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Abstract—The ongoing deployment of residential smart meters 

in numerous jurisdictions has led to an influx of electricity 

consumption data. This information presents a valuable 

opportunity to suppliers for better understanding their customer 

base and designing more effective tariff structures. In the past, 

various clustering methods have been proposed for meaningful 

customer partitioning. This paper presents a novel finite mixture 

modeling framework based on C-vine copulas (CVMM) for 

carrying out consumer categorization. The superiority of the 

proposed framework lies in the great flexibility of pair copulas 

towards identifying multi-dimensional dependency structures 

present in load profiling data. CVMM is compared to other 

classical methods by using real demand measurements recorded 

across 2,613 households in a London smart-metering trial. The 

superior performance of the proposed approach is demonstrated 

by analyzing four validity indicators. In addition, a decision tree 

classification module for partitioning new consumers is developed 

and the improved predictive performance of CVMM compared to 

existing methods is highlighted. Further case studies are carried 

out based on different loading conditions and different sets of large 

numbers of households to demonstrate the advantages and to test 

the scalability of the proposed method. 

 

Index Terms—Clustering, customer classification, C-vine, 

decision trees, mixture models, pair-copula construction, smart 

meters. 

I.  INTRODUCTION 

lectricity market liberalization has largely unbundled the 

distribution and supply services in many jurisdictions, 

providing customers with the freedom to select their electricity 

supplier. In this competitive environment, retail companies can 

improve the commercial attractiveness of their product by 

formulating tariffs aimed at different customer types. An 

important part of the tariff design  process is the identification 

of meaningful customer classes that exhibit different 

consumption patterns, enabling the development of 

diversifiable products. Moreover, electrical customer 

classification can also play a crucial role in load forecasting 

[1][2] and modeling [3], electricity market development [4], 

energy system planning and operation [5] and theft detection 

[6]. Naturally, information on customer type (e.g. industrial, 

commercial, residential) provides important information 

regarding the likely electricity consumption pattern and 

intensity. However, for further partitioning and exploratory 

analysis to be carried out effectively, high-frequency demand 

measurements are necessary [7]. As such, the advent of smart 

metering has led to large-scale availability of consumption data 

that render clustering analysis increasingly possible. 

Load profile clustering aims to allocate consumers into a 

small number of homogeneous groups, ensuring that elements 

of the same cluster are similar between them, while being 

dissimilar to elements of different clusters. A large number of 

clustering techniques have been proposed in the past and 

applied to electrical load data. Examples of centroid-based 

approaches include k-means [8], [9], fuzzy k-means [10], k-

medoids [11], and modified follow-the-leader [12]. 

Connectivity-based approaches have also been applied, 

focusing on hierarchical clustering methods with different 

linkages [10],[12]. Other studied techniques include ant colony 

clustering [13], self-organizing maps [14] and neural networks 

[10],[15]. Typically, the number of clusters is determined using 

clustering validity indices as discussed in [5] and [16]. 

An alternative approach, beyond centroid and connectivity 

models, which is starting to gain interest among practitioners, 

is the use of distribution mixture models. One main advantage 

of distribution-based clustering is the ability to systematically 

select the number of clusters while penalizing model 

complexity to construct parsimonious models [17]. Another 

advantage is the ability to obtain a probability measure 

regarding the classification of each consumer, as opposed to the 

‘hard’ clustering that characterizes other methods. Another 

practical advantage relates to reduced memory requirements; by 

relying on parametric functions it is possible to effectively 

compress large amounts of data in a reduced-sized model.   

In light of the above, a number of model-based clustering 

techniques have been used in the past to tackle customer 

clustering. Gaussian mixture model (GMM) is one of the most 

widely used model-based clustering approaches. It has been 

applied for time-of-use tariff design in [18] and clustering 

households in [19]. GMM has also been used in  [20] to identify 

suitable data clusters for training Markov demand models. 

Other model types can also be deployed; for example, a 

multivariate Dirichlet process mixture model has been used to 

cluster electricity profiles in [21]. However, all such techniques 

suffer from the inherent limitations of standard multivariate 

functions; all mixture model components follow a pre-specified 

marginal distribution function and dependence structure. Given 

the highly non-linear dependence structures and non-standard 

marginal distributions observed in demand datasets, developing 

high-quality mixture models for clustering purposes is a 

substantial challenge.  
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In response to this, copulas can be utilized as a powerful tool 

to capture more complex dependency structures between 

variables. Gaussian Mixture Copula Models (GMCMs) were 

proposed in [22], where a number of multivariate Gaussian 

copulas are fitted to a range of data sets. In [23], a Gaussian 

copula mixture model was developed for dependency-seeking 

clustering tasks for both synthetic and real data found in 

biological systems. In [24], the copulas-based mixture model 

clustering algorithm was extended beyond the Gaussian 

paradigm to also accommodate other copula families such as 

Gumbel and Clayton. Although the existing copula-based 

mixture model clustering techniques have demonstrated good 

performance, accurately capturing the complicated dependency 

structures exhibited by electrical system variables, such as 

loads, cannot be adequately described by solely relying on 

multivariate copula building blocks; more flexible modelling 

structures are required. Vine copula models make use of pair 

copula construction (PCC) schemes to decompose a high-

dimensional copula into a cascade of bivariate copula functions 

[25]. This substantially increases the flexibility of the model by 

being able to capture complex dependencies across a large 

number of variables. In addition, vine copula models have been 

shown not to suffer from the curse of dimensionality that 

characterizes other high-dimensional models [26].  Authors in 

[27] have shown that vine copulas are a class of density 

functions whose convergence rate does not depend on the 

number of dimensions. Given that a high-dimensional vine 

copula model is a cascade of bivariate functions, its 

convergence rate is equal to the rate of a two-dimensional 

estimator, thus evading the curse of dimensionality. 

In this paper, a specific pair-copula construction scheme 

known as C-Vine is used to perform a novel type of 

distribution-based clustering. It is important to note that an 

indirect clustering approach is followed; a transformation to a 

lower-dimensional feature space is first applied instead of the 

model being fit directly to the consumption data set. Many 

variants of indirect clustering have been applied in the past.  For 

example, authors in [28] perform clustering on household 

occupancy states which have been inferred using a Hidden 

Markov model. In a similar vein, authors in [29] apply Fast 

Search and Find of Density Peaks [30], a novel density-based 

clustering method, on occupancy state transition matrices. 

Locality- sensitive hashing is used in [31] to substantially speed 

up subsequent similarity comparisons for clustering. Indirect 

clustering is also combined with GMM in [32]. A discussion on 

the selection of possible features takes place in [33]. In our 

work, by combining vine copulas with dimension reduction, we 

are capable of addressing the drawback of increased 

computational burden while also harvesting the synergy 

between the C-Vine’s hierarchical structure and the ordered 

variables, as discussed in [34].  

This paper proposes a C-vine copulas based mixture model 

clustering (CVMM) algorithm for grouping the load pattern 

data. For CVMM, the parameters of the constructed mixture 

model are estimated via the expectation-maximization (EM) 

algorithm. The clustering quality of CVMM is evaluated and 

compared to other classical methods by using a set of selected 

clustering validation indicators based on real demand 

measurements. In addition, a decision tree based classification 

module for assigning new consumers to the existing classes is 

developed to further assess the results of CVMM clustering.  
This paper is structured as follows. Section II recalls the 

concept of copulas and introduces pair-copula construction. 

Section III illustrates the procedure of load pattern data 

processing and defines the proposed C-vine Mixture Model 

Clustering (CVMM) algorithm with EM estimation. Section IV 

introduces the selected clustering validation indicators and their 

expressions. In Section V, based on real residential load pattern 

data from London, the performance of the proposed CVMM 

algorithm is assessed and compared with other widely-used 

load pattern clustering algorithms via comparing various 

relevant metrics. Furthermore, the clustering results are 

analyzed using demographic metadata. In addition, the 

accuracy of a decision-tree based customer classification model 

is used as an additional performance metric. The clustering 

performance of CVMM is is shown to be superior to exsiting 

methods when applied to the autumn dataset and combined 

weekday/weekend dataset. Finally, a scaling analysis for 

different sets of large numbers of households is presented. 

Section VI contains the concluding remarks. 

II.  COPULAS AND PAIR-COPULA CONSTRUCTION 

Copulas are a powerful tool for modeling data that exhibit a 

complex dependence structure. The basic concept of copulas is 

illustrated by Sklar’s theorem [35]. Let 𝑓, 𝐹, 𝑐 and  𝐶  denote 

probability density function, cumulative distribution function, 

copula density function and copula cumulative distribution 

function, respectively. Consider 𝑚  random variables 𝑋 =
(𝑋1, … , 𝑋𝑚) ∈ ℝ𝑚  with marginal cumulative distribution 

functions 𝐹𝑖(𝑥𝑖) and marginal density function 𝑓𝑖(𝑥𝑖), for 𝑖 =
1, . . , 𝑚. The joint density function can be expressed as: 

𝑓(𝑥1, … , 𝑥𝑚) = (∏ 𝑓𝑖(𝑥𝑖)

𝑚

𝑖=1

) × 𝑐1…𝑚(𝐹1(𝑥1), … , 𝐹𝑚(𝑥𝑚)) (1) 

where the function 𝑐1…𝑑: [0,1]𝑚 → ℝ  is an m-dimensional 

copula with uniform marginals 𝑈 = {𝑈1, 𝑈2, … , 𝑈𝑚} =
{𝐹1(𝑋1), 𝐹2(𝑋2), … , 𝐹𝑚(𝑋𝑚)}. Equation (1) demonstrates that a 

joint density function can be represented by a product of its 

margins and a multivariate copula density function. Sklar’s 

theorem states that if all marginal distribution functions are 

continuous then the copula coupling all variables is unique. 

Thus, an 𝑚 -dimensional copula is a parametric function 

defined on the [0,1]𝑚  space, describing the dependency 

between 𝑚  variables. Moving beyond the above definition, 

copula functions can be described by different copula families 

and corresponding parameters. For example, as shown in Fig.1 

Clayton and Gumbel are two types of Archimedean copulas that 

have lower-tail dependence and upper-tail dependence with the 

parameters defined on the range (0, ∞) and (1, ∞) respectively. 
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Fig. 1. Examples of a bivariate Gumbel copula with parameter 𝜗 = 5 (left 

panel) and a bivariate Clayton copula with parameter 𝜌 = 2 (right panel). 

 

For the bivariate case, there are Gaussian copula, Student-t 

copula, Frank copula, Joe copula, BB1 copula, BB6 copula, 

BB7 copula, BB8 copulas, etc. [36]. Although such a rich 

variety is available, only very few copula families (e.g. 

Gaussian) can be extended to a high-dimensional version. 

Consequently, the performance of a single multivariate copula 

is limited when modeling a high-dimensional dataset with 

complex inter-dependencies. To handle this problem, the pair-

copula construction method was proposed in [37] and 

developed in [25], [38] to decompose a high-dimensional 

copula function into a cascade of bivariate copulas. It is 

constructive to note that there is a vast number of possible pair-

copula constructions for a high-dimensional distribution. To 

this end, a particular type of graphical model, Canonical vines 

(C-vines) was introduced in [39]. In general, the C-vine 

representation for the density function 𝑓(𝑥1, … , 𝑥𝑚)  can be 

expressed as follows: 

𝑓(𝑥1, … , 𝑥𝑚)

= (∏ 𝑓𝑙(𝑥𝑙)

𝑚

𝑙=1

) × ∏ ∏ 𝑐𝑗,𝑗+𝑖|𝜔𝑖,𝑗
(𝐹𝑗|𝜔𝑖,𝑗

, 𝐹𝑗+𝑖|𝜔𝑖,𝑗
)

𝑚−𝑗

𝑖=1

  

𝑚−1

𝑗=1

         (2) 

where 𝜔𝑖,𝑗 = {1, … , 𝑗 − 1} . In equation (2), the conditional 

distribution function can be denoted by h-functions [25] as 

follows: 

ℎ(𝑈𝑖 , 𝑈𝑗 , Θ) = 𝐹(𝑈𝑖|𝑈𝑗) =
𝜕𝐶𝑢𝑖,𝑢𝑗

(𝑈𝑖 , 𝑈𝑗 , Θ)

𝜕𝑈𝑗

          (3) 

where Θ is the set of the parameters for the bivariate copula 𝐶 

fitted to two uniformly distributed variables 𝑈𝑖  and  𝑈𝑗 . For 

example, the general expression for the C-vine structure in the 

𝑚 = 3 case is given by: 

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓(𝑥1) ∙ 𝑓(𝑥2) ∙ 𝑓(𝑥3) ∙ 𝑐12(𝐹(𝑥1), 𝐹(𝑥2))

∙ 𝑐13(𝐹(𝑥1), 𝐹(𝑥3))

∙ 𝑐23|1(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1))                        (4) 

Graphically, the C-vine construction can be represented as 

a sequence of dependency trees 𝑇 = [𝑇1, … , 𝑇𝑚−1]. An example 

of a C-vine for 𝑚 = 3 is shown in Fig.2. 

 
Fig. 2. Example of C-vine trees for 𝑚 = 3. 

As shown above, there is a total of  𝑚(𝑚 − 1)/2 edges, 

where m is the number of variables being modeled. Each edge 

corresponds to a pair-copula density function fitted to the 

connected nodes. For each pair-copula, the best-fitting family, 

along with the optimal corresponding parameter(s) must be 

identified. To this end, a series of criteria can be employed such 

as goodness-of-fit (GOF) test, the Vuong test, the Akaike's 

information criterion (AIC), and the Bayesian inference 

criterion (BIC). Among them, we choose the AIC which has 

been shown to perform well in the past [40]. The optimal 

parameters of each candidate copula family are estimated via 

the Maximum Likelihood Estimation (MLE) method as 

implemented in [25] and [36].  In the context of a real data set, 

a large number of variables renders the C-vine construction 

process computationally expensive. To this end, dimensionality 

reduction technique such as Principal component analysis (PCA) 

can be exploited to decrease the computational complexity by 

fitting the parametric model in a lower-dimensional space.  

III.  C-VINE MIXTURE MODEL CLUSTERING ALGORITHM 

A.  Load Pattern Data Processing 

Given a set of N customers, the electrical consumption of 

each customer is typically represented via a daily load pattern, 

calculated by averaging the measured load data over a period of 

time (typically in the order of a few months or a year). 

Subsequently, the representative load pattern (RLP) defined in 

[12] can be obtained as the normalized daily load pattern in 

[0,1] with regards to a reference value (i.e. peak value of the 

daily load pattern). In most of the existing literature on load 

pattern clustering, it has been demonstrated that it is effective 

to group customers into different classes via some appropriate 

clustering techniques on the basis of their RLPs.  

Mathematically, let 𝑋 = [𝑥1, … , 𝑥𝑁] ∈ ℝ𝑃×𝑁  denote the 

whole set of historical load data measurements, where P is the 

total number of data points measured during a determined 

period of time, each vector 𝑥𝑛 = [𝑥𝑛,1, … , 𝑥𝑛,𝑃] ∈ ℝ𝑃 

represents the monitored load data for the 𝑛𝑡ℎ  customer, for 

𝑛 = 1, … , 𝑁 . Assuming that m is the number of samples 

characterizing each daily load pattern, for each customer, the 

daily load pattern 𝑥̅𝑛 = [𝑥̅𝑛,1, … , 𝑥̅𝑛,𝑚] ∈ ℝ𝑚 can be calculated 

by averaging every 𝑚 data points of 𝑥𝑛. Furthermore, the data 

set 𝐷  of the N RLPs is represented by 𝐷 = [𝑑1, … , 𝑑𝑁]𝑇 ∈

ℝ𝑁×𝑚 in which each vector 𝑑𝑛 = [𝑑𝑛,1, … , 𝑑𝑛,𝑃] ∈ ℝ𝑃  can be 

calculated as: 

𝑑𝑛 = 𝑥̅𝑛 max(𝑥𝑛)⁄                                 (5) 

After building the N RLPs via the above data processing 

procedure, the next step is to group the N RLPS into a pre-

determined number of clusters by using the proposed CVMM 

clustering algorithm. 

B.  CVMM Clustering Algorithm 

Let K denote the number of customer classes to be 

partitioned; the density of the C-vine mixture model (CVMM) 

for the data set 𝐷 of the N RLPs is given by: 

𝑓(𝐷|Θ) = ∑ 𝜋𝑘

𝐾

𝑘=1

𝑓𝑘(𝐷|Θ𝑘)                     (6) 

where 𝜋𝑘 ∈ [0,1]  with ∑ 𝜋𝑘
𝐾
𝑘=1 = 1  and Θ = [Θ1

𝑇 , … , Θ𝐾
𝑇]𝑇   

represent the mixing proportions and the parameters of the 

component densities 𝑓𝑘(𝐷|Θ𝑘), for 𝑘 = 1, … , 𝐾, respectively.  

1,2

1,3 1T1
T2

 3

 2

 1,2  1,3

2,3|1

C-vine
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Note that each parameter set Θ𝑘  of Θ  contains all the pair-

copula parameters for the 𝑘𝑡ℎ component in the case of C-vine 

representation. According to equation (2), the multivariate 

distribution 𝑓(𝐷|Θ) can be expressed as:  

∑ 𝜋𝑘

𝐾

𝑘=1

∏ 𝑓𝑘(𝑑1:𝑁,𝑙)

𝑚

𝑙=1

∏ ∏ 𝑐𝑗,𝑗+𝑖|𝑣𝑖,𝑗

𝑘 (𝐹𝑗|𝑣𝑖,𝑗

𝑘 , 𝐹𝑗+𝑖|𝑣𝑖,𝑗

𝑘 )

𝑚−𝑗

𝑖=1

 

𝑚−1

𝑗=1

     (7) 

where 𝑣𝑖,𝑗 = {1, … , 𝑗 − 1}  and 𝑐.,.
𝑘  represents a pair-copula of 

the 𝑘𝑡ℎ  component. Let 𝑆 = [𝑠1, … , 𝑠𝑁]𝑇  denote the latent 

random variables whose element 𝑠𝑛  indicates the label for 𝑑𝑛, 

the 𝑛𝑡ℎ observation of data set 𝐷, for 𝑛 = 1, … , 𝑁, the main aim 

of the proposed unsupervised CVMM clustering algorithm is to 

maximize the complete data log-likelihood function: 

𝐿 =  ∑ ∑ 𝑤𝑛,𝑘

𝐾

𝑘=1

×

𝑁

𝑛=1

( ∑ ∑ ln 𝑐𝑗,𝑗+𝑖|𝑣𝑖,𝑗

𝑘 (𝐹𝑗|𝑣𝑖,𝑗

𝑘 , 𝐹𝑗+𝑖|𝑣𝑖,𝑗

𝑘 |𝜃𝑗,𝑖
𝑘 )

𝑚−𝑗

𝑖=1

𝑚−1

𝑗=1

 

+ ∑ ln 𝑓𝑘(𝑑𝑆=𝑘,𝑙)

𝑚−1

𝑙=1

+ ln 𝜋𝑘)                     (8) 

where 𝑤𝑛,𝑘  represents the posterior probability of the 𝑛𝑡ℎ 

measurement that was drawn from the 𝑘𝑡ℎ component, 

calculated by:   

𝑤𝑛,𝑘 =
𝜋𝑘𝑓𝑘(𝑑𝑛|Θ𝑘)

∑ 𝜋𝑖
𝐾
𝑖=1 𝑓𝑖(𝑑𝑛|Θ𝑖)

 (𝑘 = 1, … , 𝐾).        (9) 

In addition, the prior probability (mixing proportion) of the 𝑘𝑡ℎ 

component is denoted by 𝜋𝑘: 

𝜋𝑘 =
∑ 𝑤𝑖,𝑘

𝑁
𝑖=1

𝑁
  (𝑘 = 1, … , 𝐾).                    (10) 

The expectation-maximization (EM) algorithm is used to 

estimate the maximum likelihood parameters Θ and the latent 

variables 𝑆  of equation (8), given measurement data D. The 

conventional idea of the EM algorithm can be deciphered as an 

alternate between estimating the latent variables and the 

parameters. Beyond that, a more comprehensive understanding 

is to consider the EM algorithm as a lower bound maximization 

procedure [41]. Accordingly, the expectation step (E-step) can 

be regarded as a process to build a local lower bound to the 

posterior distribution, while the maximization step (M-step) 

aims to optimize the constructed bound. In general, after 

initializing the EM algorithm, the 𝑡𝑡ℎ  iteration of the EM 

algorithm for CVMM can be summarized as: 

 E-step: Calculate 𝑤𝑛,𝑘
(𝑡)  using equation (9), for  𝑛 =

1, … , 𝑁, 𝑘 = 1, … , 𝐾. 

 M-step: Update 𝜋𝑘
(𝑡)  according to equation (10). 

Maximize the likelihood function  𝐿(𝑡)  to get the 

parameters Θ(𝑡+1) and the labels 𝑆(𝑡) . 

A detailed explanation of the above EM estimation for 

CVMM is given as follows. Firstly, regarding the initialization 

step, the superiority of the hierarchical clustering with average 

distance linkage criterion has been demonstrated in [12] when 

compared to k-means, fuzzy k-means, modified follow-the-

leader, hierarchical clustering with other types of linkages, and 

self-organizing maps. Therefore, in this case, the first step is to 

initialize the EM algorithm by pre-grouping the input data D 

into K clusters via the hierarchical clustering with average 

distance linkage criterion. Note that the optimal number of 

clusters K is determined according to the clustering validity 

indicators, detailed in Section IV. Subsequently, the E-step of 

EM algorithm consists of the calculation of the posterior 

probabilities W = [𝑤1:𝑁,1, … , 𝑤1:𝑁,𝐾] ∈ ℝ𝑁×𝐾  and the update 

of labels 𝑆 for 𝑁 customers. The label 𝑠𝑛 for each customer  is 

set to the index of the maximum value 

in  [𝑤𝑛,1, … , 𝑤𝑛,𝐾], for  𝑛 = 1, … , 𝑁 .  After updating the prior 

probabilities Π = [𝜋1, … , 𝜋𝐾] ∈ ℝ𝐾×1 using equation (10), the 

M-step maximize the likelihood function 𝐿 by estimating the 

copula parameters set  Ξ = [Θ1, … , Θ𝐾 ] for all the  𝐾  C-vine 

models. During the procedure of C-vine construction, the first 

step is to transform the historical data to uniform margins 

through their corresponding empirical cumulative functions 

(ECDFs). Afterwards, model selection (via AIC) and parameter 

estimation (via MLE) are performed on each pair-copula to 

identify the best-fitting function. In each iteration, a total of 

𝐾𝑚(𝑚 − 1)/2 pair copulas are fitted. The E-step and M-step 

are carried out iteratively until the relative change 𝑒  in log-

likelihood value 𝐿 is less than a predefined threshold𝜀 . The 

proposed algorithm is outlined below. 

Algorithm 1  CVMM Clustering  

Input: data set 𝑫 = [𝒅𝟏, … , 𝒅𝑵]𝑻, number of clusters K. 

Output: clustering labels 𝑺 = [𝒔𝟏, … , 𝒔𝑵]𝑻. 

1: Initialize customer labels  𝑆(0) = [𝑠1
(0), … , 𝑠𝑁

(0)]𝑇  via 

an initial clustering technique (e.g. hierarchical 

clustering). 

2: Initialize the prior probabilities  Π(0) =

[𝜋1
(0), … , 𝜋𝐾

(0)] ∈ ℝ𝐾×1  and the posterior 

probabilities 𝑊(0) = [𝑤1:𝑁,1
(0), … , 𝑤1:𝑁,𝐾

(0)] ∈ ℝ𝑁×𝐾 . 

3: 𝐿(0) = −∞ 

4: 𝑡 = 1 

5: repeat 

6: for 𝑛 ← 1, . . , 𝑁  
7: Update 𝑤𝑛,𝑘

(𝑡) ∀𝑘  using equation (9) 

8: 𝑠𝑛
(𝑡)

= arg max{[𝑤𝑛,1
(𝑡)

, … , 𝑤𝑛,𝐾
(𝑡)

]} 

9: end for 

10: Update 𝜋𝑘
(𝑡) ∀𝑘 using equation (10) 

11: Transform 𝑓𝑘
(𝑡)(𝑑𝑆(𝑡) =𝑘,𝑙)  to 𝐹𝑘

(𝑡)(𝑑𝑆(𝑡) =𝑘,𝑙) 

through its ECDF, ∀𝑙 ∈ 1, . . , 𝑚 

12: for  𝑗 ← 1, … , 𝑚 − 1  

13: for  𝑖 ← 1, … , 𝑚 − 𝑗  

14: Perform family selection and parameter 

estimation on the pair-copula  

𝑐𝑗,𝑗+𝑖|𝑣𝑖,𝑗

𝑘 (𝑡)
(𝐹𝑗|𝑣𝑖,𝑗

𝑘 (𝑡)
, 𝐹𝑗+𝑖|𝑣𝑖,𝑗

𝑘 (𝑡)
|𝜃𝑗,𝑖

𝑘 (𝑡)
) 

15: end for 

16: end for 

17: Calculate the log-likelihood 𝐿(𝑡) using equation (8) 

18: 𝑒(𝑡) = 𝐿(𝑡) − 𝐿(𝑡−1) 

19: 𝑡 = 𝑡 + 1 

20: until 𝑒(𝑡−1) < 𝜀 
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IV.  CLUSTERING QUALITY EVALUATION 

Different clustering validity indicators have been proposed 

in the past as a comprehensive tool to quantitatively analyze the 

quality of clustering schemes [1], [5], [12], [16]. As such, they 

can substantially inform the choice on the number of clusters to 

be applied in each case and enable the comparison between 

different clustering methods. Consider that the clustering 

results, K partitioned customer classes with computed 

centroids  𝐶 = {𝑐1, … , 𝑐𝐾} , are obtained by applying the 

proposed CVMM algorithm on the processed data set D of the 

N RLPs. Let 𝐷𝑘  denote the customers that belongs to 𝑘𝑡ℎ class, 

for 𝑘 = 1, … , 𝐾, the four indicators taken into account in this 

paper are calculated as follows. Note that all distances are 

Euclidean.  
1) The clustering dispersion indicator (CDI), defined as the 

ratio of the mean intraset distance between the RLPs in the same 

cluster and the intraset distance between the centroids of the K 

clusters [12], [10]: 

 𝐶𝐷𝐼(𝐷, 𝐾) = 𝑑̂(𝐶)−1√𝐾−1 ∑ 𝑑̂2(𝐷𝑘  )𝐾
𝑘=1             (11)  

2) The modified Dunn index (MDI), is computed as follows. 

For 𝑖, 𝑗 = 1, … , 𝐾: 

𝑀𝐷𝐼(𝐷, 𝐾) = max
1≤𝑘≤𝐾

{𝑑̂(𝐷𝑘  )} / min
𝑖≠𝑗

{𝑑(𝑐𝑖 , 𝑐𝑗)}       (12) 

where 𝑑(. , . ) ,  𝑑̂(. )  represent cluster-to-cluster distance and 

intraset distance, respectively, as defined in [12].  

3) The Davies-Bouldin index (DBI) [12], [10] is expressed as 

the system-wide average of the maximum ratio of the within 

cluster scatter to the between cluster separation, for  𝑖, 𝑗 =
1, … , 𝐾: 

𝐷𝐵𝐼(𝐷, 𝐾) =
1

𝐾
∑ max

𝑖≠𝑗
{

𝑑̂(𝐷𝑖 )+𝑑̂(𝐷𝑗 )

𝑑(𝑐𝑖,𝑐𝑗)
}𝐾

𝑘=1          (13)  

4) The mean index adequacy (MIA) [42] represents the average 

of the distances between the centroid of a cluster and each RLP 

in this cluster: 

𝑀𝐼𝐴(𝐷, 𝐾) = 𝐾−1 ∑ 𝑑2(𝑐𝑘 , 𝐷𝑘  )𝐾
𝑘=1              (14)  

For all four indicators, a lower value indicates better clustering 

performance. By applying a clustering algorithm a number of 

times, we can obtain the curve that describes the relationship 

between the indicator values and the number of clusters K. 

Subsequently, the optimal number of clusters can be obtained 

either by seeking the first knee of this curve, considering the 

Bayesian information criterion (BIC), or the informational 

complexity criterion (ICOMP) [12]. In this paper, we determine 

the optimal value of 𝐾  by utlizing the AIC. This way, the 

performance of the proposed CVMM clustering algorithm can 

be evaluated and compared to other existing technique (e.g. k-

means, hierarchical clustering, etc.) through the comparison of 

their respective indicator values. 

V.  CASE STUDY APPLICATION 

A.  LCL Load Dataset and Data Processing 

The Low Carbon London (LCL) smart meter trials were 

designed to characterize the residential consumer demand of 

London and to assess the benefits from employing smart 

metering for distribution network operation [43]. In the project, 

Landis and Gyr (L+G) E470 electricity meters were installed in 

2,613 residential homes across the Mayor of London’s Low 

Carbon Zones and the London Power Networks distribution 

network license area operated by UK Power Networks. 

Specifically, the Engineering Instrumentation Zones of the LCL 

trial contain Queen’s Park, Merton, and Brixton. In this paper, 

the LCL load dataset consists of 17,520 half-hourly electrical 

load consumption measurements across 2,613 customers in kW 

for a full calendar year from 1st January 2013 to 31st December 

2013. The RLPs of all 𝑁 = 2,613 customers were calculated 

according to the data processing procedure described in Section 

III. All RLPs are shown in Fig.3, each RLP consisting of 48 

half-hourly normalized demand values. The mean of all RLPs, 

indicated in Fig.3 by a bold black line, follows the typical ‘duck 

curve’ shape indicating increased consumption levels during 

afternoon hours with a peak at around 7:00 pm. However, 

individual RLPs exhibit very high variation, with some 

consumers having a profile very different to the average RLP 

pattern.  

 
Fig.3. RLPs for all 2,613 customers of the LCL smart meter trials. Thick black 

line shows the mean RLP.  

In this part, the proposed CVMM algorithm introduced in 

Section III is applied to group the customers in the LCL dataset. 

For the proposed CVMM clustering algorithm, it is required to 

fit (48 × 47)/2 × 𝑡 × 𝜑 = 1128𝜑  pair-copulas, where φ  is 

the number of candidate bivariate copula families. The 

candidate families considered in this application are Gaussian, 

Student-t, Clayton, Frank, Gumbel as well as their 90°,180° and 

270° rotated versions i.e. φ = 20. As such, the presented 

modelling task will involve fitting 22,560*K copulas, repeated 

a number of times until convergence is achieved. Given that a 

single copula parameterization may take a few milliseconds, it 

is clear that the proposed procedure can involve a high 

computational burden.  

 To accelerate this procedure, a widely-used linear 

dimensionality reduction technique, principal component 

analysis (PCA), is used to construct a lower dimensional 

representation of the 48-dimensional RLPs named principal 

components (PCs), that retains as much of the variance as 

possible. The principal components are listed in descending 

order of the eigenvalues of the RLPs’ covariance matrix. Note 

that the eigenvalues can be treated as a metric of the information 

contained within each principal component. To this end, we use 

a user-defined information retainment threshold to determine 

the number of PCs to be retained. In this case, we set the 
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information retainment threshold to 97.5%, which corresponds 

to 12 PCs being retained. The size of the reduced dataset is 

2,613 observations of 12 variables. The convergence threshold 

𝜀  has been set to 10−5. We indicatively mention that, for the 

CVMM algorithm with 𝐾 = 8 , convergence was achieved 

within 3 iterations, totaling CPU time of 3 minutes when 

running on 8 cores. Note that the CVMM algorithm can be 

parallelized so that each candidate copula family fit is carried 

out independently, resulting in significant speed-ups. In 

addition, a smaller number of retained PCs for the CVMM 

methods can also reduce the computational burden. A more 

extensive analysis of the method’s computational performance 

and how it compares with other methods is shown in Section 

V.C. 

B.  Determining the Optimal Number of Clusters for CVMM 

As stated in [44], one of the most important advantages of 

model-based clustering methods is rendering the issue of 

determining the optimal number of clusters to a statistical 

model selection problem based on information criteria such as 

AIC and BIC. For the proposed CVMM algorithm, the 

calculated AIC and BIC values for 𝐾 = 5 to 20 are shown in 

Fig. 4. Accordingly, the optimal number of mixture models 

(clusters) for the tested dataset is equal to eight (𝐾𝑜𝑝𝑡 = 8) 

indicated by the first local maximum in both of the AIC and 

BIC curves. Although AIC and BIC differ in the way they are 

not guaranteed to agree in their selection, in this case both 

methods indicate the same optimal number of clusters. 

 
Fig.4. Calculated AIC (a) and BIC (b) values for 𝐾 = 5 to 20. 

C.  Clustering Validity Assessment 

In this section the performance of CVMM is evaluated and 

compared with other well-known clustering techniques used in 

the past; k-means, hierarchical clustering (complete linkage), 

hierarchical clustering (average linkage), hierarchical 

clustering (weighted linkage), hierarchical clustering (Ward 

linkage), and Gaussian mixture model clustering (GMM). Note 

that all the above approaches are applied to the original dataset 

of RLPs (48 variables), whereas the CVMM algorithm includes 

a dimension reduction stage that carries out clustering on a 

lower-dimensional dataset (12 variables in this case).  As 

discussed in Section IV, four types of indicators, CDI, MDI, 

DBI and MIA, are chosen for carrying out the clustering 

validity assessments for different numbers of clusters K, 

ranging from 5 to 20.   

 
Fig. 5. Comparisons among the clustering techniques by using (upper-left) the 

CDI indicator, (upper-right) the MDI indicator, (lower-left) the DBI indicator, 

and (lower-right) the MIA indicator for 𝐾 = 5 to 20. 

The results illustrated in Fig.5 indicate that, for the tested 

dataset, the proposed CVMM algorithm exhibits superior 

performance to the other techniques. This is evidenced by the 

fact that classification via CVMM consistently results in lower 

values across all four indicators in the range up to 12 clusters. 

Although the H(Average) hierarchical method does result in 

lower indicator values for larger numbers of 𝐾 we are interested 

in comparing values in the range where the knee for each 

method occurs. Overall it is constructive to note that the 

hierarchical methods H(Average) and H(Weighted) perform 

relatively better than H(Complete), k-means and H(Ward). The 

limitations of GMM is indicated by the large values across all 

four indicators, highlighting the concern with standard 

multivariate model-based methods. As such, the proposed 

CVMM clustering algorithm is shown to form well-separated 

customer classes and to detect outlier load patterns.  

 
Fig. 6. Clustering results for the proposed CVMM clustering algorithm with 8 

clusters. Thick black lines show mean RLP for each cluster. For each subplot, 
horizontal axis represents time series index (hour); and vertical axis indicates 

demand (pu).  

Fig.6 shows the load patterns groups that were classified by 

the proposed CVMM clustering algorithm with  𝐾 = 8 . The 

number of consumers categorized in each cluster is shown in 

brackets next to each panel’s title. Within each subplot, the 

average load pattern of all the customers in this class is plotted 

using a thick black line. From visually inspecting the plots, it is 

evident that the average load patterns of different classes have 

radically different shapes. In addition, there are clusters that 



0885-8950 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2016.2614366, IEEE
Transactions on Power Systems

 7 

have a very large number of customers, while some clusters 

include outlying consumption behavior.  

Cluster 1 (denoted C1) is the most populous cluster with over 

69% of all customers. The mean profile exhibits the typical 

‘duck curve’ shape, with peak consumption occurring in the 

afternoon hours. Also, mean profiles of C2 (10% of all 

consumers) and C4 (9%) have the similar shape as C1, but with 

slightly lower and higher consumption levels respectively. C3 

(9%) and C8 (0.1%) contain the residents with relatively high 

consumption especially in the evening hours and the midnight 

hours, respectively, whereas most of the residents in C5 (1%) 

exhibit low electrical energy consumption during the daytime 

and have a sudden increase in midnight hours. In C6 (0.9%), 

mean consumption has less fluctuation than other clusters. On 

the contrary, large volatility is shown in C7 (0.1%) with 

abruptly low RLP values between 10:00 am and 17:00 pm. C8 

exhibits high overall consumption with particularly high values 

during nighttime. 

It is constructive to highlight that only 3 consumers have 

been placed in C7 and C8. By closer inspection of the individual 

patterns clustered in C7 and C8 we see that these profiles are 

indeed very similar between them and yet substantially 

different to other groups. Efficient detection of outliers is an 

important feature of well-performing clustering schemes; 

CVMM clearly succeeds in this task, presenting superior outlier 

detection capability. In addition, an example of the clustering 

results of k-means method is shown in Fig. 7. It can be observed 

that the simpler method, k-means, fails to correctly identify the 

outliers identified in C7 and C8, clustered via CVMM. 

 
Fig. 7. Clustering results for k-means with 8 clusters. Thick black lines show 

mean RLP for each cluster. For each subplot, horizontal axis represents time 

series index (hour); and vertical axis indicates demand (pu).  

A way to further analyze the average load profiles of each 

cluster is to calculate the normalized load shape indices that 

involve the information of the daily load curve shape during 

different periods of time. We calculate three attributes of 

interest as presented in [42]; load factor (d1), night impact (d3), 

and lunch impact (d5). In particular, d1 represents the full day 

consumption behavior, while d3 and d5 capture the load shape 

from 11:00 pm to 7:00 am (8 hours) and from 12:00 pm to 15:00 

pm (3 hours), respectively. For the different clusters obtained 

by CVMM algorithm, the calculated d1, d3 and d5 values of the 

mean RLP of each cluster are shown in TABLE I. In terms of 

d1, C3 and C8 have relatively high values compared to other 

clusters. C5 exhibits the lowest d1 value but also the highest d3 

value, which means it has a very high consumption during the 

night. In addition, C7 exhibits the lowest d5 value, which means 

severely reduced electricity usage around noon, as also 

evidenced in Fig.4.  

TABLE I.  LOAD ATTRIBUTES FOR DIFFERENT CLUSTERS 

 C1 C2 C3 C4 C5 C6 C7 C8 

d1 0.534 0.345 0.706 0.625 0.193 0.499 0.566 0.723 

d3 0.197 0.190 0.287 0.221 0.622 0.345 0.379 0.413 

d5 0.127 0.115 0.124 0.135 0.062 0.128 0.052 0.116 

D.  Clustering Results Analysis Using Metadata 

In the LCL smart meter trials, in addition to consumption 

measurements, various socio-economic conditions of the 

participating household were also recorded. In this paper, we 

focus on the data pertaining to household occupancy and wealth 

level. The former relates to the number of people living in the 

property. The latter has been drawn on the basis of mapping all 

participating households to ACORN groups [43]. 

Subsequently, three wealth classes have been defined: Adverse, 

Comfortable, and Affluent in increasing order. A demographic 

group is defined as a combination of occupancy and wealth 

level. The number of customers belonging to each of the nine 

groups is shown in Table VII. The clusters generated via the 

CVMM algorithm are analyzed in Fig. 8 using the metadata in 

Table II.  

TABLE II.  NUMBER OF HOUSEHOLDS ACROSS DEMOGRAPHIC GROUPS 

 1 occupant 2 occupants 3+ occupants 

Adverse 312 275 233 

Comfortable 237 300 209 

Affluent 428 398 221 

 

 
Fig. 8. Cluster composition analysis using demographic metadata.  

 

For C2, C5, and C6, there is no wealth category that 

dominates; these three clusters consist of Adverse, 

Comfortable, and Affluent households in almost equal 

distribution. The number of people living in the property also 

cannot be evidently distinguished in this case. On the other hand, 

in C6, households with one occupant account for the highest 

percentage of about 46%. C4 consists mostly of adverse wealth 

households (67%), with the rest of customers belonging to the 

Affluent group. In C6, groups of 1 and 2 occupants account for 

67% and 23%, respectively. In addition, approximately 50%, 

43%, and 53% of the RLPs in C1, C3, and C8 are in the Affluent 
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group respectively. Meanwhile, households with 1 occupant 

account for 67%, 50% and 74% of households, respectively. 

The above results demonstrate that there are no clear nor 

consistent discrepancies across different wealth levels and 

number of occupants when comparing residential RLPs. This 

highlights the importance of performing customer partitioning 

on the basis of actual consumption measurements. 

E.  New Customer Characterization 

An electrical customer characterization framework was 

proposed in [42] to generate customers classes based on the 

existing consumers’ RLPs (Clustering Module) and 

subsequently build a classification model using decision trees 

(DTs) that assist system operators to assign new consumers to 

the previously constructed classes (Classification Module).  In 

[42] the k-means clustering algorithm was applied. In this 

paper, customer clustering is carried out using the proposed 

CVMM clustering algorithm. In the Classification Module, d1, 

d3, and d5 are chosen as classifying variables. A DT model is 

trained on the load shape indices (d1, d3, and d5) and the 

corresponding cluster indices. Using the constructed DT model, 

we can accomplish the assignment of new customers to the 

classes obtained by the CVMM algorithm.  

For the purpose of evaluating the constructed  DT model, ten-

fold cross-validation is used to get an estimate of classification 

accuracy. To this end, the calculated load shape indexes are 

randomly partitioned into 10 test datasets. In fact, the customers 

in the test dataset can be treated as new customers but with 

known labels. Each test data set accounts for 10% of the total 

customers, and the remaining 90% customers are attributed to 

the training data set. For each fold, the DT model is trained 

using one of the training data sets and then tested with the 

corresponding test data set. This process is presented in Fig. 9. 

 

Fig.9. The structure of the modified customer characterization framework with 

the proposed CVMM clustering algorithm. 

The overall accuracies of the constructed DT models with 

different clustering methods are listed in Table VIII. In this 

case, accuracy is defined as the ratio of correctly classified 

households, averaged across all ten test sets. As can be seen 

below, the DTs trained on the classes generated via the 

proposed CVMM algorithm have the highest accuracy followed 

by hierarchical clustering. This analysis simulates a challenge 

that suppliers have to tackle in practice; classification of a new 

customer for which they may have limited information (in this 

case we assume we have an approximation of their overall 

consumption level, as well as an estimate of consumption 

intensity at night and noon times). The fact that CVMM exhibits 

the best predictive capability means that the proposed algorithm 

has partitioned customer profiles in such a way so that accurate 

conclusions about detailed usage patterns can be drawn in the 

absence of full information. As shown in Table VIII, other 

methods such as k-means and GMM perform poorly in this 

respect, rendering them unfit for classifying new consumers. 

The hierarchical clustering method with average linkage, which 

was used to initialise the CVMM algorithm performs well, but 

it is evident that the proposed method enhances clustering 

performance.  

It is also important to note that the order of the DTs’ 

performance across the different clustering methods is highly 

consistent with the results of the clustering validation 

assessment shown in Fig.3. For example, H(Average) is the 

second-best performing algorithm after CVMM, whereas the 

DT accuracy of GMM is only 51.93%, which is the worst 

performing method as shown in Fig. 3. 

Note that when including ACORN demographic data in the 

training attribute set, the classification error improves only 

marginally. This highlights the significance of d1, d3, d5 in 

terms of clustering new customers and shows that the 

availability of demographic data may convey little information 

regarding daily demand consumption patterns of a prospective 

user. 

 
TABLE III.  CLASSIFICATION MODULE DT ACCURACIES 

Method Accuracy 

CVMM 93.65% 

Hierarchical(Average) 89.82% 

Hierarchical(Weighted) 87.83% 

Hierarchical(Complete) 62.31% 

K-means 56.90% 

Hierarchical(Ward) 55.42% 

GMM 51.93% 

F.  Clustering Across Different Seasons and Day Types 

In all the preceding analysis we have analysed the full dataset 

corresponding to an entire year without differentiating between 

different calendar seasons nor between weekends and 

weekdays. Naturally, the season and day type has a substantial 

impact on consumer behaviour as shown in Fig. 10 (note that 

seasons are defined in accordance to the specification of the UK 

market operator [45]). In Fig. 10. (a), average residential 

electricity consumption begins later in the morning and leads to 

a small mid-day peak instead of the valley experienced in 

weekdays when residents are typically away from their home. 

The impact of season is also substantial as expected; for 

example, the 7pm consumption peak is higher in winter than the 

other seasons. To this end, it is of interest to evaluate the 

performance of CVMM when dealing with the datasets under 

different loading conditions.  

RLPs

Load Shape Indexes

Classification Model: 

Decision Tree (DT)

CVMM Clustering Algorithm

Cluster Indexes Test Dataset (10%) Training Dataset (90%)

DT Accuracy

Clustering Module Classification Module
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Fig. 10. Average RLPs for all 2,613 customers of the LCL smart meter trials 

under the loading conditions: (a) Weekdays/Weekends; (b) Seasons. 

 

For the purpose of determining tariffs for different customer 

types, the consumption behaviors of each customer in weekdays 

and weekends could be considered simultaneously. Therefore, 

we combine the calculated RLPs under loading conditions, 

weekdays and weekends, together to construct a 96-

dimensional dataset. Based on this dataset, the performance of 

the proposed CVMM method is evaluated and compared with 

the other candidate methods, using the above-mentioned four 

types of indicators, the CDI, the MDI, the DBI, and the MIA, 

for different numbers of clusters, ranging from 5 to 20.   

 

Fig. 11. Comparison among the clustering techniques based on weekdays and 

weekends RLPs using CDI, MDI, DBI and MIA indicators for 𝐾 = 5 to 20. 

Similar to Fig. 5, the results illustrated in Fig.11 also show 

better performance of the proposed CVMM algorithm 

comparing to the other methods according to their indicator 

values. It is imperative to note that the proposed CVMM 

method has the advantage of detecting outlier load patterns, 

although H(Average) method has a competitive performance in 

terms of the indicator values. In this case, the optimal number 

of classes is equal to twelve (𝐾𝑜𝑝𝑡
𝑤𝑒𝑒𝑘 = 12) according to the 

calculated AIC and BIC values. 

 
Fig. 12. Clustering results of the combined weekdays and weekends dataset for 
the proposed CVMM clustering algorithm with 12 clusters. Thick black lines 

show mean RLP for each cluster. For each subplot, horizontal axis represents 

time series index (hour); and vertical axis indicates demand (pu).  

 

 
Fig. 13. Clustering results of the combined weekdays and weekends dataset for 

the H(Average) clustering algorithm with 12 clusters. Thick black lines show 
mean RLP for each cluster. For each subplot, horizontal axis represents time 

series index (hour); and vertical axis indicates demand (pu).  

Fig.12 and Fig.13 show the load patterns groups that were 

classified by the proposed CVMM clustering algorithm and 

H(Average) algorithm with 𝐾 = 12, respectively. The average 

load pattern of all the customers in this class is plotted using a 

red bold line within each subplot. Visually inspecting indicates 

that both of these methods have the capability to identify 

outlying consumption behaviors. As H(Average) is the initial 

clustering algorithm of the proposed CVMM method, it is 

reasonable that the first nine clusters in Fig.12 and Fig.13 have 

similar average load patterns. However, comparing the last 

three clusters, more important load patterns are successfully 

detected by the proposed CVMM algorithm. In particular, the 

customers in Cl2 of Fig.12 exhibit consistent high 

consumptions during the whole week, which is important to be 

distinguished for the purpose of designing the tariffs.   

Besides the influence of days, the impact of different 

calendar seasons can also be a significant consideration. As 

shown in Fig.10 (b), during the peak time between 17:00 pm 
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and 22:00 pm, the average RLP of winter exhibits the highest 

normalized peak demand, whereas customers in high-summer 

include relatively low consumption. In addition, the average 

consumption autumn, spring, and summer decrease 

progressively. According to the previous results, H(Average) 

method has the most competitive performance compared with 

the proposed CVMM algorithm. Therefore, for different 

seasons’ datasets, we only perform these two clustering 

methods with the optimal number of clusters K=8. The results 

of CVMM and H(Average) are evaluated by the 

aforementioned four indicators, given in Table V and Table VI, 

respectively. Comparing the criterions values across all seasons 

and all types of indicators, the proposed CVMM method always 

exhibit lower values which mean better clustering results than 

the H(Average) method. 
TABLE IV.  PERFORMANCE OF CVMM ACROSS DIFFERENT SEASONS 

 CDI MDI DBI MIA 

Winter 0.5976 0.8383 1.0912 0.1470 

Spring 0.7173 0.8916 1.4450 0.1465 

Summer 0.5486 0.8387 1.2494 0.1329 

High Summer 0.5287 0.8952 1.2183 0.1257 

Autumn 0.5388 0.8516 1.3003 0.1364 

TABLE V.  PERFORMANCE OF H(AVERAGE) ACROSS  DIFFERENT SEASONS 

 CDI MDI DBI MIA 

Winter 0.6322 0.8384 1.2380 0.1557 

Spring 0.7212 0.9187 1.4571 0.1598 

Summer 0.5601 0.8954 1.2870 0.1381 

High Summer 0.5450 0.9052 1.2227 0.1340 

Autumn 0.6104 0.9483 1.3942 0.1487 

 

An example of the Autumn season is given to visually 

demonstrate the superior performance of the proposed CVMM 

method. In Fig. 14 and Fig. 15, the first five clusters have the 

similar load patterns. However, more customers within C3 and 

C5 are detected by the CVMM method. In addition, another 

type of important load pattern is identified by the proposed 

CVMM method, which exhibits a low consumption during the 

daytime and a sudden high consumption in the midnight. 

Furthermore, C7 in Fig. 14 is also an outlier which is not 

contained in the results of H(Average). On the other hand, the 

outliers detected by H(Average) method include some similar 

shapes such as C1 and C6, C3 and C7, C4 and C8. 

 

Fig. 14. Clustering results of the Autumn dataset for the CVMM clustering 

algorithm with 8 clusters. Thick black lines show mean RLP for each cluster. 

For each subplot, horizontal axis represents time series (hour); and vertical axis 
indicates demand (pu). 

  

Fig. 15. Clustering results of the Autumn dataset for the H(Average) clustering 

algorithm with 8 clusters. Thick black lines show mean RLP for each cluster. 

For each subplot, horizontal axis represents time series (hour); and vertical axis 

indicates demand (pu). 

G.  Performance for Large Data Sets 

As mentioned in [5], one major direction that warrants 

further exploration is the development of well-performing 

clustering techniques capable of dealing with large amounts of 

smart metering data. In this section we explore the proposed 

method’s computational and performance scaling when dealing 

with a large number of customers, well above the size of the 

original dataset of 2,613 households. For this aim synthetic data 

sets of  5,000, 10,000, 20,000, and 50,000 customers have been 

constructed by sampling the initial population of households. 

Gaussian noise has been added to the measurements to 

approximate the variability that would exist in larger datasets. 

The CPU times and CDI for all different methods are shown in 

Table VI and Table VII respectively. Note that in the case of 

CVMM method two variants were carried out;  6 and 12 

retained PCs to illustrate the trade-off between the computation 

time the clustering performance. Each method was carried out 

in parallel on 8 cores. 

TABLE VI.  COMPUTATION TIMES (SECONDS) FOR DIFFERENT METHODS  

   Customer Population   

 2,613 5,000 10,000 20,000 50,000 

CVMM-12PCs 178.55 310.71 680.26 1436.21 4027.38 

CVMM-6PCs 24.50 38.85 176.95 358.6 1374.29 

H(Average) 0.02 0.65 2.57 12.26 156.45 

H(Weighted) 0.11 0.56 2.33 12.96 142.33 

H(Complete) 0.17 0.58 2.41 13.81 143.44 

H(Ward) 0.10 0.54 2.35 13.08 135.46 

K-means 0.02 0.05 0.14 0.47 1.91 

GMM 0.11 2.58 3.18 3.375 8.09 

TABLE VII.  CDI FOR DIFFERENT METHODS  

   Customer Population   

  2,613 5,000 10,000 20,000 50,000 

CVMM-12PCs 0.56 0.32 0.33 0.41 0.43 

CVMM-6PCs 0.62 0.38 0.36 0.45 0.47 

H(Average) 0.69 0.38 0.37 0.47 0.51 

H(Weighted) 0.72 0.48 0.81 0.68 0.93 

H(Complete) 0.73 0.62 0.99 1.05 1.10 

H(Ward) 0.71 1.07 0.97 1.15 1.09 

K-means 0.81 0.96 0.96 0.96 0.97 

GMM 1.01 1.21 1.87 1.42 1.21 
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In terms of computation times, k-means and GMM are the 

fastest methods by a large margin. However, as evidenced by 

the high CDI criteria values shown in Table VII, these 

conventional techniques exhibit poor clustering performance. 

The four hierarchical methods were found to scale well 

computationally with little CPU time variation between them. 

However, H(Average) is the best performer in terms of 

clustering quality, as indicated by the lower indicator values.  

On the other hand, CVMM is clearly the most 

computationally expensive method. When 12 PCs are retained, 

the clustering of 50,000 customers takes more than one hour. 

However, the clustering quality of CVMM is substantially 

higher as suggested by the lower CDI values. CVMM’s 

superior performance persists even when only 6 PCs are 

retained, which involves a substantial decrease in computation 

times. It is also constructive to highlight that CVMM’s 

computational burden increases linearly as a function of 

households, which indicates good scaling performance for 

practical applications. We finally note that the fully-

parallelisable nature of the algorithm could be exploited further; 

deploying more  CPU resources will result in a linear decrease 

of computation time, potentially allowing the clustering of 

millions of consumers within a few hours.  

VI.  CONCLUSION 

This paper has proposed a novel copula-based mixture model 

clustering algorithm based on C-vine representations for 

grouping electrical customers according to consumption data.  

C-vine copulas, which can capture complex dependency 

structures by employing cascades of bivariate distribution, have 

been, for the first time, integrated into a mixture model-based 

clustering method. In order to address the high computational 

burden of the proposed scheme, model fitting takes place in a 

lower-dimension space where we exploit the synergy between 

PCA and the C-Vine structure’s hierarchy. To evaluate the 

performance of the proposed CVMM algorithm, a set of well-

established clustering validation indicators (CDI, MDI, DBI 

and MIA) have been used.  

One major conclusion stemming from the analysis performed 

on a large dataset containing half-hourly smart meter recordings 

is that the CVMM method exhibits superior performance when 

compared to existing methods, indicated by the lower validation 

indicators’ values. We also highlight the method’s ability to 

detect outliers, in contrast to conventional techniques. The 

classification result of different techniques was further assessed 

according to a decision-tree based classification module. The 

result of the DTs’ performance is highly consistent with the 

outcome of the clustering validation assessment.  This result 

highlights the superiority of the proposed approach in a 

practical context when assigning new consumers to existing 

classes. In addition, the proposed method is used to analyze 

load partitioning behavior under different loading conditions 

such as different calendar seasons and days. This increases the 

dimensionality of the clustering problem but could uncover 

particular customer classes that have markedly daily and 

seasonal changes in their behavior, opening up the possibility 

for more tailored tariff structures. The superior performance of 

the proposed method is also well demonstrated under different 

conditions in terms of the indicator values and the visual 

comparisons.  

Future research will focus on improving the proposed 

CVMM method by employing more possible types of vine 

constructions (e.g. R-vine), and exploring alternative 

dimension reduction techniques to further relieve the method’s 

computational burdsen. Another topic of interest is the 

extension of the proposed model to mixed  data sets so as to 

accommodate additional information such as load conditions; 

this is important to render the algorithm suitable for real-time 

pricing applications. 
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