Cross-dataset emotion recognition as an extremely challenging task in the
field of EEG-based affective computing is influenced by many factors, which
makes the universal models yield unsatisfactory results. Facing the situation
that lacks EEG information decoding research, we first analyzed the impact of
different EEG information(individual, session, emotion and trial) for emotion
recognition by sample space visualization, sample aggregation phenomena
quantification, and energy pattern analysis on five public datasets. Based on
these phenomena and patterns, we provided the processing methods and
interpretable work of various EEG differences. Through the analysis of
emotional feature distribution patterns, the Individual Emotional Feature
Distribution Difference(IEFDD) was found, which was also considered as the main
factor of the stability for emotion recognition. After analyzing the
limitations of traditional modeling approach suffering from IEFDD, the
Weight-based Channel-model Matrix Framework(WCMF) was proposed. To reasonably
characterize emotional feature distribution patterns, four weight extraction
methods were designed, and the optimal was the correction T-test(CT) weight
extraction method. Finally, the performance of WCMF was validated on
cross-dataset tasks in two kinds of experiments that simulated different
practical scenarios, and the results showed that WCMF had more stable and
better emotion recognition ability.Comment: 18 pages, 12 figures, 8 table