16 research outputs found

    Advanced SOM & K Mean Method for Load Curve Clustering

    Get PDF
    From the load curve classification for one customer, the main features such as the seasonal factors, the weekday factors influencing on the electricity consumption may be extracted. By this way some utilities can make decision on the tariff by seasons or by day in week. The popular clustering techniques are the SOM & K-mean or Fuzzy K-mean. SOM &Kmean is a prominent approach for clustering with a two-level approach: first, the data set will be clustered using the SOM and in the second level, the SOM will be clustered by K-mean. In the first level, two training algorithms were examined: sequential and batch training. For the second level, the K-mean has the results that are strongly depended on the initial values of the centers. To overcome this, this paper used the subtractive clustering approach proposed by Chiu in 1994 to determine the centers. Because the effective radius in Chiu’s method has some influence on the number of centers, the paper applied the PSO technique to find the optimum radius. To valid the proposed approach, the test on well-known data samples is carried out. The applications for daily load curves of one Southern utility are presented

    C-Vine copula mixture model for clustering of residential electrical load pattern data

    Get PDF
    The ongoing deployment of residential smart meters in numerous jurisdictions has led to an influx of electricity consumption data. This information presents a valuable opportunity to suppliers for better understanding their customer base and designing more effective tariff structures. In the past, various clustering methods have been proposed for meaningful customer partitioning. This paper presents a novel finite mixture modeling framework based on C-vine copulas (CVMM) for carrying out consumer categorization. The superiority of the proposed framework lies in the great flexibility of pair copulas towards identifying multi-dimensional dependency structures present in load profiling data. CVMM is compared to other classical methods by using real demand measurements recorded across 2,613 households in a London smart-metering trial. The superior performance of the proposed approach is demonstrated by analyzing four validity indicators. In addition, a decision tree classification module for partitioning new consumers is developed and the improved predictive performance of CVMM compared to existing methods is highlighted. Further case studies are carried out based on different loading conditions and different sets of large numbers of households to demonstrate the advantages and to test the scalability of the proposed method

    A novel feature set for low-voltage consumers, based on the temporal dependence of consumption and peak demands

    Get PDF
    This paper proposes a novel feature construction methodology aiming at both clustering yearly load profiles of low-voltage consumers, as well as investigating the stochastic nature of their peak demands. These load profiles describe the electricity consumption over a one-year period, allowing the study of seasonal dependence. The clustering of load curves has been extensively studied in literature, where clustering of daily or weekly load curves based on temporal features has received the most research attention. The proposed feature construction aims at generating a new set of variables that can be used in machine learning applications, stepping away from traditional, high dimensional, chronological feature sets. This paper presents a novel feature set based on two types of features: respectively the consumption time window on a daily and weekly basis, and the time of occurrence of peak demands. An analytic expression for the load duration curve is validated and leveraged in order to define the the region that has to be considered as peak demand region. The clustering results using the proposed set of features on a dataset of measured Flemish consumers at 15-min resolution are evaluated and interpreted, where special attention is given to the stochastic nature of the peak demands

    Deep Learning for Household Load Forecasting – A Novel Pooling Deep RNN

    Get PDF
    The key challenge for household load forecasting lies in the high volatility and uncertainty of load profiles. Traditional methods tend to avoid such uncertainty by load aggregation (to offset uncertainties), customer classification (to cluster uncertainties) and spectral analysis (to filter out uncertainties). This paper, for the first time, aims to directly learn the uncertainty by applying a new breed of machine learning algorithms – deep learning. However simply adding layers in neural networks will cap the forecasting performance due to the occurrence of overfitting. A novel pooling-based deep recurrent neural network (PDRNN) is proposed in this paper which batches a group of customers’ load profiles into a pool of inputs. Essentially the model could address the over-fitting issue by increasing data diversity and volume. This work reports the first attempts to develop a bespoke deep learning application for household load forecasting and achieved preliminary success. The developed method is implemented on Tensorflow deep learning platform and tested on 920 smart metered customers from Ireland. Compared with the state-of-art techniques in household load forecasting, the proposed method outperforms ARIMA by 19.5%, SVR by 13.1% and classical deep RNN by 6.5% in terms of RMSE
    corecore