275,726 research outputs found

    Weight-based Channel-model Matrix Framework provides a reasonable solution for EEG-based cross-dataset emotion recognition

    Full text link
    Cross-dataset emotion recognition as an extremely challenging task in the field of EEG-based affective computing is influenced by many factors, which makes the universal models yield unsatisfactory results. Facing the situation that lacks EEG information decoding research, we first analyzed the impact of different EEG information(individual, session, emotion and trial) for emotion recognition by sample space visualization, sample aggregation phenomena quantification, and energy pattern analysis on five public datasets. Based on these phenomena and patterns, we provided the processing methods and interpretable work of various EEG differences. Through the analysis of emotional feature distribution patterns, the Individual Emotional Feature Distribution Difference(IEFDD) was found, which was also considered as the main factor of the stability for emotion recognition. After analyzing the limitations of traditional modeling approach suffering from IEFDD, the Weight-based Channel-model Matrix Framework(WCMF) was proposed. To reasonably characterize emotional feature distribution patterns, four weight extraction methods were designed, and the optimal was the correction T-test(CT) weight extraction method. Finally, the performance of WCMF was validated on cross-dataset tasks in two kinds of experiments that simulated different practical scenarios, and the results showed that WCMF had more stable and better emotion recognition ability.Comment: 18 pages, 12 figures, 8 table

    a convolutional autoencoder approach for feature extraction in virtual metrology

    Get PDF
    Abstract Exploiting the huge amount of data collected by industries is definitely one of the main challenges of the so-called Big Data era. In this sense, Machine Learning has gained growing attention in the scientific community, as it allows to extract valuable information by means of statistical predictive models trained on historical process data. In Semiconductor Manufacturing, one of the most extensively employed data-driven applications is Virtual Metrology, where a costly or unmeasurable variable is estimated by means of cheap and easy to obtain measures that are already available in the system. Often, these measures are multi-dimensional, so traditional Machine Learning algorithms cannot handle them directly. Instead, they require feature extraction, that is a preliminary step where relevant information is extracted from raw data and converted into a design matrix. Features are often hand-engineered and based on specific domain knowledge. Moreover, they may be difficult to scale and prone to information loss, affecting the effectiveness and maintainability of machine learning procedures. In this paper, we present a Deep Learning method for semi-supervised feature extraction based on Convolutional Autoencoders that is able to overcome the aforementioned problems. The proposed method is tested on a real dataset for Etch rate estimation. Optical Emission Spectrometry data, that exhibit a complex bi-dimensional time and wavelength evolution, are used as input

    Learning Models over Relational Data using Sparse Tensors and Functional Dependencies

    Full text link
    Integrated solutions for analytics over relational databases are of great practical importance as they avoid the costly repeated loop data scientists have to deal with on a daily basis: select features from data residing in relational databases using feature extraction queries involving joins, projections, and aggregations; export the training dataset defined by such queries; convert this dataset into the format of an external learning tool; and train the desired model using this tool. These integrated solutions are also a fertile ground of theoretically fundamental and challenging problems at the intersection of relational and statistical data models. This article introduces a unified framework for training and evaluating a class of statistical learning models over relational databases. This class includes ridge linear regression, polynomial regression, factorization machines, and principal component analysis. We show that, by synergizing key tools from database theory such as schema information, query structure, functional dependencies, recent advances in query evaluation algorithms, and from linear algebra such as tensor and matrix operations, one can formulate relational analytics problems and design efficient (query and data) structure-aware algorithms to solve them. This theoretical development informed the design and implementation of the AC/DC system for structure-aware learning. We benchmark the performance of AC/DC against R, MADlib, libFM, and TensorFlow. For typical retail forecasting and advertisement planning applications, AC/DC can learn polynomial regression models and factorization machines with at least the same accuracy as its competitors and up to three orders of magnitude faster than its competitors whenever they do not run out of memory, exceed 24-hour timeout, or encounter internal design limitations.Comment: 61 pages, 9 figures, 2 table

    Synthesis of Attributed Feature Models From Product Descriptions: Foundations

    Get PDF
    Feature modeling is a widely used formalism to characterize a set of products (also called configurations). As a manual elaboration is a long and arduous task, numerous techniques have been proposed to reverse engineer feature models from various kinds of artefacts. But none of them synthesize feature attributes (or constraints over attributes) despite the practical relevance of attributes for documenting the different values across a range of products. In this report, we develop an algorithm for synthesizing attributed feature models given a set of product descriptions. We present sound, complete, and parametrizable techniques for computing all possible hierarchies, feature groups, placements of feature attributes, domain values, and constraints. We perform a complexity analysis w.r.t. number of features, attributes, configurations, and domain size. We also evaluate the scalability of our synthesis procedure using randomized configuration matrices. This report is a first step that aims to describe the foundations for synthesizing attributed feature models
    • …
    corecore