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Abstract 

   

Time-based pricing programs for domestic electricity users have been effective in reducing 

peak demand and facilitating renewables integration. Nevertheless, high cost, price non-

responsiveness and adverse selection may create the possible challenges. To overcome these 

challenges, it can be fruitful to investigate the ‘high-potential’ users, which are more 

responsive to price changes and apply time-based pricing to these users. Few studies have 

investigated how to identify which users are more price-responsive. We aim to fill this gap 

by comprehensively identifying the drivers of domestic users’ price responsiveness, in order 

to facilitate the selection of the high-potential users. We adopt a novel data-driven approach, 

first by a feed forward neural network model to accurately determine the baseline monthly 

peak consumption of individual households, followed by an integrated machine-learning 

variable selection methodology to identify the drivers of price responsiveness applied to Irish 

smart meter data from 2009-10 as part of a national Time of Use trial.  This methodology 

substantially outperforms traditional variable selection methods by combining three 

advanced machine-learning techniques. Our results show that the response of energy users to 

price change is affected by a number of factors, ranging from demographic and dwelling 

characteristics, psychological factors, historical electricity consumption, to appliance 

ownership.  In particular, historical electricity consumption, income, the number of 

occupants, perceived behavioural control, and adoption of specific appliances, including 

immersion water heater and dishwasher, are found to be significant drivers of price 

responsiveness. We also observe that continual price increase within a moderate range does 

not drive additional peak demand reduction, and that there is an intention-behaviour gap, 

whereby stated intention does not lead to actual peak reduction behavior. Based on our 

findings, we have conducted scenario analysis to demonstrate the feasibility of selecting the 

high potential users to achieve significant peak reduction. 
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1 Introduction 

Time-based electricity pricing for domestic users has been effective in reducing peak 

consumption, and facilitating renewable integration [1-5]. Trial studies have confirmed the 

effectiveness of these programs in reducing peak-time demand, with reduction ranging from 

approximately five percent for the simplest program of time of use (ToU), to greater than 20% 

for more advanced programs such as critical peak pricing and dynamic pricing [6-9]. It has also 

been argued that time-based pricing has the potential of improving demand flexibility and 

levelling out the renewable energy output variation [1, 10-12]. As such, time-based programs 

have proliferated in places like California, France and Northern Europe [13, 14].  

Introducing time-based pricing programs, however, is not without challenges. First, most time-

based programs carry with them additional costs such as hefty investments in enabling 

technologies, massive costs in metering and communication system upgrade, and costs in 

marketing and consumer enrolment [3, 4]. Second, significant price responsiveness is not 

observed in all households. There is a strikingly skewed distribution of price elasticity, 

indicating that only a fraction of the households is responsive to price change [15]. Third, time-

based programs offered on an opt-in basis are liable to adverse selection, where free-rider 

participants provide little relief during the load-control period, but are still able to enjoy low 

tariffs at other intervals [4, 16-20].  

One way to tackle these problems is by selectively enrolling high-potential users who are 

responsive to price change. However, identifying high-potential users is difficult, as there is no 

prior information on whether a user will be responsive. Therefore, studies have resorted to 

selecting several key household characteristics that are likely to make the users responsive. For 

example, some studies attempt to select the high-potential users by deducing the presence of 

certain appliances, such as heating, ventilation, and air conditioning appliances (HVAC) [21, 

22], as there is evidence suggesting that users who adopt major appliances of high electricity 

demand are likely to be more responsive [15, 23]. Some other studies seek to select the high-

potential users by segmenting the load profiles using historical consumption data [24-29]. The 



underlying assumption is that high-consumption users during system peak time will be more 

responsive to price change.  

Very few research studies have attempted to identify the drivers of price responsiveness. Most 

peak demand studies have investigated the drivers of energy consumption and energy 

conservation, rather than price responsiveness [30-36]. For the small number of studies that 

have examined price responsiveness, they either focus on quantifying price responsiveness [7, 

23, 37]; or on investigating the effects of a few factors, such as specific appliances or household 

income [38, 39]. Existing literature fails to provide a comprehensive account of what drives 

users’ price responsiveness  

This article aims to fill this gap by comprehensively identifying the drivers of domestic users’ 

price responsiveness, thus facilitating the selection of high-potential users. It attempts to 

address the following questions. First, we want to understand which attributes of individual 

electricity users drive price responsiveness during the peak. Second, we want to identify what 

role price change will play in demand reduction. We first survey the literature on all the 

potential factors that might influence energy consumption behaviour. Based on these potential 

factors, the drivers of price responsiveness are then identified and the role of price is studied.  

The results can then be used to inform high-potential user selection in large-scale application. 

We adopt a two-step approach to achieve the research aim. First, using a neural network model 

to estimate baseline energy consumption, we estimate the response to price change for each 

individual household, and subsequently identify the high-potential households. Second, by 

applying three advanced variable selection models, we identify the drivers that determine the 

household’s responsiveness to price change. The new two-step approach provides direct and 

effective identification of high potential households and drivers of price responsiveness. To the 

best of our knowledge, as of to date, very few articles have applied machine-learning 

techniques to study household energy consumption given an intervention [40-42]. However, 

these studies have only deployed machine-learning methods to estimate “individual treatment 

effects” of demand response program, instead of identifying drivers that lead to price 

responsiveness; their model is a simple one-step model not addressing variable selection, whilst 

ours have deployed an integrated two-step machine-learning model that also address the 

challenge of variable selection. 

Our approach departs from traditional methods of energy behavioural study, which have relied 

heavily on statistical or econometric methods to derive treatment effects from fixed effect or 

difference in difference modelling.  For selecting significant variables, traditional methods 

have often relied on direct testing or step-wise selection [39, 43-45]. However, these methods 

have presented limitations: First, these models often have adopted linear modelling, or a 

modified linear modelling (for example by adding interaction terms). However, the relationship 

between relevant factors and household energy consumption is not always linear. For example, 

household energy consumption behaviours may be influenced by a complex interaction 

between the socio-economic variables, dwelling characteristics and appliances installed in the 

households. The non-linear interactions between these factors may be better captured by non-

linear modelling. Second, neither direct-testing nor step-wise selection can be trusted to 



produce a reliable set of factors of price responsiveness. Direct testing with too many variables 

present in the regression can accord statistical significance to irrelevant variables, especially 

when some variables are correlated [46]. Stepwise selection, on the other hand, suffers from 

serious problems of inconsistency, as it depends largely on the algorithm used (forward or 

backward), the order of variable entry (or deletion) and the total number of variables[47-49]. 

Hence, our newly proposed integrated machine-learning model has addressed the constraints 

imposed by traditional models. First, our neural network model can accurately estimate the 

baseline peak consumption of each individual household, allowing it to learn the complex and 

non-linear relationship between energy consumption and other factors [50]. Second, the drivers 

of price responsiveness are robustly identified by combining three advanced machine-learning 

methods with embedded variable selection properties. These machine-learning techniques have 

substantial advantages over direct-testing and step-wise selection, in that they could either 

select relatively stable results, or solve the collinearity problem. We further use a consensus 

voting to select only those variables agreed by all three methods to ensure that our results of 

driver identification are reliable. Although we are not claiming that our methodology will 

overcome all the limitations of traditional methods, the combination of these methods should 

have greatly improved the confidence of selecting the real drivers that determine price 

responsiveness.  

Our paper is structured as follows. Section 2 surveys the literature on potential drivers of price 

responsiveness to peak electricity demand. Section 3 describes the data and pre-data processing 

steps. Section 4 elaborates on the methodology. Section 5 presents the results. Section 6 

performs the scenario analysis. Section 7 concludes our study.  

2 Literature review on potential drivers, price responsiveness and peak demand 

This section surveys the potential drivers of price responsiveness of domestic users.  

The literature that directly investigates the drivers of price responsiveness is scattered and 

incomprehensive. Some early studies found the presence of energy intensive appliances to be 

drivers of responsiveness. In [23], the authors reviewed five early ToU experiments in the 

1970s and found that households with major appliances have a significantly greater demand 

elasticities. A similar result was found in [15]. Some studies recorded the relevance of income 

and dwelling characteristics. In [15], the elasticity of the lowest income (annual income less 

than $US 18,000) households was found to be almost 50% higher than that of the highest 

income (annual income greater than $US 60,000) households. Other relevant factors recorded 

in the literature include weather conditions, seasonal and regional variations[23, 39, 51, 52].  

Due to limited direct research on the drivers of price responsiveness, we survey instead the 

determinants of electricity demand. These determinants correlate closely with how users 

consume electricity, making them candidates for price responsiveness. Together with identified 

drivers from direct research, these determinants form a pool of potential drivers of price 

responsiveness. (Table 1).  



There is much literature investigating the role of demographic and dwelling characteristics on 

electricity consumption. Some consensus has been reached so far regarding the role of 

household income, number of occupants, dwelling type, floor area and room numbers: Most 

studies conclude a positive relationship between electricity consumption and household 

income [22, 32, 53-63]; increasing the number of occupants would lead to greater electricity 

consumption, though it would result in lower electricity consumption per capita [32, 53, 55-59, 

61, 64, 65]; electricity consumption increases with the degree of detachment of dwelling[32, 

36, 53, 55, 57-59, 62, 66].  

Other demographic and dwelling characteristics that have been identified from our literature 

survey include: family composition, age of household responsible person, social class, 

education level, tenure type (rent/own), dwelling age, room number[33, 36, 55, 57, 60, 63-69]. 

However, no consensus has been reached on the effects of these determinants. For example,  

[57] found that old residences would consume less electricity, possibly due to low penetration 

of energy-intensive appliances. In [32], however, old residences are observed to consume more 

electricity due to poor insulation. Some other studies [36, 65], nevertheless, reported no 

significant relationship between electricity consumption and dwelling age. 

Weather and presence of appliances were also widely cited as the determinants of electricity 

consumption [33, 36, 58, 65, 70-73]. [36] ascertained that cooling degree day is the dominant 

determinant in the summer in total electricity consumption. In terms of appliances, dishwashers, 

laundry appliances (washing machine and tumble dryer), and HVAC appliances are found to 

have a strong statistical relationship with electricity consumption [32, 33, 58, 65, 66, 71, 72]. 

Interestingly, IT equipment, which nominally is not energy-intensive, is found to be taking up 

a sizable share of total electricity consumption. For example, results from [33] suggested that 

the computer was the third largest contributor to total electricity consumption in an Irish 

residence in 2009, second only to dishwasher and tumble dryer.  

Some studies examined the role of psychological factors on electricity consumption and 

energy-related behaviours. In [74], perceived behavioural control is found to be the main 

reason for electricity curtailment behaviour such as switching off the light. In [35], energy 

saving is explained to a greater degree by psychological factors such as attitude and perceived 

control than demographic factors. In [75], social norms are also found to be positively affecting 

the electricity saving behaviours. These studies confirm that psychological factors have 

significant impact on behavioural change.  

Table 1 summarizes the potential drivers of price responsiveness. Our research aims to identify 

those potential drivers which will make the user more responsive to price and therefore lead to 

more significant peak demand reduction. 

Table 1 Potential drivers of price responsiveness 

Categories Potential drivers 



Demographics Household income, number of occupants, family 

composition, age of household responsible person, social 

class, education level, employment type, etc. 

Dwelling characteristics Dwelling type (detached house, apartment, etc.), floor area, 

tenure type (rent/own), house age, number of rooms, etc. 

Psychological factors Attitude, perceived control, social norms, etc. 

Appliances HVAC appliances, dishwasher, laundry appliances (washing 

machine and tumble dryer), computers, etc. 

Weather Heating degree days, cooling degree days, dew points, etc. 

Interventions Price, financial incentive, etc. 

 

3 Data pre-processing 

 

3.1 Data description 

The data are derived from the smart metering trial in Ireland. The data contain the half-hour 

electricity consumption record from 4225 households from July 2009 to December 2010. The 

half year of 2009 is designated as the benchmark period, when all households are recorded for 

their consumption without any intervention. In 2010, households are randomly assigned into 

one control group and 4 treatment groups, with each treatment group receiving different ToU 

tariffs, as shown in Table 2 [76, 77]. The trial designated the period between 17.00 to 19.00 as 

the peak time, given that it was the time of the day when the total electricity demand was the 

highest.  

Table 2 Household ToU pricing plan introduced in the smart metering trial in Ireland (cents per kWh)1 

                                                 
1 There is a slight price change in October 2009 during the benchmark period because of the 

blanket tariff adjustment by Electric Ireland. However, the price change is meagre, only 0.2 

cents/kWh. We therefore ignore this adjustment. 

TIME 

BENCHMARK 

PERIOD 

(JUL. 2009- DEC. 

2010) 

TEST PERIOD 

(JAN. 2010-DEC. 2010) 

  

Night 

23.00- 08.00 

Day 

(08.00-17.00 and 

19.00-23.00 on 

weekdays, 17.00-

Peak 

17.00-19.00 

(Monday to Friday, 

excluding bank 

holidays) 



The dataset also carries with it a comprehensive survey on household demographics, dwelling 

characteristics, appliances and users’ attitude towards electricity curtailment.  

Meteorological data in this study are retrieved from Irish National Meteorological Service. 

3.2 Consumption data processing 

The consumption data for each household from July 2009 to December 2010 are processed 

following Figure 1. 

 

Figure 1 Flow chart for noisy electricity consumption data cleaning 

1) Unoccupied day removal and non-peak hour truncation 

We define a time period as non-occupied if residents are not staying at home. Only a small 

number of appliances are working when a residence is non-occupied (refrigerator, for example). 

Since our aim is to study whether and to what extent the users will change their behaviours in 

response to price change, the mixing of the non-occupancy data with the occupancy data would 

distort the users’ actual behavioural response to price change.  We therefore have identified the 

non -occupied periods and removed them from our dataset. The non-occupancy detection 

Half-hourly
consumption

data

Non-occupancy
removal

Non-peak hour
truncation

Extreme value
removal

Monthly
averaging

Non-
representative

outliers removal

19.00 on weekends 

and holidays) 

CONTROL 

16.00 

16.00 

TARIFF A 13.62 15.89 22.70 

TARIFF B 12.46 15.32 29.51 

TARIFF C 11.35 14.76 36.32 

TARIFF D 10.22 14.19 43.13 



method follows [78] and [79], which determine the occupancy by comparing consumption 

features during the period of interest with the period when residents are not active (such as 

early hours of the morning). Refer to the Appendix for the non-occupancy detection algorithm. 

Additionally, we retain only the peak period data, i.e., from 17.00 to 19.00. The reasons are as 

follows: 1) price variations from 2009 to 2010 are greatest during this period, and 2) demand 

reduction at peak time is one of the key goals of time-based pricing. Weekends and holidays 

are excluded because their electricity consumption profiles greatly differ from that of the 

weekdays [80].  

2) Extreme value removal 

Extreme values are peak consumptions that are extreme in magnitudes when compared to peak 

consumptions on other days. We use the widely used interquartile range (IQR) rule to detect 

the extreme values. The IQR of a data series is the difference between its first quartile (Q1) 

and third quartile (Q3). Extreme values are thereby defined to be values greater than (Q3 +

1.5 × IQR) or less than (Q1 − 1.5 × IQR).   

3) Monthly averaging 

Due to the extremely high uncertainty of energy consumption behaviour, even the most 

advanced deep learning cannot model long-term half-hour electricity consumption at high 

accuracy[81]. We therefore take the monthly average to smooth out the volatility. 

4) Non-representative outlier removal 

After removing non-occupied day and extreme values, some months might only contain very 

few unremoved days. Taking the monthly average in 3), therefore, could not even out the 

behavioural uncertainty. We therefore exclude months that include less days than a half of 

monthly working days. 

3.3 Other data processing  

Some key demographic factors such as income contain substantial portion of missing values 

because of respondents’ refusal to answer. Since the effect of income has been found by many 

to be affecting price responsiveness (see Section 2), we therefore impute the missing income 

values from factors including demographics, household characteristics and appliance 

ownership. We adopted the Gradient Boosted Tree model and achieved a classification 

accuracy (the number of correct prediction/the number of total prediction) of 83% on test 

samples.  

Psychological factors are extracted from 11 statements in the survey. Respondents indicate 

their degree of agreement with these statements on a 5-point Likert Scale, ranging from 

‘strongly agree’ to ‘strongly disagree’. We use factor analysis to extract the underlying factors 

as reflected via 11 statements. We then group together statements which have the strongest 



associations (loadings) with the underlying factors, and categorize each factor into relevant 

psychological factors that are consistent with previous psychological studies [82, 83]. A total 

of 4 factors are extracted: attitude indicates the respondents’ overall feeling towards reducing 

electricity consumption; stated intention measures the stated readiness of respondents to 

conduct electricity reduction behaviour; perceived behavioural control describes the ease or 

difficulty perceived by the respondents when taking electricity consumption reduction 

behaviours; past behaviour assesses the efforts already invested by the respondents to reduce 

electricity. The reader is referred in the Appendix as the correspondence between these factors 

and survey statements. 

4 Methodology 

The objective of this study is determining, from the pool of potential drivers, which would 

make users more responsive to price change. The task is divided into 2 steps. The first step 

aims to measure the response to price change (RPC). We achieved this by building a baseline 

model (feed forward neural network model). The second step aims to identify which factors 

prompt users to have high and consistently positive RPC. We achieved this by combining three 

advanced machine learning techniques with variable selection properties. An overview of the 

methodology is shown in Figure 2. 

 

Figure 2 Methodology overview 

4.1 Measuring response to price change 

RPC is defined as follows: 

While consumption after price change is recorded as the actual consumption in the treatment 

group, consumption without price change must be estimated. We refer to the consumption 

without price change as users’ baseline consumption. 

We built a 3-layer feed-forward neural network (FNN) as the baseline model to estimate the 

monthly baseline consumptions for individual households. The control group data is used as 

training data, because there is no price change from 2009 to 2010 within the control group. 

Therefore, a model trained with control group data is expected to estimate the baseline 

consumption in the treatment group. FNN falls under the category of supervised learning, 

𝑅𝑃𝐶 = Consumption without price change − Consumption after price change  (Equation 1) 



where the model uses the training data to learn the relationship between input features and 

output. The model can then be applied to new input features to derive prediction. Compared 

with linear regression, FNN has greater ability to handle complex non-linear functions, and 

greater efficiency in cases where full information for the studied problem is absent[84].  So far, 

it has demonstrated excellent capability in predicting electricity consumption, especially 

electricity consumption in the long term[50, 65, 84].  

The baseline consumption is derived for each individual household, rather than for a group. 

This differentiates our study from other work that attempts to develop a baseline, such as [85], 

which is constructed on a group basis.  

The input and output variables are listed in Table 3. Refer to the Appendix for detailed variable 

definition. The input variables include all five categories of potential factors identified in 

Section 2. We additionally include as input six monthly consumptions in 2009. The reason for 

such inclusion is that historical consumption is found by many to be crucial in improving the 

accuracy of electricity consumption models[73, 81, 86].  

Table 3 Input variables and output variables of the training step of baseline model 

INPUT VARIABLE OUTPUT VARIABLE 

HISTORICAL 

CONSUMPTION 

Control group: 6 monthly peak 

consumption from 2009/7 to 

2009/12 in control group 

Control group: individual 

monthly peak consumption 

from 2010/7 to 2010/12 for 

every household in control 

group. 

DEMOGRAPHICS 

Control group: household income, 

number of occupants, family 

composition, age of household 

responsible person, social-class, 

education level, employment type 

DWELLING 

CHARACTERISTIC 

Control group: dwelling type, 

floor area, tenure type (rent/own), 

house age, number of rooms 

PSYCHOLOGICAL 

FACTORS 
11 Likert Scale survey answers  

WEATHER 

Heating degree days in 2010, 

temperature during peak hours for 

each month, air pressure, 

humidity 

 



APPLIANCES 
Number of each appliance in 

2009 

We divided the control group between the training set and the testing set, and use the R squared 

values to determine the accuracy of our baseline model. Numerical input data is standardized 

by subtracting the mean and dividing by the standard variation. Categorical input data is one-

hot coded into dummy variables. For the model configuration, one hidden layer is used. 

Additionally, Parametric Rectified Linear Unit (PReLu) is applied as the activation function, 

mean squared error as the training objective and  ‘adam’ as the optimizer. Dropout and L1 

regularization are included to prevent overfitting. Figure 3 shows that the model achieved 

rather high accuracy; the convergence of the training and testing set indicates that the model 

has successfully controlled the possible overfitting problem.   

 

Figure 3 The accuracies of the training set and the test set of our baseline model 

 

Overall, our baseline model has achieved an accuracy of 0.88. In comparison, if a linear 

regression is used on the same data, the accuracy can only reach 0.79. 

After obtaining the baseline consumption for each treatment group household, we compute the 

RPC using Equation 1. 

4.2 Identifying drivers of price responsiveness 

We first define a high-potential household:  



a. The average peak reduction percentage (RPC/baseline consumption) of a high-potential 

household is greater than the population average peak reduction percentage (reduction 

intensity rule). 

b. The number of positive RPC of a high-potential household is greater than the average 

number of positive RPC in the population (reduction consistency rule). 

Our aim is therefore to identify, from Table 1, factors that contribute to households becoming 

high-potential households. We also include historical consumption as candidate factor because 

it is easily obtainable by utilities and there are already researchers proposing using historical 

consumption to identify high-potential households[24-29]. The reader is referred to the 

Appendix for a detailed list of dependent and independent variables. 

We approached the variable selection challenge with extreme caution and tried to select 

variables with consensus of multiple variable selection methods. Of the variable selection 

methods found in the energy consumption behavioural literature, the commonly used ones are 

linear regression (including mixed effects and quartile regression)[39, 60, 63, 70, 87], and 

stepwise regression[36, 65, 74]. These methods, however, have been found to be deeply flawed. 

Linear regression with too many variables will easily lead to overfitting; the multiple 

hypothesis testing involved in selecting variables can easily accord statistical significance to 

irrelevant variables[46]. Stepwise selection, on the other hand, has serious problems of 

parameter bias; selected variables are unstable, depending largely on the algorithm used 

(forward or backward), the order of variable entry (or deletion) and the total number of 

variables[47-49].  

A new strand of variable selection methods that resort to machine learning has embedded the 

variable selection property. These methods, though may not be able to address all the 

limitations posed by traditional methods, have substantial advantages over linear regression 

and stepwise selection. In this part, we utilize three of these advanced machine-learning 

techniques and apply them to our price responsiveness study, and select factors that contribute 

to high-potential households by aggregating their results. 

Method 1: Logistic Lasso with stability selection. Compared with stepwise selection, Lasso 

regression is not affected by the order of variable entry and is computationally efficient[88]. 

However, since Lasso regression still suffer from drawbacks such as heavy reliance on the 

tuning of hyper-parameters, and unstable results upon data change, we couple it with stability 

selection to address these problems. Simply put, stability selection bootstraps multiple times 

from the original datasets and performs variable selection upon each subsampling. The 

resulting selection probability (frequency of a variable being selected over bootstrapping 

iterations) is the likelihood that a variable being a true and stable variable that contributes to 

the prediction/determination of the response variable [89, 90]. [89] has suggested a range of 

(0.6, 0.9) as the cut-off probability to confirm a selected variable and that a cut-off value within 

this range would yield empirically similar results. Hence, we use the middle point 0.75 as the 

cut-off probability.  



Method 2: Gradient descent boosting tree with stability selection [91]. Gradient descent 

boosting tree is a machine learning method that iteratively improves weak decision tree to boost 

performance. Compared with stepwise linear regression, gradient descent boosting tree has the 

advantage of modelling the non-linear relationship between response and independent 

variables[92]. Coupling it with stability selection enhances the capability of selecting a stable 

set of variables. As with method 1, we use selection probability to indicate the likelihood of a 

true and stable variable and choose 0.75 as the cut-off probability. 

Method 3: Random Forest (RF) with Boruta. As with gradient descent boosting, RF is capable 

of modelling the non-linear relationships. Boruta, on the other hand, has the nice  property of 

accommodating the collinearity of input data and finding ‘all-relevant’ variables, not just the 

‘minimal optimal’ [93]. It designs a permutated ‘shadow variables’ for all input variables, and 

determines whether variables are important by subsampling and comparing between true 

variables and‘shadow variables’. A variable is deemed to be significant (or being ‘selected’) if 

its importance score is greater than the highest importance score of ‘shadow variables’. The 

Boruta algorithm can handle the collinearity of variables by keeping ‘all-relevant’ variables 

that are relevant to the dependent variable. 

Table 4 gives an overview of the advantage of our adopted methods, and the metrics of variable 

significance. 

Table 4 Advantages of the individual machine learning methods and their outputs. 

METHOD ADVANTAGE OUTPUT  

LOGISTIC LASSO 

WITH STABILITY 

SELECTION 

Not affected by the order 

of variable entry; the result 

of variable selection is 

stable 

A set of stable variables that 

contribute to the 

prediction/determination of the 

response variable. 

GRADIENT 

DESCENT 

BOOSTING TREE 

WITH STABILITY 

SELECTION 

Able to model the non-

linear relationship; the 

result of variable selection 

is stable 

A set of stable variables that 

contribute to the 

prediction/determination of the 

response variable. 

RANDOM FOREST 

WITH BORUTA 

Able to model the non-

linear relationship; able to 

accommodate the 

collinearity of the input 

data 

A set of confirmed variables that 

contribute to the 

prediction/determination of the 

response variable. 



 

At last, we aggregated results from the three methods by consensus voting. We select only the 

variables that have been considered as significant in all three machine-learning methods. Our 

method does not presume to tackle all the challenges presented in multiple hypothesis testing 

and unstable results. However, each of these three methods has its own advantage over 

traditional methods, each can address at least part of the limitations and represents an 

improvement over the traditional method. By identifying the commonly agreed significant 

variables based on three machine-learning methods, the confidence of the selected variables as 

drivers of the high-potential households can increase.  

 

5 Results and discussion 

 

5.1 Baseline model results 

Baseline model helped produce the monthly RPC of each individual household from July 2010 

to December 2010. Analysing the RPCs reveal the following three results: 

On the aggregate level, households achieved modest peak reduction, averaging 8.5%. This 

result was in line with the finding in [9] , which stated that on average ToU without user 

selection typically achieved a peak reduction of around 5%. This finding is also in line with 

the official report of the Ireland trial study, which reports an 8.33% average peak reduction[77]. 

While price change had produced a considerable demand reduction, there was no clear 

increasing trend of demand reduction when the price kept increasing. Figure 4 shows the 

average monthly peak demand reduction as price changes. Until now, much literature has 

diverged on the effect of price increasing on peak demand. While some concluded that a higher 

peak price/off-peak price would induce more peak demand reduction, others observe no such 

effect. Notably, two studies with high number of citations arrive at different conclusions. [7] 

reviews 15 time-based pricing experiments and finds that ‘the magnitude of price response 

depends on the magnitude of price increase’. However, [9] reviews 16 time-based pricing 

experiments in the U.S and comes to the conclusion that ‘there is no clear trend for an effect 

of on-peak to off-peak price ratio on peak load reduction for time of use or critical peak pricing’. 

Our research lends support to [9]. One explanation for this phenomenon is that when a higher 

peak price of moderate strength is applied, users will respond to the knowledge of such price 

increase. However, such response has not been rationally calculated and is therefore not strictly 

in proportion to the increase in price level.  



 

 

Figure 4 Effects of Different TOU Peak Prices on the Users’ Peak Demand Reduction 

There are considerable differences in households’ response to price change. Figure 5 is a 

density plot that displays the distribution of average peak reduction percentage of all 

households. Some high-potential households achieved very high peak reduction, while some 

others experienced demand rise, demonstrating zero response towards price change. This again 

highlights the need to select the users that are responsive to price.  This finding is somewhat in 

line with [15] , which found a highly skewed demand elasticity for energy users.  The difference 

is that, whereas their conclusion comes from regressing total household electricity demand 

against prices under conventional tariff plans, our conclusion applies to the peak electricity 

demand in time-based pricing.  



•  

Figure 5 Distribution of the users’ peak demand reduction  

 

5.2 Results from driver identification 

Figure 6 displays the variable selection results from Section 4.2. The bar represents the number 

of methods that have a factor contributing to households becoming high-potential households. 

By consensus voting, we consider factors that have a score of 3 to be of high certainty of 

inducing a household to respond to price change (statistically significant factors). Please refer 

to the Appendix for the results of individual selection methods. 

It can be seen from Figure 6 that factors shown to be statistically significant encompass nearly 

all categories listed in Table 1. This confirms our proposition that response to price change is 

not driven by only one or two factors, but by a complex range of demographic and dwelling 

characteristics, psychological factors, and appliances.  

Six factors are statistically significant, namely, historical consumption, number of occupants, 

income, immersion water heater, dishwasher, perceived behavioural control. A logistic 

regression is conducted on these 6 factors to estimate whether such factors will negatively or 

positively affect a household’s chance of being high potential household (Table 5). We discuss 

these results by categories, as follows. 



 

Figure 6 Drivers of peak price responsiveness of all electricity users  

 

Table 5 Direction of the effect of the 6 most significant variables. 

VARIABLE DIRECTION 

HISTORICAL CONSUMPTION  - 

OCCUPANTS + 

INCOME - 

BEHAVIOURAL CONTROL + 



DISHWASHER + 

IMMERSION + 

 

1) Historic consumption  

Our results show that the average level of historical consumption significantly affects the 

chance of households being high-potential households. It also shows that high-potential 

household tends to have lower average consumption. This is well expected, since we define 

high-potential user on percentage reduction and it is intuitive that high consumption households 

need more effort to achieve the same level of percentage reduction as low consumption 

households. This result has implication for the practice of targeting high consumption 

households. Utilities need to take into account the lower demand reduction percentage before 

deciding to enrol high consumption households.  

2) Demographic and dwelling characteristics 

Of all demographics and dwelling characteristics, income and number of occupants are most 

significant in determining whether a household is high-potential.  Lower income households 

are more sensitive to the effect of price change to the bill and therefore are more likely to 

reduce demand. Higher number of occupants is also found to make a household more 

responsive to price change. This may be due to the fact that, when controlled for household 

average consumption and income, a higher number of occupants has a lower per capita income, 

and hence more prone to demand reduction.  

3) Appliances adopted 

The existence of certain appliances will improve users’ control over electricity reduction 

behaviour and are therefore expected to affect whether a household is responsive to price 

change. Our results show that the number of water heating devices (immersion) and dishwasher 

to be significantly related to whether a household will be a high-potential household. The 

selection of water heating devices (immersion) and dishwasher may be explained by the fact 

that their usage can be flexibly postponed (dish washer) or dialled down (immersion), without 

incurring much inconvenience[94]. Other appliances such as freezer and washing machine do 

not show significance. Probable reasons may be that their load is not flexible to shift, or that 

shifting incurs too much inconvenience for users. Another type of appliance that conspicuously 

failed to show significance is space heating appliances. This may due to the fact that electric 

heating is seldom used as primary spacing heating method by Irish household (less than 3%), 

and that plug-in heaters are low in energy intensity and often used in off peak time[33].  

4) Psychological factors 



The perceived behavioural control is found to be strongly related to whether a user will respond 

to price change. The perceived behavioural control is a construct derived from two questions, 

one about whether the user knows what actions to take to reduce the electricity, and the other 

about whether the user knows which appliances should be used to reduce the electricity. It 

measures the perceived ease or difficulty of users to conduct demand reduction behaviours. It 

is therefore expected that users with high perceived behavioural control will respond with more 

demand reduction to price change. In comparison, stated intention is not found to be significant. 

This highlights the intention-behaviour gap where the intentions of people do not necessarily 

translate into real behaviours. 

5) Price  

Our results show that increasing the price do not induce a household into a responsive high-

potential one. In other words, keep on increasing the price does not necessarily lead to more 

demand reduction. This echoes our result in Section 5.1, which observes no clear increasing 

trend of demand reduction when the prices keep increasing. This conclusion has great 

implications, as it suggests that within a moderate price range, utilities imposing a much higher 

price in peak time may not elicit a demand reduction significantly different from a modest price 

increase. However, this does not mean that users will not reduce more demand when the price 

is raised to an exorbitantly high level, since various trials with a critical peak pricing have 

successfully  achieved much higher demand reduction than ToU [9]. 

6. Scenario analysis 

Based on our results, we conduct scenario analysis on how selecting high-potential users will 

help reduce the peak reduction. The analysis has a simple setting, as it serves to demonstrate 

the feasibility and the potential of user selection, rather than accurately gauging its economic 

and societal benefit.  

A total of two scenarios are developed: Scenario 1 is the baseline scenario in which households 

are enrolled randomly without selection; Scenario 2 enrols households based on our results on 

historical consumption, appliance ownership, demographic and dwelling characteristics. 

Figure 7 shows the settings of the two scenarios. Utilities can determine whether a household 

satisfies the criteria in Scenario 2 either by measuring and inferring from historical 

consumption data (for the inference of appliances, see [95-97]; for the inference of 

demographic and dwelling characteristics, see [98, 99]), or by consumer survey (to elicit 

perceived behavioural control). 

To make results comparable, each scenario enrols 500 participants by resampling eligible 

households with replacement. The resampling is repeated 10 times and their results are 

averaged to ensure stability. 



 

Figure 7  Scenario settings 

The results are presented in Figure 8. Both the peak demand reduction and the peak reduction 

percentage rise considerably in Scenario 2. The peak demand reduction increases from under 

10% in the baseline scenario to over 20% after user selection. This demonstrates the high 

potential of applying time-based pricing for selected households based on our results.  

 

Figure 8 Results of scenario analysis  

 

7. Conclusion 

In this article, we comprehensively identified the drivers of domestic users’ price 

responsiveness from a pool of potential factors. Our results found that price responsiveness is 

driven by a combination of user demographics, psychologic factors, appliance ownership and 

historical consumption. Our key findings include: 



1) Households with higher electricity consumption usually respond less to price change 

2) Ownerships of certain appliances will greatly affect the ability of users to reduce peak 

demand when price changes. These appliances typically are flexible to shift load to other 

times (dishwasher), or flexible to dial down (immersion water heater). 

3) Users with better behavioural control will be more responsive to price change, while their 

attitude and stated intention are less significant to price responsiveness. 

4) Demographic and household characteristics matter. Income and number of occupants will 

influence how users respond to price change. 

5) Higher price increment in peak time does not necessarily elicit stronger demand reduction 

behaviour than lower price increment. 

Our findings can provide insights on how to target the high potential users for time-based 

pricing. In our scenario analysis, we demonstrated the feasibility and high peak reduction of 

selecting users based on our results.  In real world applications, targeting the high potential 

users and designing the corresponding time-based pricing programs is more complex, as it 

involves factors such as generation source optimization, balancing utilities income and user 

benefit, program acceptance, marketing cost, and privacy concern. Further studies are needed 

on appropriately introducing time-based pricing while taking these factors into consideration. 
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Appendix 
 

1. Occupancy detection 

We propose an algorithm for non-occupancy detection following [78] and [79], following [78] 

and [79], with the following two assumptions: 

• Users during the early hours of the day (02.00 to 05.00). They are either away or sleeping. 

• If a residence is occupied, the consumption level and variance during the day time will be 

larger than that of during the night time. 

Based on the two assumptions, two criteria are established: 

• Average energy use during the peak hours is greater than the average energy use during 

inactive hours over a given period. 

• Energy use variance during peak hours is greater than 1.5× average energy use variance 

during inactive hours over a given period2. 

We applied the algorithm for all households in the dataset and identify the period when 

residences are unoccupied.  

2.  Correspondence between psychological factors and survey statements 

Factor Statements 

Attitude It is too inconvenient to reduce our usage of electricity 

I do not have enough time to reduce my electricity usage 

I do not want to be told how much electricity I can use 

I am not able to get the people I live with to reduce their electricity usage 

Reducing my usage would not make enough of a difference to my bill 

Stated 

intention 

I/We can reduce my electricity bill by changing the way the people I/we live 

with use electricity 

I/We would like to do more to reduce electricity usage 

Perceived 

behavioural 

control 

I/We know what I/we need to do in order to reduce electricity usage 

                                                 
2 This 1.5 × criterion is established by trial and error. This follows the precedence work of 

[280] which tried to give a fixed variance level by observing the accuracy of occupancy 

detection. 



I do not know enough about how much electricity different appliances use 

in order to reduce my usage 

Past 

behaviour 

I/We have already done a lot to reduce the amount of electricity I/we use 

I/We have already made changes to the way II/we live my life in order to 

reduce the amount of electricity we use. 

3.  Input and output variables of the baseline model 

Output variables Definition 

Consumption Monthly peak consumption from 2010/7 to 

2010/12 for every household in the control 

group. 

Input 

categories 

Input variables Definition 

Historical 

consumption 

Historical consumption  Historical monthly peak time consumption 

from 2009/7 to 2009/12 in the control group 

Demographics Occupants  Total number of occupants in the 

household. 
 

Occupants under 15  Number of occupants in the household 

under the age of 15. 
 

Education  Education of chief income owner , with 1- 

No formal education; 2- Primary; 3- 

Secondary to intermediate Cert Junior Cert 

level; 4 -Secondary to Leaving Cert level; 

5- Third Tertiary level. 
 

Income Household income, with 1- Under 30,000 

Euro/year; 2-Above 30,000 Euro/year. 
 

Sex  Sex of the respondent, with 1-Male; 2-

Female. 
 

Age  Age of the respondent, 1- (18-25); 2- (26-

35); 3- (36-45); 4- (46-55); 5- (56-65); 6- 

65+. 



 

Employment status  Employment status of chief income owner, 

with 1- An employee; 2- Self-employed 

with employees; 3- Self-employed with no 

employees; 4- Unemployed (actively 

seeking work); 5- Unemployed (not actively 

seeking work); 6-Retired; 7- Carer (looking 

after relative family). 
 

Social class  Social class of chief income owner, with 1- 

AB; 2-C1; 3-C2; 4-DE; 5-Farmers. The 

grade of A, B, C1, C2, D and E are defined 

per National Readership Survey Social 

Grade). 

Dwelling 

characteristics 

Dwelling type Type of the dwelling, with 1- Apartment; 2- 

Semi-detached house; 3- Detached house; 

4- Terraced house; 5-Bungalow. 
 

Tenure type Type of the dwelling tenure, with 1- Rent; 

2-Owned. 
 

Number of rooms Number of bedrooms. 
 

House age Age of the dwelling, with 1- Less than 5 

years old; 2- Less than 10 years old; 3- Less 

than 30 years old; 4- Less than 75 years old; 

5- Over 75 years old 

Psychological 

factors 

Indicated agreement 

(total number of 11)  

Indicated degree of agreement with the 11 

statements in the survey. Refer to section 2 

of this appendix for the 11 statements. 

Appliances Electric heating Presence of electric central heating system, 

with 0- No; 1-Yes. 
 

Washing machine Number of washing machines 
 

Tumble dryer Number of tumble dryers 
 

Dishwasher Number of dishwashers 
 

Electric shower  Number of electric showers (instant) 
 

Power shower  Number of electric showers (electric hot 

water pumped from hot water tank) 



 

Electric cooker Number of electric cookers 
 

Plug-in heater Number of plug-in space heaters 
 

Freezer Number of freezers 
 

Water pump Number of water pumps or electric well 

pumps or pressurised water systems 
 

Immersion  Number of immersion water heaters 
 

Small TV Number of TVs less than 21 inch 
 

Large TV  Number of TV greater than 21 inch 
 

Desktop Number of desktop computers 
 

Laptop  Number of laptop computers 
 

Game console Number of game consoles 

Weather Degree days Monthly heating degree days in 2010 
 

Precipitation Monthly average precipitation during 

occupied peak hour in 2010 
 

Temperature Monthly average temperature during 

occupied peak hour in 2010 
 

Humidity Monthly average humidity during occupied 

peak hour in 2010 

 

4. Dependent and independent variables of the variable selection 

Dependent variables Definition 

Household peak reduction potential 
Whether the user is a high potential user, with 0- 

No; 1-Yes. 

Independent 

categories 

Independent 

variables 
Definition 



Historical 

consumption 

Historical 

consumption  

Historical monthly peak time consumption from 

2009/7 to 2009/12 of treatment group households 

Demographics Occupants  Total number of occupants in the household. 

  Occupants under 

15  

Number of occupants in the household under the 

age of 15. 
 

Education  

Education of chief income owner , with 1- No 

formal education; 2- Primary; 3- Secondary to 

intermediate Cert Junior Cert level; 4 -Secondary to 

Leaving Cert level; 5- Tertiary (third) level. 

  
Income 

Household income, with 1- Under 30,000 

Euro/year; 2-Above 30,000 Euro/year. 
 

Sex  Sex of the respondent, with 1-Male; 2-Female. 

  
Age  

Age of the respondent, 1- (18-25); 2- (26-35); 3- 

(36-45); 4- (46-55); 5- (56-65); 6- 65+. 
 

Employment 

status  

Employment status of chief income owner, with 1- 

An employee; 2- Self-employed with employees; 3- 

Self-employed with no employees; 4- Unemployed 

(actively seeking work); 5- Unemployed (not 

actively seeking work); 6-Retired; 7- Carer (looking 

after relative family). 

  

Social class  

Social class of chief income owner, with 1- AB; 2-

C1; 3-C2; 4-DE; 5-Farmers. The grade of A, B, C1, 

C2, D and E are defined per National Readership 

Survey Social Grade). 

Dwelling 

characteristics 
Dwelling type 

Type of the dwelling, with 1- Apartment; 2- Semi-

detached house; 3- Detached house; 4- Terraced 

house; 5-Bungalow. 

  
Tenure type 

Type of the dwelling tenure, with 1- Rent; 2-

Owned. 
 

Number of 

rooms 
Number of bedrooms. 



  

House age 

Age of the dwelling, with 1- Less than 5 years old; 

2- Less than 10 years old; 3- Less than 30 years old; 

4- Less than 75 years old; 5- Over 75 years old 

Psychological 

factors 
Attitude 

Respondents’ overall feeling toward reducing 

electricity consumption  

  
Stated intention 

Stated readiness of respondents to conduct 

electricity reduction behaviour 

  
Behavioural 

control 

Perceived behavioural control. The ease or 

difficulty perceived by respondents when taking 

electricity consumption reduction behaviours 

  
Past behaviour 

The effort already invested by the respondent to 

reduce electricity 

Appliances Electric heating 
Presence of electric central heating system, with 0- 

No; 1-Yes. 
 

Washing 

machine 
Number of washing machines 

  Tumble dryer Number of tumble dryers 
 

Dishwasher Number of dishwashers 

  Electric shower Number of electric showers (instant) 
 

Power shower 
Number of electric showers (electric hot water 

pumped from hot water tank) 

  Electric cooker Number of electric cookers 
 

Plug-in heater Number of plug-in space heaters 

  Freezer Number of freezers 
 

Water pump 
Number of water pumps or electric well pumps or 

pressurised water systems 

  Immersion  Number of immersion water heaters 
 

Small TV Number of TVs less than 21 inch 

  Large TV  Number of TV greater than 21 inch 



 

Desktop Number of desktop computers 

  Laptop Number of laptop computers 

  Game console Number of game consoles 

5. Results of 3 variable selection methods 

 Variables Method1 Method 2 Method 3 

Historical consumption  1 1 1 

Occupants  1 1 1 

Occupants under 15  0 0 1 

Education  0 0 0 

Income 1 1 1 

Sex  0 0 0 

Age  0 0 0 

Employment status  0 0 0 

Social class  0 0 0 

Dwelling type 0 0 0 

Tenure type 0 0 0 

Number of rooms 0 0 0 

House age 0 0 0 

Attitude 0 0 1 

Stated intention 0 0 0 



Behavioural control 1 1 1 

Past behaviour 0 0 0 

Electric heating 0 0 0 

Washing machine 0 0 1 

Tumble dryer 0 0 0 

Dishwasher 1 1 1 

Electric shower 0 0 0 

Power shower 0 0 0 

Electric cooker 0 0 0 

Plug-in heater 0 0 0 

Freezer 0 0 0 

Water pump 0 0 0 

Immersion  1 1 1 

Small TV 0 0 0 

Large TV  0 0 0 

Desktop 0 1 0 

Laptop 0 0 0 

Note: 1 represents being selected; 0 represent not selected.  
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