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LANDCOVER AND CROP TYPE CLASSIFICATION  
with intra-annual times series of sentinel-2 and machine learning at Central 

Portugal 

 

 

ABSTRACT 

 

Land cover and crop type mapping have benefited from a daily revisiting period of sensors 

such as MODIS, SPOT-VGT, NOAA-AVHRR that contains long time-series archive. 

However, they have low accuracy in an Area of Interest (ROI) due to their coarse spatial 

resolution (i.e., pixel size > 250m). The Copernicus Sentinel-2 mission from the European 

Spatial Agency (ESA) provides free data access for Sentinel 2-A(S2a) and B (S2b). This 

satellite constellation guarantees a high temporal (5-day revisit cycle) and high spatial 

resolution (10m), allowing frequent updates on land cover products through supervised 

classification. Nevertheless, this requires training samples that are traditionally collected 

manually via fieldwork or image interpretation. This thesis aims to implement an automatic 

workflow to classify land cover and crop types at 10m resolution in central Portugal using 

existing databases, intra-annual time series of S2a and S2b, and Random Forest, a 

supervised machine learning algorithm. The agricultural classes such as temporary and 

permanent crops as well as agricultural grasslands were extracted from the Portuguese 

Land Parcel Identification System (LPIS) of the Instituto de Financiamento da Agricultura 

e Pescas (IFAP); land cover classes like urban, forest and water were trained from the Carta 

de Ocupação do Solo (COS) that is the national Land Use and Land Cover (LULC) map 

of Portugal; and lastly, the burned areas are identified from the corresponding national 

map of the Instituto da Conservação da Natureza e das Florestas (ICNF). Also, a set of 

preprocessing steps were defined based on the implementation of ancillary data allowing 

to avoid the inclusion of mislabeled pixels to the classifier. Mislabeling of pixels can occur 

due to errors in digitalization, generalization, and differences in the Minimum Mapping 

Unit (MMU) between datasets. An inner buffer was applied to all datasets to reduce border 

overlap among classes; the mask from the ICNF was applied to remove burned areas, and 

NDVI rule based on Landsat 8 allowed to erase recent clear-cuts in the forest. Also, the 

Copernicus High-Resolution Layers (HRL) datasets from 2015 (latest available), namely 

Dominant Leaf Type (DLT) and Tree Cover Density (TCD) are used to distinguish 
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between forest with more than 60% coverage (coniferous and broadleaf) such as Holm 

Oak and Stone Pine and between 10 and 60% (coniferous) for instance Open Maritime 

Pine. Next, temporal gap-filled monthly composites were created for the agricultural 

period in Portugal, ranging from October 2017 till September 2018. The composites 

provided data free of missing values in opposition to single date acquisition images. Finally, 

a pixel-based approach classification was carried out in the “Tejo and Sado” region of 

Portugal using Random Forest (RF). The resulting map achieves a 76% overall accuracy 

for 31 classes (17 land cover and 14 crop types). The RF algorithm captured the most 

relevant features for the classification from the cloud-free composites, mainly during the 

spring and summer and in the bands on the Red Edge, NIR and SWIR. Overall, the 

classification was more successful on the irrigated temporary crops whereas the grasslands 

presented the most complexity to classify as they were confused with other rainfed crops 

and burned areas.   
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ACRONYMS 
 

 

CAP – Common Agricultural Policy  

COS – Carta de Uso e Ocupação do Solo (Portuguese of LCLU) 

DGT – Direção-Geral do Território - General Directorate for Territorial Management  

FCT - Fundação para a Ciência e Tecnologia - Foundation for Science and Technology. 
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EU – European Union 
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ICNF - Instituto da Conservação da Natureza e das Florestas - Institute for Nature 

Conservation and Forests 

IFAP – Instituto de Financiamento da Agricultura e Pescas - Agriculture and Fisheries 

Financing Institute 

INSPIRE– Infrastructure for spatial information in Europe 

IPSTERS - IPSentinel Terrestrial Enhanced Recognition System 

LCLU – Land Cover Land Use  

LPIS - Land Parcel Identification System 

NCPA – National Control and Paying Agency 
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1 INTRODUCTION 

 

1.1 Background 
There is a need to quantify land cover and its changes over time in a precise and 

timely way for monitoring human and physical environments [1] as well as for providing 

information to support studies, research, and sustainable development policies [2]. The 

constant changes in land cover dynamics and the seasonality of crops demand a spatial and 

temporal continuity in the mapping of the areas of interest. Nowadays, it is possible to 

produce robust large-scale land cover mapping automatically using supervised 

classification, time series of high-resolution optical imagery, and existing databases for data 

training and validation [3]. The new paradigm in land cover production -Land Cover 2.0- 

takes advantage on the developments in computer hardware and software; increased 

spatial, spectral, and temporal resolutions of satellite imagery; open-access data and 

automated data processing using classification algorithms to generate timely, reproducible 

and accurate land cover maps [4]. Currently, it is possible to classify large geographic areas 

over multiple decades at an annual time step, as reported by Hermosilla et al. (2018) [5] 

that generated a 29-year data cube of land cover for the years 1984 to 2012. Moreover, 

automated systems as the Sen2-Agri can ingest and process multi-sensor imagery (Sentinel-

2 and Landsat 8 time series) for operational agriculture monitoring systems [6].  

 

1.2 Problem Statement and Motivation 
The General Directorate for Territorial Management (DGT) in Portugal is the 

entity responsible for producing two land-use maps for mainland Portugal: the CORINE 

Land Cover (CLC) and the Carta de Uso e Ocupação do Solo (COS) that is the official 

Land Cover Land Use (LCLU) of the country. From one side, the CLC is a European 

project with a minimum mapping unit of 25 ha and 44 thematic classes with five years of 

reference (1990, 2000, 2006, 2012 and 2018) while the COS is a national product with a 

minimum mapping unit of 1 ha, 88 classes in 2018 and 6 years of reference (1990, 1995, 

2007, 2010, 2015 and 2018) [7]. Mapping 88 classes at a spatial resolution of 1 ha require 

very high-resolution orthophoto maps and rely mainly on visual interpretation for its 

competition. Despite the significant improvement in the reduction of production time 

from 10 years in 2000 to 3 years in 2018, COS remains a product that takes time and human 

effort.  
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During the year 2017, Portugal registered an extreme wildfire season with a record 

of 500,000 ha burned and more than 100 human lives lost. These natural hazards, along 

with droughts and heatwaves, are intensifying in the Mediterranean basin due to climate 

change [8]. Wildfires represent a severe hazard that can have negative impacts on society 

and the environment; they can become a disaster when a significant number of people in 

vulnerability are exposed, consequentially human lives are lost and livelihoods damaged 

[9]. Characterizing and predicting fire spread and behavior is applied to determine higher 

risk areas and firefighting strategies to minimize damage [10]. In order to predict fire-

spread and behavior, fire simulation models use gridded geospatial information as input 

data for fire simulation. This data can comprise elements such as topography (i.e., 

elevation, aspect, and slope), weather conditions, and fuel types (i.e., surface fuel type and 

canopy metrics) [11].  

 As part of a decision support system for firefighting, DGT aims to provide an 

annual Land Cover (LC) map for fire propagation models in 2020 with fewer thematic 

classes than the COS for central Portugal. This map is intended to be prepared before the 

fire season and will enable the updated characterization of the terrain, as well as areas that 

burned and vegetation cuts. It will be produced in raster format (10m pixel size) and based 

on supervised classification over the satellite time series of Sentinel-2. The realization of 

this annual LC map is part of three projects: the “IPSentinel Terrestrial Enhanced 

Recognition System” (IPSTERS) whose primary goal is the implementation of AI 

algorithms in the digestion of Big Data for remote sensing in order to derive LCLU maps 

[12]; the “Data fusion of sensor networks and fire spread modeling for decision support 

in forest fire suppression” (foRESTER) that intends to derive LC maps from satellite 

imagery and ground data for near-real-time (NRT) fire spread predictions (FSP) [13]; and 

the Sustainable landSCAPE planning model for rural FIREs prevention (SCAPE FIRE). 

Nonetheless, the production of these LC maps is dependent on the availability of sample 

data, and typically, training samples are acquired manually through visual interpretation or 

fieldwork. The challenge remains to train supervised algorithms without human 

intervention in sample labeling. Instead, to acquire training samples from pre-existing 

datasets filtered with auxiliary information to discard possible data mislabeling. 

 The automatic sample extraction from existing datasets for supervised 

classification is ongoing research at DGT, using Central Portugal as a study case. Lüdtke, 

D. (2018) [14] implemented the EUROSTAT’s Land Use/Cover Area Statistical Survey 

(LUCAS) database as training data and Sentinel-2 time series for monthly and annual 
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classification. She concluded that the leading cause of the low Overall Accuracy (OA) 

achieved (58% for six classes) was the uncertainties of the LUCAS database. Yet, a 

compelling finding was that the simultaneous use of the bands for the period of analysis 

(November 2016 to October 2017) resulted in higher accuracy than using monthly data. 

Later, Blanco, W. (2019) [15] used training data from an old map of COS 2015 to classify 

imagery of 2017 and using Sentinel-2 seasonal composites following a Best Available Pixel 

(BAP). The overall accuracy achieved using 13 features resulted in and 73% for six 61% in 

nine classes for the baseline. He concluded that although COS is a valuable source for 

sample extraction, it was not possible to increase the OA after refinements on the training 

data. Still, the BAP composites provided a free-cloud efficient input for a seasonal LC 

mapping. At present, DGT is implementing some other approaches to extract consistently 

labeled training samples from outdated maps; a novel-approach tested is the 

implementation of unsupervised clustering methods based on the methodology of Paris, 

C. (2019) [16]. In addition, training samples have been obtained from the visual 

interpretation of orthophoto maps and on auxiliary data [17]. This approach was carried 

out for Continental Portugal includes using Landsat Time-Series to derive LCLU maps 

from 2010 to 2015 achieving accuracies of 87.5% for the 2010 map using 15 classes. 

This thesis was developed under the framework of the project foRESTER, and it 

investigates the possible results of implementing current research at DGT for automatically 

deriving samples from ancillary data for supervised classification. The methodology 

corresponds to the protocol for Land Cover and Crop Mapping 2018 for Tejo and Sado.   
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1.3 Research Question 
When performing supervised image classification, several algorithms can be applied, 

and different data sources can be utilized for training the classifier. Depending on the 

number of target classes, the overall accuracy of the map fluctuates. The more classes are 

added to the classification, the higher the probability of misclassifications and, therefore, 

the reduction in the ability of the classifier to map the classes accurately. To create an 

automatic map, the main task is to generate a stable workflow for classifying satellite 

imagery in a reproducible way. Developing the present research at DGT and the availability 

of time series of Sentinel-2 and the up to date ancillary datasets (COS 2018, IFAP parcels 

2018 and ICNF burned areas 2018), three research questions are proposed:  

 

1. How accurate is it to classify 31 classes of land cover and crop types at 10m 

resolution? 

2. Which are the most important features/variables to consider when using intra-

annual time series? 

3. When performing automatic sample extraction, can a set of pre-processing rules 

allow us to extract spectral signatures of the classes suitable for image 

classification? 

 

1.4 Aim  
This investigation project aims to generate an automatic land cover and crop type 

map in raster format using in situ and up-to-date data, satellite imagery, and machine 

learning algorithms. The automatization method relies on the retrieval of the spectral 

signatures of the land cover and crop types from intra-annual time-series imagery of 

Sentinel-2 at the pixel level taking advantage of the availability from COS 2018 land cover 

dataset, and IFAP 2018 monitored agricultural parcels as well as ICNF 2018 burned areas. 

These areas will serve as training and testing input to the Random Forest classifier, allowing 

to implement the supervised machine learning method for land cover and crop type 

classification.  
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1.5 Objectives 

• Contribute to an automatic supervised classification workflow to produce land-

cover and crop type maps. 

• Review the existing state-of-the-art in machine learning and multi-temporal optical 

imagery for classifying land cover and crop type areas. 

• Classify land cover and agricultural areas using the Random Forest algorithm and 

the features extracted from the training datasets and Sentinel-2 time series.  

 

1.6 Thesis structure 

• The literature review presents the core concepts for the development of the 

research focusing on the state-of-the-art in land cover and crop type mapping, use 

of sentinel-2 intra-annual time series, and random forest classifier.  

• The methodology comprehensively describes the study area that is the focus of 

this research, the preprocessing of the primary datasets, the practical steps to the 

sample selection and spectral signature extraction, the selection of the best 

parameters for the random forest model and the challenges of training a machine-

learning algorithm to classify large study areas and generate a final map.  

• Results and discussion describe the results of the classification and contextualize 

the goodness-of-fit based on accuracy metrics. Critically analyze the results and 

relate them to literature. 

• Conclusions, limitations, and recommendations: summary of the research, 

present the main findings and contribution as well as the limitations and 

recommendations for future steps in the automatic annual classification of land 

cover and crop type mapping.  
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2 LITERATURE REVIEW 

 

This chapter focus on four sections that will allow contextualizing the framework for 

this study. Section 2.1 is dedicated to the primary considerations for land cover mapping, 

whereas section 2.2 presents the current agricultural monitoring systems based on remotely 

sensed data and how these efforts benefit from existing datasets such as the Land Parcel 

Information System (LPIS). Then, the concept of time series of satellite imagery is 

introduced in section 2.3, covering the differences between intra-annual and inter-annual 

time series and the need to produce gap-filled composites before using the data. Finally, 

section 2.4 comprises the principles of Machine Learning, also called Statistical Learning, 

and how these algorithms are different from the most commonly employed in remote 

sensing (i.e., Maximum Likelihood). It also describes the traditional machine learning 

workflow and its key constituents, the differences between supervised and unsupervised 

learning as well as regression, classification and clustering. At last, it introduces the 

algorithm that will be implemented through the thesis that is Random Forest and put it 

into the context of remote sensing and image classification.  

 

2.1 Land cover mapping 
Land cover analyses have evolved from studying a small geographic region at a 

determined period to global studies using smaller spatial resolution and higher temporal 

periods [18]. It remains, however, an intricate process, and in supervised land cover 

approaches, the critical component is the availability of training data (ground truth or 

reference data) for the signature generation [5]. According to the meta-analysis on 

supervised pixel-based land-cover image classification [19] that compared 266 articles 

between 1998 and 2012 the most relevant features considered when performing a 

classification process were texture, ancillary data (e.g., topographic, active sensors such as 

radar or LiDAR and passive sensors), multi-time imagery (e.g., fusion of images for the 

same area captured at different times), multi-angle imagery, image pre-processing (e.g., 

radiometric correction, atmospheric correction, pan sharpening, and geometric 

corrections), spectral indices (e.g., NDVI -arithmetic combinations of different spectral 

bands) and feature extraction (e.g., dimensionality reduction).  

However, training data collection is delicate in large jurisdictions and over remote 

areas [3]. Ongoing research on the extraction of automatic training data includes the 

majority rule approach in polygon level source maps [16].  
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2.2 Crop type mapping 
When using Earth Observation data for monitoring agriculture, there are recognized 

frameworks such as the GEOGLAM initiative. Currently, several main global and regional 

scale agricultural monitoring systems are in place, some of them are the Global 

Information And Early Warning System (GIEWS), the Famine Early Warning Systems 

Network (FEWS NET) and the Crop Watch for China [20]. The ESA “Sentinel 2 for 

Agriculture” (Sen2Agri) that started in 2015 aims to create operational crop types maps 

and dynamic cropland masks [21] that are required as input for global agricultural 

monitoring systems. Differences have been established between cropland maps, crop 

calendars, cropping intensity, crop type, growing calendar, crop condition indicators, and 

crop yield [20]. In crop type classification, the classifiers yielding the best performances are 

Random Forest, followed by the gradient boosted trees and then SVM [22]. RF has also 

been implemented in binary operations (cropland/non-cropland) systems [23]. 

Nevertheless, the key to differentiating individual crop types is the availability of temporal 

information [24]. For the calibration and correlation of the spectral signal to the various 

crops, information at a parcel-level is also a crucial element [24].  

Several studies, including the Sen2-Agri system, have reported the use of the Land 

Parcel Identification System (LPIS) to extract samples from agricultural parcels [6], [17], 

[24]. The LPIS is an IT system based on aerial photographs of agricultural parcels 

employed to check payments made under the Common Agricultural Policy (CAP) of 

approximately 45.5 billion euro in 2015 [25]. In Portugal, the Instituto de Financiamento 

da Agricultura e Pescas (IFAP) ensures the financing, implementation, and control 

mechanisms of the measures defined at the national level in agriculture and fisheries. It 

acts as National Control and Paying Agency (NCPA) designated by the European Union 

(EU) under the Common Agricultural Policy (CAP) and is responsible for the 

administration and control of the subsidies in this sector. For applying to financial support, 

farmers are required to submit an application to the NCPA and declare the precise location 

and area of the agricultural parcels and the crop type [26]. For this, landowners use an 

online Geographic Information System (GIS) to digitize their parcels on orthophotos or 

very high-resolution satellite imagery [24]. The NCPA controls at least 5% of the 

declarations by performing an On-The-Spot (OTS) check, penalizing the farmers that 

submitted incorrect information [26].  
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2.3 Sentinel-2 time series 

2.3.1 Time series imagery  
The coarse (i.e., pixel size > 250 m) to medium resolution optical instruments on 

board of SPOT-Vegetation, MODIS, and PROBA-V have a daily revisit cycle, global 

coverage, and long-term archive [6]. This data can be exploited in long time-series research 

at regional or global scales, but often suffer from low local accuracy in land cover products 

[27] and high mixtures of crop types [28]. The revisiting period of 16 days for the Landsat 

8 satellite of the U.S. Geological Survey (USGS) allows us to describe spatial details of land 

cover but cannot capture changes in crop phenology and growth due to low temporal 

repeat cycles and frequent cloud contamination [28]. Sentinel-2A (S2a) satellite of the 

European Spatial Agency (ESA) provides a revisit time of 10 days, and the Sentinel-2B 

(S2B) ensures a 5-days revisit time allowing the collection of high-quality spatial and 

temporal data [6]. More generally, time series algorithms have emerged over the last decade 

that can exploit dense, multi-sensor time series to derive improved land cover 

classifications [29]. Recent country-scale studies have demonstrated the added value of 

multi-sensor time series from Landsat and Sentinel-2 to differentiate crop types and 

grasslands [24].  

 

2.3.2 Intra-annual and Inter-annual 
In the review of time series analysis for Land Cover mapping [27] Gómez et al. 

(2016) pointed out the temporal relevance for images collected over intervals in the same 

year (intra-annual) or over some years (inter-annual). The intra-annual imagery allows 

monitoring the subtle differences and variations over the growing period by calculating an 

averaged phenology while the inter-annual imagery allows to compute a unique spectral 

profile that makes more visible when abrupt changes occur in the land cover. Mapping 

landcover is complex, time-series spectral data (intra-annual for phenology and inter-

annual for land cover dynamics) provide more information for increasing the classification. 

For a specific class of interest (e.g., crop type mapping), it is necessary to incorporate the 

knowledge of other underlying processes (e.g., phenology, disturbance, succession) [27].  

 

2.3.3 Gap-filled image composites 
The availability of operational imaging satellites that covers all lands frequently, such 

as Landsat 8 and Sentinel-2, providing free and open access to these data has prompted 

new applications based on time series of images covering vast territories [3], [5], [24]. 
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However, when processing optical satellite images on land surfaces, the detection of cloud 

and cloud shadows is one of the first issues. Clouds can frequently be mistaken with bright 

landscapes, semi-transparent clouds observed reflectance contains a mixture of cloud and 

land signals, and cloud shadows can be confused with water pixels, burnt areas or 

topographic shadows [30]. As for now, cloud and cloud shadow masking algorithms for 

Landsat 8 and Sentinel 2 include the MAJA algorithm by the French Space Agency 

(CNES), Sen2Cor, from the European Space Agency (ESA) and FMask of the United 

States Geological Survey (USGS).  

When integrating temporal time series of imagery, most approaches follow a best-

pixel selection strategy that allows exploiting all the imagery available [24]. The Best 

Available Pixel (BAP) enables the computation of periodic image composites free of haze, 

clouds, or shadows over large areas [31]. White, J. C. et al. (2014) [32] proposed three 

unique types of pixel-based image composites: annual (single-year) composites, multi-year 

composites, and proxy-value composites. Wherein, Defourny, P. et al. (2019)  [6] generates 

monthly composites using a weighted average algorithm, that averages cloud-free surface 

reflectance values over the given period. Interpolation over surface reflectance values to 

fill missing values due to the presence of clouds and clouds shadows has also been 

implemented for operational systems [3]. 

 

2.4 Machine Learning – Statistical Learning 
With the rapid growth of “Big data,” machine learning, also referred to as statistical 

learning, a broad set of tools for analyzing and understanding the data emerged. Several 

models can be built and require a set of input data to predict or estimate output data [33]. 

An advantage of Machine-learning algorithms is that they do not make assumptions about 

the data distribution (i.e., non-parametric), can handle data of high dimensionality, and can 

efficiently classify remotely sensed imagery [34]. 

 

2.4.1 Machine Learning Process 
A traditional machine learning workflow (Figure 1) requires key constituents: data 

collection, feature engineering (cleaning and feature selection), model learning (training, 

validating and testing), and model evaluation [35]. 
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Figure 1 Machine Learning Workflow 

  

The collected raw data may be noisy, incomplete, or inconsistent, and before using 

the data as input in the model, it is required to pre-process it by removing errors and 

outliers and fill missing values. Other tasks include the integration of multiple datasets and 

transform the data into an appropriate format, so it is readable depending on the tool 

deployed to perform the machine learning process. Feature selection and extraction are 

utilized to reduce dimensionality in voluminous data, allowing to remove irrelevant or 

redundant features that promote over-fitting and to reduce computational requirements. 

Some techniques for dimension reduction include entropy, Fourier transform, and 

Principal Component Analysis (PCA) [35].  

The training dataset is implemented to teach the model how to estimate the 

function that will be able to predict output for any new observation [33]. A validation 

dataset is applied to choose a suitable architecture for the model. If the architecture is pre-

selected, there is no need for a validation set. Finally, the testing dataset allows the model 

to iterate and tune the different parameters until the model is ready to be deployed. The 

main decompositions of the dataset are 60/20/20% if training, validation, and test datasets 

or 70/30% if validation is not required [35]. The training data selection is relevant, because 

large, and accurate training datasets result in increased classification accuracy. It is being 

suggested that the minimum number of training samples should be ten or preferably 100 

times the number of variables [34]. 

The evaluation focusses on the predictive efficacy of the model and on the 

computational requirements (training and testing time) for its application [36]. A high bias 

refers to a simple ML model that poorly maps the relations between features and outcomes 

(under-fitting) while a high variance implies an ML model that fits the training data but 

does not generalize well to predict new data (over-fitting) [35]. Techniques for 

experimental algorithm evaluation include bootstrap sampling, cross-validation, and 

holdout evaluation [36].  
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2.4.2 Supervised and Unsupervised Learning 
Supervised learning uses labeled training datasets to create models, and typically, 

this approach is used to solve classification and regression problems [35]. Therefore, the 

algorithm uses patterns to predict the values of the labeled data on additional unlabeled 

data, and by comparing the actual output with the correct output, it finds the errors, learns, 

and modifies the model accordingly. Unsupervised learning uses unlabeled training 

datasets to create models that can discriminate between patterns in the data. This approach 

is most suited for clustering problems [35]. The algorithm explores the data and finds 

patterns for grouping together values based on their features.  

 
2.4.3 Regression, Classification, and Clustering 

In data clustering, the aim is to partition objects into groups such that similar 

objects are grouped while dissimilar objects are grouped separately. Categorical clustering 

views the data as a set of a two-dimensional matrix of data objects and attributes (a set of 

discrete values that are not comparable) and attempts to partition the set of objects into 

groups with similar attributes [36]. Well-known clustering algorithms are K-means and 

Kohonen Self-Organizing Maps (SOM). Whereas in classification and regression 

problems, the goal is to map a set of new input data to a set of discrete or continuous-

valued outputs [35]. Some classification algorithms include Decision Trees (DT), Neural 

Networks (NN), K-Nearest Neighbors (k-NN), Bayesian Networks (BN), and Support 

Vector Machines (SVM). There are also ways of combining them into ensemble classifiers 

such as boosting, bagging, and the ensemble DT - Random Forest (RF). While known 

regression algorithms are mainly linear models such as Least Squares that include specific 

techniques such as OLS, MaxEnt, Logistic Regression [35], [36], LASSO Regression, SVM 

and Multivariate Regression algorithm.  

 
2.4.4 Random Forest (RF) 
Random Forest algorithm specifications for classification  

The RF classifier is an ensemble classifier that uses multiple Classification and 

Regression Trees (CART) and combines their outputs to make a prediction, treating them 

as a “committee” of decision-makers [36], [37]. It combines the Bagging algorithm to 

reduce variance by the random selection of samples and the Random Subspace method to 

reduce bias by the random selection of the features employed at each split [36]. When 

operated for classification, each tree “votes” for a class and then classify using the “majority 

vote” of the forest [38]. Findings for Random Forest is that it does not overfit as more 
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trees are added, it is relatively robust to outliers and noise, gives useful internal estimates 

of error, strength, correlation and variable importance and is easily parallelized [37].  

 

1. For b = 1 to B (n° of trees in the forest): 

a. Draw a bootstrap sample Z* of the size N from the training data. 

b. Grow a random-forest tree 𝑇𝑇𝑏𝑏 to the bootstrapped data, by recursively 

repeating the following steps for each terminal node of the tree, until the 

minimum node size nmin is reached. 

i. Select m variables at random from the p variables. 

ii. Pick the best variable/split-point among the m. 

iii. Split the node into two daughter nodes. 

2. Output the ensemble of trees {𝑇𝑇𝑏𝑏}1𝐵𝐵. 

To make a prediction at a new point x: 

Classification: Let Ĉ𝑏𝑏(𝑥𝑥) be the class prediction of the bth random-forest tree. Then 

Ĉ𝑏𝑏𝑟𝑟𝑟𝑟𝐵𝐵 (𝑥𝑥) = majority vote {Ĉ𝑏𝑏(𝑥𝑥)}1𝐵𝐵. 

Table 1 Algorithm: Random Forest for Classification [37], [38] 

 

The first step in the RF algorithm in Table 1 (a) is to extract a “bootstrap sample” from 

the training dataset; bootstrapping allows to select the same sample more than once and 

include it in the subset dataset while other samples may not be selected at all. Bagging 

(acronym derived from Bootstrap AGGregatING) allows that each member of the 

ensemble is constructed from a different training set, each dataset being a bootstrap sample 

from the original [36].  About two-thirds of the samples (in-bag samples) are used to train 

the trees with the remaining one third (out-of-the-bag) are employed in an internal cross-

validation technique for performance estimation of the model [37], [39]. 

Then, each tree is grown using samples from the bootstrapped dataset (b); 

however, it will select a random variable m from the full set of variables p available and 

pick the best one for the top split [38]. The random subspace principle is to increase 

diversity between members of the ensemble by restricting classifiers to work on different 

random subsets of the full feature space [36]. This procedure is repeated for the number 

of trees in the forest; bagging seems to enhance accuracy when random samples are 

utilized, this is also the case when using a single randomly chosen input variable to split on 

at each node [37].  
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Random forest classification of remote sensing datasets 

ML algorithms have user-defined parameters that may improve classification 

accuracy when running parameter optimization. One of the benefits of the RF algorithm 

is that it is considered easy to optimize in comparison to more complex models such as 

ANN. Their stability concerning the choice of parameters makes them excellent candidates 

for operational processing chains, yielding classification accuracies as high as more 

sophisticated algorithms such as SVM but with much lower computational complexity [3]. 

RF has been exploited in time series analysis for creating multi-temporal cloud 

mask for Sentinel-2 imagery [30]; in supervised classification for producing land cover 

maps at a country scale for France [3], as well as crop type and land cover maps for 

Germany [24] and in global operational systems such as Sen2Agri for crop type maps [6]. 

RF algorithm requires only two user-defined parameters: the number of Decision 

Trees in the ensemble and the number of random variables at each node [34]. RF is 

computationally efficient and does not overfit [39]; the number of trees does not impact 

accuracy as long as it is large enough, being 500 a very conservative value [37]. The 

estimated error rate can be plotted for each ensemble size to determine when the 

performance stabilizes [34], [37]. 

Another advantage of RF is that the algorithm itself generates additional 

information [37]. The out-of-bag (OOB) error provides an unbiased estimate of 

generalization error and resembles the error estimate obtained by N-fold cross-validation 

[38].  Also, the Variable Importance (VI) estimation ranks the variables based on the 

predictive capabilities for discriminating between the target classes [37], [39]. The VI has 

been exploited in remote sensing to reduce the number of dimensions of hyperspectral 

data (i.e., the contribution of bands), to identify relevant ancillary data (i.e., topography) 

and to select the suitable season to classify target classes [34], [39]. This allows addressing 

the challenges of mitigating the Hughes phenomenon (i.e., the curse of dimensionality) 

that occurs when the number of variables is much larger than the number of training 

samples [39].  

The main drawback is that it is sensitive to sampling design when imbalanced data 

is used; the final classification will under-predict the minority class  [34]. To reduce 

misclassification, this sensitivity to sampling design needs to be considered by ensuring 

that training and testing are independent, establish balance and representativity of each 

class, and have an extensive training sample to deal with the number of data dimensions 

[39].  
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3 METHODOLOGY 

 

The methodology section defines the study area (3.1), enumerates the datasets that 

were employed (3.2), and describes the methods implemented (3.3).  

 

3.1 Study area 
The Region of Interest (ROI) corresponds to the strata 214 in level 3 of the 

stratification of Continental Portugal (Figure 2). According to the classification, this area 

is about 1,223,890 ha in the low interior lands of the south of Portugal, which covers most 

of the valleys of the rivers Tejo and Sado and contains a great diversity of land uses as well 

as multiple crop types [40]. 

 

 
Figure 2 Stratification of Continental Portugal [40]. Scale 1:3,000,000. 

 

This stratification considers the spectral diversity of the surface features, respective 

landcover, and geographic space [40]. When producing maps over large areas, 

stratification-based classification is recommended to avoid intra-class variability and has 

proven to yield better results for all the classification metrics than a tile-based approach 

[3]. 
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3.2 Data 
The research is based on the use of the ancillary data described in section 3.2.1, which 

allows the extraction of labeled points randomly; these serve as training data for producing 

a land cover and crop type map in raster format at 10m spatial resolution for 2018. The 

class nomenclature of the map is composed of 31 classes as can be appreciated in Table 2; 

the land cover classes like urban, forest and water are derived from the official LULC map 

of Continental Portugal (COS 2018) while the agriculture comprises annual and permanent 

crop as well as agricultural pastures obtained from the Land Parcel Identification System 

(LPIS) of the Instituto de Financiamento da Agricultura e Pescas (IFAP 2018), and finally, 

the burned areas are identified from the maps of the Institute for Nature Conservation and 

Forests (ICNF) from 2018. To avoid the inclusion of mislabeled pixels that can occur due 

to differences in the Minimum Mapping Unit (MMU) between datasets, the classes 

extracted were filtered with auxiliary information. These filters include the removal of 

burned areas (ICNF 2015-2018) and alerts based on the decrease of the Normalized 

Difference Vegetation Index (NDVI) between two dates acquired from Landsat 8 imagery 

(2015-2018); allowing to remove potential clear cuts [17]. Likewise, the Copernicus High-

Resolution Layers (HRL) datasets from 2015 (latest available), particularly Dominant Leaf 

Type (DLT) and Tree Cover Density (TCD), is used distinguish between forest types, 

forest density and to eliminate non-forest pixels. All the previous datasets mentioned were 

provided by DGT, including the simplified COS nomenclature (COSsim) in Table 2 that 

is under constant improvements for the foRESTER project. The editable version of the 

Land Cover and Crop Type nomenclature and corresponding RGB color scheme to 

symbolize the different classes can be found in annexes 7.2 and 7.3, respectively. 

Also, a crucial input in this research is the intra-annual time series of Sentinel-2a and 

b from ESA for the period of October 2017 to September 2018 3.2.2. It is fundamental to 

mention that all the procedures in section 3.3.3, namely acquisition and pre-processing, 

indices calculation, production of monthly composites and filling of missing values was 

done by Hugo Costa and Pedro Benevides under the IPSTER project at DGT, using the 

R software and the computer specifications provided in section 3.3.1. 
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3.2.1 Ancillary data 
The ancillary data used as a reference for training and validating, as well as the 

filters applied to preprocess the reference datasets, is described in this section.  

 

COS 2018  

The official LULC of Continental Portugal (COS) is a vectorial map with an MMU 

of 1 hectare, a minimum distance between lines of 20m and produced through visual 

interpretation of orthophoto maps (25 cm pixel size) and auxiliary data. Each polygon 

contains only one LCLU code selected from the most detailed hierarchical level of the 

nomenclature, and this class must occupy equal or more than 75% of the entire delimited 

area. The COS 2018 contains a total of 83 classes in the fourth level of detail (LV4) that 

can be aggregated to a first level (LV1) containing 9 LCLU mega classes such as 

artificialized territories, agriculture, pastures, agroforestry surfaces, forests, open spaces or 

with sparse vegetation, wetlands, and surface water masses. As an example, in section 7.3 

the Cork Oak forest in LV3 corresponds to a Broadleaf forest in LV2 and to the mega 

class Forests in LV1. The technical specifications are available in the official 

documentation of COS 2018 for Continental Portugal [7].  

The version under current development COS2018v1 is the one being used; 

therefore, some nomenclatures might change during the writing of this document. A total 

of 16 LC classes were derived from the 83 classes available in LV4 of the COS 

nomenclature; all of them will be used for training and testing as it can be appreciated in 

Table 2, the classes from COS 2442 (Holm oak agroforestry system) and class 3112 (pure 

forest of Holm oak) were combined into the class 5121 (Holm oak forest) as both represent 

the same LC but have different uses. The class 6111 corresponding to shrubland 

corresponds to areas that remained shrubland through the COS series, meaning that 

shrubland was present in 1990, 1995, 2007, 2010, 2015 and 2018.  

 

IFAP 2018  

The Portuguese Land Parcel Identification System (LPIS) of the Instituto de 

Financiamento da Agricultura e Pescas (IFAP) is comprised of two independent datasets. 

The “national parcel registry” that will be used for training and the “controlled parcels” 

for testing. The first consists of the parcels reported by the farmers that applied for 

agricultural subsidies in the frame of CAP. The second dataset is the controlled parcels 

containing polygons with rectified edges through the visual interpretation of orthophotos 
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and field verification to assess the crop type planted. Overall, the LPIS is a very reliable 

product used in countrywide crop mapping studies; however, it can contain errors such as 

false claims or digitization errors [24].  

The IFAP 2018 is composed of more than 175 types of crops, mapping such a 

number of classes at 10 m resolution can be challenging. Instead, the ten most abundant 

temporary crops (5 rainfed and 5 irrigated), three permanent crops, and the agricultural 

grasslands were selected for the analysis for a total of 14 crop types classes.  

The IFAP also provides a crop calendar (in attachment 7.3) that illustrates the 

growing period for the crops monitored in Portugal. The early stages of the crops 

correspond to the flooding-only for rice-, seed, and crop development (germination and 

tillering) where the area is not covered yet by the vegetation. Then, the peak of greenness 

occurs during the flowering, fruit, and ripening. Finally, during the harvest, depending on 

the farmer's practices, the soil can remain clear, with stubble or left to natural regeneration.  

 

Burned areas (ICNF 2015-2018) 

The Institute for Nature Conservation and Forests (ICNF) is responsible for the 

realization of an annual map of burned areas for Portugal based on visual interpretation of 

Landsat TM/ETM. The institute publishes on its website at the end of each fire season a 

vectorial dataset containing burned areas larger than five hectares [17], [41]. The polygons 

used contains the information for the areas that burned by wildfires during the years 2015 

to 2018.  

After a wildfire, it is likely that the LC type changes, as forest and shrubs, would 

not be present anymore in scorched areas. The ICNF mask is implemented as the first 

filter for the COS dataset to avoid extracting samples of vegetation from burned areas. 

This allowed erasing the pixels that correspond to grasslands, forests, or shrubland classes 

in COS 2018 but fall inside the burned areas.  Whereas the year 2018 was used to extract 

training and testing points for this class, corresponding to the last class in the 

nomenclature. 
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NDVI mask 

Furthermore, it is not possible to sample broadleaf or coniferous forests from areas 

where trees have been uniformly cut down (i.e., clear cuts). According to Costa et al. (2018) 

[17], land cover changes can potentially be detected by monitoring if the inter-annual values 

of NDVI decrease between two successive years over a certain threshold.  Therefore, the 

NDVI mask (derived from Landsat 8) can help to identify clear cuts in a forest, allowing 

to exclude these areas from the training samples for broadleaf or coniferous forests in COS 

2018. 

 

High-Resolution Layers (HRL 2015) 

Delivered at a Pan-European level, the HRL is a product available in the Land 

Monitoring Service of Copernicus. These layers are complementary to the production of 

CLC, and it is available for continental Portugal [42]. The HRL for the thematic class forest 

of 2015 was used in the preprocessing of forests and shrublands of COS 2018. Two of the 

forest products are used, the Tree Cover Density (TCD) representing the percentage that 

a pixel is covered by trees and Dominant Leaf Type (DLT) that allows distinguishing 

between broadleaf or coniferous majority.  
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Table 2 Nomenclature for Land Cover and Crop type 
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3.2.2 Remote Sensing Data  
 

Sentinel 2  

The Copernicus Sentinel-2 mission is a constellation of two polar-orbiting satellites 

that operate simultaneously, phased at 180° to each other at a mean altitude of 768 km. 

This allows a and high revisit time (10 days for S2-A and 5 days for S2A/B), and its wide 

swath width (290 km) provides a high coverage [43] being ideal for the proposed study. 

The imagery is acquired by the Multispectral Instrument (MSI) on-board Sentinel-2 and 

contains 13 spectral bands from Visible/Near Infrared (VNIR) to Short Wave Infrared 

(SWIR) and comes in three spatial resolutions (10, 20 and 60m) as seen in Table 3.  

 

Band Spatial 
resolution (m) 

Central 
wavelength(nm) 

Bandwidth 
(nm) 

Purpose 

B01  60 443 20 Aerosol detection 
B02  10 490 65 Blue 
B03 10 560 35 Green 
B04 10 665 30 Red 
B05 20 705 15 Red Edge  
B06 20 740 15 Red Edge  
B07 20 783 20 Red Edge  
B08 10 842 115 Near Infrared (NIR) 
B08A 20 865 20 NIR 
B09 60 945 20 Water vapor 
B10 60 1375 30 Cirrus 
B11 20 1610 90 Snow/ice/cloud 

discrimination 
(SWIR) 

B12 20 2190 180 Snow/ice/cloud 
discrimination 
(SWIR) 

Table 3 Specifications of the Sentinel-2 bands 

 

The Sentinel-2 data was obtained from the French Theia Land Data Centre 

(THEIA). The data is in the Coordinate Reference System (CRS) of Universal Transverse 

Mercator (UTM) Zone 29N, and it is tiled in the Military Grid Reference System (MGRS) 

allowing all the images to have the same size (100x100 km2) and a code (e.g., a tile in 

Portugal is T29SND).  
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The biogeographical region 214 “Tejo and Sado” is covered by four tiles of 

Sentinel-2 that correspond to 29SNB, 29SNC, 29SND, and 29SPD. The classification will 

be done for the strata 214 that is within the tiles 29SNC and 29SND. Most of the study 

area is comprised within the same orbit; however, a slight corner in the 29SND tile has 

swath overlap with the adjacent orbit, accounting for more imagery collected within the 

same period than tile 29SNC. Although the re-visitation period is the same, the dates in 

the collection of the orbits vary from left to right in adjacent land.  

 

 
Figure 3 Sentinel-2 orbit, swath, and tilling for the study area and images acquired for 

October 2017 in the tile 29SND. 

 

Orthophotos for Continental Portugal 

 For all the visualizations, the orthophotos available as Web Map Service (WMS) 

from DGT were used. The imagery has a spatial resolution of 25 cm, and it is available for 

Continental Portugal. 
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3.3 Methods 
The proposed methodology corresponds to an automatic supervised classification 

procedure using the random forest classifier, intra-annual time-series of Sentinel-2, and 

filtered auxiliary data to extract the labels for land cover and crop types automatically 

(Figure 4). First, the reference datasets (COS2018 and IFAP 2018) are reclassified using 

the nomenclature from, then a set of preprocessing rules is applied to the datasets to 

remove the pixels that do not match the class label (3.3.2).  

Next, section 3.3.3 illustrates the preprocessing of the Sentinel-2 intra-annual time 

series. Initially, the imagery is downloaded for the period of October 2017 to September 

2018; a mask to remove clouds and cloud shadows are applied, and all the bands are 

resampled to 10m. Later, five spectral indices are calculated, and all the imagery is 

aggregated to monthly composites. The potential missing values (pixels with no data during 

a month) are filled using linear interpolation in time to ensure continuity of information 

during the period.  

Afterward, the supervised learning procedure is presented in section 3.3.4. This 

section starts with the automatic extraction of samples by class from the pre-processed 

datasets. Two independent sample datasets are acquired, one for training and one for 

testing with varying percentages 80/20 or 75/25 depending on the number of pixels 

available. For each sample, the spectral signatures are retrieved at the pixel level from all 

the bands of the composites and the spectral indices. Then, a grid search is used to 

determine the best hyperparameters for the RF; the models are fit to the training dataset 

and assessed with 10-split cross-validation.  

At last, the performance of the best model is quantified following the metrics in 

(3.3.5) based on the predicted labels in the testing dataset. Then, the model is applied to 

unlabeled data allowing to generate the final map for the biogeographical region. 
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Figure 4 Flowchart for the automatic production of a land cover and crop type map in central Portugal 



25 

 

3.3.1 Software and device specifications 
The data pre-preprocessing was done using the software ArcGIS Pro 2.4.0 from 

ESRI. A geoprocessing workflow was developed with the visual programming language of 

Model Builder that can later be exported as a python script. 

The sample extraction, model training, and classification were done using 

Anaconda Distribution that is an open-source platform to perform data science and 

machine learning. The version installed corresponds to Anaconda3-4.4.0-Windows-

x86_64 that contains Python (3.5.4) and the required libraries such as NumPy (1.13.1) [44] 

and Pandas (0.20.3) [45] for data structures, Seaborn and Matplotlib (2.0) [46] for data 

visualization and Scikit-Learn [47] for conducting machine learning analysis since it 

includes the random forest classification algorithm. Other libraries installed comprise 

GeoPandas for its spatial functionality with geospatial data and the Geospatial Data 

Abstraction Library (GDAL), which is a translator library for raster and vector geospatial 

data formats [48]. 

The feature extraction, classification, and the elaboration of the final map were 

done using the computers of DGT.  The computers have an installed RAM of 64.0 GB 

with a processor Intel (R) Xeon (R) Gold 6140 CPU @ 2.3GHz 2.29 GHz. For all the 

other procedures, a personal computer was used, with a processor Intel (R) Core (TM) i7-

7500U CPU @ 2.70 GHz 2.90 GHz and installed RAM of 8.00 GB. 

 

3.3.2 Preprocessing of the reference datasets 
The workflow for pre-processing the reference datasets is detailed in Figure 5. 

First, the IFAP 2018 dataset was reclassified from 175 crop types to 14, and a buffer of -

40m was applied. Next, from the 83 classes available in COS 2018 dataset, a total of 15 

were extracted; likewise, an inner buffer was used. Then, the remaining polygons were 

crossed with the auxiliary data; this includes the ICNF burned areas 2015-2018, NDVI 

alerts of clear cuts 2015-2018, and HRL layers 2015 (DLT and TCD). Finally, if IFAP had 

overlapping areas with COS, these were removed from the latter; the final dataset 

comprises IFAP 2018, COS 2018 and ICNF 2018. As the IFAP controlled parcels were 

used for testing while the national parcel registry was used for training, both datasets were 

kept spatially independent. This is not the case for COS nor ICNF, being the whole dataset 

used both for training and testing. 
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Figure 5 Data preprocessing workflow for reference datasets 

 

Crop type dataset (IFAP 2018) 

From the IFAP dataset, the ten most abundant temporary crops (5 rainfed and 5 

irrigated), three permanent crops, and the agricultural grasslands were selected for the 

analysis for a total of 14 crop types classes. An Exploratory Spatial Data Analysis (ESDA) 

was performed to identify the ten most abundant temporary crops in the study area for the 

classification (Figure 6); these corresponds to maize (24,012ha), rice (21,595 ha), tomato 

(12,742ha), ryegrass (5,472ha), oatmeal (4,163ha), wheat (2,723ha), sorghum (2,104ha), 

barley (1,844ha), lupin (1,762ha) and potato (1,748ha). As for the permanent crops, olive 

trees, vineyards, and orchards were considered due to their importance in Portugal’s 

agriculture. The orchard class combines 17 types of trees from figs and oranges to walnuts 

and hazelnuts.  

 
Figure 6 Area covered by the 10 most abundant crops in hectares 
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The number of parcels is relevant; the more parcels are distributed within the study 

area, the more representativity is possible to obtain. According to the distribution of the 

parcels (Figure 7), most of them are less than 10 ha. The average area for all the classes is 

3.35 ha, being the tomato parcels with the higher mean area (5.38ha) and oatmeal the lower 

mean area (2.35ha).  

 
Figure 7 Distribution of the tree main crop parcels by area (ha) 

 

An inverse buffer of -40 m was performed to the original parcels to avoid selecting 

pixels for which the spectral signature does not match the class label, as can be seen in 

Figure 8. During the buffering process, it can occur that the smallest parcels are removed 

from the dataset, reducing the number of available pixels for training. No other crossing 

with ancillary data was applied to this dataset, training (national parcel registry) and testing 

(controlled parcels) were kept independent. This was ensured by performing an 

intersection between the datasets and removing the controlled parcels from the national 

parcel registry guaranteeing that all the polygons are spatially disjointed.  

 

 
Figure 8 IFAP parcels pre-processing: inverse buffer (- 40m) 
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 Land Cover dataset (COS 2018) 

A total of 16 LC classes were derived from the 83 classes available in COS 2018, 

and a -40 m buffer was applied to the remaining polygons. Yet, it is critical to emphasize 

that the MMU of COS (1ha) entails a reduction in detail to better model the reality; and 

many times, it requires the generalization of polygons. This means that areas smaller than 

1ha (paths, edifications and other objects) will be aggregated with the predominant class 

up to 25% of the total area of the polygon [7]. Classification at the pixel level for Sentinel-

2 contemplates a 10 m MMU; therefore, some pre-processing steps are required to prevent 

the selection of pixels with spectral information that mismatch the class label inherited 

from COS which has a larger MMU (and potential thematic errors).  

The first step was to intersect all COS polygons with the ICNF burned mask for 

the years 2015- 2018. The mask allowed to create holes in the polygons by eliminating the 

scorched areas; consequently, no automatic sample will be extracted from these areas. A 

total of 392 ha in 2015, 2565 in 2016, 6002 ha in 2017, and 99 ha in 2018 were removed 

from the dataset. In Figure 9, it is possible to recognize a blackened area inside a Maritime 

Pine class in 2016 and inside a Eucalyptus class in 2017. Still, the burned mask does not 

cover the polygon extensively, as it can be appreciated in the Maritime pine where two 

holes remained in the polygon corresponding to edifications and in Eucalyptus where the 

mask does not cover the total extent of the area. The forest type most reduced in the area 

after applying by the burned mask correspond mainly to cork oak (263 772 ha) and 

eucalyptus (80 323 ha). In Portugal, the eucalyptus forest is industrially grown to supply 

pulp fiber for the paper industry, although they are highly flammable [49]. 
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Figure 9 COS2018 polygon overlaid with the burned mask, Maritime Pine OBJECTID: 

493848 and Eucalyptus OBJECTID: 415864. Scale 1:7,000 (1) and 1:25,000 (2). 

 

The second step applies only for the forest areas since training and testing cannot 

be sampled from forest cuts. NDVI differencing techniques allow discriminating between 

real changes and seasonal or inter-annual variability of forests [50]. This technique has been 

implemented in Portugal [51] to detect vegetation loss that occurred between 2015-2018 

in forests, so-called NDVI alerts. The forest polygons were crossed with the NDVI alerts 

mask to remove the areas where there have been changes, and hence the class label of COS 

does not correspond to the pixel spectral signature. After applying the mask, the most 

affected forests are eucalyptus with 13785 ha reduced, followed by 7076 ha in stone pine 

and 3498 ha in maritime pine. This forest fragmentation (i.e., breaking of large, contiguous 

forested areas into smaller pieces of a forest) is due to some extent to road construction, 

fires, logging and conversion to agriculture. In the case of forest plantations like eucalyptus, 

clear-cuts are part of the forest management cycle; as a new forest is expected to follow, 

the land use remains a forest [51]. However, in a strictly land cover map derived from 

supervised classification, these changes in vegetation can result in misclassifications when 

implementing the model and therefore require to be removed from sample extraction.  

 
Figure 10 NDVI alerts in a Eucalyptus plantation (COS 2018 OBJECTID: 382944). 

Scale 1:80,000 (1) and 1:6,000 (2). 

 

The final step was to cross the forest areas, and the shrublands with the High-

Resolution Layers (HRL) masks created following the rules in Table 4. The Dominant Leaf 

Type (DLT) allows separating broadleaf or coniferous majority, while the Tree Cover 

Density (TCD) ranges from 0 to 100%. For cork oak, holm oak, other broadleaf, and 

eucalyptus, it is required that they correspond to broadleaf with a tree cover higher than 

60% of the pixel in the HLR. For coniferous, if more than 60% of the pixel is covered by 
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trees, then the classes stone pine and other coniferous are defined. However, for the class 

maritime pine, if the coverage is more than 60%, it is considered a closed maritime pine. 

Although, if the pixel coverage is between 10% and 60%, a new class is derived, and it is 

considered an open maritime pine. A shrub is a type of vegetation that is included in many 

classes as a percentage in the area, making it challenging to identify. For the shrubland 

class, the rule is to remove from the class all the areas with broadleaf or coniferous cover.  

 

Dominant Leaf Type 
(DLT) Tree Cover Density (TCD) Class 

Broadleaf > 60% 

Cork oak forest 
Holm oak forest 

Other broadleaf forest 
Eucalyptus forest 

Coniferous 
> 60% 

Stone pine forest 
Closed Maritime pine forest 

Other coniferous 
> 10% and < 60% Open Maritime pine forest  

Broadleaf and 
Coniferous 0% Shrubland 

Table 4 Rules for the crossing of COS polygons with HRL 

 

Following the application of the mask, there is a dramatic reduction in the area for all the 

classes. Cork oak presented the highest reduction of 260000 ha, followed by eucalyptus 

with 64000 ha and stone pine with 51000 ha. Figure 11 exemplifies the filtering using the 

HRL layers in shrubland. It is possible to visualize that the areas with broadleaf and forest 

containing more than 0% of tree cover density are masked out the shrubland polygon. 

 

 
Figure 11 DLT (1) and TCD (2) rule for shrublands (COS OBJECTID: 592293). Scale 

1:20,000. 
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At last, all the polygons within classes must be mutually exclusive; therefore, the 

polygons from the IFAP dataset were intersected with the polygons from COS. The 

overlapping areas were erased from the COS land cover dataset, giving priority to IFAP. 

When removing the areas that overlapped between IFAP and COS dataset, a significant 

conversion from land cover to crop types were found. Three main classes were reduced in 

the area: 114 ha of natural grassland, 72ha of open maritime pine, and 121ha of cork oak 

were reclassified to agriculture.  

 

3.3.3 Preprocessing of the intra-annual time series of Sentinel 2 
The following descriptions are summarized from the technical specifications for 

the generation of multi-temporal Sentinel-2 composites for mainland Portugal [52]. The 

workflow includes acquisition and preprocessing, indices computation, generation of the 

monthly composites, and filling of missing values, as illustrated in Figure 12. 

 

 
Figure 12 Preprocessing workflow for Sentinel-2 intra-annual time series 

 

Acquisition and preprocessing 

The Sentinel-2 images downloaded from THEIA for the agricultural year of 2018 

comprise a cloud coverage < 50%, each tile contains around 81 images and occupy 51 GB 

per tile. The THEIA images available for download are already pre-processed with an 

algorithm named MAJA and have a more efficient cloud masking algorithm when 

compared with the original ESA Sen2Cor Sentinel-2 processor [30]. The MAJA algorithm 

provides atmospheric correction to the bottom of the atmosphere (BOA), a mask for 
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clouds and cloud shadows, water and snow, and contains a slope effect correction allowing 

the images to be seen from a flat surface.  

The preprocessing of the L2A products at DGT comprises the use of the 

cloud/cloud shadow mask Tiff available for each product to convert all the pixels 

contaminated to “missing data” that corresponds to “65535”. Then, the bands 5, 6, 7, 8A, 

11, and 12 are disaggregated from 20m to 10 m and then assembled in the following 

sequence: B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 resulting in a raster with a cell size 

of 10 m and with ten bands. Finally, the output images are saved as a TIFF file in the 

projected CRS of WGS 84/UTM zone 29N (EPSG: 32629) and as 16 bits unsigned integer 

where the floating values were multiplied by 10 000 to save space on the disk. 

 
Figure 13 Image acquisition with less than 50% cloud cover for tile 29SND in July 2018 

 

Derived indices 

The bands contained in the MSI of SENTINEL-2 allow the calculation of several 

spectral indices by combining the spectral bands to enhance vegetation, soil, water, and 

built-up areas. After the imagery pre-processing, five spectral indices are calculated for each 

image and are summarized in Table 5.  

 

Index Band combination Reference 
Normalized Vegetation 

Index (NDVI) 
(b8-b4)/(b8+b4) 

(NIR-Red)/(NIR+Red) to enhance vegetation [53] 

Normalized Difference Build 
up Index (NDBI) 

(b11-b8a)/(b11+b8a) 
(SWIR1-NIR2)/(SWIR1+NIR2) 

to map urban built-up area 
[54] 

Normalized Difference 
Water Index (NDWI or 

NDMI) 

(b3-b8)/(b3+b8) 
(Green-NIR)/(Green+NIR) 

to detect water bodies [55], 
[56] 

Normalized Burn Ratio 
(NBR) 

(b8a-b12)/(b8a+b12) 
(NIR-SWIR2)/(NIR+SWIR2) 

to highlight burned areas 
[57] 

Normalized Burn Ratio 2 

(NBR2 or NDMIR) 
(b11-b12)/(b11+b12) 

(SWIR1-SWIR2)/(SWIR1+SWIR2) variation of NBR [58] 

Table 5 Spectral indices derived from the monthly composites 
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Monthly composites and gap filling 

All the imagery was used to create a composite for every month. For that time 

interval, for the images acquired in the same month (e.g., October 2017), the median is 

calculated at the pixel level. This is done for all the bands in the images, allowing to reduce 

the number of missing values because it is possible that between the acquisitions, there is 

a clear sky. However, this might not be the case for all pixels during a month, and this can 

show as “missing values” in the synthetic composites as well. A linear interpolation method 

was applied to the pixel with missing value using the previous and following months to fill 

in the gaps [24]. All the monthly composites and the indices were interpolated to create a 

pixel-level consistent reflectance composite that can capture field level phenologies [24], 

as seen in Figure 14. 

 

 
Figure 14 Series of monthly cloud-free reflectance composites at 10m resolution 

(October 2017 to September 2018) the pointed area corresponds to an agricultural area. 

 

3.3.4 Supervised learning 
This subsection is comprised of the automatic extraction of random samples per class 

from the preprocessed datasets. Next, the spectral signatures are retrieved from the 
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monthly composites. And finally, different hyperparameters combinations are tried to 

select the best model for classification, as can be appreciated in Figure 15. 

 

 
Figure 15 Supervised learning workflow 

 

Automatic sample extraction 

After the pre-processing steps mentioned in section 3.3.2, there was a decrease in the 

area available for automatic sample collection. In the case of IFAP, 58% of the original 

area was reduced for both training and testing datasets. Similarly, the landcover dataset had 

a significant decrease in the area; it diminished 94% from its original area. Therefore, if the 

number of pixels available per class was higher than 5000 samples, the dataset is divided 

into 4000 training and 1000 for testing. However, some classes did not meet this 

requirement, and for these, the dataset was divided into the proportion of 75% for training 

and 25% for testing. A total of 115,880 samples were retrieved for training, and 29,150 

samples for testing as can be appreciated in Table 6.  

 

Class Training Testing Total 

Class > 5000 samples 4000 1000 5000 

Class < 5000 samples 75% 25% 100% 

Total number of samples 115 880 29 150 145 030 

Table 6 Training and testing samples for the area 
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Only four classes are imbalanced (Table 7), and they represent 6.9% of the total 

dataset. A possibility for dealing with class imbalance is to under-sample the majority class 

at the disadvantage of reducing the overall accuracy; an alternative is to oversample the 

minority class by duplicating the records [34]. Dealing with imbalance, it is out of the scope 

of this research; for this class imbalance, the User’s and Producer’s accuracy and the f-1 

score are considered to complement Overall Accuracy.  

 

Class Training Testing Total 

Barley 4000 856 4856 

Holm oak forest 3408 1136 4544 

Other coniferous forests 278 93 371 

Bare Rock 194 65 259 

Total 7880 2150 10030 

Percentage of the dataset 6.8 7.3 6.9 

Table 7 Training and testing samples for the four classes with imbalance 

 

The vector dataset was rasterized to 10 m cell size using the sentinel imagery as a 

reference to extract the samples. Then, the resulting raster was converted to points; these 

correspond to the centroids of each pixel contained within the raster. This step permitted 

to create a point grid for random selection of samples, as seen in layout number 2 of Figure 

16 and Figure 17. For the land cover classes, the training and testing samples come from 

the same polygons; this can incur somewhat optimistic accuracies [3]. Whereas, for the 

crop type classes, the availability of a verified dataset (controlled parcels) permits to have 

disjoint polygons for training and validation. 

 

 
Figure 16 Automatic sample extraction for IFAP 2018 (Maize OSAID: 4358737-training; 

36821510-testing). Scale 1:12,500. 



36 

 

 
Figure 17 Automatic sample extraction for COS 2018 (Cork Oak OBJECTID: 382944). 

Scale 1:20,000 (1) and 1:5,000 (2) and (3). 

 

The tiles 29SND and 29SNC have overlapping areas; to avoid that the same sample 

extract features from both tiles, the samples were divided. The priority was given to tile 

29SND as it contains more images available for the period; the training and testing datasets 

were cropped to the whole extent whereas, for tile 29SNC, the overlapping area was not 

considered (Figure 18). The green dots indicate the samples that will extract spectral 

information from tile 29SND, and the blue ones will retrieve the information from tile 

29SNC. 

 

 
Figure 18 Training and testing samples for the biogeographical region divided between 

tiles 29SND and 29SNC. 
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Extraction of the spectral features  

Before inputting the data into the model, the training and testing dataset must 

contain the required features/variables. The information that is provided to the classifier 

corresponds to the surface reflectance values of the Sentinel-2 composites and the spectral 

indices derived. A total of 180 features are extracted, equivalent to 10 bands and five 

spectral indices for each of the 12 months (October 2017 to September 2018), as shown 

in Figure 19. This process was done with python, adapting the code rs-util in section 7.1. 

The samples were used as a mask to extract the spectral information at the pixel level from 

all the imagery. The data retrieved is saved as an array of 180 features; all the arrays were 

converted to a pandas DataFrame, a two-dimensional tabular data structure in .csv format.  

 

 
Figure 19 Extraction of the spectral features for training and testing datasets 

 

The resulting training DataFrame contains a total of 115,880 samples with 180 

features extracted (Figure 20), while the testing DataFrame contains 29,150 samples. The 

rows represent the samples used to extract the data at the pixel level, and the columns 

contain the features retrieved from the Sentinel-2 imagery. The ‘CLASS’ column contains 

the labels corresponding to the land cover and crop type target classes; however, the RF 

model does not accept string variables and therefore, the numerical codes ‘LV4’ are the 

ones used as input in the classification. The total time for feature extraction was 

approximately 2 hours using the computers at DGT. 
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Figure 20 Dataframe of the training dataset containing the 115,880 samples with 180 

extracted features 

 

One of the benefits of the DataFrame tabular structure is that it allows queries and 

arithmetic operations along both rows and columns. For visualization purposes, the values 

of only one month were acquired; in this case, October 2018 (Figure 21). From the features 

obtained, we can appreciate that there are high correlations between the visible spectrum 

(b2, b3, b4) and the red-edge bands and NIR for vegetation discrimination (b6 to b8a) and 

between the bands 11 and 12 used for snow/ice and cloud discrimination (SWIR). The 

bands 1 for aerosol detection and 9 of water vapor were not included in this analysis as 

they would not provide information about surface reflectance’s values 
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Figure 21 Correlation between spectral signatures for bands and indices for October 

2017  

Model tuning and training 

 Model evaluation is a required task in classification using machine learning 

algorithms; a traditional way to validate the performances of classification is to use part of 

the available samples for training and another for validation [30]. The 10-fold cross-

validation method [59] allowed to randomly split the training dataset into 10 parts and 

create 10 validation experiments using each time a different part to validate and 9 other 

parts for training the classifier. This was done for each of the hyperparameters in the Grid 

Search Table 8.  

The RF model was built using the open-source Scikit-learn library for machine 

learning that is available to deploy using 

sklearn.ensemble.RandomForestClassifier [47].  

 

The sklearn.model_selection.GridSearchCV allowed testing various 

hyperparameters combinations of RF to achieve the optimal classification performance for 

the training dataset; a summary is provided in Table 8.   
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Algorithm User-defined parameters Values 

Random forest 

Criterion Gini 

Number of trees 100, 200, 300, 400, 500 

Maximum depth None, 2, 16 

Table 8 User-defined parameters for Grid Search 

 

The Gini criterion is considered to extract the variable importance, and the number 

of estimators is tested from 100 that is the default value in Scikit learn to 500, which is the 

recommended value of RF [39]. Although RF does not overfit, it is possible not to prune 

the trees; nevertheless, the test is considered from ‘none’ until 16 splits. By leaving the max 

features parameter in ‘auto,’ the software will consider the number of features at each split 

(m) to be �p (being p the total number of variables); this the default for RF  [38]. The 

training dataset (80% total data for classes with 5000 samples and 75% for classes below 

5000 samples) will be used to train the model parameter and adjust the parameters using 

10-fold cross-validation.    

The best performing model was selected by the ranking achieved in the training 

dataset, and the 10 cross-validations results for that model are presented in Table 10. A 

total of 500 trees without pruning outperformed the other models tested; this is consistent 

with most literature on RF reporting that the error stabilizes before reaching 500 trees and 

that is recommended to let each tree overfit until the node reaches purity  [34], [37], [39]. 

A total of 15 models were tested using 10 cores and 32 GB of RAM of the DGT servers, 

the total training time took 93 minutes, for 100 trees as estimator the average training time 

is 2 minutes while for 500 trees it takes 10 min (Table 9). 

 

Mean accuracy Number of trees 

Max depth 100 200 300 400 500 

None 5 4 2 3 1 

4 15 14 11 13 12 

16 10 9 6 8 7 

Mean fit time (min) 2 4 6 8 10 

Table 9 Ranking of the hyperparameters grid using 10-fold cross-validation 
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1 2 3 4 5 6 7 8 9 10 Mean Std 

0.609 0.78 0.737 0.703 0.740 0.753 0.693 0.64 0.63 0.57 0.687 0.065 

Table 10 Cross-validation results for the best model (10 folds, mean and standard 

deviation) 

3.3.5 Accuracy Assessment of the model performance and map production 
This final subsection focuses on validating the performance of the model and 

classifying both tiles to produce a final map in raster format; the biogeographical region is 

used as a mask to extract the ROI (Figure 22). 

 

 
Figure 22 Accuracy assessment and map production workflow 

 

Validation 

When using classification models in remote sensing, it is required to quantify the 

number of times the model predictions match the reality being modeled [36]. Accuracy 

assessment compares the pixels or polygons from a map classified using ML algorithms to 

a reference test dataset (ground truth) for which the labels are known [3]. A confusion 

matrix summarizes the classification performance, where the row entries are the actual 

classes (reference data), and the column entries contain the number of pixels predicted by 

the classifier belonging to the column class. In a two-class problem, the confusion matrix 

is a two-dimensional matrix, one designated the positive class and the other the negative 

class (Table 11). True positives (TP) are the positive samples correctly classified, and False 

positives (FP) are a negative class incorrectly classified as positive. Whereas True negatives 
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(TN) are the negative samples correctly classified, and False Negatives (FN) are a positive 

class incorrectly classified as negative [36].  

  Assigned Class 

 Total population Positive Negative 

Actual class Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

Table 11 Binary confusion matrix 

 

From the binary confusion matrix, several indices can be calculated for each class, and 

the average of all the values across classes serve for the multiclass purposes. The evaluation 

metrics considered in this study are based on the python implementation of the metrics is 

available in the Scikit-learn documentation [47]. A summary is shown below: 

• Accuracy (sklearn.metrics.accuracy_score): the number of correctly 

classified samples/total number of samples. The Error rate is directly related to the 

accuracy, being error rate = 1.0 – accuracy. 

• User’s accuracy (sklearn.metrics.precision_score): a ratio between true 

positives/total number of positives predicted ( 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +𝐹𝐹𝐹𝐹

). It is the ability of the 

classifier not to label as positive a sample that is negative. 

• Producers accuracy (sklearn.metrics.recall_score): a ratio between true 

positives/total number of actual positives ( 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 +𝐹𝐹𝐹𝐹

). It is the ability of the classifier 

to find all the positive samples.  

• F1-score: harmonic mean of precision and recall (2 𝑃𝑃 𝑥𝑥 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

). 

The Kappa coefficient is the proportion of agreement after the chance agreement is 

removed [60]; however, it is not reported in this study. Kappa can provide information on 

assessing the performance of a classifier, but it does not provide information on assessing 

a map because it is not possible to identify actual pixels classified correctly by random 

chance hence random classification is not a realistic alternative to create a map [18]. Several 

authors have explained the unsuitability of the kappa coefficient in accuracy assessment of 

image classification and encourage researchers to provide more straightforward metrics 

such as estimates or per-class accuracy and confusion matrices [18], [61], [62].  

Aside from the accuracy metrics, the main misclassified classes will undergo a visual 

interpretation for understanding the confusion in the classifier.  
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Map production 

For the map production, the trained RF model was applied to each unclassified pixel 

assigning the land cover or crop type that got the most votes in the ensemble.  

The first attempt to make the map was to extract the features per tile, each tile 

containing 10980 x 10980 pixels (approx. 120 million pixels); however, it proved to be 

computationally demanding. The next approach was to classify subsamples of tiles 

containing 2.5 million pixels; the method worked; however, it was not efficient as this 

would have required to classify 48 subsamples for 2 hours each (approx. 4 full computing 

days). Lastly, with the help of Pedro Benevides and Hugo Costa at DGT, it was possible 

to implement a classification approach using multicore processing (18 cores/36 threads). 

Each tile was classified independently with the same trained model; the total computing 

time was 4 hours (2 hours per tile).   
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4 RESULTS AND DISCUSSION 

 

In this section, the best hyperparameters selected are fitted to the training data then 

the trained model is used to classify the testing data allowing to extract the essential 

variables in the classification 4.1. The final map is presented in section 4.2, and it is 

evaluated based on the metrics proposed in section 3.3.5. Then, a particular emphasis on 

crop phenology follows (4.2.2) that will compare the performance of the use of time series 

for specific band reflectance’s based on the crop calendar for Portugal. And finally, a visual 

assessment of the map (4.2.3) is necessary to comprehend the extent of the accurate 

classifications but also the misclassifications related to the pre-processing steps.  

 

4.1 Variable importance  
After choosing the best parameter, the random RF was trained accordingly with 

500 trees and no pruning; a random state of 101 was used to ensure reproducibility. The 

model was applied to the testing data to retrieve the variable importance, from the 180 

variables used in the model. The 10 most informative variables and the 10 least informative 

variables are displayed in Table 12, along with their scores. The variables are ranked from 

0 to 1, meaning that the closer they are to 1, the more information they provided during 

the split of the decision trees.   

The most critical features correspond to the months of spring (April) and summer 

(June and August), whereas the least important is during autumn (November and 

December) and winter (January and February). While the most influential bands are in the 

Red edge (b5, b6, and b7), NIR (b8a) and SWIR (b11 and b12) wherein the least important 

are in the visible spectrum (b2, b3, and b4) and the NIR (b8).  

This correlates with the availability of spectral information, some of the months 

are entirely cloud-free for all the mainland Portugal (October 2017, November 2017 and 

August 2018), but there are also some critical periods where the number of missing values 

is significant (e.g., February, April or July) [52]. This is the main reason why the monthly 

composites are interpolated in time, as some of the months can have pixels with large spans 

of missing data.   

Also, the Mediterranean type of climate in Portugal is characterized by warm and 

dry summers and cool and wet winters [63]; the vegetation utilizes the precipitation that is 

accumulated from November to April during spring and summer for its photosynthetic 

activities. The photosynthetic phenology is captured by the different bands in the MSI, 
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mainly in the Red Edge and NIR, whereas the SWIR allows penetrating thin clouds for 

moisture discrimination on soils. The high correlation between bands 8 and 8a influences 

the information gain in the split selection, reducing the importance for the band 8 and 

assigning more weight to band 8a. The inclusion of the five spectral indices appears to 

provide a minor information gain in the classification, making them not a predominant 

variable [19].  

 

10 most important variables in the model 

JUNb8a AGOb11 JUNb11 AGOb5 JUNb6 APRb8a JUNb7 ABRb7 AGOb8a JUNb12 

0.01146 0.01060 0.01053 0.00998 0.00924 0.00913 0.00882 0.00869 0.00851 0.00849 

10 least relevant variables in the model 

JANb3 DICb8a FEBb4 DICb6 JANb8 DICb7 FEBb2 FEBb8 NOVb8 DICb8 

0.00297 0.00294 0.00286 0.00276 0.00270 0.00267 0.00265 0.00253 0.00239 0.00228 

Table 12 Extraction of the 10 most important feature in the classification and the 10 least 

relevant for the selected model 

 

4.2 Land Cover and Crop Type Classification 
The land cover and crop type map in raster format (10m pixel size) is presented in 

(Figure 23) based on the methodology proposed in section 3. The map contains 31 classes, 

from which 14 correspond to agricultural classes from wheat to agricultural grasslands (in 

the legend), it also includes burned areas and 16 land cover classes. The quality of the map 

will be assessed quantitatively (4.2.1) based on the accuracy metrics from section 3.3.5 and 

discussed using literature.  
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Figure 23 (a) Land Cover and Crop Type in raster format, (b) detail of the map, (c) false-

color (RGB: b8, b4, and b3) for august 2018 Sentinel-2a composite, (d) the Iberian 

Peninsula with Portugal and Stata 214 highlighted. 

 

4.2.1 Quantitative Map Evaluation 
The accuracy assessment assumes that the map and reference labels represent hard 

classification and that the samples used during training are not included in the testing. The 

aim is to compare if the predicted map class label matched the actual label observed on the 

ground expressed on an overall and per-class basis [18]. First, the proportion of area 

correctly classified (overall accuracy) is discussed, however, as it does not provide class-

specific information, the user’s accuracy (UA), producer’s accuracy (PA), f1-score and the 

number of testing samples per class are also showed in Table 13. Then, the error matrix is 

included to visualize the off-diagonal cells that indicate which classes are confused [18].  

The overall accuracy (OA) of the land cover and crop map using monthly 

composites features and derived indices is 76% for the 31 classes (Table 13).  

In crop types, the best-performing classes overall are maize, rice, and tomato with 

UA and PA values above 90%, excepting sorghum whose PA accuracy is 64% being 

excluded by omission and assigned to permanent crops such as vineyards, orchards, and 

olive trees. In general, the irrigated crops (summer crops) are more stable in their 
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classifications, whereas the rainfed crops (winter crops) have much confusion within 

themselves, as can be appreciated in the confusion matrix Table 14. In terms of permanent 

crops, Vineyards achieved UA and PA higher than 75%; this finding is also stated by 

Schmedtmann, J., Campagnolo, M. (2015) [26] that achieved 85% in parcels classified as 

maize, rice, wheat or vineyard in the same study area. On the other side, orchards and 

Olive trees have the lowest PA (35% and 46% respectively) being incorrectly classified 

primarily as agricultural and natural grasslands as well as other crop types. The high 

temporal variability of the temporary crops is detected by the different spectral signature 

depending on the months and the phenological state, as exemplified in section 4.2.2, 

allowing them to increase their classification accuracy if compared to permanent crops. 

Crop mapping in Central Portugal can benefit from the use of time series of Sentinel-2 and 

machine learning for their classification as their average size of the parcels is between 2 

and 3 ha. However, for very fragmented landscapes where the agricultural parcels are 

comparatively smaller, it would require higher resolution imagery to meet the same 

accuracy [20].  

For the land cover classes, the highest in UA and PA (> 90% for both) are water, 

bare rock, holm oak, and wetlands, whereas the lowest PA (54%) corresponds to the other 

coniferous class, that was more associated with Stone pine. In general, there are many 

confusions between the forest classes, for example, the cork oak has a low UA of 65% 

meaning that the commission error is high and as seen in the matrix (red bounding box), 

this class can be mistaken with the broadleaf forest as well as coniferous. The shrubland is 

often mixed with build-up, grasslands, bare soil, and sparse vegetation; the direct mapping 

of the latter class is challenging as its spectral signal is composed of green vegetation and 

non-photosynthetic vegetation as well as varying fractions of soil, grass, and shadow [64]. 
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CODE CLASS ABREVIATION UA% PA% F1 N° 
1111 Build up BUI 86 88 87 1000 
2111 Wheat WHE 70 67 68 1000 
2112 Barley BAR 85 54 66 856 
2113 Oatmeal OAT 50 49 49 1000 
2114 Ryegrass RYE 57 62 59 1000 
2115 Lupin LUP 62 55 59 1000 
2121 Maize MAI 99 99 99 1000 
2122 Sorghum SOR 84 64 72 1000 
2123 Rice RIC 100 98 99 1000 
2124 Tomato TOM 93 100 96 1000 
2125 Potato POT 78 84 81 1000 
2211 Vineyards VIN 76 94 84 1000 
2221 Orchards ORC 73 35 47 1000 
2231 Olive Trees OLI 61 46 52 1000 
3111 Agricultural grassland AGR 48 72 58 1000 
3121 Natural grassland NAT 56 68 61 1000 
5111 Cork oak forest COR 64 70 67 1000 
5121 Holm oak forest HOL 91 94 92 1136 
5131 Eucalyptus forest EUC 88 82 85 1000 
5141 Other broadleaf forest OBL 65 81 72 1000 
5211 Closed Maritime pine forest CMA 75 75 75 1000 
5212 Open maritime pine forest OMA 78 78 78 1000 
5221 Stone pine forest STO 84 84 84 1000 
5231 Other coniferous forest OCO 100 54 70 93 
6111 Shrubland SHR 70 63 67 1000 
7111 Baresoil BSL 82 80 81 1000 
7121 Bare Rock BRK 95 92 94 65 
7131 Sparse vegetation SPA 88 94 91 1000 
8111 Wetlands WET 90 94 92 1000 
9111 Water WAT 97 95 96 1000 
9999 Burned Areas BUR 68 72 70 1000 
OA%   76 29150 

Table 13 Land Cover and Crop Type results of the classification. The Overall Accuracy 

(OA%), User's Accuracy (UA%), Producer's Accuracy (PA%), F1-SCORE (F1%), and 

the number of testing samples (N°) are reported for the RF model with 500 trees.
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Table 14 presents the confusion matrix for 31 classes using the RF model with 500 trees and the testing data set. The left column represents the 

ground data, the upper row corresponds to the predicted labels, and the diagonal represents the correctly classified samples per each class. The correctly 

classified land cover and crop type are highlighted in bold and red, whereas the classification errors higher than ten are highlighted in yellow. The 

bounding boxes correspond to the classes that can be aggregated from LV4 to LV3 according to the hierarchical nomenclature in attachments 7.3; these 

correspond to Rainfed Temporary Crops, Irrigated Temporary Crops, and Maritime Pine Forest, respectively. The red bounding box corresponds to all 

the forest classes. This is an image for illustrative purposes; the original table can be found in attachments 7.5. 

 

 
Table 14 Confusion matrix for the Land Cover and Crop Type classification at LV4 
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4.2.2 The relevance of time series in crop phenology  
The availability of cloud-free monthly composites permitted to compute a 

smoothed spectro-temporal profile from the averaged reflectance values in the testing 

dataset, allowing to capture the phenology of the monitored crops. The Figure 24 present 

the averaged spectro-temporal profiles for a) wheat that is a temporary rainfed crop grown 

during autumn/winter; b) rice mainly grown during the spring/summer (irrigated 

temporary) and c) vineyards that is a permanent crop; the illustrations in false color are for 

a specific parcel for visualization purposes. The bands displayed correspond to the Red 

Edge (b5) mainly absorbed by the chlorophyll present in leaves for photosynthetic activity, 

NIR (b8a) that, on the other hand, is strongly reflected by leaves [65] and SWIR (b11) 

sensible to water and soil moisture. 

It is possible to envisage the growing window for wheat from January to May, 

characterized by the noticeable increasing values in reflectance on the NIR. On average, in 

the information extracted from the testing set, there is regrowth after the harvest in June. 

This is not the case for the specific parcel used as visualization example, as farmers can 

decide to grow multiple crops during the year, implement leguminous plants for soil 

recovery or leave the plot as fallow land. This variation on the plot usage for the rainfed 

crops entrains several confusions for the classifier. In rice, the SWIR band captures the 

rice flooding period (March) and the NIR the flowering period (July to September); 

possibly, these peaks allow to characterize the crop accurately for the classifier to achieve 

high accuracy values.  For vineyards, there is no much variation through the year as it is a 

permanent crop; nevertheless, during the pruning (December and January), there is a slight 

decrease as the crop loses some of their leaves. The multi-temporal information permitted 

to capture the phenological variation of the crops that cannot be distinguished from single-

date acquisitions, justifying the relevance of intra-annual time series in crop type 

classification for a specific year.  
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Figure 24 Average surface reflectance in the Red Edge (band 5), NIR (band 8a), and 

SWIR (b11) for wheat (a), rice (b), and vineyards (c) from October17 to September18. 

 

4.2.3 Visual inspection 
In order to find if what was classified in the map correspond to reality (and vice 

versa), three examples were selected to undergo visual inspection using as base map the 

orthophotos available as Web Map Service (WMS) at DGT for 2018 in False Color (RGB: 

b8, b4, b3 -NIR, Red, Green). The aim is to find if the pre-processing rules allowed to 

select the samples correctly for accurately predicting the class. Also, a close inspection of 

the tile transitions is performed to see if the use of information from the whole 

biogeographic region ensured continuity in the classification.   
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Class correctly predicted on the map 

The first example corresponds to where “Open Maritime Pine” (PA=78) is equal to 

“Open Maritime Pine”, and it illustrates when the labels allow classifying the class correctly. 

In Figure 25, the COS 2018 polygon corresponding to the CODE 3121 “Florestas de 

Pinheiro bravo” was reclassified to Maritime Pine.  According to the COS guidelines [7], 

the polygon contains 75% or more of the total area covered by forest. Wherein, it contains 

a regular network of service roads inside the polygon that can have the same probability 

of being selected as “Maritime Pine”. Nevertheless, after the application of the pre-

processing steps in section 3.3.2, the area was classified as “Open Maritime Pine Forest” 

because it contains more than 10% and less than 60% of coniferous tree cover according 

to the HRL. When including the samples for this class, neither the services roads nor 

logged areas are taken into consideration for feature extraction, reducing the possible 

misclassifications. As it is possible to visualize, the final classification coincides with the 

class; however, the service road network is classified as Baresoil and Urban in some areas, 

being Baresoil more appropriate.  

 

 
Figure 25 COS 2018 (OBJECTID: 491011) polygon pre and post-processed comparison 

to predictions for the class Open Maritime Pine Forest. Scale: 1:30.000 

 

Next, it is possible to appreciate Where “Holm Oak” (PA=94) is equal to “Holm Oak”; 

the COS 2018 polygon is labeled as a pure forest of Holm Oak. The HRL mask allowed 

to allocate training and testing points only where the tree cover density was higher than 

60%. However, when overlaying the IFAP 2018 dataset, as this dataset is prioritized over 
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COS, it ends up removing some Holm Oak areas in favor of agricultural grasslands. The 

final classification is a combination of Holm Oak and agricultural grasslands for the 

polygon.  

 

 
Figure 26 COS 2018 (OBJECTID: 382944) polygon pre and post-processed comparison 

to predictions for the class Holm Oak. Scale: 1:10.000 

 

Class incorrectly predicted on the map 

In the confusion matrix, one of the classes with the lowest accuracy is Orchards; 

in this example Where “Orchards” (PA=35) is equal to “Natural grassland” it is possible to 

appreciate a classification issue related to plantations. This class was assigned 201 times by 

commission error to natural grasslands. One of the difficulties in classifying this class is 

that it contains 17 types of trees ranging from citrus to almonds. Also, orchards are usually 

planted in 2m separation, meaning that the surface reflectance values captured correspond 

to a mixture of the crop and soil as the MMU of the Sentinel-2 is 10m. In the first square 

of Figure 27, it is possible to visualize that half of the polygon contains more vegetation 

intra rows at the soil level, this can correspond to creeping vegetation (i.e., close to the 

ground). The final classification dictated that the polygon is considered as olive trees and 

natural grassland; nothing was classified into the class they genuinely belong.   
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Figure 27 IFAP 2018 (OSAID: 4410598) polygon pre and post-processed comparison to 

predictions for the class Orchards. Scale: 1:6000 

 

Tile transitions 

The aim was to classify the biogeographic region corresponding to the strata 214 in Figure 

2. Though this area was covered by two separate Sentinel-2 tiles, which could entrain 

discontinuities in their limits [3]. Yet, the approach was to automatically extract the samples 

for the whole study area and retrieving the features from both tiles. Hence, the classifier 

contained the information for the overall strata, allowing adjacent pixels in the borders to 

be assigned in the same class as it can be appreciated in Figure 28 that portrays the Land 

Cover and Crop Type map in three locations (a). The first location (b) corresponds to the 

Tejo estuary, preserving the continuity of the river and wetlands. The other two locations 

that are in the border of Santarém and Sétubal (c) and near Évora (d) kept the continuity 

of classes such as forests and rice fields along the tiles. 
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Figure 28 (a) Land Cover and Crop Type in raster format with three locations on the 

border of the Sentinel-2 tiles 29SND (upper) and 29SNC (lower), (b) Tejo estuary (c) 

border of Santarém and Sétubal, (d) location near Évora. 
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5 CONCLUSIONS 

 

Up-to-date land cover and crop type information play an essential role in commercial 

and environmental monitoring and planning. For its updating, they have benefited from 

remote sensing imagery at a national, continental and global level. However, many 

challenges remain to produce accurate and timely land cover and crop type maps. This 

thesis focused on the use of intra-annual composites of Sentinel-2, supervised classification 

with random forest, and automatic sample extraction based on a pre-processing set of 

rules. The overall accuracy of 76% was achieved for 31 land cover and crop type classes. 

The use of monthly composites of L2 Sentinel-2 data allowed having cloud-free data 

in contrast to single acquisitions that have missing values due to cloud cover or cloud 

shadows. Also, since the classification is done at the pixel level, having missing data would 

affect the spectral signature extraction and incompletely characterize the classes with 

missing data. Likewise, the composites represent an excellent opportunity for 

dimensionality reduction as the number of features would correspond to 10 bands per 

month. For single acquisitions, each acquisition would contain 10 bands, and the number 

of features would increase based on acquisitions during the period. 

The Random Forest classifier required few hyperparameters to tune as opposed to 

other classifiers and proved to be computationally efficient as it was possible to parallelize 

it (multi-core processing) to classify the whole area. Also, it allowed extracting the most 

important features during the classification. As expected, the most relevant features from 

the time series correspond to the spring and summer months and the bands on the Red 

Edge (b5, b6, b7), NIR (b8a) and SWIR (b11 and b12). The inclusion of spectral indices 

slightly improved the accuracy but was not a predominant variable.  

One of the purposes of this research was to test if a pre-defined set of rules could 

remove possible sources of misclassification, allowing us to extract samples for training 

and testing automatically. This would permit the classifier to adequately characterize the 

spectral signature for each class and make an accurate prediction. The data sources (IFAP 

2018 and COS 2018) themselves are a product of visual interpretation of high-resolution 

imagery; in the case of the LPIS, the yearly update of the product and the MMU of a parcel 

allowed to characterize the types of crops. Nevertheless, the agricultural grassland class 

coverage was over-optimistic in this dataset and sometimes would mask out forest areas 

causing several mix-ups within classes.  
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Regarding the filtering rules, the application of the burned mask allowed to remove 

from the dataset the areas that ignited with wildfires. Though, in some cases, the burn mask 

includes build-up areas and water leading to confusion within classes. Therefore, the burn 

mask can benefit from a set of pre-processing rules before sample extraction, such as build-

up, cannot be part of the burned mask and neither water. The following filter was the 

NDVI alerts; these were produced for the year 2015-2018 from Landsat 8 images at 30m 

resolution, containing an omission error of 33% [51]. This implicates that some changes 

are not detected. Also, the difference in pixel size between satellites reduces the precision 

in the detection of these areas; the same approach yet implementing Sentinel-2 imagery 

might improve the identification of clear-cuts for this study. Lastly, the HRL rules reduced 

the number of samples available per class dramatically. By removing many of the forest 

pixels, the spectral signature was not precisely characterized, and the model could not 

classify the whole area accurately. Forest in the Portuguese landscape is not as dense as 

trees are sparsely distributed in space; therefore, a decrease in the tree cover density is 

encouraged for detecting the forest types.  

 

5.1 Limitations and Recommendations  
The limitations of the study can be summarized in the requirement of an 

independent verification dataset and considerations for increasing accuracy; then, 

recommendations are provided for potential enhancement of the methodology.   

For the IFAP 2018, the availability of an independent dataset ensured a proper 

verification of the classification for the agricultural classes. However, in the case of land 

cover, the unavailability of a verified testing dataset for COS2018 raised three main issues. 

First, the testing dataset underwent the same pre-processing as the training dataset; in 

consequence, many of the potential testing pixels were removed. Also, the training and 

testing polygons were not spatially disjoint, meaning that pixels coming from the same 

polygon can be used as training and testing. This can induce positive values in the 

accuracies as the spectral signature can be similar for both datasets [3]. The final concern 

of not having a validated dataset is that the model can correctly predict a class; however, if 

the class is incorrectly labeled, the class accuracy decreases. The traditional method for 

validation is visual inspection. However, this requires knowledge of the landscape to 

identify the different classes correctly.  

In terms of increasing accuracy, this study can benefit from a reduction in the 

number of classes. If the focus is in cropland areas, a binary cropland mask [23] can allow 
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restricting the classification; this approach has been implemented in operational systems 

[3]. For land cover classes, the use of the most detailed level in the hierarchical 

nomenclature (i.e., level 4 in the nomenclature in section 7.3) is useful for the purpose of 

vegetation characterization for fire modeling. However, this detailed nomenclature adds 

noise to the classification. A reduction from 16 to the 11 classes (i.e., level 2 in the 

nomenclature in section 7.3) provides reliable information and can increase the 

classification accuracy. For the elaboration of the final map, in order to reduce the salt-

and-pepper effect, it is possible the implementation object segmentation algorithms where 

pixels can be aggregated in homogeneous boundaries [17], [66] however this approach 

requires more complex analysis. At last, Random Forest has been used to classify 

hyperspectral datasets [39], demonstrating its capabilities to deal with an increasing number 

of dimensions. More features can be added to this model to improve the accuracy, some 

of them are the spectral, temporal metrics to describe the distribution of a spectral band 

or index over a specific period [67] and texture metrics [19].  
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7 ANNEXES  

 

7.1 External scripts   
 

Spectral feature extraction script adapted from: https://github.com/jdbfsilva/rs-util  

 

7.2 Land Cover and Crop Type nomenclature 
 

CODE CLASS Description Reclassification 

1.1.1.1 Build up 

this class includes all the artificial or 

landscaped surfaces intended for activities 

related to human societies such as urban 

fabric, road network, and associated spaces. 

COS 2018 (1111, 
1112, 1221) 

2.1.1.1 Wheat 

agricultural class corresponding to a 

temporary rainfed crop, this cereal grows 

during the autumn and winter. 
IFAP 2018 (001) 

2.1.1.2 Barley rainfed temporary cereal. IFAP 2018 (004) 
2.1.1.3 Oatmeal rainfed temporary cereal. IFAP 2018 (005) 
2.1.1.4 Ryegrass rainfed temporary cereal (forage). IFAP 2018 (067) 
2.1.1.5 Lupin rainfed temporary pulses (nitrogen fixer). IFAP 2018 (240) 

2.1.2.1 Maize 

agricultural class corresponding to an 

irrigated temporary crop, this cereal grows 

during the spring and summer. 
IFAP 2018 (006) 

2.1.2.2 Sorghum irrigated temporary cereal. IFAP 2018 (008) 
2.1.2.3 Rice irrigated temporary cereal. IFAP 2018 (024) 
2.1.2.4 Tomato irrigated temporary vegetable. IFAP 2018 (033) 
2.1.2.5 Potato irrigated temporary vegetable. IFAP 2018 (103) 

2.2.1.1 Vineyards 
areas where vineyards are dominant over 
other types of permanent crops such as 
orchards or olive trees. 

IFAP 2018 (034 

2.2.2.1 Orchards 

cultivated plots with trees intended for fruit 
production, this class combines 17 types of 
trees from figs and oranges to walnuts and 
hazelnuts. 

IFAP 2018 (085, 
093, 094, 096, 
097, 105, 107, 
108, 109, 112, 
116, 118, 119, 
157, 208, 209, 

211) 

2.2.3.1 Olive Trees areas with olive tree plantations (Olea europea 
var. europea) for olive production. 

IFAP 2018 
(083); 

https://github.com/jdbfsilva/rs-util
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3.1.1.1 Agricultural 
grassland 

areas permanently occupied with cultivated 

herbaceous vegetation.   

 

IFAP 2018 
(143); 

3.1.2.1 Natural 
grassland 

areas with 25% or more of the surface 
occupied by herbaceous vegetations growing 
without fertilization, cultivation, sowing, or 
drainage. 

COS 2018 (321); 

5.1.1.1 Cork oak 
forest 

Agroforestry Systems or pure forest of Cork 
oak (Quercus suber). 

COS 2018 (2441, 
3111); 

5.1.2.1 Holm oak 
forest 

Agroforestry Systems or pure forest of Holm 

oak (Quercus rotundifolia). 

 

COS 2018 (2442, 
3112); 

5.1.3.1 Eucalyptus 
forest 

Broadleaf forest where the angiosperm trees 
represent 75% or more of the forest cover. 

COS 2018 
(3115); 

5.1.4.1 
Other 

broadleaf 
forest 

Agroforestry Systems or pure forests of oak 
species other than cork oak and holm oak. 
These include chestnut trees (Castanea sativa), 
walnut trees (Juglans regia), and forests of 
invasive species.   

COS 2018 (2443, 
3113, 3114, 
3116, 3117); 

5.2.1.1 
Closed 

Maritime 
pine forest 

Coniferous forest where the gymnosperm 
species represent 75% or more of the forest 
cover.   

COS 2018 
(3121); 

5.2.1.2 
Open 

maritime 
pine forest 

this class is derived from class 5.2.1.1 after the 
crossing with the High-Resolution Layers 
(HRL) process described in section 3.2.1. 

COS 2018 
(3121); 

5.2.2.1 Stone pine 
forest 

Agroforestry Systems or pure forest of Pine 
(Pinus pinea). 

COS 2018 (2444, 
3122); 

5.2.3.1 
Other 

coniferous 
forest 

pure forests of other coniferous species not 
included in the previous classes. (e.g., Pinus 
sylvestris, Larix spp., Cryptomeria japonica.). 

COS 2018 
(3123); 

6.1.1.1 Shrubland 
natural areas of spontaneous vegetation, little 
or very dense where shrub cover is 25% or 
more. 

areas that 
remained 

shrubland from 
COS 1990 to 
COS 2015; 

7.1.1.1 Baresoil 

areas of open-air mineral extraction, sand 
exploitation areas, banks of rivers, and coastal 
sands, including ante-dune vegetal 
formations. 

COS 2018 (1311, 
1312, 3311, 

3312); 

7.1.2.1 Bare Rock 
areas where the surface covered by rock is 
higher than 90%, also included areas of 
abandoned mineral extraction. 

COS 2018 (332); 

7.1.3.1 Sparse 
vegetation 

areas where the herbaceous vegetation is 
between 10% and 25% only. COS 2018 (333); 

8.1.1.1 Wetlands 

lowlands flooded in winter, less saturated 
with water all year round or shore areas 
submerged during high tide at some point in 
the cycle of the annual sea. 

COS 2018 (411, 
421); 
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9.1.1.1 Water 
natural and artificial freshwater surfaces, 
oceans and surfaces, and coastal lagoons and 
river mouths. 

COS 2018 (5111, 
5121, 5122, 
5123, 5124, 

5125, 521, 522); 

9999. Burned 
Areas 

areas that burned in 2018 and detected by the 
ICNF. ICNF (2018) 
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7.3 RGB color ramp for the Land Cover and Crop Type Classes 
 

The following color ramp is a combination of the CLC 2018 RGB that can be found in the European Environment Agency (EEA) website and the 

CropScape RGB available on the website of the United States Department of Agriculture - National Agricultural Statistics Service (USDA-NASS).  

 

LV1 LV2 LV3   LV4   RGB CODE 
1.Build up (BUI)   1.1 Build up (BUI)   1.1.1 Build up (BUI)   1.1.1.1 Build up (BUI)   255-000-00 1111 

2.Agriculture 
(AGR) 

  

2.1 Temporary crops 
(TCO) 

  

2.1.1 Rainfed temporary 
crops (RAI) 

  

2.1.1.1 Wheat (WHE)   168-112-0 2111 
2.1.1.2 Barley (BAR)   226-0-127 2112 
2.1.1.3 Oatmeal (OAT)   161-88-137 2113 
2.1.1.4 Ryegrass (RYE)   174-1-126 2114 
2.1.1.5 Lupin (LUP)   255-255-168 2115 

2.1.2 Irrigated temporary 
crops (IRR) 

  

2.1.2.1 Maize (MAI)   255-212-0 2121 
2.1.2.2 Sorghum (SOR)   255-158-15 2122 
2.1.2.3 Rice (RIC)   0-38-115 2123 
2.1.2.4 Tomato (TOM)   255-255-0 2124 
2.1.2.5 Potato (POT)   115-38-0 2125 

2.2 Permanent crops 
(PCO) 

  

2.2.1 Vineyards (VIN)   2.2.1.1 Vineyards (VIN)   230-128-000 2211 
2.2.2 Orchards (ORC)   2.2.2.1 Orchards (ORC)   242-166-077 2221 
2.2.3 Olive Trees (OLI)   2.2.3.1 Olive Trees (OLI)   230-166-000 2231 

3.Grassland 
(GRA) 

  

3.1 Grassland (GRA)   
3.1.1 Agricultural grassland 
(AGR)   

3.1.1.1 Agricultural grassland 
(AGR)   255-230-077 3111 

  
3.1.2 Natural grassland 
(NAT)   

3.1.2.1 Natural grassland 
(NAT)   230-230-000 3121 
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5.Forests (FOR) 

  

5.1 Broadleaf forest 
(BOF) 

  

5.1.1 Cork oak forest 
(COR)   5.1.1.1 Cork oak forest (COR)   128-255-000 5111 

5.1.2 Holm oak forest 
(HOL)   

5.1.2.1 Holm oak forest 
(HOL)   000-166-000 5121 

5.1.3 Eucalyptus forest 
(EUC)   

5.1.3.1 Eucalyptus forest 
(EUC)   077-255-000 5131 

5.1.4 Other broadleaf 
forest (OBL)   5.1.4.1 Other broadleaf forest 

(OBL)   077-200-0 5141 

5.2 Coniferous forest 
(COF) 

  

5.2.1 Maritime pine forest 
(MAR) 

  

5.2.1.1 Closed Maritime pine 
forest (CMA)   166-255-128 5211 

5.2.1.2 Open maritime pine 
forest (OMA)   204-242-077 5212 

5.2.2 Stone pine forest 
(STO)   

5.2.2.1 Stone pine forest 
(STO)   166-230-077 5221 

5.2.3 Other coniferous 
forest (OCO)   

5.2.3.1 Other coniferous 
forest (OCO)   166-242-000 5231 

6. Shrubland 
(SHR)   

6.1 Shrubland 
(SHR)   6.1.1 Shrubland (SHR)   6.1.1.1 Shrubland (SHR)   242-204-166 6111 

7. Open spaces 
with little or no 

vegetation (OPE) 
  

7.1 Open spaces 
with little or no 

vegetation (OPE) 
  

7.1.1 Baresoil (BSL)   7.1.1.1 Baresoil (BSL)    230-230-230 7111 
7.1.2 Bare Rock (BRK)   7.1.2.1 Bare Rock (BRK)   204-204-204 7121 
7.1.3 Sparse vegetation 
(SPA)   

7.1.3.1 Sparse vegetation 
(SPA)   204-255-204 7131 

8.Wetlands 
(WET)   8.1 Wetlands (WET)   8.1.1 Wetlands (WET)   8.1.1.1 Wetlands (WET)   166-166-255 8111 

9. Water (WAT)   9.1 Water (WAT)   9.1.1 Water (WAT)   9.1.1.1 Water (WAT)   000-204-242 9111 
9. Burned areas 

(BUR)   
9.9 Burned areas 

(BUR)   9.9.9 Burned areas (BUR)   9.9.9.9 Burned areas (BUR)   000-000-000 9999 
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7.4 Crop Calendar 
 

This corresponds to the crop calendar for the monitored IFAP parcels, each calendar is defined based on the Portuguese agricultural cycle (October to 

September). Note: For orchards, it corresponds to an average of 17 different types of trees.  

 

Period OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP   

Temporary 

Rainfed (autumn/winter) 

Wheat               

Barley              Flooding 

Oatmeal              Seed 

Ryegrass              Germination 

Lupin              Tillering 

Irrigated (spring/summer) 

Maize              Flowering 

Sorghum              Fruit 

Rice              Ripening 

Tomato              Harvest 

Potato               

Permanent 

Vineyards              Pruning 

Orchards              Harvest 

Olive Trees               
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7.5 Confusion matrix 
 

LV4 BUI WHE BAR OAT RYE LUP MAI SOR RIC TOM POT VIN ORC OLI AGR NAT COR HOL EUC OBL CMA OMA STO OCO SHR BSL BRK SPA WET WAT BUR 

BUI 880 1 0 0 0 0 0 0 0 0 0 15 6 9 7 18 1 0 0 2 0 2 0 0 7 25 0 5 2 0 20 

WHE 1 667 10 223 10 15 0 0 0 0 3 0 1 1 6 13 0 0 0 0 0 0 0 0 0 1 0 26 0 0 23 

BAR 0 226 464 0 100 0 0 27 0 0 0 1 0 3 1 7 0 0 0 0 0 0 0 0 21 0 0 6 0 0 0 

OAT 0 47 27 492 65 129 0 0 1 0 0 6 0 16 207 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 

RYE 0 2 0 80 619 75 0 68 0 0 3 3 10 3 32 26 0 0 0 0 0 0 0 0 0 0 0 2 0 0 77 

LUP 4 0 0 122 198 552 0 0 0 0 108 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 

MAI 0 0 0 0 2 0 990 1 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SOR 0 0 2 18 8 6 0 637 2 36 0 126 16 73 46 24 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

RIC 0 0 0 0 0 0 10 5 985 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TOM 0 0 0 0 0 0 0 2 0 998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

POT 5 0 28 0 0 4 0 0 0 31 845 1 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 

VIN 8 0 0 0 0 0 0 0 0 0 5 944 4 3 0 12 0 0 0 0 0 0 0 0 1 17 0 1 0 0 5 

ORC 0 0 0 1 25 0 0 1 0 1 59 43 350 48 42 201 11 0 0 171 0 0 0 0 1 0 0 0 45 0 1 

OLI 0 0 11 18 20 24 0 6 0 0 54 33 21 460 174 89 0 3 1 1 0 4 3 0 23 7 0 1 0 0 47 

AGR 2 3 0 13 11 34 0 6 0 0 0 14 3 41 720 37 45 1 2 5 0 15 15 0 15 3 0 3 1 0 11 

NAT 14 1 3 13 20 16 1 2 0 0 0 18 5 26 75 679 7 1 2 11 0 6 0 0 65 17 0 3 4 0 11 

COR 0 0 0 0 0 2 0 0 0 0 0 10 4 3 19 2 700 37 32 92 30 18 10 0 19 1 0 0 2 6 13 

HOL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 29 1063 3 28 1 1 1 0 3 0 0 0 1 0 1 

EUC 1 0 0 0 0 1 0 0 0 0 0 1 2 3 2 0 78 10 821 28 22 15 6 0 8 2 0 0 0 0 0 

OBL 0 0 0 0 0 0 0 0 1 0 0 0 2 1 4 3 93 31 11 808 12 1 11 0 13 0 0 0 7 0 2 

CMA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 58 5 28 19 751 69 60 0 3 0 0 0 1 1 2 

OMA 6 0 0 0 0 2 0 0 0 0 0 0 0 2 12 0 16 3 5 2 113 781 25 0 21 5 0 5 0 0 2 

STO 0 0 0 0 0 2 0 0 0 0 0 0 0 3 3 0 16 8 12 20 64 24 843 0 3 0 0 0 1 0 1 
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OCO 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 4 9 1 20 50 0 0 0 0 0 0 0 

SHR 23 1 0 4 2 4 0 0 0 0 0 9 8 16 47 42 18 3 2 28 3 25 1 0 634 69 0 40 1 2 18 

BSL 36 0 0 1 0 3 0 1 0 0 1 11 7 7 14 14 4 0 0 4 0 14 0 0 22 804 2 27 5 9 14 

BRK 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 60 4 0 0 0 

SPA 11 0 0 0 0 0 0 0 0 1 0 1 0 0 8 3 5 0 0 1 0 5 1 0 12 8 1 942 0 0 1 

WET 7 0 0 0 0 1 0 0 0 0 0 2 1 2 4 7 3 1 1 10 0 0 0 0 4 2 0 0 944 11 0 

WAT 1 0 0 1 0 1 0 0 0 0 0 0 0 0 3 6 0 1 0 0 0 0 0 0 2 11 0 1 24 948 1 

BUR 17 0 0 6 7 13 0 3 0 0 0 8 9 37 54 35 10 0 7 8 1 14 4 0 24 7 0 4 7 2 723 

LV4 BUI WHE BAR OAT RYE LUP MAI SOR RIC TOM POT VIN ORC OLI AGR NAT COR HOL EUC OBL CMA OMA STO OCO SHR BSL BRK SPA WET WAT BUR 
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