoring is considered as the gold standard
for seizure detection in clinical routine. Nevertheless, the measurement of
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the EEG is not always practical, especially when the electrodes have to stay
on the head for several days. Furthermore, seizures sometimes are not ac-
companied by EEG changes (for example elementary seizures and seizures
in mentally retarded patients). Only recently, detection algorithms that use
signals from alternative sensor modalities for seizure detection have been
described in literature [44, 30, 45]. These articles focus more on autonomic
effects (increase of heart rate) and movement characteristics. So called ’motor
seizures’ can be divided in elementary movement patterns (myoclonic, clonic,
tonic and tonic-clonic movement patterns) and complex movement patterns
[3]. Movements can be monitored with video or accelerometry (ACM). Video
is part of the gold standard for seizure detection. Not only movement but
also the total behavior of the patient is visible in the video, but the moving
body parts have to be in the scope of the camera. Accelerometers are worn
on the body, thus seizure detection is not limited to living areas with a video
camera, providing more freedom in daily activities.

This chapter aims to review the literature that describes methods used for
seizure detection in general and to provide practical considerations for seizure
detection during long-term monitoring in a mobile environment. Previously
seizure detection literature was reviewed by Gotman [46]. Here, all described
methods were purely based on the EEG and most attention was paid to
hospital monitoring. The focus of this article will be on the technological
methodology used, such as sensor choice and signal processing strategies. It
will be shown that for long-term monitoring in institutions and home envi-
ronment it is important to take into account the clinical aspects of seizures
and to integrate various physiological measurements and detection methods.

2.3 methods

2.3.1 Search strategy and analysis variables

Relevant studies were identified using PubMed and Web of Science. Articles
included in this review were identified by using the following search query:
(computerized OR automa*) AND seizure AND (detection OR prediction OR warn-
ing OR alarm OR monitoring) NOT (MRI OR CT OR MEG OR SPECT OR PET OR
(antiepileptic drug) OR surgery OR animal).
With the * indicating that the search was extended to find all terms that begin
with a given text string. The last search was performed on January 14th 2008.
Titles and abstracts identified during the search were reviewed for relevance,
and if appropriate, the full-text article was retrieved. Articles that did not
have ’seizure detection’ as primary topic ( e.g., MRI, CT, SPECT, PET, MEG,
antiepileptic drugs or epilepsy surgery) were excluded. Articles on interictal
spike detection were excluded, since this review focusses on the detection
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of ictal manifestations. Articles that used only intracranial EEG to evaluate
detection methods were also excluded. Furthermore articles were excluded if
they were published in another language than English or published before
1975. Review articles and editorials were excluded from analysis.
The remaining articles were screened for the analysis variables depicted in
Table 1.
Technological variables are divided into five categories: measurement, appli-
cation area, detection method, evaluation and performance. Clinical variables
are patient type, epilepsy syndrome and seizure type. For a paper to be
included in this review, the detection method must be clearly described and
all the variables of at least two of the other technological categories should
be described. Availability of clinical variables is not mandatory for an article
to be included, but when they are present they are taken into account as
analysis variable. After selecting the relevant articles, the PubMed function
related articles was used to find other relevant articles. Also the references
of the selected articles were checked for relevant articles. As a result of this
selection procedure, in total 47 articles were included.

Table 1: Analysis variables

Technological Measurement Sensor type
Application area EMU, (N)ICU, CLIN, INST or HOME.
Detection method Feature extraction and classification
Evaluation Number of patients, number of seizures, and

measurement duration
Performance Sensitivity, specificity, positive predictive

value, false detection rate per hour or other
statistical measure.

Clinical Patient type Age, sex and mental development level
Epilepsy syndrome Syndromes described by the ILAE in 2001 [5].
Seizure type Semiological seizure classification according

to Lüders et al. [3].

Abbreviations: EMU: Epilepsy Monitoring Unit, (N)ICU: (Neonatal) Intensive Care Unit, CLIN: In-
or outpatient clinical monitoring, INST: Monitoring in institution, HOME: Home monitoring.

2.4 results

Table 2 shows all analysis variables per article. Articles are listed in chronolog-
ical order. For each variable the results will be described in the next sections.
Striking results will be further discussed in the discussion.

2.4.1 Measurement

The majority of published articles described seizure detection based on the
EEG signal (39 studies). Four studies used video, two used the ECG and one
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study used accelerometers.
The EEG is part of the gold standard for seizure detection, that consists of
the combination of video and EEG. Epileptic seizures result from abnormal
synchronization of brain activity. EEG measures electrical activity of the brain,
and is therefore a logical choice for monitoring epilepsy patients. Nevertheless
EEG is not always practical, often many electrodes need to be placed on the
head. Especially in institutions and home environments this is not practical.
For monitoring neonates also the cerebral function monitor (CFM) was used,
which uses two electrodes [47]. Because of this sampling bias, seizures that
occur in another part of the brain than where the electrodes are positioned
can be missed.
Also not all seizures are necessarily visible in the EEG-signal. Nijsen et
al. described a clinical study that shows that accelerometry and EEG are
complementary for seizure detection in a number of patients [30]. Also in
neonates seizures can either give rise to changes in the EEG or cause specific
change in movements, that can be detected from video-recordings [44].
Epileptic seizures can be accompanied by changes in heart rate. Van Elmpt et
al., and Greene et al. described algorithms for seizure detection based on the
ECG signal [45, 48].
Because of the widespread seizure variety, combinations of sensor types might
be useful. This idea is presented by several authors [49, 45]. Practical results
of such a combined setup were only presented by Greene et al. [50]. Here
EEG and ECG were combined to detect seizures in newborn subjects.

2.4.2 Application Areas

The application areas that are most mentioned in literature are the epilepsy
monitoring unit, EMU (17) and the neonatal intensive care, NICU (20). Three
studies mentioned the use of their method for intensive care (ICU) [51, 52, 53].
One study mentioned the use of ambulatory EEG [54], that is mostly applied
for in- or outpatient clinical monitoring(CLIN). Only 5 studies emphasized
that their method may be used for patients in their living environment
[55, 30, 56, 45, 57].
Chronologically EMU is the first application area where large amounts of
EEG data were available. After seizure detection in EMU became more suc-
cessful it was extrapolated to (neonatal) intensive care units. Technological
developments made it possible to measure ambulatory EEG and therefore
also patient monitoring outside the clinic became possible.

2.4.3 Detection Method

In the literature, many algorithms for seizure detection are described. Al-
though various sensor types can be used, all suggested signal processing
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Table 2: Characteristics of articles on long-term seizure detection
Detection Method

author (year) sensor appl . feature extraction classification

Gotman (1982) [58] EEG EMU HW based RBD

Gotman (1990) [59] EEG EMU Gotman(1982) Gotman(1982)

Liu et al. (1992) [60] EEG NICU autocorrelation RBD

Pauri et al. (1992) [61] EEG EMU Gotman(1982) Gotman(1982)

Qu and Gotman (1993) [62] EEG EMU Gotman (1982) + subspace PS threshold

Gabor et al. (1996) [63] EEG EMU WT based (amplitude + TF) RBD + NNa

Pradhan et al. (1996) [64] EEG EMU filtered EEG NN

Webber et al. (1996) [65] EEG EMU TD + FD NN + RBD

Weng and Khorasani (1996) [66] EEG EMU TD + FD NN

Yaylali et al. (1996) [67] EEG EMU autocovariance + correlation dimension threshold

Gotman et al. (1997a) [68] EEG NICU M1: FD
M2: HW based features
M3: filtering + HW based features

RBD

Gotman et al. (1997b) [69] EEG NICU Gotman (1997a) Gotman (1997a)

Qu and Gotman (1997) [55] EEG INST,
HOME

TD , FD + location nearest neighbour

Gabor (1998) [70] EEG EMU Gabor (1996) Gabor (1996)

Klatchko et al. (1998) [71] EEG .. Webber (1996) + clustering Webber (1996) + clustering

Roessgen et al. (1998)[72] EEG NICU model based threshold

Celka (2002) [73] EEG NICU singular value decomposition + mini-
mum description length algorithm

threshold

Liu et al. (2002) [54] EEG CLIN adaptive filtering, WT, TD NN + expert system

Altenburg et al. (2003) [74] EEG NICU synchronization likelihood threshold

van Putten (2003) [51] EEG ICU maximum nearest neighbour phase syn-
chronization

threshold

Shoeb et al. (2004) [75] EEG .. WT based SVM + temporal constraint

Smit et al. (2004) [76] EEG NICU synchronization likelihood threshold

Faul et al. (2005) [77] EEG NICU M1:Gotman(1997a)
M2:Liu(1992)
M3:Celka(2002)

M1:Gotman(1997a)
M2:Liu(1996)
M3:Celka(2002)

Firpi et al. (2005)[78] EEG .. delay embedding + genetic program-
ming

nearest neighbour

Karayiannis et al. (2005) [44] Video NICU motion strength + trajectory (TD) NN

Nijsen et al. (2005) [30] ACM,
EEG

INST .. visual inspection

Saab and Gotman (2005) [56] EEG EMU,
HOME

WT based threshold

Subasi (2005a) [79] EEG EMU WT NN

Subasi and Erçelebi (2005b)[80] EEG EMU WT logistic regression or NN

Wilson (2005) [81] EEG EMU TF features NN

Aarabi et al. (2006) [29] EEG NICU TD, FD, WT, cepstral , autoregressive co-
efficients

feature redundancy analysis
+ NN

van Elmpt et al. (2006) [45] ECG INST median RRI threshold

Karayiannis et al. (2006a) [82] Video NICU motion strength (TD + FD) NN

Karayiannis et al. (2006b) [83] EEG NICU FD RBD + NN

Karayiannis et al. (2006c) [49] Video NICU motion trajectory (TD +FD) NN

Karayiannis et al. (2006d) [84] Video NICU motion strength + trajectory (TD + FD) NN

Navakatikyan et al. (2006)[85] EEG NICU parallel wave fragmentation RBD

Slooter et al. (2006)[52] EEG ICU synchronization likelihood threshold

Subasi (2006) [86] EEG EMU WT NNa

Aarabi et al. (2007) [87] EEG NICU TD, FD, WT, cepstral, autoregressive co-
efficients

feature redundancy analysis
+ NN + RBD

Greene et al. (2007a) [48] ECG NICU RRI-based (TD + FD) LDA

Greene et al. (2007b) [50] EEG,
ECG

NICU RRI-based (statistical + nonlinear) +
EEG-based (FD + nonlinear)

LDA

Lee et al. (2007) [57] EEG EMU,
HOME

M1:Total power
M2:Largest principal eigenvalue
M3:Kolmogorov Entropy
M4:Correlation Dimension

threshold

Hopfengärtner et al. (2007) [88] EEG EMU integrated spectral power threshold

Khlif et al. (2007) [89] EEG NICU TF matched filter threshold

Lommen et al. (2007)[47] EEG NICU amplitude integrated EEG threshold

Subasi (2007) [53] EEG ICU WT + statistical adaptive neurofuzzy infer-
ence systema

aUnsupervised learning method. b Only the numbers for the testdata are included. c Age groups: newborn (N), children (C), adults (A). d ’+’ if

syndromes are defined as described by Engel [5]. e ’+’ if semiological seizure classification according to Lüders et al. [3] is used. f Mentally retarded

subjects. g In two patients. h In five recordings.
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author (year) Clinical Evaluationb Performanceb

Agec ETd STe n MD (h) SN Sen Spec FDR/h Other

Gotman (1982) - - 16 297.6 PPV 0.24

Gotman (1990) C,A - - 44 4362.1 179 0.73 0.84

Liu et al. (1992) N - - 14 0.975 0.84 0.98

Pauri et al. (1992) C,A + + 12 461 253 0.81 5.38

Qu and Gotman (1993) - - 10 1070.6 1.45

Gabor et al. (1996) - - 22 62 0.90 0.71

Pradhan et al. (1996) - - 4 0.67 0.75

Webber et al. (1996) A - - 50 34 0.76 1 PPV 0.87

Weng and Khorasani (1996) - - 5 5–10

days
39 0.95 0

Yaylali et al. (1996) C - - 41 22 0.86 0.95

Gotman et al. (1997a) N - - 55 281.5 679 M1:0.64

M2:0.35

M3:0.13

All:0.71

M1:0.8
M2:0.8
M3:0.2
All:1.7

Gotman et al. (1997b) N - - 54 235.5 662 0.69 2.3

Qu and Gotman (1997) - - 12 31.2 36 PS:1.00

PI:0.12

PS:0.02

PI:0.46

Gabor (1998) C,A - - 65 4553.8 181 0.93 1.35

Klatchko et al. (1998) C - - 10 4.1 25 0.69 PPV 0.74

Roessgen et al. (1998) N - - 2 3.1 69 0.93 PPV 0.64

Celka (2002) N - - 4 0.93 FDR 0.04

Liu et al. (2002) - - 81 > 800 0.90 FDR 0.06

Altenburg et al. (2003) N - - 22 0.85 0.75

van Putten (2003) + + 16 40 0.48–0.87 0.48–0.87

Shoeb et al. (2004) C - + 36 60 139 0.94 0.25

Smit et al. (2004) N - - 20 10.9 0.66 0.90

Faul et al. (2005) N - - 13 1.3 34 M1:0.63

M2:0.43

M3:0.66

M1:0.64

M2:0.90

M3:0.56

Firpi et al. (2005) + + 3 267.6 26 1.00 0.007

Karayiannis et al. (2005) N - + 43 160 MYO:0.94

CLO:0.86

MYO:0.96

CLO:0.98

Nijsen et al. (2005) Af + + 18 288 897

Saab and Gotman (2005) - - 16 360 69 0.76 0.34

Subasi (2005a) - + 5 20 best 0.93 best 0.93

Subasi and Erçelebi (2005b) - + 5 452.8 20 LR:0.89

NN1:0.92

NN2:0.93

LR:0.90

NN1:0.91

NN2:0.92

Wilson (2005) + + 10 80 57 0.89 0.56

Aarabi et al. (2006) N - + 6 5.1 34 0.91 0.95 1.17

van Elmpt et al. (2006) Af + + 3 12 58 >0.90 PPV>0.50
g

Karayiannis et al. (2006a) N - + 54 >0.90 or >0.90

Karayiannis et al. (2006b) N - - 12 best 0.84 best 0.80

Karayiannis et al. (2006c) N - + 54 best >0.90 best >0.90

Karayiannis et al. (2006d) N - + 54 all >0.90 all >0.90

Navakatikyan et al. (2006) N - - 55 24.4 97 0.84 0.48–0.77

Slooter et al. (2006) A - - 26 0.875 38

Subasi (2006) - + 5 20 0.93 0.93

Aarabi and Grebe (2007) N - + 10 86 478 0.74 0.86 1.55

Greene et al. (2007a) N + - 7 101.55 520 PI:0.55

PS:0.62

PI:0.77

PS:0.72

Greene et al. (2007b) N + + 10 154.1 633 PI:0.81

PS:0.98

PI:
FDR
0.29

PS:
FDR 0.13

Lee et al. (2007) C + - 4 245 29 M1:0–0.96

M2:0-0.58

M3:0-0.63

M4:0

FDR 0.50

Hopfengärtner et al. (2007) A + + 19 3248 148 0.91 0.29

Khlif et al. (2007) N - - 6 0.92 FDR 0.02

Lommen et al. (2007) N + - 13 222 > 0.90
h

1

Subasi (2007) - + 12 20 0.94 0.94

Abbreviations: ACC:Accuracy, Appl.:Application, CLO:focal clonic seizure, ET:epilepsy type, FD:frequency domain, FDR(/h):false detection rate
(per hour), HW:half wave, LDA:linear discriminant analysis, LR:logistic regression, M: method, MD:measurement duration, MYO:myoclonic seizure,
n:number of patients, NN: neural network, PI:patient independent, PPV:positive predictive value, PS:patient specific, RBD:rule based decision,
Sen:sensitivity, SN:number of seizures, Spec: specificity, ST:seizure type, SVM:support vector machine, TD:time domain, TF:time-frequency, WT:wavelet
transform.
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methods aim to detect a pattern in the signal, that is the manifestation of an
epileptic seizure. Most seizure detection methods consist of a feature extrac-
tion step and a classification step. Features are characterizing measures for the
pattern of interest calculated from the measured signals. In the classification
step, the actual decision is made whether there is a seizure present in the
signal or not. In the next sections those two steps will be separately described.

Feature extraction

The selection of discriminative features is the basis of almost all detection
algorithms. Sometimes the choice for certain features was based on the physi-
ological phenomena that need to be detected. Some authors referred to the
fact that during a seizure many neurons fire synchronously. To get a measure
for this ’synchronicity’ they determined features such as the autocorrelation
function [60], the synchronization likelihood [74] or nearest neighbour phase
synchronization [51]. Other authors based their feature choice on how the
pattern that needs to be detected visually can be characterized. Seizures are
often visible in the EEG as rhythmic discharges or multiple spikes. For spike
detection, Gotman developed an algorithm that first brakes down the signal
into half waves. Then morphological characteristics of these half waves, such
as amplitude and duration, were used to determine whether they are part of
a seizure or not [58]. For rhythmic discharges, FFT-based, or wavelet based
features were often used. Some studies did not use prior information and
just used large sets of various features. Aarabi et al. evaluated a large feature
set containing various types of features [29]. Their results showed that the
most discriminative features for neonatal seizure detection are morphological
based features, such as amplitude, shape and duration of waveforms. Also
wavelet based features were relevant, especially for the detection of transients.
It is also possible to select features using genetic programming. In this way
features were extracted that were able to detect seizures, but these features
did not have a physiological meaning [78].

Classification

Most authors chose a supervised classification method. This means that the
algorithm is trained using data that was labeled on forehand by experts. Some
algorithms (4) consisted of a unsupervised classification method. In this case
the algorithm defines groups in the data based on similarities in the features.
Classification methods varied from simple threshold, rule based decisions,
or linear classifiers to neural networks that have a complex shaped decision
boundary. Most algorithms described use either a neural network (17), rule
based decisions (14) or a threshold (15). In 7 articles neural networks were
combined with rule based decisions. Other classifiers used were support
vector machine (1), logistic regression (1), linear discriminant analysis (2)
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nearest neighbor classifier (2) and an adaptive neuro-fuzzy inference system
(1).

2.4.4 Clinical information

Patients

Mental development level and sex were rarely mentioned. We defined three
age groups: newborn (N), children (C), and adults (A). Most of the detection
methods were developed for newborn (20 articles). In 15 articles the age was
not mentioned. Eight articles contained no clinical information at all. Epilepsy
type was mentioned in only 11 articles. Seizure type was mentioned in 19

articles. Only 5 articles contained information about patient type, epilepsy
type and seizure type.

2.4.5 Evaluation

Number of patients

The number of patients included in the published papers, varied from 2 [72]
to 81 [54]. It is evident that for a statistically reliable outcome, a large number
of patients should be used. Only 12 articles evaluated data of more than 40

patients. Often a smaller data set was used when the algorithm described was
still in an development phase.

Measurement duration

Measurement durations varied from 0.875 hours [52] to 4553.8 hours [70].
Again, in order to obtain a statistically reliable outcome, larger data sets
should be used. Algorithms that were in a further development phase were
evaluated in large data sets [59, 70]. In 13 studies measurement duration was
not mentioned.

Number of Seizures

The number of seizures depends on measurement duration and patient type.
The largest number of seizures was described by Nijsen et al. [30]. A total
of 897 seizures were seen in 288 hours of data obtained from 18 refractory
patients who experienced high seizure frequencies. In comparison, the largest
data set in Table 2 described by Gabor contained over 4000 hours of data
obtained from children and adults and only 181 seizures [70]. For proper
evaluation, sufficient seizure data, but also sufficient interictal data should be
included in the evaluation.
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2.4.6 Performance

Two performance measures that were most mentioned in the literature, are
sensitivity (Sen) and false detection rate per hour (FDR/h). These measures
describe how well the algorithms can detect seizures and how many false
alarms occur. It is difficult to compare the performance measures since they
are dependent on a.o. patient type, seizure characteristics and sensor modali-
ties used.
When a method is successful in one patient type it can not simply be ap-
plied to another patient type. Some authors extended their methods to other
patient groups. Gotman initially developed a detection method for seizures
in children and adults [59]. For the application in neonates the algorithm
was adapted [68]. The synchronization likelihood was first evaluated for the
detection of neonatal seizures [74], but the application of this measure in
ICU seemed to be not evident [52]. Many methods described are developed
using data from patients with a localization related (focal) epilepsy [88]. From
our own experience we know that these methods may not be suitable for
patients with strongly abnormal background EEG-activity, as can be the case
in patients with (symptomatic) generalized epilepsy or in mentally retarded
patients [90]. Furthermore Faul et al. [77] evaluated three detection methods
previously reported by Gotman et al. [68], Liu et al. [60], and Celka [73] in
their own data set and they were not able to reproduce the performances of
the original studies. For the detection of various seizure types maybe different
methods are necessary. Karayiannis et al. separately evaluated myoclonic and
focal clonic seizures in neonates [84]. The algorithm suggested by Gotman et
al. for neonatal seizure detection consisted of three separate methods, each
for another aspect of the seizures [68].
Lee et al. compared four seizure detection methods in both scalp EEG and
intracranial EEG [57]. As shown in Table 2, this comparison suggests that one
can not use a similar algorithm for another sensor modality.

2.5 discussion

More than 80% of the literature concerning seizure detection is based on
studies performed in epilepsy monitoring units (EMU) or neonatal intensive
care units (NICU) and heavily depends on the EEG. Still, the overwhelming
number of algorithms developed for seizure detection based on EEG does
not completely cover the spectrum of application areas in which seizure
detection is valuable. Newer application areas such as seizure detection in
home environments, have to fulfill special requirements regarding measure-
ment duration, patient friendliness and costs. Thus the use of other sensor
modalities besides EEG becomes more important.
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The algorithms described in literature typically consist of a feature extraction
and a classification step. Most authors agree on the fact that the choice of
features is critical for any detection method to be successful. Often features
are chosen based on morphological aspects of the pattern of interest. For the
eventual classification, most studies use a neural network based classifier, a
simple threshold or rule based decisions. The published results do not prove
superiority of neural network based methods over threshold or rule based
classifiers, that are easier to understand and to interpret by clinicians.
Most articles focus on the technological aspects of seizure detection and in
many cases no or incomplete attention is paid to clinical information, such as
patient characteristics (age, mental development level), and seizure semiology.
17% of the published articles contain no clinical information at all. In 32%
of the articles, the patient type is not mentioned and in 60% seizure type is
omitted. Only 19% of the articles mentioned characteristics of both patients
and seizures. Clinical factors can play an important role in how seizures
express themselves electrophysiologically and clinically and thus affect the
choice of a suitable detection method.
From the results presented in this review, four major points arise, that have
to be taken into account when developing a seizure detection system in the
future:

• First, the adaptation of existing EEG-based algorithms that are success-
ful to other patient types is not trivial. Most of the time adaptations are
necessary. Gotman et al. describe the adaptation of an existing seizure
detection algorithm so that it can be used for neonates [68]. Sazonov
shows that techniques that are very successful in patients with tempo-
ral lobe epilepsy can not be applied for seizure detection in mentally
retarded subjects [90]. Although it may be clear that, for the use in dif-
ferent patient groups, adaptations of existing algorithms are necessary,
it has never been systematically investigated what the demands are for
such adaptations per patient group. For some groups adaptations of
existing algorithms may not even be possible. These issues should be
taken into account in future research.

• Second, for home monitoring, adaptation of existing methods may not
be sufficient. Other sensor modalities, such as video, accelerometry and
ECG become more important [44, 30, 45, 48]. The use of these alternative
sensor modalities is relatively new and the algorithm development for
seizure detection based on these measures is still in a premature stage.

• Third, although these new sensor modalities are promising, there will
always be seizures that are only visible in the EEG. Therefore an ideal
seizure detection system will consist of more sensor modalities. Greene
et al. show that the combination of EEG and ECG leads to a better
detection performance than each modality on its own [50]. Future
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research needs to point out what combinations of sensor modalities are
most suitable for various patient and seizure types.

• Fourth, for both the adaptation of existing techniques and the devel-
opment of new algorithms, clinical information should be taken into
account. This leads to more sensible choices regarding suitable sensors
as well as algorithm development.

For example it is known that mental retardation leads to slow background
EEG [90] and to a dominant presence of seizures with motor symptoms [91].
Based on this information the choice can be made to use alternative sensors
for seizure detection that focus on capturing movement patterns, such as
accelerometers [30]. Also the EEG of newborn differs significantly from that
of the adult. Epileptic spikes tend to be of much longer duration than those in
adults, and newborn seizures can also be characterized by very slow rhythmic
discharges. Gotman et al. used this information for the adaptation of an
existing algorithm, so that it can be used for seizure detection in newborns
[68]. For newborns it is also known that they can experience seizures that are
associated with characteristic movements, but no specific ictal EEG changes.
Video-monitoring seems a feasible choice for detection these seizure related
movements in newborns [44].

2.6 conclusion

This review presents an overview of available methods for epileptic seizure de-
tection in a long-term monitoring context. Based on the available information,
we formulated recommendations that can be used in future research. In the
development of seizure detection systems patient and seizure characteristics
should play a more dominant role. Furthermore suitable seizure detection
methods mainly depend on a specific application area. In Epilepsy Monitor-
ing Unit and (Neonatal) Intensive Care Units, more attention should be paid
to the adaptation of existing methods to other patient types. Furthermore, the
growing need for clinical monitoring outside the ICU and home monitoring
requires a totally different approach that incorporates the use of new sensor
modalities and algorithms.
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This chapter is published as:
T.M.E. Nijsen, J.B.A.M. Arends, P.A.M. Griep and P.J.M. Cluitmans, The potential value of
3-D accelerometry for detection of motor seizures in severe epilepsy, Epilepsy and Behavior,
7:74–84, 2005 [30].

3.1 abstract

Seizure detection results based on the visual analysis of 3-D accelerometry
(ACM)- and EEG/video-recordings are reported of 18 patients with severe
epilepsy. They were monitored for 36 hours during which 897 seizures were
detected. This was seven times higher than the number of seizures that was
reported by nurses during the recording period. The results in this chapter
show that 3-D ACM is a valuable sensing method for seizure detection in this
population. 428 (48%) seizures were detected by ACM. With 3-D ACM alone
it was possible to detect all the seizures in 10 of the 18 patients. 3-D ACM
also had a complementary value to the EEG in our population. ACM-patterns
during seizures are stereotype in 95% of the motor seizures. These character-
istic patterns are a starting point for automated seizure detection in the future.

3.2 introduction

The term ’seizure detection’ can be interpreted in more than one way ac-
cording to the setting it is used in. In care settings ’seizure detection’ mostly
means the instantaneous detection of an epileptic seizure that triggers an
alarm system in order to get the right assistance in situations that need inter-
vention. In diagnostic settings seizure detection is done after a (longer) period
of monitoring. Thus information can be obtained like seizure type, seizure
frequency, seizure distribution during day and night and how the seizures
influence a patient’s behavior and quality of life. This information can lead
to better management of daily care or better titration of anti-epileptic drugs.
Seizure detection is often necessary in institutions where many patients with
severe epilepsy live together. Due to lack of resources the patients are not
continuously supervised by nurses, especially at night. Therefore we have to
rely on alarm systems. Currently audio-triggered systems are mostly used
in clinical practice. Unfortunately the performance of these systems are very
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poor. For the performance of the alarm system in our institute we found a
sensitivity < 30% and positive predictive value (PPV) < 5% 1 [92].
On the other hand, in the diagnostic setting the gold standard for seizure de-
tection, the measurement of the electroencephalogram (EEG) in combination
with video-monitoring, is used. This method has by definition a sensitivity
and PPV of 100%. Seizure detection takes place off-line and the signals and
videotapes are visually analyzed by EEG-technicians. For care situations
EEG/video-monitoring is not a practical detection method. It is uncomfort-
able for the patient and the analysis of the videos and the EEG-signals is
labor-intensive and costly. Furthermore, this method can not be applied in
real-time yet.
All factors mentioned above, are important reasons to search for alternative
sensors that are easy to wear and can be used for reliable automatic detection
of epileptic seizures. This chapter shows the potential value of 3-D accelero-
metry (ACM) for the detection of epileptic seizures with motor phenomena.
Our eventual goal is to develop a set of systems based on e.g. ACM, ECG,
EEG or other quantities, depending on the seizure type, that ensure a reliable
detection of epileptic seizures with an overall sensitivity of at least 90% and
a positive predictive value (PPV) of 50%. These numbers are chosen with
a real-time alarm system in mind. Here sensitivity needs to be as high as
possible and the number of false alarms needs to be acceptable for the medical
personnel that has to check the patient each time there is an alarm. A PPV of
50% means that one out of two alarms is genuine, and this is found acceptable
in clinical practice.
When we look in the clinical/(bio)medical field we find that ACM is frequently
used to monitor daily activity in for example rehabilitation medicine [13],
[14]. The goal of these studies is to distinguish between different activities,
like standing, sitting, lying, walking, running, e.g., based on ACM-recordings.
There are studies that use ACM for extracting parameters that are an indicator
for energy expenditure during physical activities [93], [94] and to validate
reported food intake [95]. ACM is also used to characterize dyskinesia in
patients with Parkinson’s disease [17], or in FES-applications (functional elec-
trical stimulation) to trigger nerve stimulation [96]. The use of 3-D ACM for
detection of seizures is not common, in epilepsy related fields ACM is rarely
mentioned [24] and then ACM is not used in a detection context. Nevertheless
we believe 3-D ACM has the potential to be very useful for seizure detection
when motor phenomena are present [97], [98]. An advantage of 3-D ACM
is that the signals contain information about motor behavior that can be
directly linked to the movements that clinicians are used to observe in the
video-recordings. When applying video-analysis for seizure detection, the
patient needs to be constantly in the scope of one or more video cameras.

1 These numbers mean that more than 70% of the seizures is missed by in the curent detection
setup, and less than 5% of all the alarms is actually a seizure.
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Accelerometers can be worn on the body, resulting in more freedom to pursue
normal daily activities. Another advantage of accelerometers above video is
that it is possible to observe movements under blankets. The value of ACM
for seizure detection in subjects with severe epilepsy is shown in our results
of the visual analysis of ACM-data in combination with the gold standard
EEG/video-monitoring.

3.3 methods

3.3.1 Subjects and data collection

During a clinical trial a set of data was systematically collected. This database
contains 36 hours of EEG-recordings and five days of videomonitoring, 3-D
ACM-recordings on five positions (upper and lower limbs and chest) and
ECG-recordings of 20 patients. Inclusion criteria for the patients were that
they are mentally retarded, live in a long stay environment, suffer from severe
epilepsy and have a minimum seizure frequency of 20 seizures a month.
The 3-D accelerometers used in this programme were created by mounting
two 2D-sensors, the ADXL202E from Analog Devices Inc., at perpendicular
angles to each other. This accelerometer measures inertial acceleration during
movements as well as the acceleration caused by gravity. The polygraphic
data were stored on portable recorders (Porti 24/36 channels, TMS, Enschede,
The Netherlands) and the video on portable MPEG2 recorders. After the
recordings, the polygraphic data were moved to a network based analyzing
system (Brainlab, OSG, Rumst, Belgium). Seizures were visually identified by
EEG-technicians. For the automated analysis the data was made available in
Matlab (The Mathworks Inc.).

3.3.2 Seizure detection by visual inspection of the data

The gold standard for seizure detection in clinical practice is EEG/video-
monitoring. EEG-technicians detect seizures using two possible paradigms.
In one case they screen the video-recordings for behavioral information that
corresponds to a seizure and then additionally check the EEG-signal for
epileptiform activity. In the other case first the EEG-signal is screened for
epileptiform activity and the video recordings provide additional behavioral
information. We will refer to the seizures that are detected by the EEG-
technicians according to these paradigms as clinical seizures. The analysis
was performed by EEG-technicians without any automatic signal processing
tool except visualization features of the Brainlab analyzing system. In our
trial we combined EEG/video-monitoring and ACM-recordings during 36

hours. Before the recordings started we estimated how many seizures could
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be expected per patient in this 36 hours period, based on the number of
seizures that were reported by nurses the month before the recording period.

Resolution: 10 minutes  
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}
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Figure 7: Patterns that can be observed in ACM-data during seizures. Here a myoclonic
seizure that evolves into tonic-clonic contractions is shown.

3.3.3 Stereotypical ACM-patterns associated with simple motor seizures

During this trial it was observed that the patterns that are visible in the
3-D ACM signal during seizures with motor phenomena have stereotypical
patterns throughout our patient population. These patterns that are so clearly
visible in the ACM-data are known as simple motor seizures (myoclonic,
clonic and tonic seizures) [3]. For human observers, these patterns are easy to
distinguish from normal movement patterns, this is illustrated in Fig. 7. Here
ACM-signals are visualized in Brainlab with a resolution of 10 minutes per
page, during a tonic-clonic seizure that started out as short myoclonus. The
patterns are synchronously visible at all the fifteen ACM-channels (the first
two channels show a compressed ECG signal with a resolution of two hours).
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One of our goals in the future is to computerize this pattern recognition
process. That the patterns are stereotypical is an indication that automated
seizure detection based on 3-D ACM could be feasible.

3.4 results

3.4.1 Patients

The initial population consisted of 20 patients. All patients were mentally
retarded and suffered from severe epilepsy. The EEG of one patient could not
be analyzed due to technical difficulties, 1 patient did not have any seizures
during the recording period. These 2 patients were excluded from further
analysis. The 18 remaining patients had a mean age of 37 years with a stan-
dard deviation of 11.8 years. There were 10 male and 8 female patients. All
patients were known to have multiple seizure types.

Table 4 lists the seizure types per patient according to the international classi-
fication of epileptic seizures and syndromes as proposed by the International
League Against Epilepsy (ILAE) in 1981, 1987 and modified in 2001 [4], [99],
[5]. Tonic and myoclonic seizures were the dominant seizures across subjects
in our population. Five patients also suffered from complex partial seizures.
One patient suffered from startle seizures during daytime and myoclonic
seizures during night. Two patients had many nocturnal arousals due to
epileptic activity and during daytime predominant tonic seizures.

3.4.2 Results of visual inspection of the data

This section presents the results of the analysis of the first 36 hours of the
recordings that included also the EEG. Table 5 shows the seizures that were
expected on forehand, the number of seizures that were observed by nurses
and the number of seizures that were detected by EEG-technicians who
visually screened through the data. Also the percentage of seizures that was
detected with ACM and EEG respectively are listed. From Table 5 we can
make the following observations:

• In total 31 seizures were expected, 131 observed and 897 detected. 428

seizures could be detected with ACM. 824 seizures were visible in the
EEG.

• In 17 of 18 cases the number of detected seizures is higher than the
number of seizures that were expected and that were reported by the
nurses.
The number of detected seizures is 29 times higher than the number
of seizures that was expected on forehand and 7 times higher than
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Table 4: Overview of seizure class and syndrome for the patients analyzed

patient age sex seizure class syndromes

1 53 F myoclonic, tonic and complex partial seizures symptomatic neo-
cortical epilepsy

2 26 M myoclonic, tonic and complex partial seizures symptomatic neo-
cortical epilepsy

3 37 F tonic and complex partial seizures Lennox-Gastaut
syndrome

4 32 F myoclonic, tonic and complex partial seizures symptomatic neo-
cortical epilepsy

5 51 M startle seizures during day, during night myoclonic sei-
zures

symptomatic neo-
cortical epilepsy

6 25 F myoclonic and tonic seizures symptomatic neo-
cortical epilepsy

7 24 M myoclonic seizures epilepsy with
myoclonic astatic
seizures

8 42 M myoclonic and tonic seizures, series of myoclonic sei-
zures

epilepsy with
myoclonic astatic
seizures

9 50 M tonic seizures symptomatic neo-
cortical epilepsy

10 21 F tonic seizures during day, during night EEG parox-
ysms, followed by arousals

Lennox-Gastaut
syndrome

11 22 M series of myoclonic seizures with sometimes a tonic
phase

symptomatic neo-
cortical epilepsy

12 32 F tonic seizures during day, during night EEG parox-
ysms, followed by arousals

West syndrome,
Lennox-Gastaut
syndrome

13 43 M myoclonic and tonic seizures symptomatic neo-
cortical epilepsy

14 25 M myoclonic, tonic and tonic clonic seizures symptomatic neo-
cortical epilepsy

15 26 M myoclonic, tonic and tonic clonic seizures Dravet syndrome
16 49 F myoclonic, tonic clonic and complex partial seizures symptomatic neo-

cortical epilepsy
17 57 M tonic and complex partial seizures tuberous sclerosis
18 43 F myoclonic and tonic clonic seizures and complex par-

tial seizures
symptomatic neo-
cortical epilepsy

the number of seizures that were reported by the nurses. This result
emphasizes the need of a seizure detection system.

• Of the 897 visually detected seizures, 428 seizures with motor phenom-
ena could be detected with ACM, this is 48% of the seizures that were
detected. The seizures that weren’t detected with ACM were mostly
complex partial seizures without motor phenomena. In 15 of the 18

patients the seizures coincide with motor phenomena that can be de-
tected with accelerometry. ACM alone can detect all the seizures in 10

of the 18 patients (56 %). In 5 patients also the EEG was required for
the detection of seizures without motor phenomena. In 3 patients ACM
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Table 5: Number of expected, observed and detected seizures in 36 hours of
EEG/video-monitoring combined with 3-D ACM. Per patient the number and
the percentage of seizures detected with respectively ACM or EEG are listed

patient expected observed detected acm eeg

1 1 3 17 (100%) 3 (18%) 17 (100%)
2 2 9 9 (100%) 4 (44%) 5 (56%)
3 2 3 15 (100%) 9 (60%) 8 (53%)
4 1 0 280 (100%) 0 (0%) 280 (100%)
5 1 1 172 (100%) 172 (100%) 172 (100%)
6 2 18 32 (100%) 32 (100%) 0 (0%)
7 1 2 2 (100%) 2 (100%) 0 (0%)
8 2 12 22 (100%) 22 (100%) 22 (100%)
9 3 7 23 (100%) 23 (100%) 23 (100%)
10 1 0 1 (100%) 0 (0%) 1 (100%)
11 4 9 56 (100%) 56 (100%) 56 (100%)
12 1 11 33 (100%) 18 (55%) 33 (100%)
13 2 23 28 (100%) 28 (100%) 0 (0%)
14 1 15 9 (100%) 9 (100%) 9 (100%)
15 2 3 11 (100%) 11 (100%) 11 (100%)
16 2 11 11 (100%) 8 (73%) 11 (100%)
17 1 0 31 (100%) 31 (100%) 31 (100%)
18 2 4 145 (100%) 0 (0%) 145 (100%)

Total 31 131 897 (100 %) 428 (48%) 824 (92%)

had no value at all since the patients didn’t have seizures with motor
phenomena during the recording period.

• EEG changes are observed in 15 of the 18 patients and in 13 patients
(72%) EEG alone would suffice for detection of all seizures. In 2 patients
(11%) seizure detection was only possible when using the EEG-signal as
well as the ACM-signal, since they had either motor phenomena during
a seizure or EEG-changes. In 3 patients the EEG didn’t provide useful
information. Patient 13 had too many artefacts in the EEG, patients 6

and 7 lacked epileptiform activity during the seizures in the EEG.

Table 6 lists all the seizure semiologies of the patients during the trial period,
based on the observed and the detected seizures. Per patient the seizure
types that were reported by the nurses are indicated. From this table we
can observe that there were more seizure types per patient than the nurses
reported, especially seizure types that occurred during the night were missed.
These were very well detectable with 3-D ACM. Furthermore we can see from
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this table that there are some seizures that manifest themselves in movements
of the head. These we can not detect with 3-D ACM since there was no sensor
placed on the head.

Table 6: Seizure semiologies of the patients during the trial period. Per patient the
seizure types that were reported by the nurses are indicated

patient seizure types during trial observed

1 1. Myoclonia of the head in combination with the head turning to the right
and smacking with the mouth. 2. Series of myoclonic seizures starting in the
right arm. 3. Generalized tonic seizures.

All

2 1. Myoclonia in the left arm followed by tonic contraction, followed by turning
the head to the right. 2. Tonic contraction left arm, head and eyes turn to the
right. 3. Tonic turning of the eyes to the left.

All

3 1. Short atypical absences with head and body turning to the left. 2. Makes
noises, complex movement of the arm with extension, loss of consciousness. 3.
Short myoclonia with flexion of both arms, extension of the legs, head turns
down, followed by loss of consciousness. 4. Awakening from sleep, groaning,
and irregular breathing.

1., 2., 3.

4 1. Eyelid myoclonias, loss of consciousness, bending of the body. 2. Gener-
alized tonic contraction, falls backward. 3. Arousal, head turns to the right,
sometimes to the left, sometimes followed by complete axial turning.

None

5 1. During the day, startle seizure to noise, starts with groaning and irregular
breathing, followed by a tonic or a tonic-clonic seizure. 2. During the night,
same type but not induced by noise.

1.

6 1. Myoclonic seizure with flexion of the arms, tonic extension of the arms All
7 1. Myoclonic movements of the left hand, often subtle All
8 1. Generalized tonic seizure with bending of the body and loss of conscious-

ness. 2. Myoclonic seizure with flexion of both arms. 3. Type 1, followed by
tonic-clonic seizure.

All

9 1. Tonic extension of arms and legs followed by irregular deep breathing. 2.
Irregular deep breathing, followed by elevations of the head (at night).

1.

10 1. Generalized tonic contractions of arms and legs and flexion of the body. 2.
Myoclonia of the head, with nodding.

None

11 1. Myoclonic and clonic contractions of the arms while eyes move upwards
(sometimes in series). 2.Tonic extension of whole body with snoring and red-
dening of the face.

All

12 1.Tonic extension of the arms, with loss of consciousness, head turns to the left.
2. Arousal from sleep, snoring, myoclonia of left arm and eyes, head turning
to the left.

1.

13 1. Flexion myoclonia of both arms. 2. Tonic contraction of the body followed
by type 1.

All

14 1. Subtle myoclonic movements in both hands and eyes (sometimes in series).
2. Tonic extensions of both arms often in series, eyes move to the right.

All

15 1. Tonic-clonic seizure, predominantly in right arm and leg. 2.Nocturnal myo-
clonic seizure in both arms. 3.Nocturnal tonic extensions of the arms.

1.

16 1. Eyes turn upwards, blinking of the eyes, loss of consciousness. 2. Short
screaming, tonic elevation of the arms, head turns to the left. 3. Nocturnal
arousals with minimal myoclonia of the arms

1., 2.

17 1. Tonic extensions of the arms and smacking. 2. Arousal from sleep. 3. Move-
ment of the head, motor restlessness and smacking. 4. Myoclonic movements
of the right/left hand extending to the right/left arm, sometimes followed by
motor restlessness and arousal from sleep.

None

18 1. Tonic extensions of both arms, bending the body followed by restlessness
and hand automatisms. 2. Myoclonia of left shoulder followed by loss of con-
sciousness and smacking. 3. Tonic flexion of the arms. 4. Short myoclonia of
the head with nodding and loss of consciousness.

All
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3.4.3 Stereotypical ACM-patterns associated with simple motor seizures

During seizures with simple motor phenomena there were clearly distinguish-
able patterns visible in the ACM-signal. In ’simple motor seizures’ as defined
by Lüders et al. [6], motor movements are relatively simple, unnatural and
consist of movements similar to movements elicited by electrical stimulation
of the primary motor areas. Simple motor seizures consist of a sequence
of one or more elementary movement patterns: myoclonic, clonic and tonic
movement patterns. An overview of definitions of myoclonic, clonic and tonic
seizures obtained from literature is given below. More detailed examples of
ACM-data associated with these seizures are presented in Fig. 8.

• Myoclonic seizures
Myoclonic seizures consist of short muscle contraction. The electrical
activation of the muscle lasts less than 50 milliseconds [7]. The actual
movement that is observed takes more time. The International Classifi-
cation of Epileptic Seizures states that myoclonic seizures are ’sudden,
brief, shock-like contractions’ [4]. These characteristics are all reflected
in the ACM-signal. Figure 8 A. shows the ’sudden, brief, shock-like’ pat-
tern of two subsequent myoclonic seizures. The myoclonus is a twitch
like contraction of an antagonistic muscle pair. Flexion is dominantly
innervated over extension, so the arm flexes during the seizure. After
the seizure the arm falls back. In most cases the arm bumps into an
object or surface (chair, table, bed) since the movement is uncontrolled.
This bumping results in a sharp peak in the ACM-signal that damps
out. This peak is typical for a myoclonus but it actually occurs after the
myoclonus (second peak in Fig. 8 A.). A myoclonus can be isolated but
can also be followed by another myoclonus, a tonic seizure (Fig. 8 B.), or
a tonic clonic seizure (Fig. 8 C.). A myoclonus can occur synchronously
throughout the body but often only one limb is involved. In this case
only one of the five 3-D sensors shows this typical pattern.

• Tonic seizures
Tonic seizures consist of sustained muscle contractions, usually last-
ing more than 5 to 10 seconds and lead to ’positioning’ [3]. This is
clearly visible in the ACM-signal (Fig. 8 B.). The acceleration is virtually
constant due to the tetanic contraction of the muscles, and the arm
undergoes a slow change of posture. We see a block like shape in the
ACM-pattern due to the gravity component of the measured signal.
During a tonic seizure mostly the entire body is involved and then all
the five sensors show a similar pattern.

• Clonic seizures
Clonic seizures consist of repeated myoclonic contractions that regularly
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Figure 8: A. Typical pattern in the ACM-signal associated with a myoclonic seizure:
a sudden shock-like movement of a short duration. B. Myoclonic seizure fol-
lowed by typical tonic seizure pattern. The muscles are in tetanic contraction
and the arm undergoes a slow change of posture. This results in a typical
block-like pattern C. Myoclonic seizure followed by a typical tonic-clonic
seizure pattern. During the clonic phase the arm is jerking repetitively, this
results in a typical burst-like pattern. These signals are obtained from one
3-D sensor, placed at the right wrist. x-, y-, and z-directions are defined as
depicted in the picture of the hand.

recur at intervals between 0.2 and 5 times per second [6]. In the ACM-
signal we see that during a clonic phase there is a typical burst-like
pattern. The acceleration pattern contains higher frequencies due to the
repetitive jerking of the arm (Fig. 8 C.). Also during a clonic seizure
mostly the entire body is involved and the pattern is visual at all the
five 3-D sensors. The clonic seizure is often preceded by a tonic phase
(tonic-clonic seizure).

These shock-like, block-like or burst-like patterns are characteristic throughout
our population. Figure 9 A. shows examples of 3-D ACM-signals during
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myoclonic seizures measured at the right arm in four patients. The sharp
shock-like pattern is clearly visible even when there are non-epileptic move-
ment patterns visible in the signal prior and after the seizure: patient 13 has
non-specific post-ictal motor activity after the second seizure and patient 14 is
carrying out normal motor behavior and then suddenly the seizure interrupts
this activity. Figure 9 B. shows the patterns during a tonic seizure in four
patients. The intensity and duration is different in each seizure as well as
the initial slope of the block-like pattern, but in every case this stereotypical
block-pattern is visible. Figure 9 C. shows stereotypical clonic patterns in
four patients. In the data of patient 8 and 17 we also see a block-like tonic
phase preceding the clonic phase. Again intensity and duration change but
the stereotypical burst-like pattern is clearly visible.

 

Figure 9: Stereotypical patterns during simple motor seizures occur throughout our
population. A. short shock-like patterns during myoclonic seizures. B. block-like
patterns during tonic seizures. C. burst-like patterns during clonic seizures.
At the beginning of some seizures there is again the block-like tonic pattern.

As mentioned before there were 428 seizures detected by the EEG-technicians
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based on the ACM-signal. These so called ’motor seizures’ were observed in
15 of the 18 patients. We observed that most of these seizures were sequences
of the three elementary patterns that were explained above. We observed the
following categories of pattern sequences:

• myoclonic seizure (single or series)

• tonic seizure

• tonic-clonic seizure

• tonic seizure preceded by a myoclonic seizure and a pause

• tonic-clonic seizure preceded by a myoclonic seizure and a pause

• seizure that started as a myoclonic seizure but evolved into a tonic
seizure without a pause

• seizure that started as a myoclonic seizure but evolved into a tonic-clonic
seizure without a pause

• clonic seizure

• non stereotypical seizure pattern including complex motor phenomena
as defined by Lüders [6].

Figure 10 shows the total number of seizures per category and the correspond-
ing percentage. Only 5% of the seizures doesn’t consist of a stereotypical
myoclonic, tonic or clonic pattern. 78% of the seizures consist of a stereotyp-
ical tonic pattern. 74% of the seizures consist of a stereotypical myoclonic
pattern and 14% of the seizures consists of a stereotypical clonic pattern. 57%
of the seizures are preceded by a myoclonic seizure. On a patient basis (Fig.
11), the non stereotypical movement patterns occurred in patient 1 and 12.
These patients had motor seizures that do not fall into the category simple
motor seizures as defined by Lüders but are in fact complex motor seizures
[6]. In eight patients (44%) tonic or tonic-clonic seizures were preceded by
a myoclonic ACM-pattern. When it is known that a patient has this type
of patterns, early warning could be achieved by detecting these myoclonic
patterns. Figure 11 also points out once more that there are often multiple
seizure types per patient (9 of 15 patients). We can conclude that the patterns
in 3-D ACM-signals associated with simple motor seizures are stereotypical
and can be divided into three elementary classes. Hence the patterns can be
easily recognized by a human observer and the pattern-shape is an important
feature for EEG-technicians while visually inspecting ACM-data. Character-
istic pattern features should be taken into account in an automated seizure
detection system. Another important source of information is the context
surrounding a certain pattern of one or all five 3-D sensors. EEG-technicians
screen through the data on a ten minutes time-basis. They screen not only for
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Figure 10: Number and percentages of different ACM-patterns observed in our popu-
lation

characteristic patterns but also for correlated patterns between all five 3-D
sensors patterns that are deviating from the rest.
During normal movements mostly there is not much synchronicity between

the five sensors. It was mentioned before that especially during tonic and
tonic-clonic seizures often all body parts are involved. In that case the EEG-
technician thus takes into account motor activity picked up by all the sensors.
This was also visible in Fig. 7. The tonic-clonic seizure is visible at all the
sensors. Still the pattern itself is the main feature for seizure detection. During
myoclonic seizures often only one sensor is involved and then the EEG-
technician can judge only the pattern itself and decide whether or not it is
deviating from surrounding movement patterns recorded by the same sensor.
Sometimes also during normal movement patterns there is synchronicity
between all the sensors and in that case again the movement pattern itself
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Figure 11: Different seizure-patterns per patient. The number of seizures is listed in
each block.

is an important feature for the human observer. This is illustrated in Fig. 12.
Figure 12 A. shows a normal walking pattern. There is activity on all the
sensors that is relatively high in amplitude and frequency. The detail shows a
regular pattern in both the left and right leg but with a phase difference of
half a period. This is characteristic for walking and is definitely not a seizure.
The high amplitude peaks are caused by the impact of the heel with the
floor. These peaks appear attenuated in the chest and arm sensors. Figure 12

B. shows a tonic clonic seizure on the same scale with first a stereotypical
block-like pattern in the tonic phase and then the burst-like pattern during
the tonic phase, the pattern appears synchronously at all the sensors with a
relatively high amplitude. The detail shows synchronicity between the sensors
but no regularity in the signal pattern.
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Figure 12: Pattern shape and context of all the sensors are important for distinguishing
normal and epileptic patterns. A. Walking and B. Tonic-clonic seizure.

3.5 discussion

Our results show that 3-D accelerometry is very useful for seizure detection
in mentally retarded subjects with severe epilepsy. Of the 897 seizures that
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were detected in this trial 428 (48%) could be detected with ACM. ACM alone
detected all the seizures in 10 of the 18 patients (56%). Only in 3 patients
ACM had no value at all since they did not have any seizures with motor phe-
nomena. The results also imply that ACM is possibly a valuable addition to
detect the percentage of seizures with motor phenomena that are not always
visible in the EEG in this population. Another striking outcome presented is
the large number of detected seizures versus the number of seizures that was
expected on forehand and the number of seizures that was observed by the
nurses. These results underscore the need for an automatic seizure detection
device since in the current situation many seizures are missed and therefore it
is possible that patients do not get the right (medical) treatment. In our popu-
lation such a device can never consist of only EEG. ACM would be a valuable
addition, since in mentally retarded subjects seizures often express themselves
with motor phenomena [91]. We observed that ACM-patterns during simple
motor seizures are sequences of three elementary patterns: myoclonic, tonic
and clonic patterns are stereotypical throughout our population. Only 5% of
428 motor seizures was not stereotypical. Human observers are able to easily
recognize a seizure-pattern due to these stereotypical shapes. Nevertheless,
visual analysis of the ACM-signals is very labor intensive and eventually
we want to work towards an automatic detection algorithm. Although the
ACM-patterns during seizures are relatively easy to recognize by the human
eye it is more difficult to find suitable parameters that make computerized
detection possible. In this trial it was also observed that 81% of the tonic and
37% of the tonic-clonic seizures were preceded by a myoclonic seizure. Thus,
recognition of myoclonic ACM-patterns can be important for early detection.
For seizures that do not express themselves in motor phenomena 3-D ACM
can never suffice, but in our research programme also other systems are
examined like EEG and ECG [45]. The eventual goal is a tailored seizure
detection signals that takes into account prior clinical knowledge, so that per
individual patient the best seizure detection is achieved. If real time detection
becomes available, we also have a powerful tool to study complications, for
instance SUDEP (sudden unexpected death in epilepsy), and general health
consequences in mentally retarded patients with severe epilepsy.
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4.1 abstract

This chapter presents a first step towards reliable detection of nocturnal
epileptic seizures based on 3-D accelerometry (ACM) recordings. The main
goal is to distinguish between data with and without subtle nocturnal motor
activity, thus reducing the amount of data that needs further (more complex)
analysis for seizure detection. From 15 ACM signals (measured on five po-
sitions on the body), two features are computed, the variance and the jerk.
In the resulting 2-D feature space a linear threshold function is used for
classification. For training and testing the algorithm ACM data along with
video data is used from nocturnal recordings in seven mentally retarded
patients with severe epilepsy. Per patient the algorithm detected 100% of
the periods of motor activity that are marked in video recordings and the
ACM-signals by experts. From all the detections, 43% - 89% was correct (mean
= 65%). We were able to reduce the amount of data that need to be analyzed
considerably. The results show that our approach can be used for detection
of subtle nocturnal motor activity. Furthermore our results indicate that our
algorithm is robust for fluctuations across patients. Consequently there is no
need for training the algorithm for each new patient.

4.2 introduction

Epilepsy affects almost 60 million people worldwide. Some of the people
affected can be treated successfully with drug therapy (67%) or neurosur-
gical procedures (7-8%). Nevertheless 25% of the people affected cannot be
treated by any available therapy [1]. A substantial part of this last group is
also mentally retarded. These people are at high risk for physical injuries
or even lethal outcome. They are often unable to live independently and a
large number is institutionalized. In these cases, seizure detection is impor-
tant for the management of daily care. Detections can be used to trigger an

39
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alarm during severe seizures that require medical assistance. Furthermore
information about seizure frequency can be used to evaluate treatment effects.
In clinical practice the gold standard for detecting epileptic seizures is the
measurement of the electroencephalogram (EEG) in combination with video
monitoring. For long-term monitoring this is not practical since patients are
impeded in pursuing activities of daily living (ADL). Furthermore the anal-
ysis of EEG/video-monitoring requires considerable effort. In this context
we explore alternative methods for automatic detection of epileptic seizures.
Choosing an alternative method, we take into account that our target pop-
ulation is mentally retarded. It is known that in mentally retarded subjects,
seizures often manifest themselves in movements [91], [30]. Seizures in which
the main semiological characteristic is movement, are referred to as motor sei-
zures [3]. An alternative detection system in our population therefore might
be based on the detection of movements or, in other words, motor activity. In
our seizure detection setup 3-D accelerometry (ACM) is used for the record-
ing of motor activity. Previously we presented clinical results that show the
feasibility of seizure detection based on 3-D ACM in our patient population
[30]. It was observed that 48% of the 897 seizures that were detected based on
the gold standard, were motor seizures. Furthermore, 95% of these seizures
had stereotypical waveforms in the ACM-signals. In 10 of the 18 patients (56

%) seizure detection based on ACM alone was sufficient.
In literature ACM is sporadically mentioned in epilepsy related fields and
then ACM is not used for seizure detection [24], [25], [26]. The few publi-
cations that do focus on the detection of seizure movements are based on
video-analysis [100], [101]. Nevertheless accelerometers are popular for de-
tection purposes in many other application areas. A well known example
is the airbag industry [102]. Accelerometers can be found in laptop hard
drive protection systems that protect hard drives from shock [103] and in car
navigation systems, to extrapolate the position when the GPS signal is lost for
short intervals [104]. They are used in a wide range of medical application
areas to monitor ADL [13], [14], [11], [12], [16]. In Parkinson’s disease, studies
aim at distinguishing pathological (periods of hypokinesia, bradykinesia and
dyskinesia) and normal movements [17], [18], [19], [20]. In this chapter a first
step towards automatic seizure detection based on 3-D ACM is presented.
The aim is to distinguish periods in nocturnal data with and without motor
activity with a sensitivity of at least 95% and a positive predictive value
of at least 50%. Eventually, the complete motor seizure detection scheme
will consist of several steps. First data are screened for motor activity. Next,
detected motor activity events are checked for the presence of stereotypical
waveforms that can be seen in the ACM-signal during myoclonic, clonic and
tonic seizures, as described in our clinical study [30]. We have chosen for
these separate steps, since the detection of motor activity can be tackled in a
relatively simple way. This first step reduces the amount of data that needs to
be further analyzed with stronger, more complex signal processing tools. The
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purpose of this algorithm for now is to support off-line analysis for diagnostic
and evaluation purposes. Eventually in the future it can be part of a real-time
detection system for long-term monitoring.

4.3 methods

4.3.1 Measurement setup and patient population

Video and ACM-data are used from seven mentally retarded patients who
suffer from severe epilepsy and have minimally 20 seizures per month (2
male and 5 female, mean age 30.3 years ± 14.2 years). The patients are
monitored with the same setup described in our previous clinical study [30].
The nocturnal video- and 3-D ACM-recordings on five positions (upper and
lower limbs and sternum) obtained in the first night are used, because only
during this night also the EEG-signal is available. In this way we have the
best possible reference for determining whether a movement is actually a
seizure. The sample frequency fs of the ACM-signals is 100 Hz. Video- and
ACM-data are synchronized by means of a marker in the ACM-data and a
corresponding ’beep’ in the video. Our definition of night is the period the
patient is in bed. For each patient two data episodes are chosen: one episode
containing at least one seizure (according to experts who inspected both
video and EEG recordings), and one randomly chosen episode containing
a non-seizure movement. The total duration of both episodes together is 5

minutes. The total amount of data is 35 minutes. We are restricted to use this
small subset of the data since human experts need to judge this data, and the
experts are only available for a limited time period.

4.3.2 Evaluation of video and ACM as standard

Ideally, the detection performance of the algorithm should be compared
to a gold standard. Unfortunately, when working with real patient data
such a gold standard is not always available. For seizure detection the visual
inspection of the combination of EEG and video by experts is accepted as gold
standard. For evaluating an ACM-based motor activity detection algorithm,
a good standard would be the visual interpretation of the combination of
video registrations and ACM-signals by experts. To get the best possible
reference, we investigate the validity of using these qualitative interpretations
as a standard for evaluating the performance of our automated detection
algorithm for motor activity based on 3-D ACM. Three experts are asked
to judge the set of video fragments and ACM-signals described in section
4.3.1 independently and mark the periods that they consider movement. This
results in scores on a second time resolution, that have value 1 when there is
motor activity and value 0 when there is none. Based on these scores, for each
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expert periods in the data are defined as motor activity events. The remaining
periods are considered as no motor activity events. Thus we construct scores,
on an event time basis. Here we take into account that there can be minor
differences between two expert’s scores that are not relevant. Experts can
score the same event, but score a different on- or offset. We tolerate a timing
difference of 3 seconds and then these events are considered as the same event.
When one expert scores more events than the other in the same time interval,
these events are considered as one event if the timing difference between the
events of the more precise expert is within 3 seconds. Eventually the scores
on event basis are used to compute the interrater agreement for each pair
of experts. The measure that is used for the agreement is Cohen’s kappa κ

[105]. This statistic is most often used to measure agreement and takes into
account the agreement that can occur by chance. The range of κ is from -1 till
1, with larger values indicating better reliability. In general when κ > 0.61 the
interrater reliability is considered satisfactory [106]. Computations of κ are
done with SPSS 14.1, κ is calculated for video and ACM separately. Finally
we evaluate our algorithm with a standard based on both ACM and video
scores. Events are only taken into account when at least two experts marked
the period as motor activity in either the video or the ACM-signal.

4.3.3 Detection algorithm for ACM

Problem description and performance measures

The detection of motor activity from ACM-recordings, as a first step before
distinguishing between various activities, is described by several authors. The
features, classification method, number of sensors, and sensor positions used,
are diverse and depend on the type of motor activity the authors aim to detect.
Mostly an algorithm is used that sets a threshold to one derived feature of the
ACM-signal obtained from a single position on the body (waist, sternum) [13],
[14], [12]. Some authors suggest more complex methods like discriminant
analysis using more features [11] or neural networks [107]. Fahrenberg et al.
use patient-specific reference-pattern based classification [11]. The studies
that use a movement protocol with predefined movements [11], [12] have
better results than the studies that use spontaneous movements [18], [13].
Obviously, evaluation and tailoring automated signal analysis methods for
motor activity detection during nocturnal (sleep) recordings are not com-
patible with assessment protocols. Therefore we use movements that occur
spontaneously during the night. In our population not only voluntary activi-
ties with a relatively ’long’ duration and ’high’ intensity need to be detected,
but also involuntary movements that can be short or even epileptic of nature.
These can be very subtle in duration and intensity. Often only part of one limb
is involved in these subtle movements. ACM-signals without motor activity
visually appear to be flat, but can contain noise caused by autonomic func-
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Figure 13: Nocturnal ACM-fragment measured on the sternum. We see subtle motor
activity as well as accelerations caused by respiration and arterial pulsation.

tioning of the body like breathing, and the pulsation of the arteries. Hence
our detection algorithm needs to detect every part of the data that might
contain subtle motor activity and discard data that only contains noise caused
by autonomic processes. Figure 13 shows these autonomic noise components
in a 3 minute nocturnal ACM-fragment together with subtle motor activity.
To tackle this detection problem we have chosen for a solution inspired by
methods suggested by other authors [14], [12]. We believe a threshold based
detection method that sets a threshold just above the noise caused by au-
tonomic functioning seems feasible to use for the detection of all possible
interesting subtle motor activity events.
Using supervised learning techniques to define a model for the data without
motor activity, the algorithm classifies part of the data as no motor activity.
This data is excluded from further analysis. The remaining part possibly con-
tains motor activity and needs further analysis. In practice such an algorithm
can be used to reduce the amount of data that needs to be visually analyzed
by the experts. Figure 14 A is a schematical representation of the original data
that is divided by experts into two categories: data with motor activity M1

and data without motor activity NM1. Figure 14 B shows the output of the
detection algorithm. The data without motor activity is excluded from further
analysis. The remaining data consists of data M2 that the experts actually
scored as data with motor activity and data NM2 that the experts regarded as
data without motor activity. A minor part of M1 is not included in M2, this is
the part of the data that actually is motor activity according to the standard,
but is missed by the algorithm. In the training phase the detection algorithm
is constructed in such a way that 98% of the motor activity M1 is preserved.
We choose 98% instead of 100% to compensate for possible outliers in the
data. Consequently in the training phase M2 = 0.98M1. In the testing phase
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Figure 14: A. Data divided into two categories by experts, M1 is the data containing
motor activity, NM1 is the data without motor activity. B. After applying
the detection algorithm the data classified as ’no motor activity’ is excluded
from further analysis. The remaining part contains most of the original data
with motor activity M2. The amount of data without activity is strongly
reduced NM2.

we aim that at least 95% of the motor activity is preserved. The percentage of
data preservation, DP, is expressed in M1 and M2:

DP =
M2

M1
. (4.1)

After applying the algorithm the amount of data that needs further analysis
is reduced. We aim at discarding as much of the original data without motor
activity NM1 as possible. The percentage of data reduction DR is expressed
in NM1 and NM2:

DR = 1 −
NM2

NM1
. (4.2)

The measures above are calculated on a time resolution of 1 second. Successive
seconds in the experts score or the algorithms output that have the same value
actually belong to the same event. We define positive events when subsequent
seconds are scored/detected as motor activity and negative events when
subsequent seconds are scored/detected as no motor activity. We define a
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score function on event basis for the algorithms output in a similar way as the
score function for the experts was defined in section 4.3.3. For the algorithms
output a positive event can either be a true detection when it coincides with
a positive event scored by the experts or a false detection when it coincides
with a negative event scored by the experts. For evaluating the performance
of our algorithm we also compare the occurrence of events in the output of
the algorithm in time with the scores of the experts. Here we have to realize
that timing differences occur between events in the data that are scored by
the experts and detected by our algorithm:

• due to inaccuracy of the experts,

• due to a small synchronization error between the video and ACM-data,
of approximately one second that cannot be corrected for.

The first point is intercepted as much as possible by calculating the agreement
between the experts, and only use scores of events that are annotated by
at least two experts. Nevertheless there still can be some inaccuracy in the
precise on- and offset of the event in the ACM-signals. Also the fact that the
ACM-signals and video signals are not completely synchronous contribute
to this inaccuracy. To compensate for these inaccuracies, a discrepancy of
3 seconds between the on- or offset in the output of the algorithm and the
scores of the experts is tolerated. Furthermore from now on we refer to
the used performance measures as estimates. Hence, the estimates of the
sensitivity SEN and positive predictive value PPV of the motor activity events
are computed. The estimated sensitivity is the ratio between the number of
annotated motor activity events that where detected by our algorithm TD
(true detected events), and the total number of scored motor activity events
PTotal:

SEN =
TD

PTotal
. (4.3)

The estimated positive predictive value is an expression for the false alarm
rate. Our aim is to obtain a PPV of at least 50%. This means that more than
50% of the detected events should be genuine. The positive predictive value
PPV is expressed in the number of true detected events TD, and the number
of false detected events FD:

PPV =
TD

TD + FD
. (4.4)

Thus in total the performance of our algorithm is expressed by four different
measures. DP and DR are based on second by second basis. The first repre-
sents the percentage of the data with motor activity that is preserved, the
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second is a measure for how much the workload would be reduced, using this
algorithm. DR gives the percentage of data that does not need to be analyzed
anymore, in contrast to the situation without the algorithm. SEN and PPV
are measures that indicate the performance on event basis, thus how many of
the separate movements are actually detected, and how many of the detected
events are true detections.

Signal validation

The signals from the 15 1-D accelerometers are represented by xi[n], i ∈
{1, ..., 15}. Sometimes during the recordings a sensor malfunctions. This can be
easily detected since the offset value of the raw ACM-signal xi is too high (
|xi| > 5 g ) and the signal is clipped. In all patients, one of the five 3-D sensors
was malfunctioning (arm or leg sensor). In two patients even two. We selected
these disconnected sensors by visually inspecting the raw ACM-signals and
excluded them from further steps in the algorithm.

Feature extraction

The choice of suitable features is guided by the descriptions of human experts
on how they classify parts of ACM-data by visually screening through the
data. Figure 15 shows a screenshot of the analyzing program the experts use
to screen through the data, together with a picture that shows the locations
and orientations of the 15 ACM-sensors. Three important aspects of this visual
screening are taken into account when selecting features. Firstly, features are
chosen based on characteristics that, according to experts, are important when
visually interpreting the data. Experts describe motor activity as ’change in the
signal’. Quantitative measures are chosen that can represent this qualitative
description. Secondly, it is important to realize that experts evaluate the
presence of pattern combinations along many channels at the same time.
Subtle movements need to be detected, even when not all the sensors are
involved in the movement. Therefore features are calculated for all the sensors.
Then per feature, per time unit the maximum value across the 5 sensors is
taken. The third aspect is that experts observe the data on various time scales.
Therefore two different features are chosen. One that is more sensitive for
slower variations in the signals and another that is more sensitive for short,
fast, subtle variations. Before the features are calculated the data is divided
into nonoverlapping segments. We have chosen for a segment length of 1

second. The shortest seizures have a duration of approximately 1 second
and we want to be able to detect them as well as the seizures with a longer
duration.
Based on the qualitative description ’change in the signal’, a suitable feature
for motor activity might be the ’jerk’, the first derivative of acceleration and
thus an indicator for the rate of change. The jerk is a quantitative measure
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Figure 15: Illustration of three important aspects of the visual analysis of 3-D ACM
data. A screenshot of the analyzing program the experts use to screen
through the data, together with a picture that shows the locations and
orientations of the 15 ACM-sensors is depicted. The duration of the data
fragment is 5 minutes. The depicted pattern is typical during walking.
Judging data, experts take into account characteristic patterns (A), how they
occur in relation to patterns seen on other body parts (B) and how they
occur in time (C).

for the steepness of the deviation and should be more sensitive for short, fast,
subtle variations. The signals from the 15 1-D accelerometers are represented
by xi[n], i ∈ {1, ..., 15}. The features are calculated per 3-D set yj[n], j ∈
{1, ..., 5}.
The magnitude of the jerk is defined by

Jyj[n] =

√√√√√ 3j∑
k=3j−2

(
xk[n] − xk[n − 1]

∆t

)2

(4.5)

where j ∈ {1, ..., 5} and ∆t is the sampling interval.
Per segment of N samples we calculate the mean magnitude of the jerk Jyj

:

Jyj
=

1

N

N∑
n=1

Jyj[n] , j ∈ {1, ..., 5} , N = 100 . (4.6)

In our case, N = 100, since a segment length of 1 second is chosen, and the
sampling frequency fs of the signal is 100 Hz.
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Another quantitative measure that possibly covers the qualitative description
’change in the signal’, is the variance. The variance is an important feature
for detecting the non-flatness during a movement and is more sensitive for
slower variations in the signals. We calculate the variance for the magnitude
Y of each 3-D sensor set. The magnitude of each 3-D set yj is then:

Yj[n] =

√√√√√ 3j∑
k=3j−2

x2
k[n] , j ∈ {1, ..., 5} . (4.7)

Per 1 second segment the mean magnitude Yj is calculated:

Yj =
1

N

N∑
n=1

Yj[n] , j ∈ {1, ..., 5} , N = 100 . (4.8)

Secondly, the variance of the magnitude S2
Yi

is calculated for each segment:

S2
Yj

=
1

N

N∑
n=1

(Yj[n] − Yj)
2 , j ∈ {1, ..., 5} , N = 100 . (4.9)

Because Jy is a linear measure and S2
Yj

quadratic we use the square root SYj
.

The output of our algorithm is compared to scores that are made based
on video-data, therefore there are some issues that need to be resolved in
the feature extraction. First we have to realize that it is possible that motor
activity occurs on only one sensor but all the sensors have the score motor
activity at that time. Since the visual scores are not made for each sensor,
detecting motor activity for each sensor is not possible. To solve this problem
the maxima of both features are taken across all the 5 sensors:

Jymax = max
j ∈ {1,...,5}

[Jyj
] , (4.10)

SYmax = max
j ∈ {1,...,5}

[Syj
] . (4.11)

Another issue is that timing differences can occur between events scored
by experts and events detected by the algorithm as already mentioned in
section 4.3.3. Still we take the labels as defined by the experts as our standard,
but the corresponding feature values we use are the maximum values of
the set of three segments (the one that corresponds to the label and the two
surrounding segments).



4.3 methods 49

Classification

Classification is performed in the 2-D vector space that results from the feature
extraction process. Figure 16 shows an example of a scatter plot of the 2-D
vector space. Every point represents a feature vector fi that was calculated
per data segment. In our case the feature vector fi consists of Jymax (f1)
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Figure 16: Graphical representation of computation of linear threshold function (LTF)
in 2-D feature vector space. First the eigenvectors C1 and C2 of the co-
variance matrix of the cluster corresponding to ’no motor activity’ are
determined. The LTF is set perpendicular to the eigenvector corresponding
to the largest eigenvalue V . The LTF is set in such a way that 98% of the
’motor activity’ is on the right side of the LTF.

and SYmax (f2). Vectors corresponding to segments with motor activity are
marked with ’+’. Vectors corresponding to segments without motor activity
are marked with ’·’. There are two clusters with an area of overlap. The
shape and alignment of the cluster representing the data with motor activity
depends on the motor activity type, the body parts involved and intensity
of the movement. Since these properties can be very diverse, this cluster
shows a high intra- and inter-patient variability. Factors that influence the
shape and the alignment of the cluster without motor activity are pulsation of
the arteries, respiration and involuntary muscle twitching. The first two are
restricted since these are all processes regulated by the autonomous nervous
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system. Therefore this cluster is more stable in the same patient and between
patients. The area where the clusters overlap contains data segments with
involuntary muscle twitches. This area also contains subtle motor activity
events. To refer to our goal presented in section 4.3.3, we want to reduce the
amount of data segments without motor activity and preserve as much of
the data with motor activity as possible. Thus in our training data a linear
threshold function is constructed in such a way that 98% of the data with
motor activity is preserved. To ensure this threshold function is robust for
fluctuations across patients, we base it on the shape and the direction of the
cluster without motor activity, since this is the most stable cluster. First the
covariance matrix Σ is calculated for this cluster:

Σ =

 1
N

N∑
i=1

(f1i − f̄1)2 1
N

N∑
i=1

(f1i − f̄1)(f2i − f̄2)

1
N

N∑
i=1

(f2i − f̄2)(f1i − f̄1) 1
N

N∑
i=1

(f2i − f̄2)2

 (4.12)

where f1i and f2i are the two features in feature vector fi and f̄k = 1
N

∑N
i=1 fki.

The eigenvalues λ1, and λ2 and eigenvectors C1 and C2 of the covariance
matrix are computed. The eigenvectors represent the orientation of the cluster.
The eigenvalues are an indication of the spread of the feature values in the
direction of the corresponding eigenvector. The eigenvector corresponding to
the largest eigenvalue is chosen as principal component vector V . The linear
threshold function is set perpendicular to V . For all the points fi that have a
label ’motor activity’ the projection p

i
on this vector is calculated. The point t

where the linear threshold function intersects V is set so that 98% of p
i

lies
above t.
The linear threshold function (LTF) f2 = af1 + b is constructed based on train-
ing data. We aim at an algorithm that is robust for fluctuations across patients.
Therefore the training and test data is obtained from different patients. A
sequence of training and testing is performed where the data of six patients
are used for training and the data of the remaining patient are used for testing.
Besides the estimated performance measures that were explained in section
4.3.3, also the slope a and the intercept b of the LTF are computed. When
the variations of these two parameters are less then 10% between patients we
consider the parameters consistent. This is considered as an indication that
the algorithm can be used across patients. In that case we also investigate the
outcome per patient for the parameters with a 10% deviation, to see if these
outcomes are stable. We have chosen for a bivariate detection setup using two
features, for comparison to previously suggested methods that are based on
only one feature, the results are also computed for setting a threshold on the
features separately. In this univariate case, threshold th is computed, instead
of parameters a and b.
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4.4 results

4.4.1 Evaluation of standard

Table 7 lists the values of κ for each pair of experts, for both the video and the
ACM scores. The agreement can be considered good if κ lies between 0.61 and
0.8 [106]. Therefore we consider the annotations to be reliably enough to be

Table 7: Interrater agreement for video and ACM, for each pair of experts expressed
in Cohen’s Kappa κ

experts κVideo κACM

1 and 2 0.75 0.81

1 and 3 0.71 0.62

2 and 3 0.70 0.70

used as a reference for validation of our algorithm. In the combination video
and ACM events, there are 14 events that do not overlap. Twelve events were
only marked in the video, two events are only marked in the ACM-signal. The
two events marked in the ACM-signal are subtle, steep patterns, that could
be related to an epileptic seizure. These aren’t visible in the video because the
involved body part is not in the scope of the camera, or the view is blocked
by blankets. The events marked in the video and not in the ACM-signal,
are mostly slow movements that are clearly visible in the video, but have a
relatively low amplitude and more smoother patterns in the ACM-signal. For
evaluation of our algorithm we use the standard based on both ACM and
video. In this reference we use only the motor activity events that are scored
by at least two experts.

4.4.2 Performance of ACM-based detection algorithm

Figure 17 shows an example of original accelerometry (ACM) data together
with the output of our algorithm and the scores of the experts. The results
of the classification performed per patient (the data of the other patients
is used as training data) are depicted in Table 8. Also the slope a and the
intercept b of the linear threshold function LTF are depicted. In the training
phase we set the percentage of data preservation DP to 0.98. In our test data
we were able to detect all the annotated events ( sensitivity SEN = 1) and
perform data reduction varying per patient from 52% to 93%. False positive
rates were acceptable. In six cases the PPV was higher or equal to the desired
50 %. The slope a and the intercept b of the linear threshold functions are
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Figure 17: ACM-data of patient 6. The output of the algorithm and the experts score
are plotted together in the last subplot. The value 0 indicates no motor
activity whereas the value 1 indicates motor activity.

Table 8: Percentage of data reduction DR, percentage of data preservation DP, esti-
mated sensitivity SEN and estimated positive predictive values PPV for the
test data set. The slope a en the intercept b of the linear threshold function
are also depicted for each case. Per data set the numbers of the corresponding
patients are depicted

train data test data DR DP SEN PPV a b

2, 3, 4, 5, 6, 7 1 0.86 1 1 0.66 -1.96 4.00

1, 3, 4, 5, 6, 7 2 0.93 0.95 1 0.89 -1.92 3.96

1, 2, 4, 5, 6, 7 3 0.91 0.95 1 0.50 -1.99 4.08

1, 2, 3, 5, 6, 7 4 0.93 1 1 0.71 -1.96 3.93

1, 2, 3, 4, 6, 7 5 0.52 1 1 0.43 -1.90 3.61

1, 2, 3, 4, 5, 7 6 0.93 0.91 1 0.71 -2.02 4.43

1, 2, 3, 4, 5, 6 7 0.78 1 1 0.66 -2.13 3.89
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consistent throughout our population, the variations are less than 10%. When
we perform the detection with 10% variation in the parameters a and b

we observe that for every patient the sensitivity and PPV remain constant,
DR and DP vary around 1%. These results imply that the algorithm can be
used across patients. We analyzed the video and the ACM-signals of all the
false detections. The total number of false detections was 24. Seventeen of
these false detections were movements that were annotated by the experts in
ACM- or video, but the detection output is longer in duration. The remaining
seven false detections were periods where the patient is very restless (awake,
moving the head etc.). The experts only marked the distinct movements, and
not the periods of restlessness. Comparing the results of our 2-D LTF with the

Table 9: Percentage of data reduction DR, percentage of data preservation DP, esti-
mated sensitivity SEN and estimated positive predictive values PPV for the
test data set for an algorithm based on the use of respectively the Variance
and the Jerk alone. The threshold th is also depicted for each case

A. Threshold on one single feature (Variance).

train data test data DR DP SEN PPV th

2, 3, 4, 5, 6, 7 1 0.85 1 1 0.66 1.41

1, 3, 4, 5, 6, 7 2 0.95 0.95 1 1 1.42

1, 2, 4, 5, 6, 7 3 0.90 0.97 1 0.50 1.42

1, 2, 3, 5, 6, 7 4 0.93 1 1 0.71 1.40

1, 2, 3, 4, 6, 7 5 0.53 1 1 0.41 1.35

1, 2, 3, 4, 5, 7 6 0.92 0.91 1 0.62 1.49

1, 2, 3, 4, 5, 6 7 0.75 1 1 0.57 1.27

B. Threshold on one single feature (Jerk).

train data test data DR DP SEN PPV th

2, 3, 4, 5, 6, 7 1 0.81 1 1 0.57 1.12

1, 3, 4, 5, 6, 7 2 0.87 0.95 1 0.57 1.18

1, 2, 4, 5, 6, 7 3 0.83 0.95 1 0.33 1.20

1, 2, 3, 5, 6, 7 4 0.94 1 1 0.71 1.10

1, 2, 3, 4, 6, 7 5 0.36 1 1 0.35 1.09

1, 2, 3, 4, 5, 7 6 0.92 0.92 1 0.71 1.26

1, 2, 3, 4, 5, 6 7 0.77 1 1 0.57 1.04
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detection of an algorithm based on only one feature (Table 9) we notice that
in the case for the variance alone the results are similar to the 2-D case. In
patient 5, 6, and 7 extra false detections are detected and when this is checked
in the ACM-signal we notice that a regularly respiratory cycle is detected. For
only the jerk, additional false detections are detected in five patients (1, 2, 3,
5, 7), but in these cases there is no motor activity visible in the ACM-signal
or the video. The algorithm actually detects activity caused by the pulsation
of the arteries. The combination of the variance and the jerk leads to less
false detections than in the univariate cases in three patients (5, 6, 7). Figure
16 supports this observation, the linear threshold function clearly depends
on both the variance and the jerk, therefore both features contribute to the
detection.

4.5 discussion

Our goal was to develop an algorithm for 3-D accelerometry (ACM) record-
ings that detects local subtle motor activity of the body with a sensitivity of
at least 95% and a positive predictive value (PPV) of at least 50%, thus reduc-
ing the amount of data that needs to be further analyzed for motor seizure
detection. We compared the results of our algorithm to the scores of human
experts that visually analyzed the ACM-signals and simultaneously recorded
video-recordings. Using the algorithm we obtained a sensitivity of 100% of
the motor activity that was seen in the video by experts. Per patient the data
reduction ranged from 52% to 93% (mean = 84%). The positive predictive
value ranged from 43% to 89% (mean = 65%). These results indicate that our
approach satisfies the requirements stated above.
The high sensitivities are not surprising since in the training phase we aimed
at preserving 98% of the data with motor activity. But despite the high sensi-
tivities our positive predictive value was higher than our criterium of 50% in
6 out of 7 patients. Furthermore 17 of the 24 false detections were actually a
prolongation of a correctly detected event. We defined that these prolonga-
tions were a new event, and thus a false detection, when the duration was
longer than 3 seconds. When we exclude these 17 false detections, since they
probably belong to a correctly detected event, the mean PPV increases from
65% to 85%.
When we compare our results to results that were obtained by other authors
that used a spontaneous movement protocol we see that although we obtain
a similar PPV, our sensitivity is much higher. Bussmann et al. [13] obtained
a sensitivity of 58% and a PPV of 64% for distinguishing between periods
with and without movement. As a standard they also used annotated video
images. Dunnewold et al. [18] determined periods of immobility in patients
with Parkinsons Disease. They state that with their method between 66.7%
and 80.7% of the immobility periods were correctly classified.
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The data reduction numbers DR, together with the observation that the false
detections are actually motor activity imply that our algorithm can be used to
assist off-line analysis for diagnostic purposes since the amount of data (both
ACM and video) that needs further analysis can be significantly reduced.
Here we make a comment that data reduction might also be possible by
a simple automatic analysis of the video images itself, by calculating the
differences between successive frames. This is a familiar preprocessing step in
automatic video-analysis [100], [101]. Nevertheless, interpreting the images
when a moving body part is not in the field of the camera, because blankets
are blocking the view, is still a problem.
The linear threshold function we used for classification was very consistent
throughout our population. The slope a and the intercept b of the linear
threshold function did not vary significantly per set of training data. In the
training configurations we used there was overlap, so some degree of simi-
larity can be expected, but the performance of the detection in the test data
when we varied the parameters ± 10% indicates that the linear threshold
function is robust for fluctuations across patients. Consequently there is no
need for training the algorithm for each new patient. From a physiological
point of view this means that the jerk and the variance of the acceleration
caused by breathing and pulsation of the arteries lie in a certain range for all
the patients. Since these are processes that are regulated by the autonomous
nervous system this is also what we expected.
Our goal was to detect every possible interesting motor activity event. We
hypothesized that a bivariate method would perform better than a method
based on one single feature. Comparing the detection results of the bi-and
univariate algorithms we can not completely confirm this hypothesis. An
algorithm based on the jerk alone, detected all motor activity events, but
there were 18 more false detections than in the bivariate algorithm. These
false detections were introduced since this feature is susceptible for fast ac-
celeration changes caused by the pulsation of the arteries. Nevertheless PPV
was > 50% in 5 out of 7 cases. An algorithm based on the variance alone had
a similar performance than our bivariate approach. Although, compared to
the bivariate algorithm there was an extra false detection introduced in three
patients. Combined with the jerk, the algorithm does detect these small subtle
events. Thus in three patients (5, 6, 7) it was better to use the combination
of the two features instead of only one. Although we can not confirm our
hypothesis based on these results we still believe that the bivariate performs
better for our goal than an algorithm based on variance or jerk alone.
The performance measures that are used in this chapter were obtained using
a qualitative standard: the visual analysis of video and ACM. Since this stan-
dard depends on the accuracy of the experts during scoring, we investigated
the validity of using these interpretations as a standard for evaluating the
performance of our algorithm. The interrater agreement κ between three
experts was calculated as a measure for this validity. According to literature a



56 detection of subtle nocturnal motor activity from 3-d

accelerometry recordings in epilepsy patients

κ between 0.6 and 0.8 can be considered good [106]. Since κ > 0.7 in all cases
of the video and in two cases of the ACM, and the remaining κ was 0.62, we
consider the scores to be reliable enough to use as a reference for validation
of our algorithm. Nevertheless we must realize that using this standard might
introduce false detections that are actually motor activity, since the agreement
was not 1. Therefore performance measures based on such a standard should
be interpreted with care.
In the validation step of our algorithm, we excluded data from sensors that
were malfunctioning. This decreases the number of sensors that are used for
movement detection. Nevertheless our algorithm was able to detect all the
movements that were scored by the experts. This shows that not all the five
3-D sensors are needed for movement detection in this case.

4.6 conclusion

A first step is presented towards reliable detection of nocturnal epileptic
seizures based on 3-D accelerometry (ACM) recordings. With a simple su-
pervised learning detection approach we were able to distinguish between
data with and without subtle motor activity. For training and evaluating of
the algorithm nocturnal ACM- and video-data are used that are recorded
from mentally retarded subjects with severe epilepsy. A 3-D sensor is placed
at both wrists and ankles, and at the sternum. From the resulting 15 ACM
signals, two features were derived for each second, and in the resulting 2-D
feature space a linear threshold function was used for classification. Our
algorithm showed a sensitivity of 100% compared to the motor activity that
was seen in the clinical standard. The positive predictive value ranged from
43% - 89% (mean = 65%). The detection results also indicated that the algo-
rithm is robust for fluctuations across patients, so no training for every new
patient is necessary. Data reduction for each patient was substantially and
ranged from 52% - 93% (mean = 84%). This algorithm can already be of great
value for supporting off-line analysis in clinical setting for diagnostic and
evaluation purposes, since a substantial part of the data can be excluded from
further analysis thus reducing the amount of work. Important issues were
tackled regarding the use of clinical standards for validation of automated
algorithms. According to current practice, for accelerometry the best available
standard is visual interpretation of the combination of video-recordings and
ACM-signals by experts. However, such a standard has its limitations since
the experts interpretations are qualitative and depend on the accuracy of the
experts during scoring. Furthermore, the use of video as a reference is also
limited since body parts can be out of the cameras field. These limitations
can degrade performance measures based on such a method, and the use of
accelerometry can overcome these problems.
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This chapter is composed of:
T.M.E. Nijsen, R.M. Aarts, J.B.A.M. Arends, and P.J.M. Cluitmans. Model for arm movements
during myoclonic seizures. 29th Annual International Conference of the IEEE EMBS [32],
and T.M.E. Nijsen, A.J.E.M. Janssen, and R.M. Aarts. Analysis of a wavelet arising from a
model for arm movements during epileptic seizures. ProRisc, 2007 [33].

5.1 abstract

A model is formulated for arm movements during myoclonic seizures. The
system described in the model, consists of a mechanical and an electrophysio-
logical part. The model output is compared with real patient accelerometry
(ACM)-data from six epilepsy patients. Eight out of ten myoclonic seizures
have a good fit to the model. The values of the model parameters tuned
to the real seizures are physiologically feasible. Two of the four parame-
ters seem to be robust for variations in patients and seizures. The model is
used to formulate a matched wavelet transform. Due to the simple analytical
form of the wavelet, x(t), explicit computations are feasible for the frequency
response X(ω), the admissibility condition and admissibility constant, the
wavelet transform of x itself using x or its time-reversed version x− (matched
filter) as analyzing wavelet etc. The new wavelet is expected to yield better
detectability for the problem at hand than general purpose wavelets would
do. We show one example of how the new wavelet performs on clinical data
and we intend to follow up this study with a more elaborate demonstration
of its efficacy. The new wavelet, and some of its variants (such as the odd
extension of it and a Gaussian smoothed version of it), are briefly compared
with certain wavelets presented in existing literature. Our preliminary conclu-
sion, is that the wavelet has potential in the detection of myoclonic seizures
from accelerometric data of arm movements of epileptic patients.

5.2 introduction

In this chapter an analytical model is formulated for accelerometric output
associated with myoclonic seizures. This model is used to derive a matched
wavelet transform that can be used to derive salient features for the detection
of myoclonic seizures.
A myoclonic seizure consists of one single muscle jerk. Myoclonic seizures are
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associated with clearly visible stereotypical patterns in accelerometry (ACM)
signals [30]. For the choice of suitable features for automated detection of
these seizures from the ACM-signal, knowledge about these patterns is im-
portant.
The suggested model can be used to study important characteristics of ac-
celerometric waveforms associated with myoclonic seizures. It can contribute
to a better understanding of the patterns that are observed in the ACM-
recordings. Hence, the model makes it also possible to derive parameters
from the ACM-signal that have a physiological meaning. Therefore this model-
based approach can contribute to a robust detection of myoclonic seizures.
The system described in the model consists of a mechanical and an electro-
physiological part. The electrophysiological part contains the definition of
stimuli and a muscle response to these stimuli during a myoclonic seizure.
The mechanical part is based on kinematic and kinetic relations for the lower
arm, modeled as a rigid body system. The model output is compared to real
patient accelerometry data. The sensitivity of the parameter settings is stud-
ied in order to get an indication whether the model is robust across patients
and seizures. The next step is to use the model to derive a matched wavelet
transform. An overview of some mathematical properties of this wavelet is
given and a comparison to other wavelets in literature is made. Finally, an
example is given on how this matched wavelet can be used for the detection
of myoclonic seizures.

5.3 model overview

During a motor seizure the distal segments of the limb are more affected
than the proximal ones, and arm movements are dominant over leg move-
ments. Video observations confirm that myoclonic seizures very often manifest
themselves as short abrupt flexions involving only the lower arm. It is also
frequently observed that a seizure starts with myoclonic jerking in one arm
followed by tonic, clonic or tonic-clonic contractions that spread towards the
other arm, the trunk and the legs. Based on the above statements and observa-
tions, it was decided to include only the forearm in the model for myoclonic
seizures. Figure 18 is a schematic overview of all the components of the
model. The central nervous systems sends signals to the muscles. The muscles
contract as a result of the stimuli and apply force on the skeletal system.
These forces cause movement of the limb. For evaluation of the movement
model, the choice was made to record movements with accelerometers, thus
in the model also the accelerometer output corresponding to the movements
is calculated.
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Figure 18: Schematic representation of model. S(t) is the innervation pattern sent from
the central nervous system to the muscles. Fag(t) and Fant represent the
muscle force produced by the agonist and antagonist muscle. ω(t) and α(t)

are the angular velocity and the angular acceleration of arm, and At(t) is
the accelerometer output in the movement direction.

5.3.1 Innervation patterns during myoclonic seizures

Generally a myoclonic seizure is preceded by spike-wave (or a poly spike-
wave) pattern in the EEG signal. It is believed that during the spike part
of the spike-wave discharge, trains of action potentials are sent down to
the motor units and the muscles contract in reaction to this stimulation
[10]. The agonists and antagonists in the muscle groups involved contract
synchronously. During the wave part there is a central inhibition, and no
action potentials are descending to the motor units. This results in complete
relaxation of all the muscles involved. The EMG activation during an epileptic
myoclonus is < 50 ms [7]. Based on the above observations it was decided to
model the innervation pattern during a myoclonic seizure as a pulse.

5.3.2 Muscle contraction during seizures

In literature [108, 109], many complicated muscle models are described. Most
of these models go deeply into the muscle’s structure and physiology. To use
such an extensive model would go far beyond the scope of this chapter. The
choice was made to use a simple approximation for muscle force in time,
based on the response of a motor unit to one single stimulation pulse [110]:

F(t) = F0
t

τ0
e

−t
τ0 . (5.1)

This simplification is based on the fact that during a seizure the muscles
are much more stimulated than under normal circumstances. One burst
of epileptic activity can cause a sudden jerk of a limb. The entire muscle
consists of many motor units. During the myoclonus they are all activated
synchronously. Thus, the impulse responses of all the motor units should be



60 a model for myoclonic seizures that can be used as matched

wavelet transform

added together. For simplicity it is assumed that during a myoclonic seizure
the impulse response of all the activated motor units together can then be
approximated by: F(t) = Fsum

t
τe

−t
τ , with Fsum the weighted sum of all the

F0’s of all the different motor units, and τ a general time constant for al the
units together. An advantage of the use of this impulse response is that it is
possible to simulate physiological-like muscle responses to different types of
stimuli.
In the model one agonistic muscle pair is included that is synchronously
innervated during the seizure [7]. The muscle force of the agonist muscle
Fag(t) is modeled as:

Fag(t) = Fsum
t

τ
e

−t
τ . (5.2)

It is necessary to create an alternating positive and negative net muscle
movement, to generate the typical myoclonic ’shock-like’ pattern. Therefore
for modeling the antagonist muscle force Fant(t) a similar equation would
yield, but with different values for Fsum and τ:

Fant(t) = Fsumant

t

τsumant

e
−t

τsumant . (5.3)

Equation 5.3 can be expressed in Fsum and τ by:

Fant(t) =
1

A
Fsum

t

τ
e

−t
Bτ . (5.4)

where A and B –as we shall see in section 5.4 – are dimensionless constants
approximately equal to 1.

5.3.3 Mechanical model of the skeletal system of the arm

The most dominant element in a myoclonic seizure is the flexion of the elbow.
The elbow is modeled as a hinge joint that is fixed at its position. This means
that the movement of the wrist is a pure rotation around the elbow axis,
a two-dimensional planar movement. Figure 19 shows the rigid body that
represents the lower arm and the hand. The box is the fixed accelerometer that
measures acceleration components in the tangential (At) direction. The forces
that act on the rigid body are the agonist muscle force (Fag), the antagonist
muscle force (Fant), and the joint reaction force (Fj). The length of the rigid
rod is represented by L.
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Figure 19: Schematic overview of the mechanical part of the model.

Kinematic relations for the rigid body system

The kinematic relation for position x(t), during a 2-D rotation in a time-
dependent, moving frame of reference {e1(t), e2(t)}, is:

x(t) = Re1(t) , (5.5)

with R, the distance of the elbow to the accelerometer. The corresponding
velocity v(t) is:

v(t) = ωRe2(t) , (5.6)

where ω(t) is the angular velocity of the moving frame. The corresponding
acceleration a(t) is:

a(t) = αRe2(t) − ω2Re1(t) , (5.7)
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where α(t) is the angular acceleration of the moving frame. This means that
during a pure rotation, acceleration At (at the position of the accelerometer)
in the tangential direction e1(t) equals αR. The acceleration An in the normal
direction e2(t) equals −ω2R.

Kinetic relations for the rigid body system

When there is an input force, the sum of all moments can be calculated by
multiplying all the tangential components of the acting forces with their
moment arms. The muscle forces described in section 5.3.2 are linked to Eq.
5.7 by Eq. 5.8:

ΣM = Iα , (5.8)

where I is the mass moment of inertia about a parallel z-axis through the
fixed rotating point. For the model in this chapter this means that:

ΣM = Fag⊥ · dag − Fant⊥ · dant = Iα . (5.9)

The joint reaction force Fj, acts on the fulcrum and does not contribute to the
sum of moments.

Since the output of interest is α, Eq. (5.9) is rewritten:

α(t) =
Fag⊥ · dag − Fant⊥ · dant

I
. (5.10)

For a rigid rod, of length L, rotating around one end, the moment of inertia
is constant and equal to 1

3mL2, with m the mass of the lower arm. The
length L and the mass m of the lower arm, can be expressed in terms of full
body length (BL) and full body mass (BM) using anthropometric data [110].
Using average values from literature [111] for dag and dant Eq. 5.10 can be
rewritten as:

α(t) =
4.5

BM BL2
(Fag − Fant) . (5.11)

The measured output of the ACM-sensor caused by the myoclonic seizure
equals αR. The actual accelerometer output measures also an acceleration
component caused by gravity. During such a subtle movement, the displace-
ment of the arm is very small and thus the rotation with respect to the gravity
field can be neglected. Therefore for a comparison of simulated movements
with real accelerometer output, Eq. 5.11 needs to be multiplied with R, the
distance from the elbow to the wrist, that is equal to 0.146BL [110]. Thus the
ACM-pattern observed during a myoclonic seizure is of the shape:

At(t) = K

(
te

−t
τ −

t

A
e

−t
Bτ

)
, (5.12)

where constant K = 0.66
BM BL

Fsum
τ .
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5.4 comparison of model to real data

Equation 6.1 was fitted to real patient data with an optimization algorithm in
MATLAB.
ACM-data are used from six mentally retarded patients who suffer from
severe epilepsy. This data is described in [30]. In order to get an indication
whether the model needs to be tuned for every patient or seizure, the sensi-
tivity of the parameter settings is studied. Figure 20 shows real accelerometer
output compared to the modeled myoclonic seizures. The data is first filtered
with a first order high-pass filter with a cut-off frequency of 0.1 Hz. Table 10

shows for every myoclonic seizure the values of K, τ, A, B, Fmax, and the
correlation coefficient R2 between the modeled myoclonic seizure and the
corresponding real myoclonic seizure. Fmax is determined by filling out t = τ

in Eq. 5.2. Fmax represents the maximal muscle force applied to the arm by
the agonist muscle. Eight out of ten myoclonic seizures have a correlation
coefficient > 0.7, with a p-value << 0.01. Myoclonus no. 6 and 9 have a
poor fit. No. 6 is not a single muscle twitch, but there is a more repetitive
movement visible in the ACM-signal. This is also the case for No. 4 although
in this case the fit to the first part of the repetitive pattern is good and the
correlation coefficient is 0.73. The shape of No. 9 seems to consist of two
subsequent twitches. The values of τ are physiologically meaningful. The
contraction time τ for motor units in the arm are in the range of 16–68 ms for
the triceps and in the range of 16–85 ms for the biceps [110]. Also the values
of Fmax are physiological feasible forces. The values of A and B are all > 1.
A needs to be > 1 since the arm first flexes during a myoclonic seizure. This
means that when a seizure starts the force delivered by the agonist is larger
than the force delivered by the antagonist. This phenomenon can possibly
be explained by the fact that the projection area of the motor cortex through
the pyramidal tract that belongs to the agonist muscles is larger [112]. For
generating an alternating positive and negative net muscle movement, there
must hold A = B2. Therefore also B > 1. From the simulation results we can
also observe that A ≈ B2.

To study the robustness of the model and the sensitivity of the parameters,
the correlation coefficients between the real data and a simulated myoclonus
with the mean values of Table 10 filled in for the parameter settings are
calculated. This leads to correlation coefficients > 0.8 in 6 myoclonic seizures.
The fit was poor for myoclonus No.’s 4, 6, 8, and 9. No.’s 6 and 9 already
had a bad fit. In Table 10 No. 4 has a relatively large value for τ compared
to the other waveforms, therefore the correlation to the mean parameters is
poor. In Table 10 No. 8 has a relatively large value for K compared to the
other waveforms, hence the correlation to the mean parameters is also poor.
Keeping all the parameters fixed at the mean value and only the value of K to
be optimized leads to similar results. Keeping all the parameters fixed at the
mean value and only the value of τ to be optimized leads to poor fits with
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Figure 20: Simulation results (red dashed line) compared to real ACM-data (blue solid
line). ’Pt #’ indicates the patient where the data is from.

erratic values of τ in 5 cases. Keeping only A and B fixed, and the values of K
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Table 10: Parameters of model fitted to real data

Myocl. K [N/(kg s)] τ [s] A B Fmax[N] R2∗

1 47.8 0.035 1.025 1.017 96 0.88

2 49.9 0.035 1.036 1.022 131 0.88

3 67.8 0.040 1.038 1.024 203 0.85

4 30.7 0.070 1.011 1.008 116 0.73

5 32.3 0.065 1.024 1.017 92 0.88

6 34.5 0.038 1.109 1.006 58 0.34

7 32.9 0.034 1.015 1.009 49 0.83

8 81.6 0.024 1.038 1.025 56 0.71

9 11.6 0.022 1.114 1.076 7 0.51

10 36.9 0.039 1.046 1.025 74 0.91

Mean 42.6 0.040 1.045 1.023 88 0.75

* with a p-value << 0.01

and τ to be optimized leads to similar results as those presented in Table 10.
Therefore A and B might be fixed across patients, and appear to be typical
for myoclonic seizure movements.

5.5 using the model as wavelet

A possible way to use the model from the previous sections to derive salient
features for seizure detection, is to use the model as a matched wavelet
transform. In this section we analyse the wavelet that arises from our model:

(
te−t/τ −

1

A
te−t/(Bτ)

)
χ[0,∞)(t) , t ∈ R. (5.13)

In Eq. 5.13, χ[0,∞)(t) = 0 for t < 0 and χ[0,∞)(t) = 1 for t > 0. The parameters
A and B are positive, and so is τ. In particular the case is considered when
A ≈ B2. In the case that A = B2, the signal in Eq. 5.13 is admissible [113],
[114] as a wavelet since then

∫∞
0

(
te−t/τ −

1

A
te−t/(Bτ)

)
dt = τ2

(
1 −

B2

A

)
= 0. (5.14)

From our experimental results in Table 10 it can be see that A ≈ B2 and
thus our model can be considered as an admissible wavelet. In the next
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section some mathematical properties of this wavelet will be presented. For
computation purposes we may suppose τ = 1, and consider:

xA,B(t) :=

(
te−t −

1

A
te−t/B

)
χ[0,∞)(t) , t ∈ R, (5.15)

and the admissible cases

xC(t) :=
(
te−t − C2te−Ct

)
χ[0,∞)(t) , t ∈ R. (5.16)

5.6 wavelet characteristics

5.6.1 Normalization and approximation by admissible
wavelet

We want to approximate a general xA,B by an admissible xC. To that end

∫∞
0

(xA,B(t) − xD−1(t))2dt (5.17)

is minimized (D = C−1). We compute

∫∞
0

(xA,B(t) − xD−1(t))2dt =
1

4B

[
s2 −

16sx

(1 + x)3
+

1

x

]
,

s =
B2

A
≈ 1 , x =

D

B
≈ 1 . (5.18)

There is the Taylor expansion

s2 −
16sx

(1 + x)3
+

1

x
=

(s − 1)2 +

∞∑
l=1

(1 − x)l
{

(l + 1)(l − 2)

2l
s + 1

}
=

(s − 1)2 + (x − 1)(s − 1) + (x − 1)2

−(x − 1)3(
1

2
s + 1) + (x − 1)4(

5

8
s + 1) + ... . (5.19)

The leading quadratic form in the last member of Eq. 5.19 can be written as

(
x − 1 +

s − 1

2

)2

+
3

4
(s − 1)2 (5.20)

and is minimal 3
4 (s − 1)2 when x = 3−s

2 . We are thus led to take x = 3−s
2 .

Assuming A and B are known, we now have an expression for D (and C).
Hence, we have an approximation xC of xA,B.
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5.6.2 Computations for xC

In this section an overview is given of some characteristics of xC.

Energy

The energy ‖xC‖2 is

‖xC‖2 =

∫∞
0

(te−t − C2te−Ct)2dt = (1 − C)2
1 + 6C + C2

4(1 + C)3
. (5.21)

Fourier transform

The Fourier transform XC(ω) of xC is given by:

XC(ω) =

∫∞
0

(te−t − C2te−Ct)eiωtdt

=

(
1

1 − iω

)2

−

(
C

C − iω

)2

= −2iω(1 − C)
C − 1

2 iω(1 + C)

(1 − iω)2(C − iω)2
. (5.22)

Observe that XC(ω) = 0 at ω = 0, which again shows that xC is an admissible
wavelet.

Admissibility constant

The admissibility constant CxC
is computed as

CxC
=

∫∞
−∞ |XC(ω)|2

dω

|ω|

=

(
1 − C

1 + C

)2 {
2 − (1 + 4C + C2)

lnC2

1 − C2

}
. (5.23)

This admissibility constant is required when one wants to invert the wavelet
transform

f(τ) → CWTxC
[f](t, a) =

1√
a

∫∞
−∞ f(τ)xC

(
t − τ

a

)
dτ (5.24)

according to the inversion formula

f(τ) =
1

CxC

∫∞
0

∫∞
−∞ CWTxC

[f]

(
τ − t

a

)
da dt

a2
√

a
. (5.25)
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Vanishing moments

A further issue in Wavelet analysis is the desirability of vanishing moments.
We compute for k = 0, 1, ...∫∞

0
tkxC(t)dt = (k + 1)!

(
1 −

1

Ck

)
; (5.26)

when k = 0 this vanishes for all C. When k = 1, 2, .. this vanishes only when
C = 1. In the latter case we have xC=1 ≡ 0. Therefore, except in the trivial
case C=1, only the 0th moment vanishes.

5.6.3 Limiting case C → 1

As said, we have xC = 0 when C = 1. Experimental evidence [31] shows that
C ≈ 1, hence we consider the renormalized wavelet 1

1−CxC, and in particular,
its limit when C → 1. There holds

x(t) := lim
C→1

1

1 − C
xC(t)

= −
d

dC
[te−t − C2te−Ct]C=1χ[0,∞)(t)

= t(2 − t)e−tχ[0,∞)(t) . (5.27)

More precisely, we have

1

1 − C
xC(t) = x(t) + (1 − C)te−tR(t, C), (5.28)

where

R(t, C) = −1 + (1 + C)t + C2 1 − (C − 1)t − e−(C−1)t

(1 − C)2
. (5.29)

Now there holds for this R(t, C) that

R(t, C) = R(t) + ε(t) = −1 + 2t −
1

2
t2 + ε(t) , (5.30)

where the error ε(t) is of the order 1
6 |1 − C|t3e|1−C|t or less. For the leading

behavior R of R(t, C) we have

∫∞
0

te−tR(t)dt = 0 ;

−1 6 R(t) 6 1 , 0 6 t 6 4 . (5.31)
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Next an overview is given, of some characteristics of x(t). We compute

‖x‖2
2 =

∫∞
0

(t(2 − t)e−t)2dt =
1

4
, (5.32)

‖x‖1 =

∫∞
0

|t(2 − t)e−t|dt =
8

e2
= 1.082682266 . (5.33)

Furthermore, for the Fourier transform X(ω) of x we find

X(ω) =

∫∞
0

eiωtt(2 − t)e−tdt =
−2iω

(1 − iω)3
. (5.34)

The spectral version of Eq. 5.28 and 5.29 reads

1

1 − C
XC(ω) = X(ω) − 2iω(1 − C)

C − 1
2 iω + 1

2ω2

(1 − iω)3(C − iω)2
. (5.35)

The admissibility constant Cx of x is given by:

Cx =

∫∞
−∞ |X(ω)|2

dω

|ω|
= 2 . (5.36)

The wavelet transform of x, using x itself or the time-reversed signal x− as
wavelet are given by

CWTx[x](t, a) = 1√
a

∫∞
−∞ x(τ)x

(
t−τ
a

)
dτ =

e−t/a

a2
√

a
[−2at(t − 2)e2(−α, t)

+(2t2 + (8a − 4)t − 8a)e3(−α, t) − 12(t + a − 1)e4(−α, t)

+24e5(−α, t)], t > 0 , (5.37)

while CWTx[x](t, a) = 0 for t 6 0. In Eq. 5.37 we have set

el(β, t) =
1

βl

(
eβt − 1 − βt − ... −

(βt)l−1

(l − 1)!

)
= tl

∞∑
j=0

(βt)j

(j + l)!
(5.38)
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which is to be read as t2

l! when β = 0 in accordance with the last member of
Eq. 5.38. Also we have α = 1 − a−1 in Eq. 5.37. Furthermore we have

CWTx−(t, a) =
1√
a

∫∞
−∞ x(τ)x

(
τ − t

a

)
dτ =

t > 0 :
e−t

a2
√

a
[−2a

(
a

a + 1

)2

t(t − 2)

+

(
a

a + 1

)3

(2t2 − (8a + 4)t + 8a)

+12

(
a

a + 1

)4

(t − a − 1) + 24

(
a

a + 1

)5

] ,

t 6 0 :
e−t/a

a2
√

a
[−2a2

(
a

a + 1

)2

t(t + 2a)

+

(
a

a + 1

)3

(2t2 + (8 + 4a)t + 8a)

−12

(
a

a + 1

)4

(t + a + 1) + 24

(
a

a + 1

)5

] . (5.39)

We finally compute the moments of x as∫∞
0

tkx(t)dt = −(k + 1)!k , k = 0, 1, .. , (5.40)

and this vanishes for k = 0 only.

5.7 comparison to other wavelets in literature

In this section, the new wavelet x, a smoothed version of x and its odd
extension are compared to some wavelets described in literature.
Figure 21 shows the Cauchy wavelet and its Fourier transform [113].
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time t                                                                         frequency ω 

a.                                                                                   b. 

Figure 21: Cauchy wavelet x(t) = 1
2π(1−it)3 (imaginary part dashed), and its Fourier

transform X(ω) = ω2e−ω, from [113].

Figure 22 shows the Bessel wavelet and its Fourier transform [113].

 time t                                                                         frequency ω 

a.                                                                                   b. 

Figure 22: Bessel wavelet x(t) = 1
π
√

1−it
K1(2

√
1 − it) (imaginary part dashed), with

K1 a modified Bessel function of order 1, and its Fourier transform X(ω) =

e−(ω+1/ω), ω > 0, from [113].

Observe that x is real, causal and of simple form so that relevant data
concerning x can be computed analytically. Figure 23 shows the signal x(t)

and its Fourier transform |X(ω)| (solid lines). It can be seen that |X(ω)| decays
rather slowly, roughly like 2/ω2, as ω → ∞. This is due to the abrupt rise of
x(t) at t = 0.

In Fig. 23 (a) also a Gaussian window g is depicted (dashed line) by which
x(t) is to be smoothed. The resulting spectrum |X(ω)G(ω)| is depicted in
Fig. 23 (b) (dashed line) and decays quite a bit faster. Smoothing x(t) with
a Gaussian g yields a non-causal signal; also, it is certainly not so that a
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Figure 23: a. x(t) and a Gaussian window g. b. |X(ω)|, and |X(ω)G(ω)|.

Gaussian g is optimal and/or in complete agreement with physiology.

Odd extension of x

A different sort of modification is obtained when we consider the odd exten-
sion of x,

xodd = x(t) − x(−t) , t ∈ R , (5.41)

whose spectrum is given by

Xodd(ω) = 2i Im[X(ω)] = 4i
3ω3 − ω

(1 + ω2)3
, ω ∈ R . (5.42)

Figure 24 shows xodd(t) and |Xodd(ω)|. Note that xodd looks quite similar
to (the imaginary part) of certain wavelets that can be found in literature.
Compared to X(ω), Xodd(ω) decays more rapidly, like 12/ω3, as ω → ∞.
Furthermore, Xodd(ω) has a peak value that is 1.5 times larger than the peak
value of X(ω), and this peak value occurs at an ω that is more than 1.5 times
larger than the ω at which X(ω) has its peak value.

5.8 application to clinical data

Figure 25 shows three visual representations of the wavelet transform of
a modeled myoclonic seizure, using x as a model and two accelerometric
patterns from clinical data that are associated with a myoclonic seizure and an
other movement. The wavelet used is the time reversed version of x (matched
wavelet).
For the myoclonic seizure, the coefficients with the highest values lie in the
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Figure 25: Wavelet transform of x, an accelerometric pattern that is associated with a
myoclonic seizure, and an accelerometric pattern that is associated with a
movement that is not a myoclonic seizure.

2–8 range of scales. This agrees with the findings presented in [31]. Similar
behavior can be observed between the modeled myoclonic seizure and the real
myoclonic seizure. In the scalogram of the other movement we see high values
at high scales. This example shows that it is possible to distinguish between
myoclonic seizures and other movements using the wavelet presented in this
chapter.
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5.9 discussion

This chapter presents an analytical model for accelerometric patterns asso-
ciated with arm movements during myoclonic seizures. The model output
is compared to real patient accelerometer data from six patients. The values
of the model parameters tuned to real seizures are physiologically feasible.
Eight out of ten myoclonic seizures have a good fit to the model (correlation
coefficient > 0.7). The ACM-pattern associated with myoclonic seizures is
typical [30], although some myoclonic seizures are somewhat longer in dura-
tion and have a more repetitive pattern (No. 4, 6, and 9). Maybe in these cases
the neural input modeled as a pulse does not yield, but the input should
be represented by a series of pulses. This corresponds with the fact that a
myoclonic seizure can have either a spike and wave correlate in the EEG or
a poly-spike and wave correlate [7]. Using mean parameter values leads to
agreeable fits in six out of ten myoclonic seizures. The results imply that some
of the parameters might be robust for patient and seizure variability. Further
research will be done, with larger amounts of data to refine and optimize
these findings.
By choosing other types of stimuli for an input, the model has the possibility
to be extended for other types of simple motor seizures (clonic and tonic
seizures). Clonic seizures consist of repeated myoclonic contractions that
regularly recur at intervals between 0.2 and 5 times per second [3]. They have
series of (poly)spike-wave patterns as an EEG-correlate. The ACM-pattern
is rhythmic and the limbs show repetitive jerking. Tonic seizures consist of
sustained muscle contractions, and the EEG shows fast frequency activity.
The ACM-pattern has a typical block-like shape.
The presented analytical model can be helpful for feature extraction for de-
tection of myoclonic waveforms from ACM-signals. The model can be used
to study important characteristics of accelerometric waveforms during myo-
clonic seizures. It contributes to a better understanding of the patterns that
are observed in the ACM-recordings, and the model makes it possible to
derive parameters from the ACM-signal that have a physiological meaning.
Therefore this model-based approach can contribute to a solid detection
of myoclonic seizures. Furthermore a new wavelet, based on an analytical
description for accelerometric patterns associated with myoclonic seizures
has been introduced. Explicit computations are feasible for the frequency
response X(ω), the admissibility condition and admissibility constant, the
wavelet transform of x itself using x or its time-reversed version x− (matched
filter) as analyzing wavelet. The new wavelet, a Gaussian smoothed version
of it, and the odd extension of it, have similar appearances as wavelets known
in literature. It seems possible to distinguish between myoclonic seizures and
other movements using the wavelet presented in this chapter. Thus the wavelet
has potential in the detection of myoclonic seizures from accelerometric data
of arm movements of epileptic patients.
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This chapter is submitted to IEEE Transactions on Information Technology as:
T.M.E. Nijsen, R.M. Aarts, P.J.M. Cluitmans, and P.A.M. Griep. Time-frequency analysis of
accelerometry data for detection of myoclonic seizures [27].

6.1 abstract

A newly introduced model based matched wavelet transform (MOD) is
studied for its ability of detecting myoclonic seizures from accelerometric
(ACM) data. MOD is especially designed for myoclonic waveforms in ACM-
signals. This model based wavelet is compared to three other time-frequency
methods: the short-time Fourier transform (STFT), the Wigner distribution
(WD), and the continuous wavelet transform (CWT) using a Daubechies
wavelet. Real patient data are analyzed using these four time-frequency
measures. To obtain quantitative results, all four time-frequency methods are
evaluated in a linear classification setup. Data from 15 patients are used for
training and data from 21 patients for testing. Using features based on the
CWT and MOD the succes rate of the classifier was 80%. Using STFT or WD
based features, the classification succes is less. Analysis of the false detections
revealed that they were either clonic seizures, the onset of tonic seizures, or
sharp peaks in ’normal’ movements indicating that the patient was making a
jerky movement. The results show that both CWT and MOD are useful for
detection of myoclonic seizures. On top of that, MOD has the advantage that
it consists of parameters that are related to seizure duration and intensity that
are physiological meaningful. Furthermore, in future work, the model can
also be useful for the detection of other motor seizure types.

6.2 introduction

Epilepsy is a common neurological disorder that is characterized by recurrent
seizures, that are caused by hypersynchronous neuronal activity in the brain.
The clinical signs of seizures depend upon the location and extent of the
propagation of the discharging cortical neurons. Previously we reported the
potential value of accelerometry (ACM) for detecting seizures that have move-
ment as the most important clinical manifestation, so called motor seizures
[30]. It was found that 95% of the motor seizures consisted of characteristic
elementary patterns. These elementary patterns can be divided into three

75
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groups: myoclonic, clonic and tonic patterns. It was found that 74% of the
motor seizures detected, consisted of at least one myoclonic element. Myo-
clonic seizures are brief, shock-like jerks of a muscle or a group of muscles.
Muscles of the face, the neck, shoulders, and arms can be involved. During
a myoclonic seizure, the electrical activation of the muscles involved lasts
less than 50 milliseconds [7]. It is of clinical importance to detect these subtle
seizures. Often a patient has many myoclonic seizures during the night and
thus the sleep pattern can be disturbed. Severe motor seizures are often
preceded by myoclonic seizures and thus the detection of myoclonic seizures
could be used for early warning. Counting myoclonic seizures may also be
an important measure for successful medical treatment, especially in patients
that do not become seizure free after medical treatment.
This chapter presents a first approach for the detection of myoclonic patterns
from accelerometric data. The purpose of the methods under study, is to sup-
port off-line analysis for diagnostic and evaluation purposes. In our detection
setup, a supervised learning approach, which requires choosing appropriate
features and a classifier, is used.
Experience from more explored research areas, such as speech and audio,
shows that the success of classification critically depends on the choice of
features and much less on the complexity of the type of classifier [28]. There-
fore we focus on the study of suitable features rather than on classification
methods. In ACM-literature the choice for features depends on the type of
activities that are to be detected. For distinguishing between normal daily
activities, such as sitting, standing, lying, and movement in general, statistical
properties of the amplitude of the signal such as mean and standard deviation
seem to be effective [14]. When distinguishing between various complex move-
ment patterns, features derived from time-frequency measures such as the
short-time Fourier transform [20], or a wavelet transform [16] are also applied.
Seizure detection literature dominantly describes seizure detection based
on the EEG-signal. Seizure detection based on the ACM-signal is new and
new detection algorithms need to be developed. From EEG-based detection
methods we can learn that features based on morphological features (such
as amplitude and duration of a waveform and frequency) and wavelet based
features are successful to detect the sharp peaks and rhythmic discharges that
occur in the EEG-signal during epileptic seizures [59],[29].
Myoclonic seizures may be very subtle movements, and the amplitude in the
ACM-signal during such a seizure can be very low. Nevertheless, a small
transient can be visible in the signal, a short ’shock-like’ pattern. A model
was developed that describes the accelerometric output during a myoclonic
seizure [32]. In this chapter this model is used to formulate a matched wavelet
transform. This matched wavelet transform is used to derive features for the
detection of myoclonic seizures. Furthermore in this work three other time-
frequency measures are studied if they are suitable to derive salient features
for seizure detection. A comparison is made between the short-time Fourier
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transform, the continuous wavelet transform, and the Wigner distribution.
All four feature sets are evaluated in a discriminant analysis setup on clinical
data.

6.3 accelerometric waveforms

A myoclonus can affect muscles throughout the body but often only one limb
is involved, in most cases the arm. Figure 26 shows examples of ACM-data
during myoclonic seizures and other movements measured on the arm. A
myoclonic seizure is a twitch like contraction of an antagonistic muscle pair.
Flexion is dominantly innervated over extension, so the involved limb flexes
during the seizure. After the seizure the limb suddenly stops. This suddenly
stopping results in a sharp peak in the ACM-signal. Waveforms associated to
myoclonic seizures have a short duration (0.5–2 s), are asymmetric and seem
to damp out exponentially at the end. They can occur isolated (Fig. 26 A) or
in a sequence of other movement patterns (Fig. 26 B). Normal movements
have various appearances. Slow movements cause a block-shaped pattern in
the ACM-signal (Fig. 26 C). Rhythmic or jerky movements can cause sharp
peaks in the ACM-signal (Fig. 26 D).

6.4 model for myoclonic arm movements

A model was developed that describes the ACM-output —measured on the
arm— during myoclonic seizures [32]. The model description consists of a
mechanical part and a electrophysiological part. The electrophysiological
part contains the definition of stimuli and a muscle response to these stimuli
during the myoclonic seizure. The mechanical part is based on kinematic
and kinetic relations for the lower arm modeled as a rigid body system.
This part contains rigid body parameters that can be linked to body mass
and body length. In the model one agonistic muscle pair is included that is
synchronously innervated during the seizure [7]. The ACM-pattern X(t) in
the dominant movement direction, observed during a myoclonic seizure can
be analytically expressed by:

X(t) = K

(
te

−t
τ0 −

t

A
e

−t
Bτ0

)
χ[0,∞)(t) , t ∈ R, (6.1)

where constant K = 0.66
BM BL

F0
τ0

, F0 represents the intensity of muscle contrac-
tion, the relaxation time τ0 is related to the duration of muscle contraction,
BM represents the full body mass, and BL represents the full body length,
A and B are dimensionless constants. Both A and B are > 1. In this way an
alternating positive and negative net muscle movement is generated that is
necessary to generate the typical myoclonic ’shock-like’ pattern. In Eq. 6.1,
χ[0,∞)(t) = 0 for t < 0 and χ[0,∞)(t) = 1 for t > 0.
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Figure 26: A. An isolated myoclonic waveform. B. Myoclonic waveform in sequence
with other pattern. C Slow movement. D Non-myoclonic waveforms con-
taining sharp peaks.

Figure 27 shows this model fitted to an accelerometric waveform associated
to a myoclonic seizure. In a previous study it was shown that the values of
τ0 varied between 20 and 70 ms, and that this corresponds to physiological
values of motor units of a muscle responding to a twitch [32].

6.5 time-frequency methods

This section describes four different time-frequency measures that will be
used to analyse accelerometric waveforms. One of them is based on the model
described in section 6.4.

6.5.1 Short-time Fourier transform

For the short-time Fourier transform (STFT) of signal f, the signal is multiplied
by a window function h and then the Fourier transform of the product
function is taken [115]. By translating the window along the signal, the STFT
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Figure 27: Model fitted to real seizure waveform.

is able to analyse the frequency behavior of f during the time interval for
which h is localized.

STFTh[f](t, ω) =
1√
2π

∫∞
−∞ f(τ)h∗(τ − t)e−iωτdτ . (6.2)

As output the spectrogram is estimated as in (6.3).

SPh[f](t, ω) = |STFTh[f](t, ω)| . (6.3)

For h(t) a Hanning window is chosen, since this is often used with good
results. A myoclonic seizure can last shorter than one second, therefore a large
time resolution is desirable. The sample frequency of the ACM-signals used
is 100 Hz, this limits the choice for a window length. A window length of 50

samples is chosen. This corresponds to a frequency resolution of 2 Hz. A shift
of one sample with the STFT is chosen. A disadvantage of using the STFT
for myoclonic seizure detection is the trade off between time and frequency
resolution.

6.5.2 Wigner distribution

The Wigner distribution (WD) is a quadratic energy distribution, which dis-
tributes the energy of the signal over the time and frequency variables without
windowing. This windowing limits the resolution of the time-frequency de-
composition in case of the STFT and the CWT [115]. To our knowledge the
application of this technique to ACM-signals is new in literature.
It is known that the Wigner distribution, among other favorable properties,
achieves the best results in terms of spread in the time-frequency plane, com-
pared to other quadratic time-frequency distributions that belong to the same
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class [116].
For the WD, the Fourier transform is taken of the product of a signal f with a
translated version of itself (∗ denotes the complex conjugation):

WD[f](t, ω) =
1√
2π

∫∞
−∞ f(t +

τ

2
)f∗(t −

τ

2
)eiωτdτ . (6.4)

In contrast to the STFT and the CWT, the WD is a nonlinear operation. An
advantage of the WD is that there is a good time-frequency resolution. Since
the WD is an energy distribution a link can be made to mechanical energy,
that is expected to be different between normal movements and epileptic
movements. A disadvantage is that artefacts occur when multi-component
signals are analyzed, because of the quadratic character of the distribution.
These artefacts are known as cross-terms. These cross-terms can interfere with
the actual signal terms and make it difficult to interpret the time-frequency
plot. To avoid interference terms between positive and negative frequencies
the signal is transformed to its analytical version [117].

6.5.3 Continuous wavelet transform

The continuous wavelet transform (CWT) of a signal f(t), at the scale a and
position t is defined as:

CWTh[f](t, a) =
1√
a

∫∞
−∞ f(τ)h∗

(
t − τ

a

)
dτ , (6.5)

where h(t) is the wavelet base and ∗ denotes the complex conjugation [115].
While the STFT uses a single analysis window, the wavelet transform uses
short windows for analyzing high frequencies and long windows for analyz-
ing low frequencies. As the scale changes, the wavelet is localized better in
time, but worse in frequency and vice-versa. Nevertheless the use of various
scales seems appropriate since movements can have various durations and
intensities and thus take place on various scales. Furthermore, the shape
of the pattern observed during a myoclonic seizure resembles a wavelet. A
disadvantage of using the CWT for myoclonic seizure detection could be
the bad time localization at higher scales. As output, the absolute wavelet
coefficients are plotted in a scalogram:

SCh[f](t, a) = |CWTh[f](t, a)| . (6.6)

The output is calculated for scales 2–256. This choice is made because the
lower boundary for frequencies in normal movements is approximately 0.3
Hz [94]. The scale of 256 corresponds to a frequency of 0.26 Hz. A wavelet
base is used, that is suitable for the signal pattern of interest. Therefore the
fifth member of the Daubechies wavelet is used.
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6.5.4 Model based matched wavelet transform

Based on Eq. 6.1 a matched wavelet transform can be defined. In this case the
wavelet base h(t) is formed by:

h(t) = t(e−t −
1

A
e

−t
B )χ[0,∞)(t) , t ∈ R. (6.7)

This function satisfies the admissibility condition if A = B2, see [33] for more
details.
In a previous study, where the model is fitted to clinical data, it is shown that
this condition is met [32]. From this study the value 1.023 for B is obtained.
For the matched wavelet transform, the wavelet transform is performed with
a time reversed version of h(t). In this case the highest value occurs when
the signal waveforms matches the model best. Scale a is proportional to τ0.
Scale 1 corresponds to a value of τ0= 10 ms. It was found that the values
for τ0 in a myoclonic seizure vary between 20 and 70 ms, therefore scale 2

to 7 are important for the analysis of myoclonic seizures. For the distinction
between other movements that are longer in duration also the higher scales
are important, therefore in our analysis we include scales up to 50. As output,
again, the absolute wavelet coefficients are plotted in a scalogram.

6.6 patient data

For analysis and evaluation ACM-data are used from 36 mentally retarded
patients who suffer from refractory epilepsy. The patients are monitored
with the setup described in our previous clinical study [30], with five 3-D
sensors placed on the limbs and the sternum. The sampling frequency fs

of the ACM-signals is 100 Hz. For each patient at least one and maximal
three video fragments per seizure type (myoclonic, tonic, clonic) are selected.
In these fragments the patients should be in the scope of the camera. This
resulted in 156 video fragments with a total duration of 3.6 hours. Three
experts divided the corresponding ACM-signals into classes using both video
and accelerometric information. Available classes were: no movement, myo-
clonic seizure waveform, tonic seizure waveform, clonic seizure waveform,
normal movement, and unclear. For the evaluation study, only events where
two experts agreed on were selected. Events marked as ’unclear’ were also
excluded from the evaluation. In total 30 minutes of data were excluded.
The four time-frequency methods are tested for their suitability to detect myo-
clonic seizures in a linear discriminant setup. Therefore the data are divided
into a training and a test set. We aim for an approach that is robust among
patients. Therefore the training data consists of data from other patients than
the test data. For training, data from the first 15 patients are used (100.17

minutes). For testing data from the other 21 patients are used (79.2 minutes).
The composition of these data sets is listed in Table 11.
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Since our model-based approach is based on a model for arm-movements,

Table 11: Composition of Train- and Test data

A. Train data

type number of events total duration (min) mean duration (min)

no movement 116 56.2 0.48

movement 72 32.8 0.46

myoclonic 29 0.89 0.03

tonic 39 8.38 0.21

clonic 13 1.9 0.15

B. Test data

type number of events total duration (min) mean duration (min)

no movement 98 50.7 0.52

movement 39 20.3 0.52

myoclonic 35 1.1 0.03

tonic 30 4.8 0.16

clonic 7 2.3 0.32

only data from the arm-sensors are included. From the six arm-sensors
automatically the sensor is chosen on which the movement has the high-
est amplitude. The included sensor therefore can vary per patient and per
seizure. From video observations is known that during a myoclonic seizure,
in most cases the x-direction is the most dominant movement direction. The
characteristic waveform is most clearly visible and has the highest amplitude
in this direction. This hypothesis was confirmed with a statistical analysis,
where myoclonic data of all the six sensors were analyzed with histograms.

6.7 time-frequency analysis accelerometer patterns

6.7.1 Myoclonic waveforms

Figure 28 shows time-frequency and time-scale representations that are typical
for ACM-patterns associated with myoclonic seizures. The original ACM-
signal that belongs to this output is depicted in Fig. 26 A. There is a clear
distinct area in the spectrogram of the STFT. The frequencies where most of
the power is concentrated lie for all seizures in a range of 4–6 Hz. In the plot
of the WD, there is also a distinct area, but there are more high frequencies
present. The frequencies where most of the power is concentrated varies
from 5–8 Hz. For the scalogram of the CWT the observations are similar, the
coefficients with the highest values lie in the 8–60 range of scales. The scale
where the coefficients are maximal lies for all the seizures in a range of 9–39.
For the scalogram of the MOD, the coefficients with the highest values lie in
the 2–8 range of scales. This corresponds to the findings presented in [32].
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Figure 28: Time-frequency representations of myoclonic pattern. During the seizure,
there is an isolated area with high values visible in each plot.

6.7.2 Normal movements

Figure 29 shows a typical output for normal movements. The original ACM-
signal that belongs to this output is depicted in Fig. 26 C. Most of the power
in the spectrogram is concentrated beneath 2 Hz. In the case of the WD, the
frequency resolution is better and the main power is concentrated beneath
0.8 Hz. In the scalogram of the Daubechies wavelet, the highest values occur
in the scales ranging from 74–256. For the model based wavelet the range is
10–50. For normal movements that are more rhythmical and contain sharper
peaks it was observed that in the spectrogram high power values up to 30

Hz occur. For the WD, there is a noisy pattern visible, containing a lot of
frequencies (interference). In the scalograms high coefficient values occur also
in the lowest scales. Thus these sharp peaks seem to differ from the peaks
in myoclonic seizures. They have a broader frequency pattern, more like a
pulse. They have higher wavelet coefficients at lower scales, also more like a
pulse. Whereas myoclonic seizures have a more isolated frequency pattern
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(4–10 Hz) and higher wavelet coefficients in an isolated range of scales 8–60

or 2–8 depending on the wavelet used.
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Figure 29: Time-frequency representations of normal movement. For STFT and WD,
most of the power is concentrated in the lowest frequency band. For CWT
and MOD we see high powers in the higher scales (low frequencies).

6.8 evaluation of time-frequency features in detection setup

6.8.1 Detection setup

To evaluate their value for the detection of myoclonic seizures, for each
time-frequency measure, the spectral powers or absolute wavelet coefficients
are tested as features in a ’two-class’ detection setup. The two classes are:
’myoclonic seizure’, and ’other’. Hence, tonic, clonic, no movement and
normal movements are regarded as one class. The choice for only two classes
can cause that some of the false detections are actually one of the two other
motor seizure types. In the future, however, we aim for a detection setup
that consists of a number of ’two class’ modules, each module for a specific
movement type. Eventually, all the modules together will provide a detection
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system consisting of more classes.
As classification method Fisher’s linear discriminant analysis is used [118].
This is a classification method that projects the multi-dimensional feature
space onto one line. The projection maximizes the distance between the
means of the two classes while minimizing the variance within each class.
Classification is performed in the one-dimensional space that is thus created.
The performance per feature set is expressed in the percentage of myoclonic
seizures correctly classified (SEN), the number of false detections (FD), the
positive predictive value (PPV), which is the ratio between correct detected
myoclonic seizures and all events that are classified as a myoclonic seizure,
and the specificity (SPEC), that is the percentage of the data without myoclonic
seizures that is correctly discarded. Detected events are defined in a similar
way as in [31], but in this case the time-basis is 0.1 second instead of one
second.

6.8.2 Detection Results

Table 2 shows the performance for each feature set. Highest sensitivities (SEN)
are seen with the continuous wavelet transform (CWT) and the model based
matched wavelet (MOD). The sensitivity of the Wigner distribution (WD)
is poor. The performance of the short-time Fourier transform (STFT) is in
between the results of the wavelet methods and the Wigner distribution. All

Table 12: Detection performance for each feature set

feature set SEN PPV (FD) SPEC

STFT 0.71 0.16 (136) 0.89

WD 0.34 0.15 (67) 0.93

CWT 0.80 0.16 (148) 0.87

MOD 0.80 0.15 (155) 0.85

four methods have a similar value for the PPV. Specificity (SPEC) obtained
using these methods varies between 85 and 93 %. These are the percentages of
data without myoclonic seizures that are discarded correctly. Table 13 shows
the number of false detections and total duration of the false detections per
movement type. Here can be seen that STFT, CWT and MOD detect all the
clonic seizures in the data set. WD detects 5 out of 7 clonic seizures. Further-
more some of the false detections are at the onset of a tonic seizure. Most
of the false detections are in the normal movement periods. The analysis of
these patterns reveals that these events are sharp peaks in normal movements,
that occur during a jerky movement or when the patients arm bumps into a
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surrounding object. Slow normal movements are successfully distinguished
from myoclonic motor activity.

Table 13: False detection number and total duration per movement type

STFT WD

Movement type number total duration (min) number total duration (min)

movement 91 4.6 45 3.6
no movement 26 1.3 9 0.4

tonic 12 0.5 8 0.35

clonic 7 2.1 5 1.5

CWT MOD

Movement type number total duration (min) number total duration (min)

movement 92 6.0 101 6.8
no movement 37 1.5 35 1.6

tonic 12 0.61 12 0.66

clonic 7 2.2 7 2.2

6.9 discussion

Accelerometric signals measured in patients with epilepsy are analyzed using
the short-time Fourier transform (STFT), the Wigner distribution (WD), the
continuous wavelet transform (CWT), and a newly introduced model based
matched wavelet transform (MOD). ACM-waveforms associated with myo-
clonic seizures have similar time-frequency characteristics across all patients.
During myoclonic seizures most of the spectral power is in the 4–10 Hz range
and there is an isolated area visible in time-frequency representations of both
the STFT and the WD, although there are more interference patterns visible in
the case of the WD. For the CWT and MOD there is also a clear isolated area
of coefficients with high values at scales 8–60 and 2–8 respectively. Normal
movements have most of their spectral power in the 0–2 Hz range in the
spectrogram of the STFT. For the WD (that has a better frequency resolution)
the range is 0–0.8 Hz. For the CWT, the wavelet coefficients have the highest
values in the scales above 74 and for MOD most of the power is in the scales
above 10. In normal movements sometimes also more rhythmical sharper
waveforms occur but then still there are differences visible with the myoclonic
pattern. The sharp peaks in normal movements have a broader frequency
pattern (up to 30 Hz), and they have higher wavelet coefficients at lowest
scales.
Our quantitative results show that it is possible to distinguish between myo-
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clonic seizures and other movements. Sensitivities of both wavelet based
methods are higher compared to the other two methods.
Using the STFT leads to a sensitivity of 71 % but PPV is 0.16. There were 136

false detections detected. This is mainly caused by the fact that most of the
difference between the movement types occurs in the 0–2 Hz frequency band,
and for the STFT this is just one bin. The WD performs poorly, only 34% of
the myoclonic seizures is detected. The PPV is 0.15 and 67 false detections
were detected. This poor performance could be caused by the cross-terms that
are introduced by the WD. In literature much can be found about solutions to
decrease the contribution of these cross-terms [119]. Applying such a solution
could contribute to a valuable set of features.
Using the CWT leads to a sensitivity of 80% with a PPV of 0.16 and 148 false
detections. The model based method MOD has a similar performance with a
sensitivity of 80%, a PPV of 0.15 and 155 false detections.
As we can see all the methods have a similar PPV, and both wavelet methods,
CWT and MOD, have the best sensitivity for detecting myoclonic seizures.
The purpose of the methods under study, is to support off-line analysis for
diagnostic and evaluation purposes. The total duration of all false detections
together varies per method between 5.8 and 11.3 minutes. The total amount
of data in the test set was 79.2 minutes and 1.1 minutes of these data were
actual myoclonic seizures. In this perspective, the amount of data that needs
further analysis is considerably reduced. After analysis of the false detections,
it is observed that some of the false detections were actual motor seizures.
STFT, CWT and MOD detected all clonic seizures in the set. The WD detected
5 of the 7 clonic seizures. By definition clonic seizures consist of myoclonic
jerks recurring at a regular repetition rate [3]. The clonic events are longer in
duration and the ACM-amplitude is higher than during a myoclonic seizure.
Therefore on forehand, we decided to treat them as two different classes.
Nevertheless these results imply that similar features can be used for the
detection of clonic patterns. This will be a topic for further research.
Tonic seizures are more block-shaped in appearance, more like slow normal
movements, but in some cases also a false detection was seen at the onset of a
tonic seizure. This corresponds with findings of a clinical study that shows
that 67% of the tonic seizures in that study started as a myoclonic seizure but
evolved into a tonic seizure [30].
The majority of the false detections were sharp peaks during normal move-
ments. Slow normal movements are never falsely detected. This could be
expected since the analysis results showed that slow movements have very
distinct characteristics from myoclonic patterns. Sharp peaks on the other
hand resemble myoclonic seizures. In our analysis we observed some differ-
ence in the higher frequencies and lowest scales but our experimental results
in this stage do not confirm this observation. In future work we could focus
on features that distinguish between sharp peaks in normal movements and
myoclonic seizures.
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The results obtained for CWT and MOD are similar, but an advantage of our
newly introduced model is that it contains parameters that have a physio-
logical meaning. It was especially designed for the detection of myoclonic
seizures. In this setup we used 50 scales and obtained similar results as with
the CWT using 255 scales. For both methods this large number of scales is
not ideal. From the analysis is section 6.6 it can be observed that mainly the
lower scales and the highest scales are important. Therefore future work will
also focus on the optimization of the number of features.
Finally, in the future our detection algorithm can be incorporated, along with
other modules in a system that can also be used for a real-time alarm system.
The audio-triggered alarm system that is currently used in our institute de-
tects seizures with a sensitivity < 30% and positive predictive value (PPV) <

5% [92], can then be improved significantly.

6.10 conclusion

This chapter compares a newly introduced model based matched wavelet
(MOD) with the short-time Fourier transform (STFT), the continuous wavelet
transform (CWT), and the Wigner distribution (WD) for detecting myoclonic
seizures in accelerometric (ACM) data. The choice for time-frequency mea-
sures was made because of the nonstationary character of the patterns of
interest. To our knowledge this is the first attempt to detect myoclonic sei-
zures based on accelerometric recordings. This chapter demonstrates that
time-frequency measures can contribute to the detection of myoclonic wave-
forms from accelerometry data from epilepsy patients. Especially wavelet
based features are able to detect the seizures with a high sensitivity. An extra
advantage of our model based matched wavelet is that it consists of parame-
ters that are related to seizure duration and intensity and are physiological
meaningful. Also the model can be adapted so that it is useful for other motor
seizure types. Hence, our model based matched wavelet is a promising tool
for the detection of myoclonic seizures from accelerometric signals, and may
be extended to make part of a real-time alarm system.
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7.1 abstract

In this chapter a first approach is presented for the detection of ACM-patterns
associated with tonic seizures. Tonic seizures are a type of motor seizures
where the muscles go into tetanic contraction. In contrast to other motor
seizures, during tonic seizures the patient is not moving much, nevertheless
the muscles are heavily contracting. In ACM-signals a tonic seizure is charac-
terized by a block-like pattern that indicates a slow change of posture. On top
of this block-like pattern a small tremor is visible. First it is shown that during
tonic seizures the typical ACM-pattern is mainly caused by change of position
towards the field of gravity and that the acceleration caused by movement
is negligible. To this end a mechanical model of the arm and physiological
information about muscle contraction during tonic seizures are used. Then
for the dominant arm sensor, six features are computed that represent the
main characteristics of ACM-patterns associated with tonic seizures. Linear
discriminant analysis is used for classification. For training and evaluation the
algorithm ACM-data are used from mentally retarded patients with severe
epilepsy. It was possible to detect tonic seizures with a success rate around
0.80 and with a positive predictive value (PPV) of 0.35. A PPV of 0.35 implies
that one out of three alarms is genuine. For off-line analysis this is acceptable,
especially when 42 % of the false alarms are actually motor seizures of another
type. The missed seizures, were not clearly visible in the ACM-signal. For
these seizures additional ACM-sensors or a combination with other sensor
types might be necessary. The results show that our approach is useful for the
automated detection of tonic seizures and that it is a promising contribution
in a complete multi-sensor seizure detection setup.

7.2 introduction

Epilepsy is a neurological disorder that expresses itself in recurrent seizures
that temporarily impair brain function. The seizures are caused by hypersyn-
chronous neuronal discharges in the brain. Most of the people with epilepsy
can be treated successfully, with drug therapy or neurosurgery. Still, 25% of
the people affected can not be treated and have recurrent seizures [1]. A large
part of this group of refractory patients, is also mentally retarded. A large
number of these people is institutionalized. In these cases, seizure detection

89
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is important for the management of daily care. Information about seizure
frequency can be used to evaluate treatment effects and detections can be used
to trigger an alarm during severe seizures that require medical assistance. It is
known that in mentally retarded subjects, seizures often manifest themselves
in movements [91]. Therefore in mentally retarded subjects it is feasible to
use accelerometers (ACM) for automated detection of epileptic seizures [30].
The clinical manifestations of seizures depend upon the location and extent of
the propagation of the discharging cortical neurons. When the motor cortex
is involved this results in seizures that express themselves with movement,
so called motor seizures [3]. When the intensity of this stimulation is high,
the muscles can go into tetanic contraction [10]. This happens during a tonic
seizure or during the tonic phase of a tonic clonic seizure. In a previous
clinical study, we found that 64% of all the motor seizures in our population
consisted of a tonic element [30]. In contrast to other motor seizures, during
tonic seizures the patient is not moving much, nevertheless the muscles are
heavily contracting. In ACM-signals a tonic seizure is characterized by a
block-like pattern, that indicates a slow change of posture. On top of this
block-like pattern a small tremor can be visible. Figure 30 A. shows a tonic
seizure. Figure 30 B. shows a tonic-clonic seizure. The block-like change of
posture is very subtle and short and it evolves into a clonic phase with a
higher amplitude and frequency. Figure 30 C. and D. show two examples
of non-epileptic movements. Figure 30 C. represents a movement were the
subject is turning pages of a book. Figure 30 D. shows an example of high
frequency bursts caused by banging with a toy on a table.
This chapter presents a first approach for the detection of tonic patterns from

ACM-signals measured with one 3-D sensor placed on one arm. The purpose
of the methods under study, is to support off-line analysis for diagnostic and
evaluation purposes. In epilepsy related fields, ACM is only sporadically
mentioned in published literature and then ACM is not used for seizure
detection [24], [25], [26]. Seizure detection literature dominantly describes
seizure detection based on the EEG-signal [27]. For the detection algorithm
a supervised learning approach is used. Features are selected that represent
the most important characteristics that distinguish between tonic movements
and other movement types. For classification linear discriminant analysis
is chosen. Linear discriminant analysis is a widely used method to classify
multidimensional data with good results [120, 121].
First our features are calculated for ACM-signals obtained from refractory
epilepsy patients that were annotated by three experts. The optimal combi-
nation of features is determined by evaluating all possible combinations of
features on training data in a linear discriminant analysis setup. Second, to
study the robustness across patients, the optimal combination of features is
evaluated for its value for seizure detection on data from other patients.
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Figure 30: Examples of typical ACM-patterns, measured with one 3-D sensor on an
arm. A. Block-like pattern associated with tonic seizure. B. Tonic-clonic
seizure. C. ’Slow’ normal movement. D. ’Fast’ normal movement.

7.3 feature extraction

EEG-technicians are able to visually ’detect’ tonic seizures from accelerometric
(ACM) patterns because of the following features:

• There is a slow change in position of the limbs of the patients during a
tonic seizure, this results in a block-shaped pattern in the ACM-signal,
as can be seen in Fig. 30, that is slower than a normal change of posture.

• A small tremor of the limbs is visible, on top of the change of posture,
when the seizure evolves to a clonic phase, this tremor may evolve in
jerking of the limbs (clonic part of the seizure).

• Furthermore often more body parts can be involved, so the movement
pattern is synchronously visible at more than one 3-D ACM-sensor.

Before exploring the combination of multiple ACM-sensors, this chapter
focusses on detection based on one 3-D sensor placed on one arm. First we
need to see if it is possible to detect the characteristic pattern that is associated
with tonic seizures in only one sensor. To study the relations between all
involved sensors, is a topic for future research. The arms are chosen since the
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characteristic patterns are best visible on the arm-sensors. Thus, the two most
important features of ACM-patterns associated with a tonic seizure, are a slow
change in posture, represented by a block-like pattern in the ACM-signal,
and a low amplitude tremor. Other movement patterns in general are much
higher in amplitude and frequency. Changes of posture that are not associated
with epilepsy, can also result in block-like patterns, but our hypothesis is
that they vary in slope and duration and therefore can be distinguished from
tonic seizures. In the next section a number of features is described that
might contribute to the detection of ACM-patterns that are associated with
tonic seizures. First the model for myoclonic seizures is used to explain the
ACM-patterns that can be seen during tonic seizures. Then a set of features is
described that is based on the descriptions of the experts. Tonic seizures have
a duration between 10 and 20 seconds, but can vary between 2 seconds and 60

seconds [3]. Thus tonic seizures are relatively long in duration compared to
myoclonic seizures and normal movements. For feature extraction therefore
a time window of 10 seconds is chosen. All features are computed for the
dominant arm sensor.

7.3.1 Model for motor seizures

From other research areas it is known that features that incorporate mor-
phological characteristics of the pattern of interest are most successful for
pattern recognition [29]. To this purpose we developed an analytical model
that describes accelerometric patterns associated with myoclonic seizures [32].
The model was developed in such a way that it can be used for other motor
seizure types. The model consists of several parts. The first part describes the
innervation pattern that travels down from the brain to the muscles. Second,
a muscle force function is defined to describe the reaction of the muscles to
the innervation. Then the muscle force is applied to a mechanical system
that results in movement and an accelerometer output. During a myoclonic
seizure the innervation pattern of the muscles is a short pulse train, in the
model this is represented by a single pulse. The muscle response to a pulse is
defined by:

Fag(t) = Fsum(
t

τ
)e

−t
τ , (7.1)

where Fag(t) is the agonistic muscle response, Fsum is a constant that indi-
cates the force that can be produced by the muscle and τ is a general time
constant for all motor units together.
During tonic seizures the muscles are innervated with a long pulse train of
high frequency [10]. In our model this is represented by a block (u(t) = 0

if t < 0 or t > a and u(t) = 1 if 0 6 t 6 a ). The muscle force function and
mechanical system are similar as with myoclonic seizure [32] Therefore for
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tonic seizures the muscle force response is:

Fag = Fsum(1 − (τt − 1)e
−t
τ ) (7.2)

For physiological values of τ, the value of Eq. 7.2 goes rapidly to Fsum. For
the antagonist muscle the response yields:

Fant = AFsum(1 − (Bτt − 1)e
−t
Bτ ) (7.3)

Where A and B are dimensionless constants approximately equal to 1. The
value of Eq. 7.3 goes rapidly to AFsum. Thus the net value of both muscles
working together is approximated by (1 − A)Fsum. A has a value close to 1

therefore the net muscle force is very small. Hence, the arm is moving very
slowly in one direction.
An accelerometer signal measured during human movement, consists of a
part that represents accelerations due to the actual movements of the body
and a part that represents the position of the sensor in relation to the gravity
field. When there is no movement, the latter causes an offset in the signal
between -1 and 1 g. During a change of posture, the position in relation to
the gravity field can change, and thus the offset changes. For a simple 2-D
planar rotation of the arm, in the field of gravity, the acceleration (At) in the
direction of the movement then yields:

At(t) = −Rα(t) − gsin(θ(t)); (7.4)

where R is the distance between the elbow and the accelerometer, α(t) is the
angular acceleration, g is the gravitational constant and θ(t) is the angular
displacement. Using kinetic relations α(t) can be replaced by:

α(t) =
4.5

BMBL2
(Fag − Fant) (7.5)

where BM is body mass and BL is body length. Filling Eq. 7.5 in Eq. 7.4 leads
to:

At(t) =
4.5

BMBL2
((1 − A)Fsum) − gsin(θ(t)) . (7.6)

From this Eq. can be seen that the acceleration caused by movement is much
smaller as the acceleration caused by gravity. Thus the typical block-like pattern
is mainly caused by the gravity component that slowly changes.
Luinge et al. [122] estimate the gravity component with a Kalman filter, but
the gravity component is mostly estimated using a low-pass filter [14, 11].
Because for the detection of tonic seizures we are not exactly interested in the
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kinematics of the arm, we use the filter method. For this end each ACM-signal
xi is filtered with a first order low-pass filter with a cut-off frequency of 0.5 Hz.
xi represents one of the three signals from a 3-D accelerometer, i ∈ {1, 2, 3}.
The resulting signal xislw is used to calculate features that represent the
typical block-like pattern that is associated with tonic seizures.

7.3.2 Features for block-like pattern

The most important feature of ACM-patterns associated with tonic seizures
is the block-like characteristic caused by a slow change of posture of the
limb. The posture of the limb is approximated with xislw, for the change
of posture we can therefore use the first derivative (jerk), or the variance.
Furthermore because during a tonic seizure the movement is extremely
slowly, the amplitude of the ACM-signal is between -1 and 1 g. During other
movements there is more variation and the amplitude can be up to 2-3 g [94],
therefore the distance between the minimal and maximal value of xislw is
also a good indicator for tonic seizures.
The jerk Jyslw is defined as :

Jyslw[n] =

√√√√ 3∑
k=1

(
xkslw[n] − xkslw[n − 1]

∆t

)2

(7.7)

where ∆t is the sampling interval .
During a tonic seizure the arm very slowly changes position, thus the value
of Jyslw

is low. During other movement types the velocity of the position
changes is much faster and thus also Jyslw

. Per segment of N samples we
calculate the mean magnitude of the jerk Jy. For a segment length of 10

seconds with a sampling frequency fs of 100 Hz this means that N = 1000

samples.

Jyslw
=

1

N

N∑
n=1

Jy[n] , N = 1000 . (7.8)

The magnitude Yslw for the dominant arm sensor is:

Yslw[n] =

√√√√ 3∑
1

xk
2
slw[n] . (7.9)

The variance of the magnitude S2
Yslw for each segment is:

S2
Yslw =

1

N − 1

N∑
n=1

(Yslw[n] − Yslw)2 , N = 1000 , (7.10)
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with Y the mean magnitude:

Yslw =
1

N

N∑
n=1

Yslw[n] , N = 1000 . (7.11)

Since Jyslw is a linear measure and S2
Yslw quadratic the square root SYslw is

used. The hypothesis is that the change of posture is unnaturally slow, thus
SYslw

is lower for tonic seizures than for other movement types
For the distance between minimum and maximum signal values, the range
Ry is defined as:

Ry =

√√√√ 3∑
k=1

|max(xkslw[1 : 1 + L]) − min(xkslw[1 : 1 + L])|2 . (7.12)

The range Ryslw between the maximum and minimum value is in a smaller
range for tonic seizures than for other movement types.

7.3.3 Features for tremor

The block-like pattern is often accompanied by a subtle tremor, therefore
also the fast signal component xifst is used, to calculate features that are
indicative for this tremor. To create xifst, xislw is subtracted from the original
signal xi. Then the variance is also calculated for this fast component (SYfst

).

7.3.4 Features for other movements

For a discriminative feature set, features need to represent characteristics of
both tonic seizures and other movement types, this can also be motor seizures
of another type. Therefore features based on our model for myoclonic and
clonic seizures are included.
The continuous wavelet transform (CWT) of a signal f(t), at the scale a and
position t is defined as:

CWTh[f](t, a) =
1√
a

∫∞
−∞ f(τ)h∗

(
t − τ

a

)
dτ , (7.13)

where h(t) is the wavelet base and ∗ denotes the complex conjugation [115].
In this case the wavelet base h(t) is formed by our model:

h(t) = t(e−t −
1

A
e

−t
B ) (7.14)

This function satisfies the admissibility condition if A = B2, see [33] for more
details.
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To compare the performance with the other features, that are computed for
the discrete signals xi[n], the sampled versions of Eq. 7.13 and 7.14 are used.
Per sensor i the scalogram SCh[xi](n, a) is calculated using our model based
wavelet. Then the scalograms of the three 1-D sensors are summated:

SCh[xi](n, a) = |CWTh[xi](n, a)|2 , (7.15)

and

SCT(n, a) =

√√√√ 3∑
i=1

SCh[xi](n, a) . (7.16)

Frequencies of movements during daily activities, dominantly lie between 0.3
and 3.5 Hz [123]. Frequencies of clonic seizures typically lie in the range of
2–5 Hz [3] and accelerometer patterns of myoclonic seizures lie in the range
of 4–6 Hz [34].
For myoclonic (and clonic) seizures most of the power is in the range of scales
2-10. Our hypothesis is that during tonic seizures the power is concentrated
in the higher scales (6 0.5 Hz) because of the slow change of posture. Hence
the model based wavelet is used to calculate a scalogram for the scales 1-50.
For the detection of tonic seizures the ratio between the power in scale 2–10

and the total power (ERhigh) and the ratio between the power in scale 20–50

and the total power (ERlow) can be useful features:

ERhigh[n] =

∑10
a=2(SCT(n, a))∑50
a=1(SCT(n, a))

, (7.17)

ERlow[n] =

∑50
a=20(SCT(n, a))∑50
a=1(SCT(n, a))

. (7.18)

ERhigh because it is an important feature to discriminate between tonic
movements and myoclonic, clonic and fast normal movements. ERlow because
it is an important feature to distinguish slow (block-like) movements from the
other movements. Per segment of 1000 samples the mean values of ERhigh

and ERlow are determined:

ERhigh =
1

N

N∑
n=1

ERhigh[n] , N = 1000 , (7.19)

and

ERlow =
1

N

N∑
n=1

ERlow[n] , N = 1000 . (7.20)
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7.4 classification

To establish their value for the detection of tonic seizures the features are
evaluated in a ’two-class’ detection setup. The two classes are: ’tonic seizure’,
and ’other movements’. Hence, myoclonic, clonic, and normal movements
are regarded as one class. As classification method Fisher’s linear discrimi-
nant analysis is used [118]. This is a classification method that projects the
multi-dimensional feature space onto one line. The projection maximizes the
distance between the means of the two classes while minimizing the variance
within each class. Classification is performed in the one-dimensional space
that is thus created.

7.5 evaluation

7.5.1 Patient data

For evaluation ACM-data are used from 36 mentally retarded patients who
suffer from refractory epilepsy. The patients are monitored with the setup
described in our previous clinical study [30], with five 3-D sensors placed
on the limbs and the sternum. The sampling frequency fs of the ACM-
signals is 100 Hz. For each patient at least one and maximal three video
fragments per seizure type (myoclonic, tonic, clonic) are selected. In these
fragments the patients should be in the scope of the camera. This resulted in
156 video fragments with a total duration of 3.6 hours. Three experts divided
the corresponding ACM-signals into classes using video and accelerometric
information. Available classes were: no movement, myoclonic seizure wave-
form, tonic seizure waveform, clonic seizure waveform, normal movement,
and unclear. To get an indication of the value of a standard based on these
annotations the interrater agreement is computed for each pair of experts.
The measure that is used for the agreement is Cohen’s kappa κ [105]. This
statistic is most often used to measure agreement and takes into account the
agreement that can occur by chance. The range of κ is from -1 till 1, with
larger values indicating better reliability. For the evaluation study, only events
were selected, where two experts agreed on. Events marked as ’unclear’ were
excluded from the evaluation. For a seizure event to be included, the seizure
needed also to be visual in the EEG-signal. This resulted in a data set con-
taining data of 18 patients, 27 tonic seizures, 10 clonic seizures, 16 myoclonic
seizures and 36 normal movements.
The data is divided into three groups. We aim for an approach that is robust
among patients. Therefore the groups have no overlap in patients. From these
three groups, three training sets are created that are composed of data of
two groups. For each training set, the data of the remaining third group of
patients is used for testing.
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7.5.2 Performance measures

The performance per feature set is expressed in the sensitivity (SEN) the
percentage of myoclonic seizures correctly classified, the number of false
detections (FD), and the positive predictive value (PPV), which is the ratio
between correct detected tonic seizures and all events that are classified as a
tonic seizure. Detected events are defined in a similar way as in [31], but in
this case the time-basis is 10 seconds instead of one second.

7.5.3 Optimal combination of features

The three training sets are also used for the determination of the optimal
combination of features. To this end per training set the detection performance
of each combination of features is calculated. The optimal feature set, is the
feature set where all training sets obtain a PPV > 0.4 and where lowest
sensitivity of the three training sets is maximal.

7.6 results

7.6.1 Interrater agreement

Table 14 lists the values of κ for each pair of experts. The annotations were
made based on information based on both video and ACM. The agreement
can be considered moderate if κ lies between 0.41 and 0.6 and good if κ lies
between 0.61 and 0.8 [106]. Thus, with a mean value of 0.50 the agreement of
our experts can be considered moderate. This results is in agreement with
the findings of Parra et al. [124], who studied interrater agreements of three
epileptologists when they rated 138 seizures from 60 patients using the same
semiological seizure classification suggested by Lüders et al. [3] that was also
used by our experts. For the validation of our algorithm only events are used
where at least two experts agreed on plus that the seizure needed also to be
visible in the EEG signal.

Table 14: Interrater agreement κ for tonic seizures for each pair of experts

raters agreement (κ)
1 and 2 0.41

2 and 3 0.45

1 and 3 0.63

mean 0.50
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Figure 31: Minimal values (for the three training data sets) of performance measures
SEN and PPV per combination of features.

7.6.2 Feature selection

Per training set the detection performance of each combination of features is
calculated. Since there are six features, there are (26) − 1 = 63 combinations.
Figure 31 shows the minimal PPV and SEN of the three feature sets for every
feature set. The other two training sets thus have higher values for PPV and
SEN for the corresponding feature set. Sensitivity values with a corresponding
PPV > 0.4 are marked with a ’•’. Hence we see that there are five feature sets
with a PPV > 0.4. The feature set with the maximal sensitivity is the 60th

combination. This combination contains all features, except ERhigh.

7.6.3 Detection performance

Table 15 shows the detection performance on the training data itself with
the optimal feature set. Sensitivities are high. All tonic seizures except one
are detected. The one that is missed has a duration less than a second,
and therefore is difficult to detect with our window choice of 10 seconds.
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The positive predictive values lie around 0.40. Table 16 shows the detection

Table 15: Detection performance results on training sets

Training set TP FN FD Sen PPV
1 7 1 14 0.88 0.33

2 12 0 19 1.00 0.39

3 14 0 18 1.00 0.44

overall 33 1 51 0.97 0.40

performance on the three test sets. The values for SEN and PPV are slightly
lower than in the training phase. 80 % of the tonic seizures is detected with
a PPV of 0.35. Analysis of the false detections shows that 42% of the false

Table 16: Detection performance results on test sets

Test set TP FN FD FDsz Sen PPV
1 11 3 13 4 0.79 0.46

2 7 2 14 5 0.78 0.33

3 6 0 18 10 1.00 0.25

overall 24 5 45 19 0.83 0.35

positives is also a seizure. The other false positives are very slow change of
postures that have a long plateau. Based on ACM alone these false positives
are visually difficult to distinguish from real tonic seizures.
The five seizures that were missed were very subtle, in four cases there was
no block-shaped pattern, and no clear movement visible in the ACM-signal.
The remaining missed seizure is really short in duration (< 1 s).

7.7 discussion

In this chapter six features were defined based on the description of experts of
the characteristic patterns that can be observed in 3-D accelerometry(ACM)-
signals associated with tonic seizures [30]. It was found that a combination
of five of the features was optimal, and that it was possible to detect tonic
seizures from ACM-signals. This led to a sensitivity (SEN) of 0.83 and a
positive predictive value (PPV) of 0.35.

The variance and the jerk of the slow signal component (< 0.5 Hz), the
range from minimal to maximal signal value as well as the power ratio of
the higher scales (lower frequencies) in relation to the entire scalogram, are
important features for the detection of tonic seizures. This because they are all
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good indicators of the presence of the block-like pattern that is visible in the
ACM-signal associated with a tonic seizure. Furthermore the variance of the
fast signal component (> 0.5 Hz) is an important feature, because it describes
the presence of the subtle tremor that can also be visible in the ACM-signal
associated with a tonic seizure.
The sixth feature, the power ratio of the lower scales (higher frequencies) in
relation to all scales, did not contribute much extra to the performance of
the algorithm. This feature was added to describe the characteristics of fast
normal movements as well, but this feature appears to be redundant.

Four of the five tonic seizures that were missed, did not have the char-
acteristic block-like appearance in the ACM-signals. During a tonic seizure
the muscles go into tetanic contraction. Both agonist and antagonist muscles
contract heavily. Usually there is still a net force effect in one direction, and
then the affected limbs move slowly, but it can also happen that the net effect
is zero. Then there is no movement effect. It can also be the case that the
movement is blocked, because the limbs are fixed (for example against the
body, or against furniture). In these cases, where the seizures are not clearly
visible in ACM-signals, but the muscles are heavily contracted perhaps the
measurement of the EMG might be more useful [10].
The other missed seizure was very short in duration (< 1 s). Since the majority
of the tonic seizures in our population last between 5 and 10 seconds, a 10

seconds analyzing window was chosen. All features are averaged over these
10 seconds thus this window length was too long to detect this seizure.

A positive predictive value of 0.35 implies that one out of three alarms
is genuine. For off-line analysis this is acceptable, especially when 42 % of the
false alarms are actually motor seizures of another type (myoclonic or clonic).
Previously we reported that there are three characteristic pattern types visible
during simple motor seizures [30]. In this study, it was also shown that a
seizure can consist of a combination of these ’elementary’ patterns. Figure 32

shows the flow diagram of the patterns during the simple motor seizures in
our patient population. The transition of one pattern to another is not abrupt,
but gradually. This can be seen in Fig. 33 where an accelerometer signal
associated with an epileptic seizure is depicted. First there is a small twitch
visible that is associated with a myoclonic seizure, then the typical block-like
shape associated with a tonic seizure is visible. This gradually changes into a
clonic phase, thus both the jerking of the clonic phase as well as the block-like
pattern are present in the signal.
Thus besides that there are three types of clearly distinguishable ACM-
patterns associated with motor seizures, there are also patterns that are a mix
of these types. An algorithm trained for the detection of a specific seizure
type will also detect patterns that are of a mixed seizure type. For experts, this
distinction is just as difficult. The mean interrater agreement for our experts
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Figure 32: Flow diagram of seizure patterns during simple motor seizures in our
population [30].

on the data used for the evaluation was 0.50. This is a value that is similar to
agreement values found in literature [124].

In our seizure detection setup we have chosen for a modular approach,
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Figure 33: Example of motor seizure consisting of a mix of elementary patterns.

where patterns associated with myoclonic, tonic and clonic seizures are sepa-
rately handled. Nevertheless there is a percentage of seizures that manifests
in patterns that are a mix of the three types. Thus a part of the false posi-
tives from the separate modules will point to other motor seizure types. For
automatic analysis this is not a problem, since these are events that are also
clinically relevant. To separate these mixed forms (if this is of clinical interest)
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from the purely elementary movements is possible in a post processing step
using features like duration of event or amplitude.
The false positives that were not of a mixed seizure type, were slow changes
of posture, that based on the ACM-signal from one arm alone, visually can
not be distinguished from patterns associated with tonic seizures. Experts
also had all five 3-D ACM-signals, video and EEG available. Inclusion of new
features will not be useful to decrease the amount of false positives. Using
information from accelerometers placed on the other limbs might contribute
to a higher SEN and PPV in these cases. For the missed seizures that did not
have the characteristic appearance in the ACM-signal a combination with
other sensor types can be useful. The EMG-signal can be a useful source of
information because during motor seizures both agonist and antagonist mus-
cles are synchronously involved [10]. It is also possible to focus on another
effect of the seizure, it is known that many tonic seizures are associated with
an increase of heart rate, therefore heart rate is also a useful parameter for
detecting tonic seizures [45].

7.8 conclusion

This chapter shows the first quantitative results for the detection of tonic
seizures based on 3-D accelerometry (ACM) recordings.
Features were defined that represent the block-like characteristic and the
subtle tremor that is visible in ACM-signals associated with tonic seizures. It
was possible to detect tonic seizures with a sensitivity (SEN) of 0.83 and a
positive predictive value (PPV) of 0.35. The seizures that were missed, were
not clearly visible in the ACM-signal. For these seizures additional ACM-
sensors or a combination with other sensor types might be necessary. False
alarms were either motor seizures of a mixed type or slow normal movements
that visually can not be distinguished from tonic seizures based on one 3-D
ACM-sensor alone. The results show that our approach is useful for the
automated detection of tonic seizures based on 3-D accelerometry and that
it is a promising contribution in a complete multi-sensor seizure detection
setup.
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The use of accelerometry for seizure detection is new. This thesis presents the
first steps of the development of an accelerometry based seizure detection
system. It shows the added value of accelerometry for seizure detection
and the first results for algorithm development. Currently the motor activity
detection algorithm described in chapter 4 is already implemented in clinical
practice to improve the efficiency of off-line analysis. Using this algorithm a
substantial part of the data can be excluded from further analysis in order
to reduce the workload of the EEG-technicians. There are also plans for
implementing the algorithms for myoclonic and tonic seizures in a similar
setup. Ideally, in the future, these algorithms will be part of a real-time seizure
warning system based on accelerometry and heart rate [125]. To reach this
goal, there are number of steps that can be taken:

8.1 improvement of detection algorithms

A model based wavelet was especially designed for accelerometer patterns
associated with myoclonic seizures. Chapter 5 described the model itself and
the mathematical properties of the wavelet that can be derived from the model.
In chapter 6 this wavelet was compared to other time-frequency methods.
The model based wavelet outperformed the short time Fourier transform and
the Wigner distribution, but the detection performance was similar when the
fifth Daubechies wavelet was used. Advantages of the model based wavelet
over the Daubechies wavelet are:

• for the model only 50 scales instead of 255 scales were used,

• the model consists of physiological parameters such as body mass, body
length, seizure intensity and seizure duration,

• the model can also be used for other motor seizure types.

Future research needs to focus on the optimization of the use of this model
based wavelet. The optimum number of scales needs to be determined and
possibly other features can be derived from the wavelet coefficients.
For detection of tonic seizures our physiological model was used to show
that the pattern in the accelerometer signals associated with tonic seizures is
mainly caused by the gravity component of the signals. The gravity compo-
nent was estimated using a low-pass filter, and features were selected based
on the description of ACM-patterns associated with myoclonic seizures by
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human experts. The feature selection process could be improved by estimating
the gravity component with a more sophisticated method [122], thus acquir-
ing more detailed kinematic information. Furthermore detection of tonic
seizures would benefit from the combination of heart rate and accelerometry.
The movement patterns associated with tonic patterns are relatively slow, it
is known however that heart rate increases during tonic seizures [45]. Thus
fusion of these two modalities would improve detection performance.
This thesis describes detection methods for myoclonic and tonic movement
patterns. The third category: clonic movement patterns has not been covered
yet. The choice to tackle myoclonic and tonic patterns first is that these two
elementary patterns differ most from each other. The clonic movement pattern
lies more in between. By definition clonic seizures consist of myoclonic jerks
recurring at a regular repetition rate [3]. Furthermore tonic seizures often
evolve into a clonic phase. We found that features for both myoclonic and
tonic movement patterns were also sensitive to clonic seizures. Accelerometry
patterns associated with clonic seizures differ from myoclonic seizures in
duration and amplitude. Patterns associated with clonic seizures differ from
tonic seizures in amplitude and frequency. Therefore in a post-processing step
it should be possible to separate these. Then the methods described in this
thesis can also contribute to the detection of clonic and tonic-clonic seizures.

8.2 optimization of number of sensors

For the movement detection algorithm all 5 3-D sensors were used. Sometimes
one or two sensors were malfunctioning; in that case these sensors were
excluded from the calculations. Nevertheless all movements that were scored
by the experts were detected by the algorithm. This shows that not all the
five 3-D sensors are needed for movement detection. On the other side, the
detection algorithms for myoclonic and tonic seizures were based on only
one 3-D sensor placed on the arm. The arm was chosen using a priori clinical
knowledge, but for tonic seizures it was found that in 20% of the seizures 1

sensor was not enough. It is known that in generalized tonic and tonic-clonic
seizures often the entire body is synchronously involved. The use of more
sensors could give additional information whether a movement is associated
with a seizure or not. Future research could therefore focus on the optimal
number of ACM-sensors, and features computed using information from
combination of sensors.

8.3 combination of accelerometry and heart rate

For seizures that do not express themselves in motor phenomena 3-D ACM
can never suffice. Therefore an ideal seizure detection system will consist
of more sensor modalities. In our seizure detection programme we also use



8.4 use of clinical information 107

ECG and EEG [45, 90]. Research needs to point out what combinations of
sensor modalities are most suitable for various patient and seizure types.
In our experience, heart rate and accelerometry is a valuable combination
[125]. Future research will focus on the combination of the algorithms in
this thesis with a heart rate based detection algorithm [45]. The eventual
goal is a tailored seizure detection system that also takes into account prior
clinical knowledge, so that per individual patient the best seizure detection
is achieved, that not only can be used in a clinical environment but is also
suitable for home monitoring purposes.

8.4 use of clinical information

In chapter 2 of this thesis it was also found that for both the adaptation of
existing techniques and the development of new algorithms, clinical infor-
mation should be taken more into account. This should also yield for the
methods described in this thesis. A priori knowledge of seizure types should
be incorporated in the detection algorithm. In this thesis this was done, by
using only the ACM-signals measured on the arms for detecting the seizures.
Furthermore the model incorporates parameters that represent body weight,
body height, seizure duration and seizure intensity. The model is used as
a wavelet without using these parameters. Explicit use of these parameters
might improve detection performance. All methods described in this thesis
were trained in such a way that they did not have to be trained for each
patient individually. For the motor activity detection the linear threshold
function is robust for fluctuations across patients. We also found that the
model parameters of the model for myoclonic seizures, fitted to real data
where in a certain range and that these parameters were physiological feasi-
ble. Nevertheless for myoclonic and tonic seizure patterns it is interesting to
study individual differences. The use of patient specific information might
contribute to an even better detection performance.

8.5 types of seizures that can be detected

The methods described in this thesis are developed for the detection of motor
seizures with elementary movement patterns (simple motor seizures [3]).
In this thesis ACM-data was collected in mentally retarded subjects with
severe epilepsy. This patient group is known to have simple motor seizures
[91, 30]. As stated in chapter 2, it should be a topic of future research how
detection methods developed for specific patient types can be extended to
other patient types. This section discusses some possibilities of the application
of the methods developed in this thesis to other patient groups. This depends
on the occurrence of simple motor seizures in these patient groups.
The ’normal’ adult epileptic patients (not mentally retarded) often experience
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partial seizures. Of this group 33% have a focus outside the temporal lobe and
often in the frontal lobe, in this case myoclonic seizures can occur. Clinical
manifestations tend to reflect the specific area of seizure onset and range
from behavioral to motor or tonic/postural changes. When the primary
motor cortex is involved clonic or myoclonic movements can occur. When the
supplementary motor area is involved, unilateral or asymmetric bilateral tonic
posturing occurs. For the 67% of the patients that has seizures arising from
the temporal lobe motor activity is not the main clinical symptom, however
sometimes unilateral dystonic posturing of a limb also can be observed.
Generalized tonic-clonic seizures occur in all patient populations. These
seizures are most harmful to the patient and home situations most important
to detect. For these seizures the methods in this thesis are certainly useful.
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S U M M A RY

accelerometry based detection of epileptic seizures

Epilepsy is one of the most common neurological disorders. Epileptic seizures are
the manifestation of abnormal hypersynchronous discharges of cortical neurons
that impair brain function. Most of the people affected can be treated successfully
with drug therapy or neurosurgical procedures. But there is still a large group of
epilepsy patients that continues to have frequent seizures. For these patients automated
detection of epileptic seizures can be of great clinical importance. Seizure detection
can influence daily care or can be used to evaluate treatment effect. Furthermore
automated detection can be used to trigger an alarm system during seizures that
might be harmful to the patient. This thesis focusses on accelerometry (ACM) based
seizure detection.

A detailed overview is provided, on the perspectives for long-term epilepsy monitor-
ing and automated seizure detection. The value of accelerometry for seizure detection
is shown by means of a clinical evaluation and the first steps are made towards
automatic detection of epileptic seizures based on ACM. With accelerometers move-
ments are recorded. A large group of epileptic seizures manifest in specific movement
patterns, so called motor seizures.

Chapter 2 of this thesis presents an overview of the published literature on available
methods for epileptic seizure detection in a long-term monitoring context. Based
on this overview recommendations are formulated that should be used in seizure
detection research and development. It is shown that for seizure detection in home
environments, other sensor modalities besides EEG become more important. The
use of alternative sensor modalities (such as ACM) is relatively new and so is the
algorithm development for seizure detection based on these measures. It was also
found that for both the adaptation of existing techniques and the development of new
algorithms, clinical information should be taken more into account.
The value of ACM for seizure detection is shown by means of a clinical evaluation
in chapter 3. Here 3-D ACM- and EEG/video-recordings of 18 patients with severe
epilepsy are visually analyzed. A striking outcome presented in this chapter is the
large number of visually detected seizures versus the number of seizures that was
expected on forehand and the number of seizures that was observed by the nurses.
These results underscore the need for an automatic seizure detection device even more,
since in the current situation many seizures are missed and therefore it is possible
that patients do not get the right (medical) treatment. It was also observed that 95% of
the ACM-patterns during motor seizures are sequences of three elementary patterns:
myoclonic, tonic and clonic patterns. These characteristic patterns are a starting point
for the development of methods for automated seizure detection based on ACM.
It was decided to use a modular approach for the detection methodology and develop
algorithms separately for motor activity in general, myoclonic seizures and tonic sei-
zures. Furthermore, clinical information is incorporated in the detection methodology.
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Therefore in this thesis features were used that are either based on the shape of the
patterns of interest as described in clinical practice (chapter 4 and 7), or the features
were based on a physiological model with parameters that are related to seizure
duration and intensity (chapter 5 and 6).
In chapter 4 an algorithm is developed to distinguish periods with and without move-
ment from ACM-data. Hence, when there is no movement there is no motor seizure.
The amount of data that needs further analysis for seizure detection is thus reduced.
From 15 ACM-signals (measured on five positions on the body), two features are
computed, the variance and the jerk. In the resulting 2-D feature space a linear thresh-
old function is used for classification. For training and testing the algorithm ACM
data along with video data are used from nocturnal recordings in mentally retarded
patients with severe epilepsy. Using this algorithm the amount of data that needs
further analysis is reduced considerably. The results also indicate that the algorithm
is robust for fluctuations across patients and thus there is no need for training the
algorithm for each new patient.
For the remaining data it needs to be established whether the detected movement is
seizure related or not. To this purpose a model is developed for the accelerometer pat-
tern measured on the arm during a myoclonic seizure (chapter 5). The model consists
of a mechanical and an electrophysiological part. This model is used as a matched
wavelet filter to detect myoclonic seizures. In chapter 6 the model based wavelet is
compared to three other time frequency measures: the short time Fourier transform,
the Wigner distribution and the continuous wavelet transform using a Daubechies
wavelet. All four time-frequency methods are evaluated in a linear classification setup.
Data from mentally retarded patients with severe epilepsy are used for training and
evaluation. The results show that both wavelets are useful for detection of myoclonic
seizures. On top of that, our model based wavelet has the advantage that it consists of
parameters that are related to seizure duration and intensity that are physiological
meaningful. Besides myoclonic seizures, the model is also useful for the detection of
clonic seizures; physiologically these are repetitive myoclonic seizures.
Finally for the detection of tonic seizures, in chapter 7 a set of features is studied that
incorporate the mean characteristics of ACM-patterns associated with tonic seizures.
Linear discriminant analysis is used for classification in the multi-dimensional feature
space. For training and testing the algorithm, again data are used from recordings in
mentally retarded patients with severe epilepsy. The results show that our approach is
useful for the automated detection of tonic seizures based on 3-D ACM and that it is
a promising contribution in a complete multi-sensor seizure detection setup.



S A M E N VAT T I N G

accelerometry based detection of epileptic seizures

Epilepsie is een van de meest voorkomende neurologische aandoeningen. Epileptische
aanvallen zijn de manifestatie van abnormaal hypersynchrone ontladingen van neuro-
nen uit de cortex waarbij de hersenfunctie verstoord wordt en waardoor men tijdelijk
de controle over bepaalde lichaamsfuncties kan verliezen. De meeste mensen met
epilepsie kunnen succesvol behandeld worden met medicatie of neurochirurgie. Toch
is er nog een grote groep patiënten die ondanks behandeling nog steeds regelmatig
aanvallen heeft. Voor deze patiënten is het automatisch detecteren van epileptische
aanvallen erg van belang. Het detecteren van aanvallen kan invloed hebben op de
dagelijkse verzorging. Informatie over de aanvallen kan ook gebruikt worden om de
behandeling te evalueren. Verder kan automatische detectie van aanvallen gebruikt
worden om een alarmsysteem aan te sturen zodat er ingegrepen kan worden bij
aanvallen die gevaarlijk zijn voor de patiënt.
Dit proefschrift gaat in op het detecteren van epileptische aanvallen met behulp van
accelerometrie (ACM). ACM-signalen geven verschillende bewegingspatronen weer,
en een grote groep van epileptische aanvallen gaat ook met beweging gepaard, de zo-
genaamde motorische aanvallen. Een gedetailleerd overzicht wordt gepresenteerd van
de vooruitzichten voor langdurige epilepsie monitoring en automatische detectie van
aanvallen. De waarde van ACM voor het detecteren van aanvallen wordt aangetoond
met een klinische evaluatie. Daarnaast zijn enkele stappen gezet voor het automatisch
detecteren van epilepsie aanvallen met behulp van ACM.
In hoofdstuk 2 van dit proefschrift wordt een overzicht gegeven van de gepubliceerde
literatuur over beschikbare methoden om epileptische aanvallen te detecteren in sit-
uaties waarin patiënten voor een lange periode gemonitord worden. Op basis van
dit overzicht zijn aanbevelingen geformuleerd die gebruikt dienen te worden in on-
derzoek en ontwikkeling naar het automatisch detecteren van epileptische aanvallen.
Voor het detecteren van epilepsie aanvallen thuis worden andere sensoren dan het
EEG steeds belangrijker. Het gebruik van alternative sensoren (zoals ACM) is nieuw,
net als de algoritme-ontwikkelingen voor signalen afkomstig van deze nieuwe sen-
sor modaliteiten. Zowel voor het aanpassen van bestaande methodes als voor het
ontwikkelen van nieuwe methodes dient meer rekening gehouden te worden met
klinische informatie.
In hoofdstuk 3 wordt de waarde van ACM voor het detecteren van epileptische
aanvallen is aangetoond door middel van een klinische evaluatie. 3-D ACM- en
EEG/video-registraties van 18 patiënten met ernstige epilepsie worden hier visueel
geanalyseerd. Een opvallend resultaat van dit hoofdstuk is dat er veel meer aanvallen
visueel gedetecteerd zijn dan van te voren werd verwacht en dan er door de verpleging
gemeld zijn. Dit resultaat benadrukt de behoefte aan een automatisch detectie systeem.
In de huidige situatie worden veel aanvallen gemist en daardoor krijgen patiënten
niet de juiste (medische) behandeling. In dit hoofdstuk wordt ook aangetoond dat
95% van de bewegingen tijdens motorische aanvallen samengesteld zijn uit een of
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meerdere van drie elementaire patronen: myoclonische, clonische en tonische. Deze
karakteristieke bewegingen zijn een goed aanknopingspunt voor het ontwikkelen van
automatische detectie gebaseerd op ACM.
Op basis van deze uitkomst is een modulaire aanpak gekozen voor de detectie,
namelijk om aparte algoritmen te ontwikkelen voor motorische activiteit in het alge-
meen, myoclone en tonische aanvallen. Bovendien wordt er zoveel mogelijk klinische
informatie meegenomen in de detectie methodologie. Daarom worden er in dit proef-
schrift kenmerken (=features) gebruikt die of gebaseerd zijn op de te detecteren
patronen zoals ze beschreven worden door clinici (hoofdstuk 4 en 7), of op een fysiol-
ogisch model met parameters die gerelateerd zijn aan de duur en intensiteit van de
motorische aanval (hoofdstuk 5 en 6).
In hoofdstuk 4 wordt een algoritme beschreven dat onderscheid maakt tussen ACM-
data met en zonder beweging. Wanneer er geen beweging is, is er ook geen motorische
aanval. De hoeveelheid data die verder geanalyseerd dient te worden wordt zo gere-
duceerd. Van 15 ACM-signalen (gemeten op vijf posities op het lichaam) worden twee
kenmerken berekend, de variantie en de ’jerk’. In de 2-D feature ruimte wordt een
lineaire drempelfunctie gedefinieerd voor classificatie. Met dit algoritme wordt de
hoeveelheid data die verdere analyse nodig heeft gereduceerd. De resultaten geven
ook aan dat het algoritme robuust is voor variatie tussen patiënten en het is dus niet
nodig om het algoritme per patiënt opnieuw in te stellen.
Voor de data die als beweging zijn geclassificeerd moet worden vastgesteld of de
beweging een manifestatie van een epileptische aanval is of niet. Hiervoor is een
model ontwikkeld dat de versnelling bij een myoclone aanval beschrijft (hoofdstuk
5). Het model bestaat uit een mechanisch en een elektrofysiologisch gedeelte. Dit
model wordt in de analyse voorgesteld als een wavelet. In hoofdstuk 6 wordt deze
wavelet vergeleken met drie andere tijdfrequentie methoden: de short time Fourier
transformatie, de Wigner distributie en de continue wavelet transformatie met een
Daubechies wavelet. Alle vier de tijdfrequentie methoden zijn geëvalueerd met een
lineaire classificatie methode. Data van mentaal geretardeerde patiënten met ernstige
epilepsie zijn gebruikt voor training en evaluatie. De resultaten laten zien dat beide
wavelets (het model en de Daubechies wavelet) bruikbaar zijn om myoclone aanvallen
te detecteren. Onze eigen model gebaseerde wavelet heeft als voordeel dat hij fysiolo-
gische parameters bevat die zijn gebaseerd op de duur en intensiteit van de aanval.
Het model blijkt ook geschikt voor clonische aanvallen, die fysiologisch gezien ook
beschreven worden als zich repeterende myoclonieën. Tenslotte beschrijft hoofdstuk
7 een studie naar het detecteren van tonische aanvallen uit ACM-data. Een aantal
features is gedefinieerd die de belangrijkste karakteristieken bevatten die geassocieerd
zijn met een tonische aanval. Lineaire discriminant analyse wordt gebruikt voor classi-
ficatie in de multi-dimensionale feature ruimte. Voor het trainen en evalueren wordt
weer van data gebruik gemaakt die gemeten is in mentaal geretardeerde patiënten met
ernstige epilepsie. De resultaten van deze studie laten zien dat onze aanpak bruikbaar
is voor het automatisch detecteren van tonische aanvallen gebaseerd op 3-D ACM en
dat het een veelbelovende bijdrage is in een multi-sensor detectie systeem.
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