86,355 research outputs found

    Ontology-based feature modeling: an empirical study in changing scenarios

    Get PDF
    A software product line (SPL) is a set of software systems that have a particular set of common features\ud and that satisfy the needs of a particular market segment or mission. Feature modeling is one of the key\ud activities involved in the design of SPLs. The feature diagram produced in this activity captures the commonalities\ud and variabilities of SPLs. In some complex domains (e.g., ubiquitous computing, autonomic\ud systems and context-aware computing), it is difficult to foresee all functionalities and variabilities a\ud specific SPL may require. Thus, Dynamic Software Product Lines (DSPLs) bind variation points at runtime\ud to adapt to fluctuations in user needs as well as to adapt to changes in the environment. In this context,\ud relying on formal representations of feature models is important to allow them to be automatically analyzed\ud during system execution. Among the mechanisms used for representing and analyzing feature\ud models, description logic (DL) based approaches demand to be better investigated in DSPLs since it provides\ud capabilities, such as automated inconsistency detection, reasoning efficiency, scalability and\ud expressivity. Ontology is the most common way to represent feature models knowledge based on DL reasoners.\ud Previous works conceived ontologies for feature modeling either based on OWL classes and properties\ud or based on OWL individuals. However, considering change or evolution scenarios of feature\ud models, we need to compare whether a class-based or an individual-based feature modeling style is\ud recommended to describe feature models to support SPLs, and especially its capabilities to deal with\ud changes in feature models, as required by DSPLs. In this paper, we conduct a controlled experiment to\ud empirically compare two approaches based on each one of these modeling styles in several changing scenarios\ud (e.g., add/remove mandatory feature, add/remove optional feature and so on). We measure time to\ud perform changes, structural impact of changes (flexibility) and correctness for performing changes in our\ud experiment. Our results indicate that using OWL individuals requires less time to change and is more\ud flexible than using OWL classes and properties. These results provide insightful assumptions towards\ud the definition of an approach relying on reasoning capabilities of ontologies that can effectively support\ud products reconfiguration in the context of DSPL.CNPqCAPE

    Defining and validating a multimodel approach for product architecture derivation and improvement

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-41533-3_24Software architectures are the key to achieving the non-functional requirements (NFRs) in any software project. In software product line (SPL) development, it is crucial to identify whether the NFRs for a specific product can be attained with the built-in architectural variation mechanisms of the product line architecture, or whether additional architectural transformations are required. This paper presents a multimodel approach for quality-driven product architecture derivation and improvement (QuaDAI). A controlled experiment is also presented with the objective of comparing the effectiveness, efficiency, perceived ease of use, intention to use and perceived usefulness with regard to participants using QuaDAI as opposed to the Architecture Tradeoff Analysis Method (ATAM). The results show that QuaDAI is more efficient and perceived as easier to use than ATAM, from the perspective of novice software architecture evaluators. However, the other variables were not found to be statistically significant. Further replications are needed to obtain more conclusive results.This research is supported by the MULTIPLE project (MICINN TIN2009-13838) and the Vali+D fellowship program (ACIF/2011/235).González Huerta, J.; Insfrán Pelozo, CE.; Abrahao Gonzales, SM. (2013). Defining and validating a multimodel approach for product architecture derivation and improvement. En Model-Driven Engineering Languages and Systems. Springer. 388-404. https://doi.org/10.1007/978-3-642-41533-3_24S388404Ali-Babar, M., Lago, P., Van Deursen, A.: Empirical research in software architecture: opportunities, challenges, and approaches. Empirical Software Engineering 16(5), 539–543 (2011)Ali-Babar, M., Zhu, L., Jeffery, R.: A Framework for Classifying and Comparing Software Architecture Evaluation Methods. In: 15th Australian Software Engineering Conference, Melbourne, Australia, pp. 309–318 (2004)Basili, V.R., Rombach, H.D.: The TAME project: towards improvement-oriented software environments. IEEE Transactions on Software Engineering 14(6), 758–773 (1988)Barkmeyer, E.J., Feeney, A.B., Denno, P., Flater, D.W., Libes, D.E., Steves, M.P., Wallace, E.K.: Concepts for Automating Systems Integration NISTIR 6928. National Institute of Standards and Technology, U.S. Dept. of Commerce (2003)Bosch, J.: Design and Use of Software Architectures. Adopting and Evolving Product-Line Approach. Addison-Wesley, Harlow (2000)Botterweck, G., O’Brien, L., Thiel, S.: Model-driven derivation of product architectures. In: 22th Int. Conf. on Automated Software Engineering, New York, USA, pp. 469–472 (2007)Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented software architecture, vol. 1: A System of Patterns. Wiley (1996)Cabello, M.E., Ramos, I., Gómez, A., Limón, R.: Baseline-Oriented Modeling: An MDA Approach Based on Software Product Lines for the Expert Systems Development. In: 1st Asia Conference on Intelligent Information and Database Systems, Vietnam (2009)Carifio, J., Perla, R.J.: Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. Journal of Social Sciences 3(3), 106–116 (2007)Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley, Boston (2007)Czarnecki, K., Kim, C.H.: Cardinality-based feature modeling and constraints: A progress report. In: Int. Workshop on Software Factories, San Diego-CA (2005)Datorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing (2005)Davis, F.D.: Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly 13(3), 319–340 (1989)Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems. Addison-Wesley, Boston (2002)Feiler, P.H., Gluch, D.P., Hudak, J.: The Architecture Analysis & Design Language (AADL): An Introduction. Tech. Report CMU/SEI-2006-TN-011. SEI, Carnegie Mellon University (2006)Gómez, A., Ramos, I.: Cardinality-based feature modeling and model-driven engineering: Fitting them together. In: 4th Int. Workshop on Variability Modeling of Software Intensive Systems, Linz, Austria (2010)Gonzalez-Huerta, J., Insfran, E., Abrahao, S.: A Multimodel for Integrating Quality Assessment in Model-Driven Engineering. In: 8th International Conference on the Quality of Information and Communications Technology (QUATIC 2012), Lisbon, Portugal, September 3-6 (2012)Gonzalez-Huerta, J., Insfran, E., Abrahao, S., McGregor, J.D.: Non-functional Requirements in Model-Driven Software Product Line Engineering. In: 4th Int. Workshop on Non-functional System Properties in Domain Specific Modeling Languages, Insbruck, Austria (2012)Guana, V., Correal, V.: Variability quality evaluation on component-based software product lines. In: 15th Int. Software Product Line Conference, Munich, Germany, vol. 2, pp. 19.1–19.8 (2011)Insfrán, E., Abrahão, S., González-Huerta, J., McGregor, J.D., Ramos, I.: A Multimodeling Approach for Quality-Driven Architecture Derivation. In: 21st Int. Conf. on Information Systems Development (ISD 2012), Prato, Italy (2012)ISO/IEC 25000:2005, Software Engineering. Software product Quality Requirements and Evaluation SQuaRE (2005)Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation (CMU/SEI-2000-TR-004, ADA382629). Software Engineering Institute, Carnegie Mellon University, Pittsburgh (2000), http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.htmlKim, T., Ko, I., Kang, S., Lee, D.: Extending ATAM to assess product line architecture. In: 8th IEEE Int. Conference on Computer and Information Technology, Sydney, Australia, pp. 790–797 (2008)Kitchenham, B.A., Pfleeger, S.L., Hoaglin, D.C., Rosenber, J.: Preliminary Guidelines for Empirical Research in Software Engineering. IEEE Transactions on Software Engineering 28(8) (2002)Kruchten, P.B.: The Rational Unified Process: An Introduction. Addison-Wesley (1999)Martensson, F.: Software Architecture Quality Evaluation. Approaches in an Industrial Context. Ph. D. thesis, Blekinge Institute of Technology, Karlskrona, Sweden (2006)Maxwell, K.: Applied Statistics for Software Managers. Software Quality Institute Series. Prentice-Hall (2002)Olumofin, F.G., Mišic, V.B.: A holistic architecture assessment method for software product lines. Information and Software Technology 49, 309–323 (2007)Perovich, D., Rossel, P.O., Bastarrica, M.C.: Feature model to product architectures: Applying MDE to Software Product Lines. In: IEEE/IFIP & European Conference on Software Architecture, Helsinki, Findland, pp. 201–210 (2009)Robertson, S., Robertson, J.: Mastering the requirements process. ACM Press, New York (1999)Roos-Frantz, F., Benavides, D., Ruiz-Cortés, A., Heuer, A., Lauenroth, K.: Quality-aware analysis in product line engineering with the orthogonal variability model. Software Quality Journal (2011), doi:10.1007/s11219-011-9156-5Saaty, T.L.: The Analytical Hierarchical Process. McGraw- Hill, New York (1990)Taher, L., Khatib, H.E., Basha, R.: A framework and QoS matchmaking algorithm for dynamic web services selection. In: 2nd Int. Conference on Innovations in Information Technology, Dubai, UAE (2005)Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Weslen, A.: Experimentation in Software Engineering - An Introduction. Kluwer (2000

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Context for goal-level product line derivation

    Get PDF
    Product line engineering aims at developing a family of products and facilitating the derivation of product variants from it. Context can be a main factor in determining what products to derive. Yet, there is gap in incorporating context with variability models. We advocate that, in the first place, variability originates from human intentions and choices even before software systems are constructed, and context influences variability at this intentional level before the functional one. Thus, we propose to analyze variability at an early phase of analysis adopting the intentional ontology of goal models, and studying how context can influence such variability. Below we present a classification of variation points on goal models, analyze their relation with context, and show the process of constructing and maintaining the models. Our approach is illustrated with an example of a smarthome for people with dementia problems. 1

    Automated analysis of feature models: Quo vadis?

    Get PDF
    Feature models have been used since the 90's to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of Automated Analysis of Feature Models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.Ministerio de Economía y Competitividad TIN2015-70560-RJunta de Andalucía TIC-186

    Variability and Evolution in Systems of Systems

    Full text link
    In this position paper (1) we discuss two particular aspects of Systems of Systems, i.e., variability and evolution. (2) We argue that concepts from Product Line Engineering and Software Evolution are relevant to Systems of Systems Engineering. (3) Conversely, concepts from Systems of Systems Engineering can be helpful in Product Line Engineering and Software Evolution. Hence, we argue that an exchange of concepts between the disciplines would be beneficial.Comment: In Proceedings AiSoS 2013, arXiv:1311.319

    Integrated Management of Variability in Space and Time in Software Families

    Get PDF
    Software Product Lines (SPLs) and Software Ecosystems (SECOs) are approaches to capturing families of closely related software systems in terms of common and variable functionality (variability in space). SPLs and especially SECOs are subject to software evolution to adapt to new or changed requirements resulting in different versions of the software family and its variable assets (variability in time). Both dimensions may be interconnected (e.g., through version incompatibilities) and, thus, have to be handled simultaneously as not all customers upgrade their respective products immediately or completely. However, there currently is no integrated approach allowing variant derivation of features in different version combinations. In this thesis, remedy is provided in the form of an integrated approach making contributions in three areas: (1) As variability model, Hyper-Feature Models (HFMs) and a version-aware constraint language are introduced to conceptually capture variability in time as features and feature versions. (2) As variability realization mechanism, delta modeling is extended for variability in time, and a language creation infrastructure is provided to devise suitable delta languages. (3) For the variant derivation procedure, an automatic version selection mechanism is presented as well as a procedure to derive large parts of the application order for delta modules from the structure of the HFM. The presented integrated approach enables derivation of concrete software systems from an SPL or a SECO where both features and feature versions may be configured.:I. Context and Preliminaries 1. The Configurable TurtleBot Driver as Running Example 1.1. TurtleBot: A Domestic Service Robot 1.2. Configurable Driver Functionality 1.3. Software Realization Artifacts 1.4. Development History of the Driver Software 2. Families of Variable Software Systems 2.1. Variability 2.1.1. Variability in Space and Time 2.1.2. Internal and External Variability 2.2. Manifestations of Configuration Knowledge 2.2.1. Variability Models 2.2.2. Variability Realization Mechanisms 2.2.3. Variability in Realization Assets 2.3. Types of Software Families 2.3.1. Software Product Lines 2.3.2. Software Ecosystems 2.3.3. Comparison of Software Product Lines and Software Ecosystems 3. Fundamental Approaches and Technologies of the Thesis 3.1. Model-Driven Software Development 3.1.1. Metamodeling Levels 3.1.2. Utilizing Models in Generative Approaches 3.1.3. Representation of Languages using Metamodels 3.1.4. Changing the Model-Representation of Artifacts 3.1.5. Suitability of Model-Driven Software Development 3.2. Fundamental Variability Management Techniques of the Thesis 3.2.1. Feature Models as Variability Models 3.2.2. Delta Modeling as Variability Realization Mechanism 3.2.3. Variant Derivation Process of Delta Modeling with Feature Models 3.3. Constraint Satisfaction Problems 3.4. Scope 3.4.1. Problem Statement 3.4.2. Requirements 3.4.3. Assumptions and Boundaries II. Integrated Management of Variability in Space and Time 4. Capturing Variability in Space and Time with Hyper-Feature Models 4.1. Feature Models Cannot Capture Variability in Time 4.2. Formal Definition of Feature Models 4.3. Definition of Hyper-Feature Models 4.4. Creation of Hyper-Feature Model Versions 4.5. Version-Aware Constraints to Represent Version Dependencies and Incompatibilities 4.6. Hyper-Feature Models are a True Extension to Feature Models 4.7. Case Study 4.8. Demarcation from Related Work 4.9. Chapter Summary 5. Creating Delta Languages Suitable for Variability in Space and Time 5.1. Current Delta Languages are not Suitable for Variability in Time 5.2. Software Fault Trees as Example of a Source Language 5.3. Evolution Delta Modules as Manifestation of Variability in Time 5.4. Automating Delta Language Generation 5.4.1. Standard Delta Operations Realize Usual Functionality 5.4.2. Custom Delta Operations Realize Specialized Functionality 5.5. Delta Language Creation Infrastructure 5.5.1. The Common Base Delta Language Provides Shared Functionality for all Delta Languages 5.5.2. Delta Dialects Define Delta Operations for Custom Delta Languages 5.5.3. Custom Delta Languages Enable Variability in Source Languages 5.6. Case Study 5.7. Demarcation from Related Work 5.8. Chapter Summary 6. Deriving Variants with Variability in Space and Time 6.1. Variant Derivation Cannot Handle Variability in Time 6.2. Associating Features and Feature Versions with Delta Modules 6.3. Automatically Select Versions to Ease Configuration 6.4. Application Order and Implicitly Required Delta Modules 6.4.1. Determining Relevant Delta Modules 6.4.2. Forming a Dependency Graph of Delta Modules 6.4.3. Performing a Topological Sorting of Delta Modules 6.5. Generating Variants with Versions of Variable Assets 6.6. Case Study 6.7. Demarcation from Related Work 6.8. Chapter Summary III. Realization and Application 7. Realization as Tool Suite DeltaEcore 7.1. Creating Delta Languages 7.1.1. Shared Base Metamodel 7.1.2. Common Base Delta Language 7.1.3. Delta Dialects 7.2. Specifying a Software Family with Variability in Space and Time 7.2.1. Hyper-Feature Models 7.2.2. Version-Aware Constraints 7.2.3. Delta Modules 7.2.4. Application-Order Constraints 7.2.5. Mapping Models 7.3. Deriving Variants 7.3.1. Creating a Configuration 7.3.2. Collecting Delta Modules 7.3.3. Ordering Delta Modules 7.3.4. Applying Delta Modules 8. Evaluation 8.1. Configurable TurtleBot Driver Software 8.1.1. Variability in Space 8.1.2. Variability in Time 8.1.3. Integrated Management of Variability in Space and Time 8.2. Metamodel Family for Role-Based Modeling and Programming Languages 8.2.1. Variability in Space 8.2.2. Variability in Time 8.2.3. Integrated Management of Variability in Space and Time 8.3. A Software Product Line of Feature Modeling Notations and Constraint Languages 8.3.1. Variability in Space 8.3.2. Variability in Time 8.3.3. Integrated Management of Variability in Space and Time 8.4. Results and Discussion 8.4.1. Results and Discussion of RQ1: Variability Model 8.4.2. Results and Discussion of RQ2: Variability Realization Mechanism 8.4.3. Results and Discussion of RQ3: Variant Derivation Procedure 9. Conclusion 9.1. Discussion 9.1.1. Supported Evolutionary Changes 9.1.2. Conceptual Representation of Variability in Time 9.1.3. Perception of Versions as Incremental 9.1.4. Version Numbering Schemes 9.1.5. Created Delta Languages 9.1.6. Scalability of Approach 9.2. Possible Future Application Areas 9.2.1. Extend to Full Software Ecosystem Feature Model 9.2.2. Model Software Ecosystems 9.2.3. Extract Hyper-Feature Model Versions and Record Delta Modules 9.2.4. Introduce Metaevolution Delta Modules 9.2.5. Support Incremental Reconfiguration 9.2.6. Apply for Evolution Analysis and Planning 9.2.7. Enable Evolution of Variable Safety-Critical Systems 9.3. Contribution 9.3.1. Individual Contributions 9.3.2. Handling Updater Stereotypes IV. Appendix A. Delta Operation Generation Algorithm B. Delta Dialects B.1. Delta Dialect for Java B.2. Delta Dialect for Eclipse Projects B.3. Delta Dialect for DocBook Markup B.4. Delta Dialect for Software Fault Trees B.5. Delta Dialect for Component Fault Diagrams B.6. Delta Dialect for Checklists B.7. Delta Dialect for the Goal Structuring Notation B.8. Delta Dialect for EMF Ecore B.9. Delta Dialect for EMFText Concrete Syntax File

    Supporting the automated generation of modular product line safety cases

    Get PDF
    Abstract The effective reuse of design assets in safety-critical Software Product Lines (SPL) would require the reuse of safety analyses of those assets in the variant contexts of certification of products derived from the SPL. This in turn requires the traceability of SPL variation across design, including variation in safety analysis and safety cases. In this paper, we propose a method and tool to support the automatic generation of modular SPL safety case architectures from the information provided by SPL feature modeling and model-based safety analysis. The Goal Structuring Notation (GSN) safety case modeling notation and its modular extensions supported by the D-Case Editor were used to implement the method in an automated tool support. The tool was used to generate a modular safety case for an automotive Hybrid Braking System SPL
    corecore