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Abstract

Biometric features have been widely implemented to be utilized for forensic

and civil applications. Amongst many different kinds of biometric characteris-

tics, the fingerprint is globally accepted and remains the mostly used biometric

characteristic by commercial and industrial societies due to its easy acquisition,

uniqueness, stability and reliability.

There are currently various effective solutions available, however the fingerprint

identification is still not considered a fully solved problem mainly due to accu-

racy and computational time requirements. Although many of the fingerprint

recognition systems based on minutiae provide good accuracy, the systems with

very large databases require fast and real time comparison of fingerprints, they

often either fail to meet the high performance speed requirements or compromise

the accuracy.

For fingerprint matching that involves databases containing millions of finger-

prints, real time identification can only be obtained through the implementation

of optimal algorithms that may utilize the given hardware as robustly and ef-

ficiently as possible. There are currently no known distributed database and

computing framework available that deal with real time solution for fingerprint

recognition problem involving databases containing as many as sixty million

fingerprints, the size which is close to the size of the South African population.

This research proposal intends to serve two main purposes: 1) exploit and scale

the best known minutiae matching algorithm for a minimum of sixty million

fingerprints; and 2) design a framework for distributed database to deal with

large fingerprint databases based on the results obtained in the former item.



Contents

1 Introduction 1

1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement and Research Objectives . . . . . . . . . . . . . . . . . 3

1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 5

2.1 Fingerprint Recognition Background . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Recognition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Texture-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Minutiae-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Fingerprint Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 NIST DB4 and DB14 . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Synthetic Fingerprint Database Generations (SFinGE) . . . . . . . . 10

2.3.3 Anguli: Synthetic Fingerprint Generator . . . . . . . . . . . . . . . . 10

2.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Binarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Ridge Following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 High Performance Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 General Purpose Graphical Processing Unit and CUDA . . . . . . . . . . . 14

2.6.1 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1.1 Branch Divergence . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.2 Memory Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.3 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.4 Global Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Constant and Texture Memory . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . 20

i



2.7.1.1 Streaming SIMD Extensions Instructions . . . . . . . . . . 20

2.8 Fingerprint Verification on Mobile Device . . . . . . . . . . . . . . . . . . . 21

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Methodology 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Developmental Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Recognition Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 MCC Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6.1 Cylinder Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.3 Fingerprint Matching and Recognition . . . . . . . . . . . . . . . . . 33

3.6.4 Baseline CPU Implementation and Optimisation . . . . . . . . . . . 35

3.6.5 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.5.1 Clusterisation . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.6 GPU Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Experiments and Results 48

4.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Conclusion and Future Work 56

Bibliography 58

Bibliography 63

ii



List of Figures

1.1 An image of a fingerprint with some of the important ridge characteristics. 2

2.1 (a) shows an original scanned fingerprint. (b) shows detected minutiae points

from the original fingerprint directed towards its orientation [63]. . . . . . . 9

2.2 (a) A synthetic fingerprint generated using Anguli. (b) Distortion added by

Anguli to the synthetic fingerprint template (a). . . . . . . . . . . . . . . . 11

2.3 Example of different quality of captured fingerprints adopted from [8]. The

fingerprint images are ordered from “good” to “bad” quality where (a) being

“very good” and (d) represents “very bad” quality images. . . . . . . . . . . 12

2.4 Sequence of binarisation process followed by thinning of image [39]. . . . . . 13

2.5 Illustration of branch divergence on a GPU based on Algorithm 1 demon-

strating the flow of the algorithm (left) and it’s associated behaviour in terms

of the distribution of threads (right). . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Global memory architecture [12]. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 A thread is likely to read from the nearby addresses that nearby threads read

[43]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Implementation of the SIMD computational model [21]. . . . . . . . . . . . 20

2.9 Eight XMM 128-bit registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 An example of one of the configuration file used to generate a group of 200,000

fingerprint data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 An example of a text file containing data of extracted minutiae from a fin-

gerprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 An example of a 3D cylinder with radius R and height 2π. The cells of the

cylinders are divided into Ns ×Ns ×Nd sections. . . . . . . . . . . . . . . . 29

3.4 An example of an enlarged convex hull where the corners represent convex

hull vertexes and Ω = 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Cylinder template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Overlapping block representation of a minutia cylinder of 256 bit-vector. . . 39

iii



3.7 Distributed fingerprint matching framework . . . . . . . . . . . . . . . . . . 44

3.8 Fingerprint enrollment process in the distributed fingerprint matching frame-

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Fingerprint identification process in the distributed fingerprint matching frame-

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Results of Experiment B. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Execution time (in milliseconds) for different size of dataset in Experiment

B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Results of Experiment C, displaying throughput (thousand matches per

second) for the increasing size of datasets. . . . . . . . . . . . . . . . . . . . 53

4.4 Execution time (in milliseconds) for different size dataset in Experiment C. 54

iv



List of Tables

3.1 Anguli configuration parameters with descriptions. . . . . . . . . . . . . . . 26

3.2 Parameter values for creating cylinders [4] . . . . . . . . . . . . . . . . . . . 32

3.3 Database structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 System specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 GPU device information used for experiments. . . . . . . . . . . . . . . . . 47

4.1 Parameter values used for matching.[4] . . . . . . . . . . . . . . . . . . . . . 50

4.2 Performance time of CPU implementations for ten queries on the complete

dataset (Experiment A) and its associated throughput (KMPS: thousand

matches per second) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Performance time of all the implementations for 100,000 queries on the com-

plete dataset (250,000 fingerprints) and its associated throughput (thousand

matches per second). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

v



Abbreviations

Abbreviation Meaning

HPC High Performance Computing

GPGPU General-Purpose Computing on Graphics Processing Unit

GPU Graphics Processing Unit

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

SIMD Single Instruction Multiple Data

MCC Minutia Cylinder-Code [4]

GUI Graphical User Interface

KMPS Thousand matches per second

FNMR False Negative Match Rate

FPMR False Positive Match Rate

vi



Chapter 1

Introduction

This dissertation conducts a detailed study comparing some of the best fingerprint matching

algorithms available. This assists in developing a real-time fingerprint identification frame-

work involving a large number of fingerprints. The framework is planned to be used for

interactive applications with real time fingerprint identification solution that promises to be

scalable and at the same time ensure minimal or no accuracy is compromised. This chapter

thoroughly discusses the background of fingerprint matching followed by the motivations

and objectives behind this research project. The chapter concludes with a brief overview of

the rest of the chapters.

1.1 Research Background

Biometric features were mostly used in the past for identification and verification purposes

in forensic applications. However, for the last two decades it has been widely implemented to

be utilized for civil applications such as access control, voters’ authentication, immigration

at border control, drivers’ license applicants etc [34, 22]. Many different kinds of biometric

characteristics (e.g. fingerprints, signature, iris, face, voice etc) have been intensely studied

and analyzed in the past [37]. In comparison with most, the fingerprint is widely accepted

and remains as one of the most used biometric characteristic by the commercial and in-

dustrial societies due to its easy acquisition, uniqueness, stability and reliability [48, 5].

Fingerprints are captured using contact-based scanners which require the placing of fingers

against a glass-like surface. These scanners are often used by multiple people and thus,

they are prone to finger sweats which raises health and hygiene related issues [32]. In or-

der to overcome these risks, many contactless fingerprint capturing techniques have been

introduced [33].

Fingerprint identification facilitates the replacement of the conventional authentication

systems that are based on passwords, identity cards etc [64]. Fingerprints are graphical
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flow-like ridges present on human fingers. Minutiae are the endpoints and bifurcations of

fingerprint ridges. Every human being is known to have unique and immutable fingerprints,

due to minutiae which remain unchanged over an individual’s lifetime [40, 62]. This leads

to a very discriminative classification of fingerprints [62]. The main minutiae points in a

fingerprint include ridge ending, bifurcation and short ridge as shown in Figure 1.1 [29, 24].

Minutiae and the pattern of ridges are very important when analysing fingerprints as the

uniqueness of a given fingerprint is based on them.

Figure 1.1: An image of a fingerprint with some of the important ridge characteristics.

These days many fingerprint identification systems are based on minutiae matching.

Thus, there has been ongoing progress to improve the performance in terms of accuracy and

processing time. In the past decade, scientists have made a significant amount of progress

in both fingerprint recognition algorithms and computational processors [40, 48]. There are

currently various effective solutions available, yet the fingerprint identification is still not

considered a fully solved problem. This is mainly due to accuracy and computational time

requirements [40, 4]. Although many of the minutiae based fingerprint recognition systems

provide good accuracy. There are systems with very large databases which require fast and

real time comparisons of fingerprints. But owing to the size of the database, they often
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either fail to meet the high performance speed requirements or compromise on accuracy

[62].

When dealing with scenarios that involve an arbitrarily large sized database where com-

putational time is crucial, High Performance Computing (HPC) is one of the tools that

promise an optimal solution by executing many processes concurrently in a reasonable

amount of time [57, 44]. Over the last decade, HPC has proven to be successfully imple-

mented in image comparisons [16, 44] and pattern recognition problems [54, 13, 56, 44]. For

fingerprint matching that involves databases containing millions of fingerprints, real time

identification can only be obtained through the implementation of optimal algorithms that

may utilize the given hardware as robustly and efficiently as possible. Currently, to our

knowledge, there is no known distributed framework available that has the capability of

dealing with a database containing as much as sixty million fingerprints, which is able to

solve the fingerprint identification problem in real time.

1.2 Research Motivation

The main motivation behind designing and implementing a distributed framework for fin-

gerprint matching are as follows.

• Real time matching system: The recent increase in demand for fingerprint recog-

nition systems require real time solution with large databases. This will help banks

and border crossing locations to minimize frauds, and produce accurate identification

to avoid administrative delays. This provides ease to the people that fail to produce

conventional identification documents, in real time.

• Accuracy and scalability: An effective way to provide real time fingerprint match-

ing for large databases is to implement parallel execution of computation using CPUs

and GPUs in a distributed system. There is very little research available on how a

distributed HPC system for fingerprint recognition with large databases may impact

the accuracy of the current best-known fingerprint matching algorithms. The frame-

work has to be thoroughly studied for analysis in order to determine whether it can

be efficiently scaled to support larger databases.

1.3 Problem Statement and Research Objectives

In this era where many effective solutions are available for a fingerprint matching system, the

processing time for large databases still remain significantly high. The fingerprint matching
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problem is comprised of two main sub-problems: verification and identification. Verifica-

tion is the process of determining whether two fingerprints namely Si and Sj belong to the

same person. This process requires one to one comparison and whereby computation time

is usually not a problem. Identification is the process of finding a matching fingerprint in a

database in order to identify its owner [44]. This involves one-to-many comparisons since

a fingerprint database (F ) is a set of N fingerprints, i.e, F = {F1, F2, . . . , FN}. Thus, for

a given (query) fingerprint Fq has to be compared with N fingerprints to find the finger-

print that provides the highest matching score against the given fingerprint Fq [44]. The

identification problem can be described as the verification process once for every fingerprint

in the database. Thus the major difference between verification and identification is the

complexity order [44].

Most of the fingerprint matching algorithms are implemented to achieve higher accuracy

and with very little focus on computation time. The issue of the processing time becomes

highly critical as the size of the fingerprint database increases. Although, some algorithms

do take computation time into consideration, however, working with large data sets remain

time consuming [44].

The problem is centered around designing a distributed system for parallelization of ex-

isting best known matching algorithms which provide real-time identification in a Big Data

environment with negligible accuracy degradation. Furthermore, the systematic scalability

of the distributed system is crucially important while maintaining the accuracy.

The major research objective is to design and implement an efficient and scalable dis-

tributed system that allow fingerprint matching to be performed in real-time or almost near

real-time. Furthermore, allowing us to analyse how the current best known algorithms react

when implemented in a parallelized large database environment.

1.4 Dissertation Organization

The remainder of this document is structured as follows. Chapter 2 presents the literature

survey on fingerprint matching algorithms, synthetic fingerprint creation, and paralleliza-

tion of some fingerprint matching algorithms on CPU and GPU. Chapter 3 outlines the

methodology that we intend to follow in order to answer our research question. Chapter 4

presents the achieved results. Finally, Chapter 5 summarises this research project followed

by a future work section.
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Chapter 2

Literature Review

The previous chapter outlined the main problem and techniques that surround fingerprint

recognition. This chapter investigates, identifies and presents a review of existing literature

techniques and algorithms used to solve the components related to fingerprint recognition.

It begins with a basic background of fingerprint recognition which is provided in Section

2.1 in order to gain a better understanding of the concepts. Furthermore, a discussion of

the importance of fingerprint recognition together with how fingerprints’ distinguishable

characteristics allow for each fingerprint to be unique.

Section 2.2 provides an overview of some of the general methods used in literature in

order to successfully perform fingerprint recognition, those being texture and minutiae.

The analysis from past research has shown several various feature extraction methods which

were considered for correctly identifying and extracting minutiae features.

Section 2.3 deals with the use of the fingerprint database and the necessity of developing

a synthetic fingerprint database generator. Section 2.4 discusses the two main feature ex-

traction methods which ensure an acceptable accuracy in determining a set of fingerprints

as unique, namely binarisation approach and ridge following. Those mentioned meth-

ods will be discussed further in detail on how they differ in comparison to other methods

along with their apparent advantages and disadvantages.

For comprehensive data analysis and increasing computational power, large scale com-

putation, Section 2.5 will introduce High Performance Computing (HPC). Section 2.6 intro-

duces the general purpose Graphical Processing Unit (GPU) which have taken over CPUs.

GPUs offer performance boosts which help greatly in parallelism. Section 2.7 will discuss

the differences and benefits of constant and texture memory. Finally, insight into how mo-

bile fingerprint verification works in mobile devices will be introduced in Section 2.8. It will

be shown that mobiles using GPUs for fingerprint feature extraction tends to be better and

faster.
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2.1 Fingerprint Recognition Background

Fingerprint recognition has been widely accepted due to its reliability and convenience

[64]. Over the last decade, there has been a significant amount of research which has been

conducted in the area of fingerprint recognition. Fingerprint recognition mainly involves

matching process which is to compare two fingerprints in order to establish a match be-

tween the fingerprints. Many different approaches have been suggested to provide effective

fingerprint matching solutions.

Given two fingerprints, the basic process of finding whether the fingerprints match (i.e

they belong to the same person) is to extract important features from the fingerprints and

compute the correlation between them. These important features refer to the patterns on

the skin. Those being, the characteristics of ridges, and minutia points, which make each

pattern unique and distinguishable.

The level in which these fingerprints correlate, determines whether the fingerprints are

indeed the same. Depending on the chosen technique, the fingerprint pair in question may

still be found to be the same. However, the fingerprints may vary in terms of size, orientation

and amount of information available. This situation is very probable in the case when the

enrolled fingerprint is taken in an environment which might be different when the query

fingerprint is captured [64].

2.2 Recognition Methods

There are three major types of fingerprint recognition methods depending on the informa-

tion extracted from fingerprint images, namely texture-based, minutiae-based and hybrid

methods which utilize both texture and minutiae information.

2.2.1 Texture-based Methods

These methods involve the extraction of features, rather than characteristics of minutiae.

These features from the fingerprint may include local orientation, ridge shape and texture

information. These methods allow major discriminatory information to be extracted with

high accuracy and reduce processing time compared to minutiae-based feature vector extrac-

tions. Although minutiae-based methods are considered to be more popular, texture-based

methods are specifically useful when the image quality is significantly low, thus reducing the

credibility of information being extracted from the image [63]. Basic texture-based methods

often fail to provide very high accuracy in the cases when fingerprints may be variant to

transformations. Recently, it is noted that more texture-based methods combining local
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and global fingerprint structures achieve acceptable accuracy and provide solutions that are

invariant to transformations [63].

2.2.2 Minutiae-based Methods

These methods have gained more popularity over other methods and have been widely ac-

cepted in the last decade. They work by extracting feature vectors from the fingerprints

and storing important information as mapping points in the multidimensional plane. These

points may comprise of several characteristics such as the minutiae coordinates (location),

orientations, type etc [65, 26, 38, 23, 59, 51, 63]. Previously, the minutiae based methods

involved performing a global fingerprint alignment. This technique often lead to higher com-

putation time required to match fingerprints as well as being less effective due to providing

inadequate robustness against deformations. In order to address the major shortcomings

of minutiae-based algorithms, the local minutiae matching based technique was introduced

[4]. This technique made significant contributions towards solving fingerprint distortion and

high computation time of fingerprint matching [4]. The local minutiae matching technique

uses structures that are immune to global transformations such as translation, rotation etc.

Furthermore, it allows a fingerprint matching process to reject a match at an early stage in

the case where the two fingerprints in question are completely different [4].

In the work proposed in [26], the authors present a fingerprint matching technique which

is one of the first approaches that successfully derived the relationship between minutia and

its neighbouring minutia for invariant distances and angles [4]. In this method, each minutia

is represented with a feature vector which is also dependent on its neighbours. Those feature

vectors in both fingerprints are compared in pairs with the assumption that the majority of

the corresponding pairs, in terms of relative angle and position, represent the same minutia.

This method ignores the translation and rotation problem [44].

In [9] the authors mainly focused on coping with errors even if the original fingerprint

has an altered shape of characteristics. A local matching technique is used to compute and

discretize every minutia with a fixed radius R which is then compared with the minutia of

other fingerprints. Once enough similarities have been found, it then modifies the radius to

cater for altered shape of characteristics problems [44].

Recently, Minutia Cylinder Code (MCC) was introduced which involves the use of local

and global fingerprint information for recognition [4, 44, 17]. It defines every minutia m

by parameters (x, y, θ), where (x, y) denote its location coordinates and θ is its orientation

[28, 62]. Figures 2.1a and 2.1b show a sample of a captured fingerprint and detection of

minutiae points respectively. The main reason it does not consider minutia type is that the
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feature extractors might make an incorrect classification for minutia type which could deem

the method to be unreliable.

MCC creates a 3-dimensional (3D) cylinder for each minutia m, which stores and rep-

resents the spatial and directional relationship between the minutia and its neighbourhood.

The cylinder’s height is 2π with a fixed radius, R, which makes all the cylinders have the

same size (base and height). Furthermore, every cylinder is divided and discretized into

ND sections and NS cells where each cell holds a value that represents the cell’s position as

well as the corresponding position and direction of neighbouring minutiae. Based on this

value, a cell can be classified as either valid or invalid, thus allowing only valid cells to be

included for the computational process of matching [44]. The final process is to compare

every cylinder, cell by cell of both fingerprints by accumulating the euclidean and hamming

distance to obtain the overall score of the match. This process continues for every other

fingerprint in the database, and then the corresponding fingerprint with the best score is

recommended to be the successful match. MCC is shown to be a state-of-the-art fingerprint

recognition method which provides efficient fingerprint matching with high accuracy.

2.2.3 Hybrid Methods

A minutiae- and texture-based algorithm was presented in [15]. It uses the combination of

textual and minutiae-based descriptors for obtaining orientation and frequency of a minutia

and representing a relationship between the minutiae and its neighbourhood. It then uses

the greedy matching algorithm based on alignment [58, 15] to derive the similarities between

the minutiae.

In [53], authors proposed a method involving statistical features extracted from the

fingerprint images. The features include

• entropy - calculated using the intensity histogram of the fingerprint image;

• correlation - computed based on a 2D median filter of the image;

• energy - obtained using 5-level wavelet decomposition.

The proposed method focused highly on accuracy and as a result no processing time was

reported.

[63] used global minutia and variant moments to demonstrate high performance match-

ing between fingerprints. In [59], it is demonstrated a matching algorithm that made use

of the similarity of local structures involving neighbouring minutiae. In [38], the author ex-

hibited the reliability of fingerprint recognition by changing the size of matching box based

on the distance from corresponding minutiae.
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(a) (b)

Figure 2.1: (a) shows an original scanned fingerprint. (b) shows detected minutiae points
from the original fingerprint directed towards its orientation [63].

2.3 Fingerprint Database

In order to verify and validate the performance and scalability of any of the above al-

gorithms, a database containing a sufficient amount of fingerprints is required. Usually,

collecting large amounts of fingerprints can be very time consuming and a rather expensive

activity. It is also challenging to find large fingerprint databases to be publicly available

due to security concerns associated with fingerprints. Hence, this concern requires the need

to generate a large number of fingerprints which can only be made possible through the use

of synthetic fingerprints. A fingerprint database which can be effectively used to support

fingerprint identification problem can be collected using:

2.3.1 NIST DB4 and DB14

The National Institute of Technology (NSIT) provides databases DB4 [60, 17] and DB14

[61, 17] with 2000 and 27000 of rolled fingerprint pairs respectively. The average number of

minutiae present in DB4 and DB14 is 135.84 and 206.9, respectively [17]. These captured

fingerprint databases can be beneficial in detecting whether the large scale distributed

system can deal with captured fingerprints. Although, these databases hold various types

of fingerprints, the amount of fingerprints available on the databased are not enough for the

large scale fingerprint identification problem that we aim to address. Since, this research
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involves working with large datasets, the quantity of the dataset is more important than

the quality.

2.3.2 Synthetic Fingerprint Database Generations (SFinGE)

Synthetic Fingerprint Database Generations (SFinGE) [6] allows for realistic fingerprint

images to be generated. This process randomly generates fingerprint minutiae, when given

some input parameters. Based on the minutiae, SFinGE derives a complete fingerprint

image that appears identical to a natural fingerprint. In order to create a natural-like

fingerprint, SFinGE first defines the global shape of the fingerprint, followed by generating

a consistent directional map to the shape. Hereafter, a density map is generated, and

finally a ridge-line pattern is generated in order to fabricate minutiae at random positions.

In order to make the fingerprint appear more natural, SFinGE performs a variation of

ridge average thickness, distortions, noise rendering and global translation/rotation to the

generated fingerprint [6].

Some experiments were conducted on SFinGE where 90 fingerprint experts were asked to

identify artificial fingerprints generated by SFinGE. Only 23% of the generated fingerprints

were identified to be artificial [6]. SFinGE has been proven to be very useful for performance

evaluation, learning and testing fingerprint based systems [6].

2.3.3 Anguli: Synthetic Fingerprint Generator

Anguli is an open-source application written in C++. It is an implementation of SFinGE

based on the techniques proposed in [6]. Its main purpose is to allow bulk synthetic finger-

prints to be generated with ease. Figures 2.2a and 2.2b are the examples of the fingerprints

generated using Anguli. In the figures it is first shown a random template of a fingerprint

(2.2a) which is followed by a distorted image of the fingerprint (2.2b) by adding noises and

a scratch to the original fingerprint template generated. Since bulk image generators often

tend to be time consuming, Anguli allows to generate bulk fingerprints in parallel using

multiple cores. It claims to produce a million fingerprints in less than four days using 8

physical processing cores running at 2 GHz clock speed. Anguli is compatible with ma-

jor operating systems such as Windows and Linux. The friendly GUI allows any number

of fingerprints to be generated with different configurations. Some of its major features

include:

• Generation of multiple impressions from a generated fingerprint;

• Saving of meta data;

• Setting a constant amount of fingerprints to be stored per directory;
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• Percentage of distortion added such as noise and scratch;

• Range of pixels by which the fingerprints are transformed.

(a) (b)

Figure 2.2: (a) A synthetic fingerprint generated using Anguli. (b) Distortion added by
Anguli to the synthetic fingerprint template (a).

2.4 Feature Extraction

Fingerprints are known to be unique mainly due to the distinguishable set of features they

posses [49]. It is therefore important for these features to be extracted robustly in order to

efficiently recognise fingerprints. Fingerprints are also prone to noise and distortions, thus

recognition systems are becoming more relied on feature extraction methods [55]. The noise

and distortion in the fingerprint image may occur due to variations in skin and impression

conditions such as scars, humidity, dirt, and nonuniform contact with the fingerprint capture

device [1]. Figure 2.3 provides visuals of the example of some of different quality of captured

fingerprint images.

There are various feature extraction methods proposed in the past which provide ac-

ceptable accuracy. While some of the feature extraction methods are based on a neural

network approach [36, 35], most of the feature extraction methods can be typically divided

into two main categories, namely binarised image approach and ridge following [10].

2.4.1 Binarisation

The binarisation method usually involves converting images into binary images. Further-

more, a thinning process is applied to the resultant binary image which allows the width
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Figure 2.3: Example of different quality of captured fingerprints adopted from [8]. The
fingerprint images are ordered from “good” to “bad” quality where (a) being “very good”
and (d) represents “very bad” quality images.

of the ridge lines to be minimised to a width of one pixel. The minutia detection process

then begins locating minutia, based on the amount of neighbouring pixels [39]. Figure 2.4

illustrates the process being implemented on a gray scale fingerprint images with resultant

images.

The main disadvantage of the binarisation method is that it may lose a significant

amount of information from the original image. Since binarised images usually follow a

thinning procedure to the edges, this could present false orientations of minutiae in the

fingerprint images, due to the sharp turns resulting from the thinning process.

Furthermore, the binarisation and thinning processes tend to be computationally ex-

pensive which may be critical in live recognition systems. Some of these shortcomings are

overcome by normalising and enhancing the images before applying the binarisation process.

However, a significant accuracy degradation still remains an issue [50].

2.4.2 Ridge Following

The ridge line following method involves working with gray level fingerprint images in order

to successfully detect minutiae [10]. The basic idea of this approach is to follow the ridge

lines until the line ends or splits. This method allows minutiae to be detected directly

from the gray-level images. To ensure no ridge line is processed more than once, when a

ridge line has been visited, it will be marked. This method was first proposed in [39] which

demonstrated the efficiency and superiority of the method compared to the binarisation

process. Further improvements to this method were later shown in [27].
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Figure 2.4: Sequence of binarisation process followed by thinning of image [39].

2.5 High Performance Computing

The advancement in research has shifted ahead the capacity of a single-core processor

to a large number of multi-core processors for comprehensive data-analysis, multi-level

simulations, and large-scale computation due to the increased complexity. Therefore, the

requirements for additional computational horse power have tremendously increased [3].

HPC is the practice of utilizing computer resources for aggregating computing power

and gaining maximum efficiency. The need for more processing power is met with closely

integrated computer systems that work in a parallel environment with many multi-core

processors, huge amount of storage and low latency interconnects. It is estimated that the

use of HPC will grow greatly in the near future [3].

The increasing demand of deployment of computer cluster/parallel computing has ex-

posed the need to exploit the area of HPC. A computer cluster is a type of parallel or dis-

tributed system, consisting of a collection of interconnected stand-alone computers which

work cooperatively together as a single integrated computing resource [46]. Computer clus-

ters improve performance of a system and are more cost effective than single computers.

There has been research conducted in the area of HPC, that are related to enhancing per-

formance in computer cluster using different tools and algorithms.

Most of the clusters which have a large number of compute nodes are mainly exper-

imental in nature. These days, GPU clusters deployed for production purposes are not

very rare anymore. It has been established that in order to maintain a balanced system,

especially when GPUs are heavily relied on to perform intensive calculations, other com-

ponents of the cluster such as memory, bus speed and network throughput need to be kept

consistent and matched with the GPU expected performance [30]. Thus, when designing a
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cluster architecture, considering all the performance issues is very significant in the HPC

environment.

Recently, we notice a trend where HPC is increasingly being utilised in the area of fin-

gerprint recognition problem. In [5, 45, 18], it is shown that the use of HPC techniques

produce significant increases in performance when used for fingerprint identification com-

pared to the conventional methods. Hence, in order to achieve better efficiency for large

scale fingerprint identification problem, the practices of HPC need to be considered.

2.6 General Purpose Graphical Processing Unit and CUDA

2.6.1 GPU

The field of High Performance Computing was largely dominated by CPUs until the rise

of an existing technology, newly applied to HPC, which is known as Graphical Processing

Unit (GPU). Single Instruction Multiple Data (SIMD) architecture is used in GPU devices

to introduce parallelism. GPUs are capable of performing up to trillions of computations

per second. Such performance is achieved through the data locality and parallelism of the

GPUs by dividing a given task among multiple processing units and solving the divided

parts simultaneously. Since the introduction of the first GPU, the GPUs have greatly

improved in performance, but the power consumption has also increased significantly [20].

Although GPUs are known to be power hungry devices, they provide very good performance

per watt ratio compared to CPUs. In order to achieve real time performance in fingerprint

identification with large datasets, GPU devices promise to be on of the best candidates, due

to its introduction of massive parallelism which reduces the computation time significantly.

While GPUs offer performance boost with massive parallelism, there are also some

limitations associated with it which needs to be adhered to when utilising a GPU.

2.6.1.1 Branch Divergence

It is not unusual for an algorithm to have conditional statements such as if-then-else,

switch or while loop. When these conditional statements are implemented they create a

possibility of thread divergence. Thread divergence could cause great performance degra-

dation therefore it is crucial to understand thread divergence in order to avoid a negative

impact on the performance.

While CPU manufacturers have invested an immense amount of effort into predicting

branch divergence to minimise the impacts of thread divergence, the impacts of branch

divergence are quite apparent on GPUs.
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Algorithm 1 Branch Divergence on GPU

1: if (threadIdx.x & 1) then
2: Path(A);
3: else
4: Path(B);
5: end if

A typical GPU warp consists of 32 threads. Branch divergence takes place when different

threads in a warp embarks on executing different paths. The different paths are traversed

one at a time until all have been visited. This causes different paths to be executed in a

serialised manner, thus defeating the purpose of parallelism. Algorithm 1 shows a basic

example of an algorithm that could cause branch divergence on a GPU. In this example,

threadIdx.x represents the id of the thread which ranges from 0 to 31 (32 threads). The

algorithm executes Path(A) for an odd and Path(B) for an even number of the thread id.

Figure 2.5 illustrates a graphical presentation of branch divergence in Algorithm 1. It can be

demonstrated from the example that either of the execution paths take half of the number

of threads. Since the threads in a warp cannot execute different paths concurrently, only

the threads which are part of the same execution path may run concurrently. Thus, the

total run time would be the total time for the execution of all the paths. Based on this, it

is noted that the example in Algorithm 1 would theoretically face about 50% performance

loss.

An alternative example shown in Algorithm 2 avoids branch divergence in Algorithm 1.

In this example, Path(A) is executed for all the threads whose id is less than 32. The algo-

rithm still creates different execution paths but are distributed over different warps/blocks

compared to Algorithm 1 where the different execution paths belong to the same warp.

Algorithm 2 Minimising Branch Divergence on GPU

1: if (threadIdx.x & 32) then
2: Path(A);
3: else
4: Path(B);
5: end if

2.6.2 Memory Divergence

Memory Divergence is considered to be another bottleneck that could cause major perfor-

mance degradation in applications which are memory-intensive by nature. It is believed

that memory divergence has the biggest impact on performance compared to other bot-

tlenecks. Once again, the memory divergence is typically associated to a group of threads
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Figure 2.5: Illustration of branch divergence on a GPU based on Algorithm 1 demonstrating
the flow of the algorithm (left) and it’s associated behaviour in terms of the distribution of
threads (right).

(warp) where each thread accesses data in the global memory which is not cache-line aligned,

thus having uncoalesced memory accesses. A warp size of 32 threads could have up to 32

individual cache accesses, resulting in an enormous high latency.

2.6.3 CUDA

When discussing GPUs, CUDA is often mentioned. CUDA is an architecture that provides

great performance increase by utilizing the GPUs. The platform provides an API that

enables developers to use GPU for general computing. CUDA has become dramatically

important to researchers and the number of institutes teaching CUDA is increasing. CUDA

can be used to overlap complete execution and I/O of GPUs [7].

When performing parallelization using libraries, parallel programs are prone to errors

and bugs that degrade performance. Research suggests that having a bug while executing

a CPU program with a couple of threads may have very low probability of occurrence.

The same will have a high probability of occurring in a program with a massive number of

threads. At the same time, debugging and testing tools are also not widely available in an

extreme parallel environment [2].
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2.6.4 Global Memory

Memory is the predominant aspect of any computing device as memory is present in almost

every device that performs some sort of processing. In particular, memory allows the system

or device to operate and perform the tasks as required. Global memory is the primary

memory that the GPU operates on and it’s a virtual address space that can be mapped to

the memory on the device, and this can be thought of as memory that is accessible by every

component of the GPU, and is usually dynamic [52].

Global memory plays a huge role on the performance of the GPU, which results in

the overall performance of the system being affected, especially when parallelism is a huge

concern. However, CUDA allows for more efficient parallelism through assisting programs

to decide on the most effective way to decompose a single, usually huge, problem across

threads using multithreading. This will ultimately allow threads to share and communicate

resources to solve problems. Ultimately, this is exactly where global memory become part

of the problem solving, as the processing done has to be stored on some mechanism.

With regards to performance, a GPUs primary concern is to manage global memory

latency without affecting the performance of the application. In these devices, threading is

a big part of ensuring that the device reaches the required performance standard. A solution

to this may be to create enough threads to occupy the GPU while the other threads are

waiting to access the global memory and resides in DRAM. This could mean that the

number of threads required will depend on the percentage of global memory access.

Another performance concern could be the limit of throughput due to global memory

bandwidth. This could be problematic as resources are usually limited and by reducing the

number of resources from a process to provide another process with more resources could

ultimately reduce the entire performance. Concurrently, limiting the number of threads

running simultaneously could result in pressure on global memory’s bandwidth. Alleviating

the pressure involves using additional registers and shared memory to reuse data [52].

Shared memory is expected to be a low-latency memory, which is similar to L1 cache.

Shared memory can therefore, provide for high-performance communication and data shar-

ing among the threads of a thread block [42]. The data in shared memory can be shared

among all threads in a thread block, enabling interthread data reuse. Shared memory is

also much faster than local and global memory, because it is on a chip. The two-way arrows

in Figure 2.6 indicate read/write capability where each thread can [31]:

• Read/write per thread registers;

• Read/write per thread local memory;
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• Read/write per block shared memory;

• Read/write per grid global memory;

• Read/only per grid constant memory.

Figure 2.6: Global memory architecture [12].

2.7 Constant and Texture Memory

In some cases, we may have data that doesn’t require any alterations, or the data is fixed.

This means there has to be a place to store constant data. Hence the need for constant

memory, this is used to store data that doesn’t change over a course of a kernel execution.

The use of constant memory as opposed to global memory will assist with the memory

bandwidth being reduced.

Besides reducing memory bandwidth, constant memory improves the speed of the CUDA

code for multiple reasons. Such reasons include constant memory that is widely known to

be cached which reduces the number of transactions of retrieval, and it is important to note

that reading threads that belong to the same address from cached memory is excessively
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faster than the traditional read. Constant memory resides in the memory of the device and

has a constant cache where all the caches are stored [52].

The downside of using constant memory is that the size of the cache is very small and

limited (usually 64KB), which means that the system has to perform operations extremely

fast in order to use and empty the cache as fast as possible. To avoid this issue, we could

copy the data needed to constant memory, followed by reading the data into cache. Once

the processing has completed, the data stored in constant memory could be removed.

Texture memory as constant memory, forms part of the read-only memory family. The

purpose of texture memory is to reduce the amount of time taken to execute a particular

operation, depending on the access pattern used. Texture memory is similar to constant

memory in the sense that both are on a chip and cached. This is extremely useful and

efficient as the number of memory requests to the DRAM off-chip will be reduced. The

main principle behind texture memory is that threads are more likely to read from memory

addresses that are located in a location that is in the near address domain of the adjacent

threads. Figure 2.7 demonstrates the access of memory by threads.

To achieve the best performance, the thread will have to read texture addresses that are

close to one another. This will significantly reduce the number of transactions made, thus

increasing performance. The benefit of using texture memory as opposed to global memory

is that performance should increase, since texture memory accesses neighboring locations

in memory, thus reducing access time considering the memory locations are adjacent to one

another.

Figure 2.7: A thread is likely to read from the nearby addresses that nearby threads read
[43].

The downside of using texture memory is that it is read-only which limits the use of data

stored in texture memory. As opposed to global memory, if coalesced, the read is signifi-

cantly faster and can be written and read consistently, unlike the read of texture memory

which could be slower in certain circumstances, especially when the memory locations are
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not adjacent and if the global memory is not coalesced, and texture memory is read-only

which limits the operations performed on the data stored in texture memory.

2.7.1 Central Processing Unit

2.7.1.1 Streaming SIMD Extensions Instructions

Streaming SIMD Extensions (SSE) has a set of eight registers each consisting of 128 bits.

Once data is loaded into the registers, the instructions are carried out directly and in

most cases the instructions are performed simultaneously. SSE instructions is one of the

multiple methods used to promote SIMD (Single Instruction and Multiple Data) parallelism

in common types of processors [25].

Single Instruction and Multiple Data stream is a class of Parallel computer [21]. This

describes computers with multiple processing elements that perform the same operation

on multiple data points simultaneously. Thus, promotes parallelism. SIMD is particularly

applicable to common tasks like adjusting the contrast in a digital image or adjusting the

volume of digital audio [21].

SIMD is a class of Parallel computers, whereby different sets of data are executed in

parallel. SIMD models are used for solving problems which have regular structures. The

advantage of SIMD is that it uses far less amount of hardware control, which results in

the performance being boosted and the level of parallelism in a SIMD system is typically

much higher. The reason why SIMD computers require less hardware is because they only

have one control unit [21]. Another advantage is that SIMD computers require less memory

since just one copy of the program needs to be stored. Figure 2.8 depicts how the SIMD

computational model is implemented in general.

Figure 2.8: Implementation of the SIMD computational model [21].
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In this organisation, multiple processing elements work under the control of a single

control unit. It has one instruction and multiple data streams. All the processing elements

of this organization receive the same instruction broadcast from the CU. Main memory can

also be divided into modules for generating multiple data streams acting as a distributed

memory as shown in the diagram. Therefore, all the processing elements simultaneously

execute the same instruction and are said to be ‘lock-stepped’ together. Each processor

takes the data from its own memory and hence it has on distinct data streams. (Some

systems also provide a shared global memory for communications.) Every processor must

be allowed to complete its instruction before the next instruction is taken for execution.

Thus, the execution of instructions is synchronous. As SSE instructions are specific and in

some cases unique to a processor, it would be beneficial to look up the version support for a

specific processor. In general, SSE code will run faster, if run on the supported processors,

and thus does not depend on so many factors.

The eight 128 bit registers were first implemented for single-precision computations and

processing, typically for float data types. SSE2, which extends on the SSE instructions

mainly to fully replace MMX, registers can make use of any of the primitive data types.

The eight registers can be visualized as in Figure 2.9.

Figure 2.9: Eight XMM 128-bit registers.

2.8 Fingerprint Verification on Mobile Device

As many latest mobile phones are launched with an integrated fingerprint sensor, online

applications that require authentication are being customized to allow fingerprint enrolling

and identity verification using mobile devices. The change in trend makes it important

for mobile application developers to implement power-efficient and real-time fingerprint
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recognition methods to be performed on mobile devices. In [48], fingerprint verification

using mobile devices is presented. Furthermore, it is shown that using mobile GPU for

fingerprint feature-extraction tends to not only be fast, but also more power efficient than

using mobile CPU [48].

2.9 Conclusion

This chapter introduced the various concepts necessary to understand fingerprint verifica-

tion, and the various methods used for fingerprint recognition from past literature. Those

methods being, texture and minutiae recognition which improve reliability and convenience.

Owing to the extraction of unreliable features caused by issues such as noise and distortion,

feature extraction methods such as binarisation and ridge following are used to combat such

issues, whereby ridge following is a more superior approach. Ultimately, although minutiae

based extraction may be more popular, texture based extraction provides a higher accuracy

and reduces processing time.

Subjects such as High Performance Computation is a very important field for optimi-

sation and for working with large datasets which require fast computation and a powerful

tool capable of processing a large number of data. Without the use of these powerful tools,

fingerprint recognition would not be an efficient process for feature extraction. However

in the field of HPC, CPUs have been slowly replaced by GPUs, which are more capable

of performing up to trillions of computations per second. However, due to their power

hungry nature, and other bottleneck issues such as performance degradation there are lim-

itations associated with it which needs to be adhered to. Those bottlenecks being, branch

divergence, memory divergence, and global memory. Where branch divergence minimizes

the impacts of thread divergence. GPUs are often associated with the CUDA architecture,

which provides great performance increase when utilising a GPU. Interestingly, the power

of GPUs can be used in applications such as fingerprint recognition on mobile devices to

check for identity verification.

Becoming familiarised with the literature from the past has helped to develop the

methodology implementation required to solve the objectives to the problem. The method-

ology will be stated in the following chapter.
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Chapter 3

Methodology

3.1 Introduction

The previous chapter presented various methods for fingerprint recognition and their appli-

cations. Having investigated this, this chapter presents and discusses the main goals of the

proposed research, along with the methods that have been collected through the literature

review process. Using the data collected and an analysis of the data, we can answer the

research questions.

This chapter explains and formally states the details of the research methodology. Sec-

tion 3.2 presents the developmental approach to solving the large scale fingerprint recog-

nition problem. Followed by a motivation to the chosen MCC recognition method being

the most flexible and scalable approach, in Section 3.3. Section 3.4 describes the process

of collecting data and the generation of each fingerprint data using the open-source project

Anguli. Section 3.5 then describes the feature extraction process from the data. Once all

the data in the database have been understood and processed for easy access, Section 3.6

begins the MCC implementation, and finally Section 3.7 provides and describes the layout

of the proposed distributed fingerprint matching framework. This optimised framework is

tested to check for accuracy and to analyse its performance.

3.2 Developmental Approach

The ultimate goal of this research is to develop a framework that fulfils the requirement

of large scale fingerprint recognition problem. There are a number of dependencies that

are crucial for the successful development of this framework. In order to implement the

fingerprint recognition framework, the following steps are conducted:

• Investigate the fingerprint recognition method that is flexible, scalable and can be

integrated in the proposed framework;
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• Implement a known fingerprint recognition method that promises good accuracy and

high performance;

• Generation of fingerprint data;

• Extracting of features from the data;

• Setting up and configuring database for easy access to bulk fingerprint data for anal-

ysis;

• Integrate the fingerprint recognition system in the framework and optimise it in the

current environment;

• Test the framework for accuracy and analyse performance.

These steps are further explained in the next sections.

3.3 Recognition Method

Currently, there are many state-of-the-art fingerprint recognition solutions available [41].

Recently, many of the proposed methods are minutiae based which are often related and

similar to previously suggested minutiae based methods. The reason for minutiae based

approach to be popular is known to be due to on going intensive amount of research con-

ducted on this approach. While many methods promise good accuracy, only few actually are

known to provide good overall accuracy while ensuring high performance with scalability

for a large-scale fingerprint recognition system. Amongst them, MCC [4, 44, 17] is known

to be one of the methods that is recently introduced and provides fingerprint recognition

invariant to rotation and translation. It also promises scalability with real time match-

ing performance. The flexibility provided by this method allowed us to further explore

this state-of-the-art technique. We decided to use MCC for this research project because

it is alignment-free and computationally light which fits our criteria perfectly. The full

description of MCC is given in section 3.6.

3.4 Data Generation

Due to the nature of the project, massive amounts of synthetic fingerprints were required.

Based on the literature, we find that SFinGe [6] method may be used to satisfy fingerprint

data requirement. Thus, we initially planned to implement the method as no algorithm is

provided with the method proposed. It was further discovered that an open-source project
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Figure 3.1: An example of one of the configuration file used to generate a group of 200,000
fingerprint data

Anguli as described in Section 2.3.3, is readily available for use which is based on [6]. Thus

Anguli was the best choice as it allows customisations to be made to its source code.

Anguli allows various different configurations to be used to generate fingerprint data.

These configurations were used extensively in order to ensure a variety of data is available

to be used for effective analysis.

The data is initially generated and distributed across many directories on multiple hard

drives. Each main directory includes 200 sub-directories where each sub-directory holds 1000

generated fingerprint data. This way, 200,000 total generated synthetic fingerprint data is

stored in a main directory. The process is repeated 300 times, enabling 60 million fingerprint

data to be generated in 300 main directories. For every group of 200,000 fingerprint data,

the same configuration parameters are used except for the seed value. Table 3.1 presents

the main parameters available with its description. Figure 3.1 shows an example of one of

the configuration file used to generate a group of 200,000 fingerprint data.

Anguli claims to be capable of generating about one million fingerprints taking close to

4 days when using 8 physical cores. Data generation in our environment resulted in similar

performance. Although, the Anguli source code could possibly have room for optimisation,

this was overlooked for now since fingerprint data generation for this project is a once off

task, and time spent optimising was not necessarily justified. In order to minimise the

number of days required to generate all 60 million fingerprint data, a computer cluster with

more than 40 nodes had to be configured and utilised to speed up the data generation

process.
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Parameter Input Description

NumFingerprints number Number of fingerprints to be generated.

FingerPerDir number Number of fingerprints per directory. Used only for
generating fingerprints. Default value is 1000.

ClassDistr distribution Fingerprint class Distribution. Class distributions are
natural, arch, arch, right loop, left loop, double loop
and whirl loop. Default distribution is natural.

ImpPerFinger number Number of impressions per fingerprints. Can be used
for generating fingerprints and impressions. Default
value is 0.

SaveMetaInfo None Enables saving of meta information, like class of fin-
gerprint, in text file of corresponding finger. Default
is disabled.

numThreads number Number of threads to be created for generating fin-
gerprints and impressions. Can be used for generating
fingerprints and impressions. Default value is 1.

NumScratches number
number

Minimum and maximum number of scratches to be
added to impressions. Default value is 0.

NoiseLevel number
number

Minimum and maximum number of noise levels[0, 8]
to be applied to impressions. Default value is 0.

Table 3.1: Anguli configuration parameters with descriptions.

3.5 Feature Extraction

Based on the literature survey above, there have been many suggested methods that can be

used to extract features. Extracting features from each fingerprint from the bulk dataset

could take an enormous amount of computation time. Since the aim of this research project

is mainly centered towards performance of fingerprint matching, it was deemed best to in-

clude feature extraction process within the data generation process. This strategy promised

to avoid delays caused by re-accessing of data for feature extraction after the data is gen-

erated and stored. Additionally, it also ensured accuracy as the main features could easily

be extracted while being generated thus not requiring additional methods to recognise and

then extract features which is also prone to some accuracy degradation. Anguli source code

had to be modified and recompiled to achieve this.

The process of extracting features combined with data generation increased the total

processing time of the process mentioned in Section 3.4 causing more work to be assigned

to each processing core of the computer cluster. The extracted features were stored in

a uniquely created file in the sub-directory as the original generated fingerprint, for easy

future access.

Since it was decided to use a minutiae based method for fingerprint recognition, while

considering extracting important information from the fingerprints, only those features were
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h
n
x1, y1, θ1

x2, y2, θ2
...
xn, yn, θn

Figure 3.2: An example of a text file containing data of extracted minutiae from a finger-
print.

extracted that were required for a minutiae based fingerprint matching method. In this case,

we extracted minutiae points (termination and bifurcation) and the orientation (angle)

of the points from the generated fingerprints. Figure 3.2 demonstrates the information

stored related to extracted minutiae points where the first line represents the width of the

fingerprint image; similarly, the second line indicates the height of the fingerprint image;

the value n in the third line reports the number of minutiae points extracted from the

fingerprint; and the third line is followed by n lines where each line represents the co-

ordinates (x, y) of the minutiae point in the fingerprint followed by its orientation θ (in

degrees).

3.6 MCC Implementation

Implementation of methods can be often time consuming and very complicated mainly due

to the fact that often proposed methods are not provided with the complete details which

makes it difficult to achieve the ideal results as claimed in the literature. In order to ensure

perfect MCC implementation, it was critical to follow the important details and use the

same parameters as used in [4]. Thus, before MCC could be implemented, the first task

was to get the necessary fingerprint minutiae data in the similar format as required by the

technique.

Since MCC is purely minutiae based fingerprint recognition method, its approach is to

use every minutia found in the fingerprint to create a unique spatial directional relationship

between the minutia itself and the neighbouring minutiae located within its fixed radius.

Let M = {m1,m2, ...,mn} be the set of minutiae of a fingerprint template M where mi is

defined by the parameters (xmi , ymi , θmi). The parameters xmi , ymi represent the location

coordinates of the minutia mi in the fingerprint template whereas θmi ∈ [0, 2π] denote the

orientation of the minutia. Using this information, for every minutia mi, a fixed size unique

structure is formed by creating a (3D) cylinder. The height of this cylinder is 2π and radius
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is predefined by R. The cylinder of a given minutia mi holds information related to the

neighbouring minutiae of mi which attributes to the uniqueness of the cylinder. The details

of how cylinders are created are discussed in the following subsection.

Based on the minutia parameters defined above, the extracted feature template as shown

in Figure 3.2 did not have to be modified much in order to obtain the desired minutiae

template format for our MCC implementation. Since the generated fingerprint contained

fixed width and height, it was not necessary to keep the dimension of the fingerprint image

in every template. Furthermore, for the sake of consistency and repeating the method with

the same details as proposed in [4], the θ value in Figure 3.2 was transformed from degrees

to radians.

3.6.1 Cylinder Creation

One of the major steps in MCC is to create a descriptor for each minutia. The cylinder

is centered at the minutia and represents the spatial and directional relationship between

the minutia and its neighbouring minutiae located within a fixed radius R. This descriptor

is created using a linearised cylinder whose dimensions are related to the directional and

spatial information and its volume contains the weighted spatial and angular distances.

This results in a fixed length descriptor which is invariant to rotations and translations and

may survive against skin distortions. Furthermore, computing similarities between these

cylinders from different fingerprints can be significantly fast. We use the proposed method

in [4] to compute these 3D cylinders for our dataset. The method briefly explains how the

cylinders can be computed. However, some of the steps mentioned are generalised with little

information. The details of major steps to create cylinders are left for the implementers to

figure out. As it can be understood the reason for not providing precise details of the steps

could be to maintain focus on the overall method presented.

Let M = {m1,m2, ...,mn} be the set of all the minutiae found in a fingerprint M . The

number of cells in a cylinder is defined by Nc = Ns×Ns×Nd where Ns and Nd are predefined

parameters representing the cylinder’s base and height respectively. For each minutia m,

Let cm = {c1, c2, ..., cNc} be the representation of the cylinder’s cells of a given minutia m

where cm,h ∈ {0, 1} and h ∈ [1, Nc]. For simplicity, cells of the cylinder can be represented

in 3D by 3 indices, namely i, j, k where i, j ∈ [1, Ns] denote the base of the cylinder and

k ∈ [1, Nd] denotes the height of the cylinder. Thus, h can then be represented using a

tuple (i, j, k) as h = Nd((Ns× (i−1)) + (j−1)) +k. Figure 3.3 provides a visualisation of a

cylinder. Furthermore, for each cell, the location Lmi,j of the center of the cell is calculated,

protruded on the base of the cylinder where
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Figure 3.3: An example of a 3D cylinder with radius R and height 2π. The cells of the
cylinders are divided into Ns ×Ns ×Nd sections.

Lmi,j =

[
xm
ym

]
+

2R

Ns
·
[
cos(θm) sin(θm)
−sin(θm) cos(θm)

]
·
[
i− Ns+1

2

j − Ns+1
2

]
[4] (3.1)

As discussed in Section 3.6, for every cell cm,h in a cylinder, a bit value is computed

which represents the spatial and directional contribution between the minutia m and the

minutiae found in the neighbourhood NLmi,j of the cylinder’s cell ∀ms ∈ M,ms 6= m and

Ds(ms, L
m
i,j) ≤ 3σS . Ds(a, b) is the euclidean distance between a and b and 3σS is the

predefined radius of the neighbourhood. The value for cm,h is then computed as [4]

cm,h = Z

(
Σms∈NLm

i,j

(
GS

(
Ds(ms, L

m
i,j)
)
·GD

(
dF (dϕk, dF (θm, θms))

)))
(3.2)

where

GS(y) =
1

σS
√

2π
e

(− y2

2σ2
S

)
(3.3)

is the Gaussian distribution of euclidean distances with the neighbourhood minutiae ms

and

GD(Γ) =
1

σD
√

2π

∫ Γ+ π
Nd

Γ− π
Nd

e
(− y2

2σD
2 )
dy (3.4)

where GD(Γ) represents the Gaussian distribution under a specific area with the predefined

standard deviation σD. dF (θa, θb) presents the directional difference between between θa

and θb whereas dϕk is the angle at height k defined to be
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dϕk = −π + (k − 0.5) · 2π

Nd
(3.5)

The function Z(w) is the logistic function (defined below) which takes the accumulated

spatial and directional contribution for a minutia and produces a value between 0 and 1.

Z(w) =
1

1 + e−τ(w−µ)
(3.6)

where µ and τ are part of the predefined parameters. Furthermore, the value of Z(w) is

converted to a bit value with

Z(w) =

{
1, 1

1+e−τ(w−µ) ≥ µ
0, otherwise

(3.7)

Additionally, the number of cylinder cells can be reduced by discarding the (invalid)

cells that do not produce enough information. This is achieved by creating a convex hull

[47] using all the minutiae in M and validating whether a cell falls within the convex hull.

The validation is defined as

cmi,h = ξ(Lmii,j ) =

{
valid Lmii,j ∈ CH(M,Ω)

invalid otherwise
(3.8)

where CH(M,Ω) is a convex hull of all the minutiae M which is expanded by Ω pixels [4].

The convex hull has to be expanded precisely in order to ensure the cylinder’s cells are

perfectly validated. We deduce that using a centroid point of M , the convex hull can be

efficiently expanded.

Let M = {mi}ni=1 where mi = [xmi ymi ] ∈ R2 with xmi , ymi representing the location

coordinates of minutia. The centroid of the minutiae points can be calculated as

CM =
1

n

n∑
i=1

mi (3.9)

where CM = [CM,x CM,y] is the centroid of the set M . Now let Mv = {v1, v2, · · · , vn}
be the vertices of the original convex hull of points M where vi = [vi,x vi,y] ∈ M . ∀i ∈
{1, · · · , n} the new expanded vertex vi can be computed as

vi ← α · (vi −CM) + CM (3.10)

where α is the scalar that is calculated using

α = 1 +
Ω√

v2
i,x + v2

i,y

(3.11)

30



Figure 3.4: An example of an enlarged convex hull where the corners represent convex hull
vertexes and Ω = 75

where Ω is the given number of pixels that the original convex hull is expanded by. Figure 3.4

demonstrates a sample convex hull together with an enlarged convex hull calculated using

the above method with Ω = 75. The corners represent the vertices in the dotted line convex

hulls.

We decided to pre-compute these cylinders for all the minutiae found in the fingerprints

from our entire dataset using our cluster computing facility. The creation of cylinders

revealed to be the slowest task to date. After our intensive investigation and considering

the steps taken in [5] to reduce the number of cells in a cylinder, we decided not to take

cells’ validity into consideration as it was noted that ignoring the validity of cells provides

almost no performance degradation when working with standard fingerprint acquisition

sensors. These cylinders when successfully computed, were stored in a template form for

each fingerprint separately. Figure 3.5 illustrates the template of the cylinders in which the

lines followed by n denote the cylinder values ci = [ci,1, ci,2, . . . , ci,Nc ] ∈ {0, 1}
Nc where ci is

the bitwise cylinder representation of minutia mi. The parameters used in creating these
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Table 3.2: Parameter values for creating cylinders [4]

Parameter Description Value

R Cylinder Radius 75

Ns

Number of cells
along the diame-
ter

8

Nd
Number of cylin-
der sections

5

σS
Standard devia-
tion

6

σD
Standard devia-
tion

0.436

Ω
pixels by which
convex hull is ex-
panded by

75

µ, τ
Sigmoid parame-
ters

0.005,400

minV C

Minimum number
of valid cells for
a cylinder to be
valid

20%

minM

Minimum number
of minutiae for
the cylinder to be
valid

1

cylinders are provided in Table 3.2 which are defined in [4]. The reason of creating all the

cylinders once off and storing them, is to avoid creation of cylinders for every fingerprint in

the dataset during fingerprint matching process. Computing of cylinders every time during

fingerprint identification process leads to a computationally demanding task which could

severely impact the fingerprint identification time.

3.6.2 Database

During the phase of cylinder creation for the entire dataset of fingerprints, we began storing

fingerprint’s minutiae information in a PostgreSQL database. We choose PostgreSQL for

its known scalability and strict data integrity capabilities. This was to ensure organised

collection and storage of data which could also be utilised in future. The database contained

300 tables with each table storing 200,000 fingerprint data. The division of the data was

conducted to allow faster and easy access to smaller chunk of data without the need to go

through the entire data. It also allowed the data to be distributed over several systems
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h
n
c1,1, c1,2, c1,3, . . . , c1,256

c2,1, c2,2, c2,3, . . . , c2,256
...
cn,1, cn,2, cn,3, . . . , cn,256

Figure 3.5: Cylinder template.

easily, thus providing scalability. Table 3.3 provides the structure of the tables. As it can

be noted that there are four 64-bit cylinderValue fields which represent the 256 bit cylinder

value of a minutia divided into chunks of four 64-bit values. The popCount value reflects

the total number of 1’s found in all the cylinderValue fields. This value was pre-computed

to avoid repeated computation of cylinder’s population count during fingerprint recognition

process.

3.6.3 Fingerprint Matching and Recognition

In order to find similarities between two fingerprints using MCC, according to [4], the

matchable cylinders of the fingerprints are compared pairwise to derive a local similarity

score. The local similarity score determines the likelihood of how similar the cylinders are.

Two cylinders, ci and cj are matchable if the directional difference dF (θi, θj) between their

minutiae (θi and θj) is less than the predefined threshold value δθ. Hamming distance can

then be used to find similarities between two cylinders. Subsequently, the similarity score

between the matchable cylinders ci and cj can be computed as

Hi,j = 1−
‖ci ⊕ cj‖
‖ci‖+ ‖cj||

(3.12)

where ci ⊕ cj is the exclusive or (XOR) between bit-vectors ci and cj, ‖ · ‖ is the norm

of bit-vector. The norm of bit-vector can be computed by calculating the square root of

the Hamming weight of the bit-vector. The Hamming weight of a bit-vector is simply the

number of non-zero values.

After the local similarities between all the cylinders’ of two fingerprints are computed

pairwise, the highest np similarity scores are selected to calculate the global (final) score

between the fingerprints. np defines the number of cylinder pairs (ci, cj) that are taken

for consideration to calculate the global score. The value of np is not usually constant

and depends on the number of minutiae available in two fingerprints [4]. However, we

define this value to be constant because the maximum np value that can be attained is
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Table 3.3: Database structure

Field Description datatype

fId
Unique identity
assigned to a
fingerprint

integer

minutiaId

Unique identity
assigned to a
minutia of a
fingerprint

integer

angle
The orientation of
the minutia

double

popCount
The number of 1’s
in the minutia’s
cylinder

integer

cylinderValue1
1 - 64 bits of the
minutia’s cylinder

bigint

cylinderValue2
65 - 128 bits of the
minutia’s cylinder

bigint

cylinderValue3
129 - 192 bits
of the minutia’s
cylinder

bigint

cylinderValue4
193 - 256 bits
of the minutia’s
cylinder

bigint
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12 in [5] whereas in our dataset, we don’t have any fingerprint with less than 12 minutiae.

Subsequently, for the identification problem, the global score is computed between the query

and every fingerprint in the database. The fingerprint (in the database) with the highest

global score against the query fingerprint is recommended to be the identical fingerprint,

given that the global score is above certain threshold (α). Checking of the best global score

against the threshold is necessary to avoid cases where the query fingerprint does not exist

in the database, which could produce false positive results.

3.6.4 Baseline CPU Implementation and Optimisation

In order to investigate the MCC method and identify gaps, we begin with the fingerprint

identification implementation by following the MCC baseline implementation and optimi-

sations suggested in [5]. Our baseline implementation shown in Algorithm 3 is derived from

[5]. The algorithm expects a template of a query fingerprint (Fq) as well as the templates

of N fingerprints F (dataset) to which the query fingerprint is expected to be matched and

identified against. The algorithm compares every minutia in the query fingerprint pairwise

with all the minutiae in the dataset fingerprints (F ). When two minutiae a and b are com-

pared, their similarity score is only considered after their directional difference dF (θa, θb)

is validated to be below the predefined threshold δθ. Once the similarity score for all the

minutiae of a fingerprint Fi is computed pairwise with the minutiae of query fingerprint,

the scores are sorted in descending order. After which the first np scores are selected and

their average is computed. This average (score) is then regarded as the global score between

Fq and Fi. This process is repeated for the rest of the fingerprints in F after which the

fingerprint with the highest global score is recommended to be the most identical fingerprint

to Fq, given that the score is above the predefined threshold value α.

We then apply the following optimisations to the baseline sequential implementation:

• Counting-sort [11] promises to significantly speed up performance compared to quick/merge

sort for sorting the local similarity scores. The speed up in performance is the result

of reduction of the computational complexity from O(n log(n)) to O(n + t), where t

represents the number of values into which all the local similarity scores are quantised;

• Instead of computing the norms of cylinders at every comparison, the norms are pre-

computed to reduce the computation time;

• Utilisation of SSE instructions on 128 bit registers reduces the number of SSE instruc-

tions required to compute XOR of the cylinders. Additionally, popcnt instruction is

used to calculate the number of non-zero values in a bit-vector;
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• A pre-computed look-up table is used to compute the square roots;

• Reducing floating-point operations by storing non-integer values as integers using

fixed-point arithmetic.

Algorithm 3 Baseline MCC Implementation

Input:
- Fq, Query Fingerprint
- N Fingerprints, F = {F0, F1, ...FN−1}

Output:
- k, index of the most identical fingerprint in DB with Hk,q ≥ α
- {∅}, if no identical fingerprint found.

1: highestScore = 0;
2: globalScores = new List();
3: localScores = new List < List > ();
4: for i = 0→ N − 1 do
5: localScores.Add(new List());
6: for each minutia Ma = (ca, θa) ∈ Fq do
7: for each minutia Mb = (cb, θb) ∈ Fi do
8: if dF (θa, θb) ≤ δθ then

9: score = 1− ‖ca⊕cb‖
‖ca‖+‖cb|| ;

10: localScores[i].Add(score);
11: end if
12: end for
13: end for
14: S = Sort(localScores[i]);

15: aggregateScore =
Sum(S[0:np])

np
;

16: globalScores.Add(aggregateScore);
17: if aggregateScore > highestScore then
18: highestScore = aggregateScore;
19: k = i;
20: end if
21: end for
22: if highestScore ≥ α then
23: return k;
24: end if
25: return Null;

After implementing the baseline algorithm (Algorithm 3) and the optimisations men-

tioned above, we successfully verify the results claimed by MCC [5] in terms of accuracy

and time. Our computation time is slightly lower than the ones claimed in [5] but this can

be justified by the fact that our CPU (harware specification is shown in Table 3.4) is not

as powerful as the one used in [5].
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3.6.5 Improvements

The above implementation is optimised and produces impressive results. However, we note

that the pairwise comparison between the query and fingerprints in the database is the most

computationally demanding task. Although, comparing every minutia (cylinder) pairwise

ensures the best accuracy, there are large amount of comparisons whose scores are discarded

and as such they do not influence the accuracy. Based on this observation, we deduce that a

new approach needs to be introduced to the MCC method in order to minimize the number

of comparisons made and achieve a reduced computation time without compromising the

accuracy.

3.6.5.1 Clusterisation

Let F = {F1, F2, ..., FN} be the number of fingerprints in the dataset with Fi = {m1,m2, ...,mni}
being the set of ni arbitrary number of minutiae belonging to fingerprint Fi. Calculating the

global score between two fingerprints (Fi and Fj) involve calculating the similarity scores

pairwise between the fingerprints where only the best np (np ≤ ni × nj) scores are used

to calculate the global similarity score. In other words, the np scores that are chosen to

compute the global score, derive only from the np cylinders (for a specific fingerprint) which

have the highest similarities with the cylinders of the query fingerprint. This encourages

us to clusterise the cylinders of the fingerprints in the database based on the position of

the bits in the bit-vectors (fingerprint’s cylinders). Furthermore, the query cylinder may

then be compared only against the cylinders of the cluster whose centroid (average) value

has the highest similarity with the query cylinder. This approach promises to reduce the

overall amount of comparisons previously made, thus bettering the identification time.

Method A

Our first approach of clusterisation is using k-Means clustering [19] where we dis-

tribute cylinders based on their Hamming distance against the cluster’s centroids. Let

F = {F1, F2, ..., FN} be the set of N fingerprints in the database and Fi = {ci,1, ci,2, ...ci,ki}
be the set of ki arbitrary number of minutiae cylinders for fingerprint Fi where ci,j ∈
{0, 1}256. Let Mc = {c1,1, c1,2, ..., c1,k1 , ..., cN,1, cN,2, ..., cN,kN } be the set of cylinders of all

the fingerprints in F . For the ease of notations, let Mc = {c1, c2, ..., ck} where k is the total

number of minutiae (cylinders) in all the fingerprints F i.e, k =
∑N

i=1 ki. We define the set

of the clusters to be S = {S1, S2, ..., SNk} where Nk is the predefined number of clusters

and Si = {ci,1, ci,2, ...ci,ni} with ci,ni ∈ {0, 1}256 and ni be the arbitrary number of cylinders

allocated to Si. Then, the centroid of these clusters can be defined as C = {C1, C2, ..., CNk}
where Ci ∈ {0, 1}256. Initially, a random cylinder c ∈ M is allocated each centroid Ci.

Hence, every cylinder cp ∈Mc, is allocated to a cluster in S using
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Si = {cp :
‖Ci ⊕ cp‖
‖Ci‖+ ‖cp||

≤ ‖Cl ⊕ cp‖
‖Cl‖+ ‖cp||

∀l, 1 ≤ l ≤ Nk} (3.13)

Once all the minutiae in Mc are assigned to their relevant sets, we update each centroids

using

Ci(j) =

{
1
∑ni

k=1 Si,k(j) ≥
ni
2

0 otherwise
(3.14)

Where ni is the number of cylinders that were previously assigned to Si and j ∈ [1, 256]. We

repetitively assign the minutiae into the sets and update the centroids upon completion of

assignments until the algorithm converges. The algorithm converges when the assignments

no longer change.

Method B

In Method A, the centroid values of clusters S in C are prone to become biased towards

some cylinders. This behaviour mainly occurs when the new assignments (or cylinders) have

small differences in comparison to the centroid value of the cluster but gradually influence

the centroid value as the number of assignments increases. Thus, the centroid values may

not be good representation of the assignments which leads to some assignments being no

longer represented by their respective clusters. Usually, the impact of this behaviour can be

reduced by increasing the number of clusters which may allow the cylinders to be distributed

more effectively. However, this may significantly increase the computation complexity as

more clusters would need to be searched when performing identification process.

We introduce a unique method (in the context of MCC) which enables us to calculate the

centroid values in C with a better central tendency and cluster the minutiae more effectively.

The method is based on dividing the elements of minutia in contiguous equal sized chunks,

and creating predefined number of blocks with overlapping parts of the neighbouring chunks.

Let Mc = {c1, c2, ..., ck} be the set of k number of minutiae cylinders of all the fingerprints

in the database and

NB = (2× BT
BS

)− 1 (3.15)

be the total number of blocks into which each cylinder ci is divided. BT is the bit-vector

size for every minutia cylinder ci and BS represents the predefined size (number of bits)

for each block to be allocated. Now, every cylinder ci ∈ Mc is represented as Bi where

Bi = {1, ..., NB}, Bi,j ∈ [0, 1] and j ∈ [0, NB − 1]. We can then compute Bi,j as

Bi,j =
popCnt(ci[k, k + 1, ..., k +BS − 1])

BT
, k =

j ×BS
2

, (3.16)

where popCnt(a) = total number of 1’s present in the bit-vector a. Figure 3.6, illustrates a

graphical representation of the overlapping blocks of a minutia cylinder. After computing
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Figure 3.6: Overlapping block representation of a minutia cylinder of 256 bit-vector.

the values of overlapping blocks, we use k-means clustering on the cylinders’ blocks. This

time, we use euclidean distance to find the best similarity between the blocks and cluster

centroids. The cluster centroids are computed by simply taking the average of the values of

the blocks that fall under the respective cluster. This method promises better performance

as each cluster is a better representation of the minutiae cylinders that it contains. Addi-

tionally, depending on the BS value, the number of elements in each block may effectively

be small resulting in less number of comparisons when comparing against the centroid value

and thus, may lead to reduced computation time.

After combining the optimisations suggested previously with our clusterisation approach

(method B), the resulting algorithm is shown in Algorithm 4, where N represents the total

number of fingerprints in the database and PopCnt(.) calculates the population count in

the bit-vector using popcnt instruction. indexOfClosestCentroidFor(.) returns the index of

the cluster whose centroid has the least euclidean distance with the given minutia.

3.6.6 GPU Implementation

As discussed in the literature review above, general-purpose computing on graphics pro-

cessing unit (GPGPU) have been very efficient in terms of reducing computation time of

computationally intensive tasks. We decide to implement the proposed fingerprint matching

method to validate as well as understand and observe the behaviour of the methods in a

highly parallelised environment, which the GPU’s offer. Our baseline GPU implementation

is shown in Algorithms 5, 6 and 7. Algorithm 5 runs on the host (CPU) which processes the

tasks to GPU and collects results. Algorithms 6 and 7 execute on the GPU kernel which

is called and initialised by the host. The algorithms are responsible for calculating local

similarity scores (CalculateSimilarityScore(.)) and then accumulating the local scores into

global score (AccumulateScore(.)) respectively for every fingerprint in the database. nC(.)
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Algorithm 4 MCC Clusterisation Implementation

Input:
- Fq, Query Fingerprint
- Nk Fingerprint Clusters S = {S1, S2, ..., SNk} and their Centroids C =
{C1, C2, ...CN−k}

Output:
- k, Index of the most identical fingerprint in DB with Hk,q ≥ α
- {∅}, if no identical fingerprint found.

1: highestScore = 0;
2: Set bucket[i][j] = 0;∀ 0 ≤ j ≤ t and 0 ≤ i < N
3: for each minutia Ma = (ca, θa, ηa) ∈ Fq do
4: v = indexOfClosestCentroidFor(Ma) in C;
5: for each minutia Mb = (cb, θb, ηb, ib) ∈ Sv do
6: if dF (θa, θb) ≤ δθ then

7: Ls =
⌈
t · Lutsqrt[PopCnt(ca⊕cb)]

ηa+ηb

⌉
8: bucket[ib][Ls]+ = 1;
9: end if

10: end for
11: end for
12: for i = 0→ N − 1 do
13: j = 0, h = np, sum = 0;
14: while j ≤ t and h ≥ 0 do
15: sum = sum+min(bucket[i][j], h) · j;
16: t = t−min(bucket[i][j], h);
17: j = j + 1;
18: end while
19: sum = sum+ t · h;
20: aggregateScore = 1− sum

np·w ;
21: if aggregateScore > highestScore then
22: highestScore = aggregateScore;
23: k = i;
24: end if
25: end for
26: if highestScore ≥ α then
27: return k;
28: end if
29: return Null;
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represents the number of cylinders that are present in the (vth) given cluster Sv. T1 and

T2 represent the number of threads per block that are launched with the GPU kernel call

where as N is the total number of fingerprints in the database. The information of the

GPU device on which we perform fingerprint identification process is shown in Table 3.5.

Algorithm 5 GPU Clusterisation Implementation of MCC: CPU Execution

Input:
-Fq, Query Fingerprint
- Nk Fingerprint Clusters S = {S1, S2, ..., SNk} and their Centroids C =
{C1, C2, ...CN−k}

Output:
- k, Index of the most identical fingerprint in DB with Hk,q ≥ α
- {∅}, if no identical fingerprint found.

1: highestScore = 0;
2: Set bucket[i][j] = 0;∀ 0 ≤ j ≤ t and 0 ≤ i < N
3: Copy C to GPU memory
4: for each minutia Ma = (Ca, θa, ηa) ∈ Fq do
5: v = indexOfClosestCentroidFor(Ma) in C;
6: Copy v and Ma to GPU memory.
7: Call GPU Kernel CalculateSimilarityScore() with nC(Sv)

T1
blocks and T1 threads per

block
8: end for
9: Call GPU Kernel AccumulateScore() with N

T2
blocks and T2 threads per block

10: Copy GlobalScores ∈ NN×1 from GPU memory to Host memory.
11: for i = 0→ N − 1 do
12: aggregateScore = GlobalScores[i];
13: if aggregateScore > highestScore then
14: highestScore = aggregateScore;
15: k = i;
16: end if
17: end for
18: if highestScore ≥ α then
19: return k;
20: end if
21: return Null;
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Algorithm 6 GPU Clusterisation Implementation of MCC: GPU Execution
CalculateSimilarityScore()

Input:
- Ma = (ca, θa, ηa), Query Fingerprint Minutia
- Nk Fingerprint Clusters S = {S1, S2, ..., SNk}
- v, Index of fingerprint cluster which needs to be scanned.

Output:
- Bucket ∈ NN×w

1: k = T1 ∗ blockIdx.x+ threadIdx.x;
2: Mb = (cb, θb, ηb, ib) = Sv[k];
3: if dF (θa, θb) ≤ δθ then

4: Ls =
⌊
w · Lutsqrt[PopCnt(ca⊕cb)]

ηa+ηb

⌋
5: bucket[ib][Ls]+ = 1;
6: end if

Algorithm 7 GPU Clusterisation Implementation of MCC: GPU Execution
AccumulateScore()

Input:
- Bucket ∈ NN×w

Output:
- N Global Scores, GS = {S0, S1, ..., SN−1}

1: k = T1 ∗ blockIdx.x+ threadIdx.x;
2: j = 0, t = np, sum = 0;
3: while j < t and h > 0 do
4: sum = sum+min(bucket[k][j], h) · j;
5: t = t−min(bucket[k][j], h);
6: j = j + 1;
7: end while
8: sum = sum+ t · t;
9: GS [k] = 1− sum

np·t ;
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3.7 Framework

The layout of the proposed distributed fingerprint matching framework is shown in Fig-

ure 3.7. As illustrated, the framework is a comprehensive fingerprint management system

with the following main capabilities

• Query a fingerprint;

• Enrollment of new fingerprints;

• Adding/removing of agents (computation nodes).

Master Node is responsible for coordination activities between the computation (child)

nodes and to keep the child nodes updated with changes in the database. The child nodes are

responsible for distributed computing and receive their assignments from the master node.

Gateway is the core module of the master node which is a point of contact between the user

and the framework. It is responsible for processing and routing the user’s request into the

appropriate module. Additionally, it also processes the output received from the modules

and channels it back to the user. The message may contain the information about the

particular request that the user is making followed by the source of the file that contains the

piece of information in a structured manner for the given request. The gateway is responsible

for extracting the information. The Enrollment process is briefly shown in Figure 3.8.

The process involves extracting minutiae details from the fingerprint and converting it to

our fingerprint template as shown in Figures 3.2 and 3.2. The template is then used to

calculate the values required for our database structure (Figure 3.3). These values are

sent to the child nodes in order to update their individual copies of fingerprint minutiae

clusters to accommodate the new enrolled fingerprint. Since we use the clustering method

for identification process as discussed in Section 3.6.5.1, every minutia from the new enrolled

fingerprint must be assigned to the appropriate clusters using the clustering method (B)

mentioned previously. Once all the minutiae are assigned to their respective clusters, the

cluster centroids have to be updated to incorporate these new changes. Let m be the minutia

that is newly assigned to a cluster. The cluster St on which the minutia is assigned, its

centroid value is updated using:

Ct ←
nt · Ct + Cm

nt + 1
, (3.17)

where Ct represents the centroid value of the cluster that is being updated and Cm is the

value that represents the minutia m. nt is the number of assignments that exist in the

cluster prior to this new assignment.
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Figure 3.7: Distributed fingerprint matching framework
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Figure 3.8: Fingerprint enrollment process in the distributed fingerprint matching frame-
work.

Matching process refers to performing an identification on a query request received by

the user against all the fingerprints in the database. The process is mainly done on the child

nodes but the extraction of information from the query fingerprint and assigning of the task

to child nodes is dealt by the master node. Each child node performs the identification on

a portion of query minutiae set against the clusters and responds back to the master node.

The response is the the score matrix that the child node has derived based on the similarity

scores computed against the minutiae set which is allocated to the individual child node.

The master node then accumulates the these scores by performing an addition to all the

score matrices received by children nodes. This allows master node to determine the best

match (if present) in the database for the given query fingerprint. The number of query

minutia allocated to child nodes is dependent on the number of children nodes currently

available in the pool. Thus, the reason for keeping a copy (of all the clusters that represent

the entire database) in every child node is that the number of minutia allocated to each

child to perform matching process may dynamically be adjusted when the pool size changes.

Figure 3.9 illustrates the matching process conducted by child nodes.

Scaling is an important factor when dealing with distributed systems. The framework

allows users to add or remove child nodes by sending an appropriate request with the

details of the node that needs to be added/removed. In the case of addition, the master

node, copies all the clusters (that represent the fingerprint database) to the new child node

and includes the new node in the pool of child nodes for future enrollment and matching

requests. Similarly, when a specific node is requested to be removed, the master node

removes it from the pool of child nodes and incorporates this change when distributing the

query minutia set for the future matching request.
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Figure 3.9: Fingerprint identification process in the distributed fingerprint matching frame-
work.

Table 3.4: System specifications

Component Specification

CPU Intel i7 3770k

CPU Cache Memory 8 MB

RAM 32GB DDR3 1333MHz

Motherboard Gigabyte - GA Z97X-UD3H

Hard Drive 80GB SSD

g++ - version 4.6.7
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Table 3.5: GPU device information used for experiments.

Component Specification

Device Name Gtx Titan Black

Architecture GK110 Kepler

Multiprocessors 15

Total CUDA Cores 2880

Maximum threads per multiprocessor 2048

Maximum threads per block 1024

Maximum registers per block 65536

Global memory 6 GB

Shared memory per block 48 KB

L2 cache size 1.5 MB

Constant memory 64 KB

3.8 Conclusion

This chapter described the research methodology in accomplishing the goal. In accomplish-

ing the goal of reducing the overall number of comparisons made in the MCC implemen-

tation, clusterisation was introduced. This optimised approach proved to provide a better

identification time, than compared to the baseline MCC implementation. From Section 3.6

the tests were conducted in order to prove which methodology implementation was better.

The results conducted from the experiments are produced in the next chapter.
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Chapter 4

Experiments and Results

This chapter reports configurations and an experimental environment, followed by an eval-

uation of the performance on both CPU and GPU (algorithms). Sections 4.1 Benchmark

and 4.2 Performance provide comprehensive details of the experiments conducted on all the

proposed algorithms and report their achieved performance. We then analyse and compare

our results with other studies in Section 4.3 Discussion.

4.1 Benchmark

Our proposed algorithms are simply modifications of the different MCC algorithms defined

in [5]. Therefore, in order to analyse the algorithms fairly and effectively, we define our

benchmarks to be as similar as possible to the ones (in [5]). In [5] each test was conducted

against the evaluation of the original MCC algorithm on the CPU and the GPU.

4.1.1 Dataset

We extract 250,000 fingerprints as our dataset for the experiments. These fingerprints are

extracted from our main database of 60 million fingerprints as discussed in Section 3.6.2.

The extracted fingerprints were randomly selected. The total number of cylinders (minutiae)

for this dataset is 8,237,868 with 32.95 cylinders on average in a fingerprint template. Our

query fingerprints consist of 100,000 fingerprints where 50,000 of these fingerprints are

randomly picked from the above dataset of 250,000 fingerprints. The rest of the 50,000

query fingerprints are extracted from our main database while ensuring that none of these

fingerprints belong to the previously extracted fingerprints. This is done to ensure that the

accuracy of the proposed algorithms is tested with in-mate and non-mate fingerprints in

the database. The average number of cylinders in the query fingerprints is 32.5.
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4.1.2 Experiments

The following experiments are conducted to evaluate the proposed algorithms’ performance

in terms of time, accuracy and scalability.

• Experiment A: Performing 10 queries against the entire dataset of 250,000 finger-

prints;

• Experiment B: Performing 10 queries against the different size of dataset starting

from 10 fingerprints and scaling it logarithmically;

• Experiment C: Performing all 100,000 queries on the dataset starting from 50,000

fingerprints and incrementing it by 20,000 fingerprints until the dataset reaches the

size of 250,000 fingerprints.

These experiments are motivated by the scalable benchmarks introduced and performed

in [5] as they allow the fingerprint recognition algorithm to be thoroughly tested for their

speed and accuracy. Each of the experiments above is conducted three times and an average

of the results is reported as the achieved result.

4.1.3 Parameters

The parameters used for identification for all the experiments are provided in Table 4.1.

All the experiments were conducted on a PC available at the time of this research. The

specifications of the PC are listed in Table 3.4. The information of the GPU device on which

we perform our GPU implementation of fingerprint identification is shown in Table 3.5.

We use C++ for all our CPU based implementation and CUDA C for our GPU based

implementation.

4.1.4 Algorithms

We perform our experiments on the different algorithms that we have previously discussed.

These algorithms are summarised as follows.

• CPU Baseline: This refers to our implementation (Algorithm 3) of the baseline MCC

algorithm on CPU which is reported in [5]. The reason for re-implementing this algo-

rithm is to verify the results originally published in the literature. Additionally, this

also provides an opportunity to have a better understanding of the possible shortcom-

ings of the algorithm;

• CPU Optimised : This is an implementation of the optimised version of the MCC

Baseline algorithm on the CPU which was originally introduced in [5] and discussed

in Section 3.6.4;
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Table 4.1: Parameter values used for matching.[4]

Parameter Description Value

nc Number of bits in each cylinder 255

Nk
Number of clusters (clustering
method)

100

δθ
Maximum global rotation allowed
between two minutia

π
6

t
Values for quantized local similarity
scores

64

z Values for quantized angles. 256

np
Parameter used to determine the
number of best local similarity
scores.

12

α
Threshold value at which the high-
est global score is acceptable

0.75

T1, T2
Threads per block in GPU imple-
mentation (Algorithm 5)

32, 64

• CPU Clusterised : Refers to the Algorithm 4 which involves the clustering method

that was discussed in Section 3.6.5.1. We introduced this method with the intention

of providing improvements to the previously optimised CPU implementation of MCC;

• GPU Clusterised : This is simply a GPU (parallel) implementation of the clustering

method. The algorithm is discussed in detailed in Section 3.6.6.

The algorithms above are implemented in the same order as they are listed. Each algorithm

is supposed to provide a better efficiency of its immediate previous implementation.

4.1.5 Evaluation

We evaluate the above mentioned algorithms for mainly their computation time and the

accuracy obtained for each experiment. The computational time is recorded using a high

resolution clock in milliseconds. For each algorithm, we begin recording the time from

the moment a query is loaded, until the algorithm returns a unique identification key of

the matched fingerprint (or Null in the case of no match found). As for accuracy, we

determine the number of times each algorithm wrongly identifies a fingerprint in each of the

experiments. In order to have a better understanding of the errors (wrong identifications),

the errors are classified into the following categories:

• False Negative Match Rate (FNMR): Percentage of incorrect identifications for queries

that are in the database.
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• False Positive Match Rate(FPMR): Percentage of queries which are not in the database

and are mistakenly identified.

4.2 Performance

Table 4.2 shows results obtained from executing Experiment A on all the sequential CPU

implementations. These algorithms are discussed in detail above. The table reports the

total execution time in milliseconds for the corresponding algorithms as well as the average

amount of fingerprint comparisons for per unit of time in seconds. A total of 10 queries were

used in this experiment along with the dataset consisting of 250,000 fingerprints. The table

reports that the results of the CPU Baseline and CPU Optimised algorithms are in-line with

the original implementation of those algorithms in [5]. This validates our implementation of

the original MCC CPU based algorithms reported in [5]. Furthermore, the performance of

the CPU Clusterised algorithm clearly shows that the clustering approach (Method B) that

we introduced in Section 3.6.5.1, as anticipated, has reduced the execution time significantly.

Consequently, this helped boost its average throughput to above 4.1 million matches per

second. The throughput (KMPS) is calculated using

throughput =
N ×Nq

time
(4.1)

where N represents the total number of fingerprints in the dataset and Nq is the number

of query fingerprints. time is the total time taken (in seconds) to execute the benchmark.

Figures 4.1(a) and 4.1(b) present the average throughput of all the fingerprint iden-

tification algorithms over different (increasing) dataset (Experiment B) with the total

number of queries to be 10. Both figures illustrate the performance of the same experi-

ment. However, in Figure 4.1(a) logarithmic scale is used for the throughput axis while in

Figure 4.1(b), linear scale is used. The use of different axis scales is to show an in-depth

view of the achieved results. It is evident from these results that the performance of the

cluserting method is consistent as the dataset has increased logarithmically. This shows

that the method is scalable. Some of the abnormalities are observed while executing small

datasets, these observations are discussed in detail in the discussion section of this chapter.

Figures 4.2(a) and 4.2(b) present the execution time of Experiment B for the different

size datasets. Once again, both the logarithmic and linear scale is used for the purpose

of displaying the trends better in the same experiment. The results show that the time

performance of the CPU Baseline algorithm gradually becomes exponential while the CPU

Clusterised algorithm displays no scalability issues.
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Table 4.2: Performance time of CPU implementations for ten queries on the complete
dataset (Experiment A) and its associated throughput (KMPS: thousand matches per
second)

Algorithm Time (ms) Throughput

CPU Baseline 146711 17.04K

CPU Optimised 14747.5 169.52

CPU Clusterised 604.76 4133.88K

(a) Logarithmic scale used for both axis (b) Linear scale used for the throughput axis

Figure 4.1: Results of Experiment B.

(a) Logarithmic scale used for the time axis (b) Linear scale used for the time axis

Figure 4.2: Execution time (in milliseconds) for different size of dataset in Experiment B.
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Figure 4.3: Results of Experiment C, displaying throughput (thousand matches per sec-
ond) for the increasing size of datasets.

The results obtained above for the CPU Clusterised algorithm seem to be satisfactory.

This allows us to proceed with more rigorous testing of the algorithm in order to test and

verify any scalability issues. Hence, we conduct Experiment C which involves executing

the fingerprint identification using 100,000 queries with half of the query fingerprints not

included in the dataset of 250,000 fingerprints. This experiment is performed on all the

discussed algorithms except for the CPU Baseline algorithm. The reason that we do not

execute Experiment C on that particular algorithm is because the experiment would

take weeks to finish. This could result in redundancy, especially when the CPU Optimised

algorithm could instead be used to compare the proposed clustering method, since it is

already established in [5] that the CPU Optimised is more efficient than the CPU Baseline

algorithm.

Figure 4.3 depicts the results obtained from conducting Experiment C. From the

results it is certainly noticeable that as the dataset increases linearly, the average throughput

for the clustering method remains stable above 4 million fingerprint matches per unit of

time in seconds. This together with the previous results show that the clustering method

introduced in this study promises no scalability issues over large datasets. Furthermore,

Figures 4.4(a) and 4.4(b) provide the execution time over varying dataset sizes for the same

experiment. Recall, as previously mentioned, the time axis in both figures display a different
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(a) Logarithmic scale used for the time axis (b) Linear scale used for the time axis

Figure 4.4: Execution time (in milliseconds) for different size dataset in Experiment C.

Table 4.3: Performance time of all the implementations for 100,000 queries on the complete
dataset (250,000 fingerprints) and its associated throughput (thousand matches per second).

Algorithm Time (seconds) Throughput

CPU Optimised 150,719.8 161.03K

CPU Clusterised 6,198.2 4,033.43K

GPU Clusterised 2,566.63 9,740.40K

scale. This is to showcase different point of views within the results obtained. From these

figures, it is noticeable that the change in execution time is directly proportional to the

dataset size for all the algorithms.

Finally, Table 4.3 presents the actual values of the results obtained when performing

100,000 queries on the entire dataset of 250,000 fingerprints using all the discussed algo-

rithms (except for the CPU Baseline algorithm). The accuracy for all algorithms were

carefully evaluated. Experiment A and Experiment B (involving only 10 queries) re-

ported 0% for both FNMR and FPMR on all the algorithms. Meanwhile Experiment C

reports 0.12% for FPMR and 0.03% for FNMR. The reported accuracy, FPMR and FNMR

is achieved by all the algorithms on which the experiment was conducted. The accuracy

obtained by these algorithms is consistent with the standard accuracy of the state-of-the-art

fingerprint verification systems [14]

4.3 Discussion

After implementing the baseline algorithm (CPU Baseline) and the optimisations (CPU

Optimised), we successfully verified the results claimed by MCC [5] in terms of accuracy

and time. Our computation time as shown in Table 4.2, is slightly lower than the ones
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claimed in [5]. This can be justified by the fact that our CPU (hardware specification is

shown in Table 3.4) is not as powerful than the one used by author in [5].

As it was previously assumed, the computation time of fingerprint recognition is influ-

enced by the size of the fingerprint dataset. This is now evident by the Figures 4.4(a) and

4.4(b) where the execution time is shown to be proportional to the size of the dataset.

From Figures 4.1(a) and 4.1(b), we note the sharp and abrupt changes in the throughput

for the CPU clusterised algorithm. It can be seen, the throughput initially increases with

the dataset and managed to provide over 7 million matches per second. When the dataset

size reaches 10,000 fingerprints, it consistently provides throughput of just above 4 million

matches per second. This behaviour is the result of the CPU cache memory being filled

at its full capacity as the size of dataset increases above 10,000 fingerprints. Based on

this observation, it can be safely assumed that if the CPU cache memory is increased,

corresponding throughput can be increased proportional to the size of cache memory.

The results of the Experiment B and Experiment C for the proposed clustering

method 3.6.5.1 look impressive as it successfully reduces the execution time by more than

24 times compared to the CPU optimised and more than 242 times in comparison to CPU

baseline algorithm. Consecutively, the performance of the parallel execution (GPU clus-

terised) using a GPU shows a reduction of more than half of the execution time using the

sequential (CPU) execution. The massive reductions in the execution times by the pro-

posed clustering method 3.6.5.1 enabled us to increase the number of fingerprint matches

in a given time. This is very critical when dealing with large fingerprint datasets.
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Chapter 5

Conclusion and Future Work

This research focused on building a computationally efficient framework well suited for a

large-scale distribution system, used for real-time fingerprint identification. The framework

can be applied in various use-cases including forensics and civil applications, as fingerprint

remains one of the most used biometric characteristics due to its uniqueness. The frame-

work was developed after conducting a detailed study whereby various known fingerprint

matching algorithms were considered. Thereafter, the best algorithm was chosen as a base-

line algorithm for this study. We aimed to achieve optimal solution where high accuracy is

maintained while ensuring real-time performance.

The aim was met when we introduced improvements (clustering method) to the existing

best known fingerprint matching method and developed an optimal framework using these

improvements. Recall that Method B produced the optimal solution with high accuracy

and minimal computational complexity.

We proposed a new approach to the existing MCC fingerprint recognition method.

Where we found that the overall number of comparisons were greatly reduced when the

MCC implementation with our clustering method was used. We then performed experi-

ments on different algorithms, to compare the efficiency of each algorithm. Those algo-

rithms include, a CPU Baseline, a CPU optimised, a CPU Clusterised. In the order of the

mentioned algorithms, each algorithm outperformed its previous counterpart.

Three experiments were conducted for each of the proposed algorithms, the findings

presented in the previous chapter for each of the experiments for the implemented algorithms

are as follows.

Experiment A’s CPU Baseline and CPU Optimised results were in-line with the orig-

inal implementation from the literature. While the CPU Clusterised algorithm has greatly

improved on the former approaches, since the results have revealed a significant reduction

in the execution time, and therefore boosted the average throughput rate. After running

the algorithm, the results reveal a time of 146,711 ms and a throughput of 17.04K for the
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CPU baseline. Indicating that the CPU Baseline is the least effective since it was simply a

re-implementation of past published literature.

Experiment B produced satisfactory results for the CPU Clusterised algorithm. These

satisfactory results led us to continue with more rigorous testing in Experiment C. Exper-

iment C’s performance time for all the implementations for 100,000 queries on the complete

dataset, consisting of 250,000 fingerprints and its associated throughput, has shown that

the clustering approach has successfully and significantly reduced the execution time. Quite

evident that there is an improvement compared to both CPU Optimised and CPU Baseline

algorithms. It is noticeable that as the dataset size increases linearly, the average through-

put for the clustering method on a sequential execution remains stable above 4 million

fingerprint matches per unit of time in seconds. This together with the previous results,

indicate yet again that the clustering method has the added advantage of promising no

scalability issues over large datasets.

Overall, from all the results obtained from the various experiments, it is revealed that

the CPU clustering algorithm provided the most efficiency. The results produced in this

algorithm was exactly what we were working towards when building this large scaled fin-

gerprint matching system. This system necessitates the need to build a good framework

which can produce the greatest effect in reducing the execution time obtained in the exper-

iments. It also attempts to produce optimal solutions that perform well and are accurate

in the sense that there will be an increase to the number of fingerprint matches at a given

time. This algorithm was able to identify the most number of fingerprints correctly in each

experimental run, hence making this the best algorithm.

As future work, we plan to exploit and optimise the proposed clustering method for the

GPU (parallel execution) as the current GPU algorithm is basic and provides very little

performance increases. Furthermore, we also plan to study the aspects of reducing the size

of dataset in the memory by utilising compression methods.
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