536 research outputs found

    Mapping winter wheat with combinations of temporally aggregated Sentinel-2 and Landsat-8 data in Shandong Province, China

    Get PDF
    Winter wheat is one of the major cereal crops in China. The spatial distribution of winter wheat planting areas is closely related to food security; however, mapping winter wheat with time-series finer spatial resolution satellite images across large areas is challenging. This paper explores the potential of combining temporally aggregated Landsat-8 OLI and Sentinel-2 MSI data available via the Google Earth Engine (GEE) platform for mapping winter wheat in Shandong Province, China. First, six phenological median composites of Landsat-8 OLI and Sentinel-2 MSI reflectance measures were generated by a temporal aggregation technique according to the winter wheat phenological calendar, which covered seedling, tillering, over-wintering, reviving, jointing-heading and maturing phases, respectively. Then, Random Forest (RF) classifier was used to classify multi-temporal composites but also mono-temporal winter wheat development phases and mono-sensor data. The results showed that winter wheat could be classified with an overall accuracy of 93.4% and F1 measure (the harmonic mean of producer’s and user’s accuracy) of 0.97 with temporally aggregated Landsat-8 and Sentinel-2 data were combined. As our results also revealed, it was always good to classify multi-temporal images compared to mono-temporal imagery (the overall accuracy dropped from 93.4% to as low as 76.4%). It was also good to classify Landsat-8 OLI and Sentinel-2 MSI imagery combined instead of classifying them individually. The analysis showed among the mono-temporal winter wheat development phases that the maturing phase’s and reviving phase’s data were more important than the data for other mono-temporal winter wheat development phases. In sum, this study confirmed the importance of using temporally aggregated Landsat-8 OLI and Sentinel-2 MSI data combined and identified key winter wheat development phases for accurate winter wheat classification. These results can be useful to benefit on freely available optical satellite data (Landsat-8 OLI and Sentinel-2 MSI) and prioritize key winter wheat development phases for accurate mapping winter wheat planting areas across China and elsewhere

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    Improvement in Land Cover and Crop Classification based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN)

    Get PDF
    Understanding the use of current land cover, along with monitoring change over time, is vital for agronomists and agricultural agencies responsible for land management. The increasing spatial and temporal resolution of globally available satellite images, such as provided by Sentinel-2, creates new possibilities for researchers to use freely available multi-spectral optical images, with decametric spatial resolution and more frequent revisits for remote sensing applications such as land cover and crop classification (LC&CC), agricultural monitoring and management, environment monitoring. Existing solutions dedicated to cropland mapping can be categorized based on per-pixel based and object-based. However, it is still challenging when more classes of agricultural crops are considered at a massive scale. In this paper, a novel and optimal deep learning model for pixel-based LC&CC is developed and implemented based on Recurrent Neural Networks (RNN) in combination with Convolutional Neural Networks (CNN) using multi-temporal sentinel-2 imagery of central north part of Italy, which has diverse agricultural system dominated by economic crop types. The proposed methodology is capable of automated feature extraction by learning time correlation of multiple images, which reduces manual feature engineering and modeling crop phenological stages. Fifteen classes, including major agricultural crops, were considered in this study. We also tested other widely used traditional machine learning algorithms for comparison such as support vector machine SVM, random forest (RF), Kernal SVM, and gradient boosting machine, also called XGBoost. The overall accuracy achieved by our proposed Pixel R-CNN was 96.5%, which showed considerable improvements in comparison with existing mainstream methods. This study showed that Pixel R-CNN based model offers a highly accurate way to assess and employ time-series data for multi-temporal classification tasks

    Modelling spatial variability of coffee (Coffea Arabica L.) crop condition with multispectral remote sensing data.

    Get PDF
    Doctor of Philosophy in Environmental Science. University of KwaZulu-Natal, Pietermaritzburg, 2017.Abstract available in PDF file

    Remote Sensing in Agriculture: State-of-the-Art

    Get PDF
    The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue

    Joint use of Sentinel-1 and Sentinel-2 for land cover classification : a machine learning approach

    Get PDF
    Reliable information on land cover is required to assist and help in the decision-making process needed to face the environmental challenges society has to deal with due to climate change and other driving forces. Different methods can be used to gather this information but satellite earth observation techniques offer a suitable approach based on the coverage and type of data that are provided. Few years ago, the European Union (EU) started an ambitious program, Copernicus, that includes the launch of a new family of earth observation satellites known as Sentinel. Each Sentinel mission is based on a constellation of two satellites to fulfill specific requirements of coverage and revisit time. Among them are the Sentinel-1 and Sentinel-2 satellites. Sentinel-1 carries a Synthetic Aperture RADAR (SAR) that operates on the C-band. This platform offers SAR data day-and-night and in all-weather conditions. Sentinel-2 is a multispectral high-resolution imaging mission. The sensor has 13 spectral channels, incorporating four visible and near-infrared bands at 10 m resolution, six red-edge/shortwave-infrared bands at 20 m and three atmospheric correction bands at 60 m. The main objective of this study has been to investigate the classification accuracies of specific land covers obtained after a Random Forest classification of multi-temporal Sentinel data over an agricultural area. Four scenarios have been tested for the classification: i) Sentinel-1, ii) Sentinel-2, iii) Sentinel-2 and vegetation indices, iv) Sentinel-1, Sentinel-2, and vegetation indices. The classifications have been performed using a pixel and polygon based approach. The results have shown that the best accuracies (0.98) are obtained when using and polygon based approach independently of the scenario that is selected. For the pixel based approach, the highest accuracy (0.84) is obtained when using Sentinel-1, Sentinel-2, and vegetation indices

    Landcover and crop type classification with intra-annual times series of sentinel-2 and machine learning at central Portugal

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesLand cover and crop type mapping have benefited from a daily revisiting period of sensors such as MODIS, SPOT-VGT, NOAA-AVHRR that contains long time-series archive. However, they have low accuracy in an Area of Interest (ROI) due to their coarse spatial resolution (i.e., pixel size > 250m). The Copernicus Sentinel-2 mission from the European Spatial Agency (ESA) provides free data access for Sentinel 2-A(S2a) and B (S2b). This satellite constellation guarantees a high temporal (5-day revisit cycle) and high spatial resolution (10m), allowing frequent updates on land cover products through supervised classification. Nevertheless, this requires training samples that are traditionally collected manually via fieldwork or image interpretation. This thesis aims to implement an automatic workflow to classify land cover and crop types at 10m resolution in central Portugal using existing databases, intra-annual time series of S2a and S2b, and Random Forest, a supervised machine learning algorithm. The agricultural classes such as temporary and permanent crops as well as agricultural grasslands were extracted from the Portuguese Land Parcel Identification System (LPIS) of the Instituto de Financiamento da Agricultura e Pescas (IFAP); land cover classes like urban, forest and water were trained from the Carta de Ocupação do Solo (COS) that is the national Land Use and Land Cover (LULC) map of Portugal; and lastly, the burned areas are identified from the corresponding national map of the Instituto da Conservação da Natureza e das Florestas (ICNF). Also, a set of preprocessing steps were defined based on the implementation of ancillary data allowing to avoid the inclusion of mislabeled pixels to the classifier. Mislabeling of pixels can occur due to errors in digitalization, generalization, and differences in the Minimum Mapping Unit (MMU) between datasets. An inner buffer was applied to all datasets to reduce border overlap among classes; the mask from the ICNF was applied to remove burned areas, and NDVI rule based on Landsat 8 allowed to erase recent clear-cuts in the forest. Also, the Copernicus High-Resolution Layers (HRL) datasets from 2015 (latest available), namely Dominant Leaf Type (DLT) and Tree Cover Density (TCD) are used to distinguish between forest with more than 60% coverage (coniferous and broadleaf) such as Holm Oak and Stone Pine and between 10 and 60% (coniferous) for instance Open Maritime Pine. Next, temporal gap-filled monthly composites were created for the agricultural period in Portugal, ranging from October 2017 till September 2018. The composites provided data free of missing values in opposition to single date acquisition images. Finally, a pixel-based approach classification was carried out in the “Tejo and Sado” region of Portugal using Random Forest (RF). The resulting map achieves a 76% overall accuracy for 31 classes (17 land cover and 14 crop types). The RF algorithm captured the most relevant features for the classification from the cloud-free composites, mainly during the spring and summer and in the bands on the Red Edge, NIR and SWIR. Overall, the classification was more successful on the irrigated temporary crops whereas the grasslands presented the most complexity to classify as they were confused with other rainfed crops and burned areas

    Big Earth Data and Machine Learning for Sustainable and Resilient Agriculture

    Full text link
    Big streams of Earth images from satellites or other platforms (e.g., drones and mobile phones) are becoming increasingly available at low or no cost and with enhanced spatial and temporal resolution. This thesis recognizes the unprecedented opportunities offered by the high quality and open access Earth observation data of our times and introduces novel machine learning and big data methods to properly exploit them towards developing applications for sustainable and resilient agriculture. The thesis addresses three distinct thematic areas, i.e., the monitoring of the Common Agricultural Policy (CAP), the monitoring of food security and applications for smart and resilient agriculture. The methodological innovations of the developments related to the three thematic areas address the following issues: i) the processing of big Earth Observation (EO) data, ii) the scarcity of annotated data for machine learning model training and iii) the gap between machine learning outputs and actionable advice. This thesis demonstrated how big data technologies such as data cubes, distributed learning, linked open data and semantic enrichment can be used to exploit the data deluge and extract knowledge to address real user needs. Furthermore, this thesis argues for the importance of semi-supervised and unsupervised machine learning models that circumvent the ever-present challenge of scarce annotations and thus allow for model generalization in space and time. Specifically, it is shown how merely few ground truth data are needed to generate high quality crop type maps and crop phenology estimations. Finally, this thesis argues there is considerable distance in value between model inferences and decision making in real-world scenarios and thereby showcases the power of causal and interpretable machine learning in bridging this gap.Comment: Phd thesi

    A systematic review of the use of Deep Learning in Satellite Imagery for Agriculture

    Full text link
    Agricultural research is essential for increasing food production to meet the requirements of an increasing population in the coming decades. Recently, satellite technology has been improving rapidly and deep learning has seen much success in generic computer vision tasks and many application areas which presents an important opportunity to improve analysis of agricultural land. Here we present a systematic review of 150 studies to find the current uses of deep learning on satellite imagery for agricultural research. Although we identify 5 categories of agricultural monitoring tasks, the majority of the research interest is in crop segmentation and yield prediction. We found that, when used, modern deep learning methods consistently outperformed traditional machine learning across most tasks; the only exception was that Long Short-Term Memory (LSTM) Recurrent Neural Networks did not consistently outperform Random Forests (RF) for yield prediction. The reviewed studies have largely adopted methodologies from generic computer vision, except for one major omission: benchmark datasets are not utilised to evaluate models across studies, making it difficult to compare results. Additionally, some studies have specifically utilised the extra spectral resolution available in satellite imagery, but other divergent properties of satellite images - such as the hugely different scales of spatial patterns - are not being taken advantage of in the reviewed studies.Comment: 25 pages, 2 figures and lots of large tables. Supplementary materials section included here in main pd

    Mapping the fractional coverage of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach

    Get PDF
    Mapping the occurrence patterns of invasive plant species and understanding their invasion dynamics is a crucial requirement for preventing further spread to so far unaffected regions. An established approach to map invasive species across large areas is based on the combination of satellite or aerial remote sensing data with ground truth data from fieldwork. Unmanned aerial vehicles (UAV, also referred to as unmanned aerial systems (UAS)) may represent an interesting and low-cost alternative to labor-intensive fieldwork. Despite the increasing use of UAVs in the field of remote sensing in the last years, operational methods to combine UAV and satellite data are still sparse. Here, we present a new methodological framework to estimate the fractional coverage (FC%) of the invasive shrub species Ulex europaeus (common gorse) on Chilo´e Island (south-central Chile), based on ultrahigh- resolution UAV images and a medium resolution intra-annual time-series of Sentinel-2. Our framework is based on three steps: 1) Land cover classification of the UAV orthoimages, 2) reduce the spatial shift between UAV-based land cover classification maps and Sentinel-2 imagery and 3) identify optimal satellite acquisition dates for estimating the actual distribution of Ulex europaeus. In Step 2 we translate the challenging co-registration task between two datasets with very different spatial resolutions into an (machine learning) optimization problem where the UAV-based land cover classification maps obtained in Step 1 are systematically shifted against the satellite images. Based on several Random Forest (RF) models, an optimal fit between varying land cover fractions and the spectral information of Sentinel-2 is identified to correct the spatial offset between both datasets. Considering the spatial shifts of the UAV orthoimages and using optimally timed Sentinel-2 acquisitions led to a significant improvement for the estimation of the current distribution of Ulex europaeus. Furthermore, we found that the Sentinel-2 acquisition from November (flowering time of Ulex europaeus) was particularly important in distinguishing Ulex europaeus from other plant species. Our mapping results could support local efforts in controlling Ulex europaeus. Furthermore, the proposed workflow should be transferable to other use cases where individual target species that are visually detectable in UAV imagery are considered. These findings confirm and underline the great potential of UAV-based groundtruth data for detecting invasive species
    • …
    corecore