10,615 research outputs found

    Multimodal music information processing and retrieval: survey and future challenges

    Full text link
    Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, mid-level representations, motion, and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years

    Pop Music Highlighter: Marking the Emotion Keypoints

    Get PDF
    The goal of music highlight extraction is to get a short consecutive segment of a piece of music that provides an effective representation of the whole piece. In a previous work, we introduced an attention-based convolutional recurrent neural network that uses music emotion classification as a surrogate task for music highlight extraction, for Pop songs. The rationale behind that approach is that the highlight of a song is usually the most emotional part. This paper extends our previous work in the following two aspects. First, methodology-wise we experiment with a new architecture that does not need any recurrent layers, making the training process faster. Moreover, we compare a late-fusion variant and an early-fusion variant to study which one better exploits the attention mechanism. Second, we conduct and report an extensive set of experiments comparing the proposed attention-based methods against a heuristic energy-based method, a structural repetition-based method, and a few other simple feature-based methods for this task. Due to the lack of public-domain labeled data for highlight extraction, following our previous work we use the RWC POP 100-song data set to evaluate how the detected highlights overlap with any chorus sections of the songs. The experiments demonstrate the effectiveness of our methods over competing methods. For reproducibility, we open source the code and pre-trained model at https://github.com/remyhuang/pop-music-highlighter/.Comment: Transactions of the ISMIR vol. 1, no.

    Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

    Get PDF
    Deep cross-modal learning has successfully demonstrated excellent performance in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics should be taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Data in different modalities are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study that uses deep architectures for learning the temporal correlation between audio and lyrics. A pre-trained Doc2Vec model followed by fully-connected layers is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) We propose an end-to-end network to learn cross-modal correlation between audio and lyrics, where feature extraction and correlation learning are simultaneously performed and joint representation is learned by considering temporal structures. ii) As for feature extraction, we further represent an audio signal by a short sequence of local summaries (VGG16 features) and apply a recurrent neural network to compute a compact feature that better learns temporal structures of music audio. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval

    Automatic Genre Classification of Musical Signals

    Get PDF
    • …
    corecore