22 research outputs found

    Log-Gabor Orientation with Run-Length Code based Fingerprint Feature Extraction Approach

    Get PDF
    This paper aims to design and implement Log-Gabor filtering with Run-length Code based feature Extraction technique. Since minutiae extraction is an essential and core process of fingerprint Identification and Authentication systems, the minutiae features are enhanced in each orientation using Log-Gabor filter and features are extracted using the proposed method. Frequency domain is derived using FFT and they are enhanced by Log-Gabor filter for each orientation. In our method six orientations are considered; binarization, thinning are also followed. Fingerprint features are extracted using proposed method which possesses labeling and Run-length Coding technique. Our method is tested with the benchmark Databases and real time images and the results show the better performance and lower error rate

    A Novel Adaptive Approach to Process Binary Fingerprint Images Using Directional Morphological Operations

    Get PDF
    Abstract⎯An adaptive algorithm for removing false ridges, bridges and filling gaps in binary fingerprint images based on morphological operations is presented. A novel procedure for structuring elements design based on the specific fingerprint characteristic is described. Using the images from FVC2000 database, we have compared our method proposed here with the approach proposed by other ones. The Experimental results have demonstrated the efficiency of our method. Index Terms⎯Binary fingerprint image, interrupted ridges, morphological operation, structure element

    A Survey of Fingerprint Classification Part I: Taxonomies on Feature Extraction Methods and Learning Models

    Get PDF
    This paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.Research Projects CAB(CDTI) TIN2011-28488 TIN2013-40765Spanish Government FPU12/0490

    A survey of fingerprint classification Part I: taxonomies on feature extraction methods and learning models

    Get PDF
    This paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.This work was supported by the Research Projects CAB(CDTI), TIN2011-28488, and TIN2013-40765-P.

    Multi-Modal Biometrics: Applications, Strategies and Operations

    Get PDF
    The need for adequate attention to security of lives and properties cannot be over-emphasised. Existing approaches to security management by various agencies and sectors have focused on the use of possession (card, token) and knowledge (password, username)-based strategies which are susceptible to forgetfulness, damage, loss, theft, forgery and other activities of fraudsters. The surest and most appropriate strategy for handling these challenges is the use of naturally endowed biometrics, which are the human physiological and behavioural characteristics. This paper presents an overview of the use of biometrics for human verification and identification. The applications, methodologies, operations, integration, fusion and strategies for multi-modal biometric systems that give more secured and reliable human identity management is also presented

    A Multiple Feature Fusion System for Fingerprint Recognition

    Get PDF
    A number of different features, besides minutiae, have been used for fingerprint matching. Previous studies have shown that the performance of a fingerprint recognition system can be improved by combining these features with minutiae through a fusion strategy. However, most of these studies extract only a single type of feature for fingerprint recognition, and then fuse it with conventional minutiae-based method to improve performance. In this paper, in order to select the best fusion of fingerprint features, a comparative study of combining multiple features is firstly carried out on several fingerprint databases. All the comparing results show that, generally the more features being used, the better the performance is. However, beyond four features, the performance improvement is negligible. Based on these observations, a multi-feature based fingerprint recognition system using the best combination of the four features is proposed. The experimental results comparing to the-state-of-art algorithm show the effectiveness of the proposed system

    A computationally efficient framework for large-scale distributed fingerprint matching

    Get PDF
    A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science, School of Computer Science and Applied Mathematics. May 2017.Biometric features have been widely implemented to be utilized for forensic and civil applications. Amongst many different kinds of biometric characteristics, the fingerprint is globally accepted and remains the mostly used biometric characteristic by commercial and industrial societies due to its easy acquisition, uniqueness, stability and reliability. There are currently various effective solutions available, however the fingerprint identification is still not considered a fully solved problem mainly due to accuracy and computational time requirements. Although many of the fingerprint recognition systems based on minutiae provide good accuracy, the systems with very large databases require fast and real time comparison of fingerprints, they often either fail to meet the high performance speed requirements or compromise the accuracy. For fingerprint matching that involves databases containing millions of fingerprints, real time identification can only be obtained through the implementation of optimal algorithms that may utilize the given hardware as robustly and efficiently as possible. There are currently no known distributed database and computing framework available that deal with real time solution for fingerprint recognition problem involving databases containing as many as sixty million fingerprints, the size which is close to the size of the South African population. This research proposal intends to serve two main purposes: 1) exploit and scale the best known minutiae matching algorithm for a minimum of sixty million fingerprints; and 2) design a framework for distributed database to deal with large fingerprint databases based on the results obtained in the former item.GR201
    corecore