67 research outputs found

    Anomaly Detection and Mitigation for Wide-Area Damping Control using Machine Learning

    Get PDF
    In an interconnected multi-area power system, wide-area measurement based damping controllers are used to damp out inter-area oscillations, which jeopardize grid stability and constrain the power flows below to their transmission capacity. The effect of wide-area damping control (WADC) significantly depends on both power and cyber systems. At the cyber system layer, an adversary can inflict the WADC process by compromising either measurement signals, control signals or both. Stealthy and coordinated cyber-attacks may bypass the conventional cybersecurity measures to disrupt the seamless operation of WADC. This paper proposes an anomaly detection (AD) algorithm using supervised Machine Learning and a model-based logic for mitigation. The proposed AD algorithm considers measurement signals (input of WADC) and control signals (output of WADC) as input to evaluate the type of activity such as normal, perturbation (small or large signal faults), attack and perturbation-and-attack. Upon anomaly detection, the mitigation module tunes the WADC signal and sets the control status mode as either wide-area mode or local mode. The proposed anomaly detection and mitigation (ADM) module works inline with the WADC at the control center for attack detection on both measurement and control signals and eliminates the need for ADMs at the geographically distributed actuators. We consider coordinated and primitive data-integrity attack vectors such as pulse, ramp, relay-trip and replay attacks. The performance of the proposed ADM algorithms was evaluated under these attack vector scenarios on a testbed environment for 2-area 4-machine power system. The ADM module shows effective performance with 96.5% accuracy to detect anomalies

    A monitoring and threat detection system using stream processing as a virtual function for big data

    Get PDF
    The late detection of security threats causes a significant increase in the risk of irreparable damages, disabling any defense attempt. As a consequence, fast realtime threat detection is mandatory for security guarantees. In addition, Network Function Virtualization (NFV) provides new opportunities for efficient and low-cost security solutions. We propose a fast and efficient threat detection system based on stream processing and machine learning algorithms. The main contributions of this work are i) a novel monitoring threat detection system based on stream processing; ii) two datasets, first a dataset of synthetic security data containing both legitimate and malicious traffic, and the second, a week of real traffic of a telecommunications operator in Rio de Janeiro, Brazil; iii) a data pre-processing algorithm, a normalizing algorithm and an algorithm for fast feature selection based on the correlation between variables; iv) a virtualized network function in an open-source platform for providing a real-time threat detection service; v) near-optimal placement of sensors through a proposed heuristic for strategically positioning sensors in the network infrastructure, with a minimum number of sensors; and, finally, vi) a greedy algorithm that allocates on demand a sequence of virtual network functions.A detecção tardia de ameaças de segurança causa um significante aumento no risco de danos irreparáveis, impossibilitando qualquer tentativa de defesa. Como consequência, a detecção rápida de ameaças em tempo real é essencial para a administração de segurança. Além disso, A tecnologia de virtualização de funções de rede (Network Function Virtualization - NFV) oferece novas oportunidades para soluções de segurança eficazes e de baixo custo. Propomos um sistema de detecção de ameaças rápido e eficiente, baseado em algoritmos de processamento de fluxo e de aprendizado de máquina. As principais contribuições deste trabalho são: i) um novo sistema de monitoramento e detecção de ameaças baseado no processamento de fluxo; ii) dois conjuntos de dados, o primeiro ´e um conjunto de dados sintético de segurança contendo tráfego suspeito e malicioso, e o segundo corresponde a uma semana de tráfego real de um operador de telecomunicações no Rio de Janeiro, Brasil; iii) um algoritmo de pré-processamento de dados composto por um algoritmo de normalização e um algoritmo para seleção rápida de características com base na correlação entre variáveis; iv) uma função de rede virtualizada em uma plataforma de código aberto para fornecer um serviço de detecção de ameaças em tempo real; v) posicionamento quase perfeito de sensores através de uma heurística proposta para posicionamento estratégico de sensores na infraestrutura de rede, com um número mínimo de sensores; e, finalmente, vi) um algoritmo guloso que aloca sob demanda uma sequencia de funções de rede virtual

    Advances in Data Mining Knowledge Discovery and Applications

    Get PDF
    Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions

    Data Mining

    Get PDF
    Data mining is a branch of computer science that is used to automatically extract meaningful, useful knowledge and previously unknown, hidden, interesting patterns from a large amount of data to support the decision-making process. This book presents recent theoretical and practical advances in the field of data mining. It discusses a number of data mining methods, including classification, clustering, and association rule mining. This book brings together many different successful data mining studies in various areas such as health, banking, education, software engineering, animal science, and the environment

    Big Data in the construction industry: A review of present status, opportunities, and future trends

    Get PDF
    © 2016 Elsevier Ltd The ability to process large amounts of data and to extract useful insights from data has revolutionised society. This phenomenon—dubbed as Big Data—has applications for a wide assortment of industries, including the construction industry. The construction industry already deals with large volumes of heterogeneous data; which is expected to increase exponentially as technologies such as sensor networks and the Internet of Things are commoditised. In this paper, we present a detailed survey of the literature, investigating the application of Big Data techniques in the construction industry. We reviewed related works published in the databases of American Association of Civil Engineers (ASCE), Institute of Electrical and Electronics Engineers (IEEE), Association of Computing Machinery (ACM), and Elsevier Science Direct Digital Library. While the application of data analytics in the construction industry is not new, the adoption of Big Data technologies in this industry remains at a nascent stage and lags the broad uptake of these technologies in other fields. To the best of our knowledge, there is currently no comprehensive survey of Big Data techniques in the context of the construction industry. This paper fills the void and presents a wide-ranging interdisciplinary review of literature of fields such as statistics, data mining and warehousing, machine learning, and Big Data Analytics in the context of the construction industry. We discuss the current state of adoption of Big Data in the construction industry and discuss the future potential of such technologies across the multiple domain-specific sub-areas of the construction industry. We also propose open issues and directions for future work along with potential pitfalls associated with Big Data adoption in the industry

    Sustainable Agriculture and Advances of Remote Sensing (Volume 2)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publication of the results, among others

    Libro de Actas JCC&BD 2018 : VI Jornadas de Cloud Computing & Big Data

    Get PDF
    Se recopilan las ponencias presentadas en las VI Jornadas de Cloud Computing & Big Data (JCC&BD), realizadas entre el 25 al 29 de junio de 2018 en la Facultad de Informática de la Universidad Nacional de La Plata.Universidad Nacional de La Plata (UNLP) - Facultad de Informátic

    Protection of data privacy based on artificial intelligence in Cyber-Physical Systems

    Full text link
    With the rapid evolution of cyber attack techniques, the security and privacy of Cyber-Physical Systems (CPSs) have become key challenges. CPS environments have several properties that make them unique in efforts to appropriately secure them when compared with the processes, techniques and processes that have evolved for traditional IT networks and platforms. CPS ecosystems are comprised of heterogeneous systems, each with long lifespans. They use multitudes of operating systems and communication protocols and are often designed without security as a consideration. From a privacy perspective, there are also additional challenges. It is hard to capture and filter the heterogeneous data sources of CPSs, especially power systems, as their data should include network traffic and the sensing data of sensors. Protecting such data during the stages of collection, analysis and publication still open the possibility of new cyber threats disrupting the operational loops of power systems. Moreover, while protecting the original data of CPSs, identifying cyberattacks requires intrusion detection that produces high false alarm rates. This thesis significantly contributes to the protection of heterogeneous data sources, along with the high performance of discovering cyber-attacks in CPSs, especially smart power networks (i.e., power systems and their networks). For achieving high data privacy, innovative privacy-preserving techniques based on Artificial Intelligence (AI) are proposed to protect the original and sensitive data generated by CPSs and their networks. For cyber-attack discovery, meanwhile applying privacy-preserving techniques, new anomaly detection algorithms are developed to ensure high performances in terms of data utility and accuracy detection. The first main contribution of this dissertation is the development of a privacy preservation intrusion detection methodology that uses the correlation coefficient, independent component analysis, and Expectation Maximisation (EM) clustering algorithms to select significant data portions and discover cyber attacks against power networks. Before and after applying this technique, machine learning algorithms are used to assess their capabilities to classify normal and suspicious vectors. The second core contribution of this work is the design of a new privacy-preserving anomaly detection technique protecting the confidential information of CPSs and discovering malicious observations. Firstly, a data pre-processing technique filters and transforms data into a new format that accomplishes the aim of preserving privacy. Secondly, an anomaly detection technique using a Gaussian mixture model which fits selected features, and a Kalman filter technique that accurately computes the posterior probabilities of legitimate and anomalous events are employed. The third significant contribution of this thesis is developing a novel privacy-preserving framework for achieving the privacy and security criteria of smart power networks. In the first module, a two-level privacy module is developed, including an enhanced proof of work technique-based blockchain for accomplishing data integrity and a variational autoencoder approach for changing the data to an encoded data format to prevent inference attacks. In the second module, a long short-term memory deep learning algorithm is employed in anomaly detection to train and validate the outputs from the two-level privacy modules
    corecore