557 research outputs found

    Study protocol for the Anesthesiology Control Tower—Feedback Alerts to Supplement Treatments (ACTFAST-3) trial: A pilot randomized controlled trial in intraoperative telemedicine [version 1; referees: 2 approved]

    Get PDF
    Background: Each year, over 300 million people undergo surgical procedures worldwide. Despite efforts to improve outcomes, postoperative morbidity and mortality are common. Many patients experience complications as a result of either medical error or failure to adhere to established clinical practice guidelines. This protocol describes a clinical trial comparing a telemedicine-based decision support system, the Anesthesiology Control Tower (ACT), with enhanced standard intraoperative care. Methods: This study is a pragmatic, comparative effectiveness trial that will randomize approximately 12,000 adult surgical patients on an operating room (OR) level to a control or to an intervention group. All OR clinicians will have access to decision support software within the OR as a part of enhanced standard intraoperative care. The ACT will monitor patients in both groups and will provide additional support to the clinicians assigned to intervention ORs. Primary outcomes include blood glucose management and temperature management. Secondary outcomes will include surrogate, clinical, and economic outcomes, such as incidence of intraoperative hypotension, postoperative respiratory compromise, acute kidney injury, delirium, and volatile anesthetic utilization. Ethics and dissemination: The ACTFAST-3 study has been approved by the Human Resource Protection Office (HRPO) at Washington University in St. Louis and is registered at clinicaltrials.gov (NCT02830126). Recruitment for this protocol began in April 2017 and will end in December 2018. Dissemination of the findings of this study will occur via presentations at academic conferences, journal publications, and educational materials

    Artificial Intelligence for Participatory Health: Applications, Impact, and Future Implications

    Get PDF
    Objective: Artificial intelligence (AI) provides people and professionals working in the field of participatory health informatics an opportunity to derive robust insights from a variety of online sources. The objective of this paper is to identify current state of the art and application areas of AI in the context of participatory health. Methods: A search was conducted across seven databases (PubMed, Embase, CINAHL, PsychInfo, ACM Digital Library, IEEExplore, and SCOPUS), covering articles published since 2013. Additionally, clinical trials involving AI in participatory health contexts registered at clinicaltrials.gov were collected and analyzed. Results: Twenty-two articles and 12 trials were selected for review. The most common application of AI in participatory health was the secondary analysis of social media data: self-reported data including patient experiences with healthcare facilities, reports of adverse drug reactions, safety and efficacy concerns about over-the-counter medications, and other perspectives on medications. Other application areas included determining which online forum threads required moderator assistance, identifying users who were likely to drop out from a forum, extracting terms used in an online forum to learn its vocabulary, highlighting contextual information that is missing from online questions and answers, and paraphrasing technical medical terms for consumers. Conclusions: While AI for supporting participatory health is still in its infancy, there are a number of important research priorities that should be considered for the advancement of the field. Further research evaluating the impact of AI in participatory health informatics on the psychosocial wellbeing of individuals would help in facilitating the wider acceptance of AI into the healthcare ecosystem

    Methods to Facilitate the Capture, Use, and Reuse of Structured and Unstructured Clinical Data.

    Full text link
    Electronic health records (EHRs) have great potential to improve quality of care and to support clinical and translational research. While EHRs are being increasingly implemented in U.S. hospitals and clinics, their anticipated benefits have been largely unachieved or underachieved. Among many factors, tedious documentation requirements and the lack of effective information retrieval tools to access and reuse data are two key reasons accounting for this deficiency. In this dissertation, I describe my research on developing novel methods to facilitate the capture, use, and reuse of both structured and unstructured clinical data. Specifically, I develop a framework to investigate potential issues in this research topic, with a focus on three significant challenges. The first challenge is structured data entry (SDE), which can be facilitated by four effective strategies based on my systematic review. I further propose a multi-strategy model to guide the development of future SDE applications. In the follow-up study, I focus on workflow integration and evaluate the feasibility of using EHR audit trail logs for clinical workflow analysis. The second challenge is the use of clinical narratives, which can be supported by my innovative information retrieval (IR) technique called “semantically-based query recommendation (SBQR)”. My user experiment shows that SBQR can help improve the perceived performance of a medical IR system, and may work better on search tasks with average difficulty. The third challenge involves reusing EHR data as a reference standard to benchmark the quality of other health-related information. My study assesses the readability of trial descriptions on ClinicalTrials.gov and found that trial descriptions are very hard to read, even harder than clinical notes. My dissertation has several contributions. First, it conducts pioneer studies with innovative methods to improve the capture, use, and reuse of clinical data. Second, my dissertation provides successful examples for investigators who would like to conduct interdisciplinary research in the field of health informatics. Third, the framework of my research can be a great tool to generate future research agenda in clinical documentation and EHRs. I will continue exploring innovative and effective methods to maximize the value of EHRs.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135845/1/tzuyu_1.pd

    Doctor of Philosophy

    Get PDF
    dissertationMedical knowledge learned in medical school can become quickly outdated given the tremendous growth of the biomedical literature. It is the responsibility of medical practitioners to continuously update their knowledge with recent, best available clinical evidence to make informed decisions about patient care. However, clinicians often have little time to spend on reading the primary literature even within their narrow specialty. As a result, they often rely on systematic evidence reviews developed by medical experts to fulfill their information needs. At the present, systematic reviews of clinical research are manually created and updated, which is expensive, slow, and unable to keep up with the rapidly growing pace of medical literature. This dissertation research aims to enhance the traditional systematic review development process using computer-aided solutions. The first study investigates query expansion and scientific quality ranking approaches to enhance literature search on clinical guideline topics. The study showed that unsupervised methods can improve retrieval performance of a popular biomedical search engine (PubMed). The proposed methods improve the comprehensiveness of literature search and increase the ratio of finding relevant studies with reduced screening effort. The second and third studies aim to enhance the traditional manual data extraction process. The second study developed a framework to extract and classify texts from PDF reports. This study demonstrated that a rule-based multipass sieve approach is more effective than a machine-learning approach in categorizing document-level structures and iv that classifying and filtering publication metadata and semistructured texts enhances the performance of an information extraction system. The proposed method could serve as a document processing step in any text mining research on PDF documents. The third study proposed a solution for the computer-aided data extraction by recommending relevant sentences and key phrases extracted from publication reports. This study demonstrated that using a machine-learning classifier to prioritize sentences for specific data elements performs equally or better than an abstract screening approach, and might save time and reduce errors in the full-text screening process. In summary, this dissertation showed that there are promising opportunities for technology enhancement to assist in the development of systematic reviews. In this modern age when computing resources are getting cheaper and more powerful, the failure to apply computer technologies to assist and optimize the manual processes is a lost opportunity to improve the timeliness of systematic reviews. This research provides methodologies and tests hypotheses, which can serve as the basis for further large-scale software engineering projects aimed at fully realizing the prospect of computer-aided systematic reviews

    Electronic health records (EHRs) in clinical research and platform trials: Application of the innovative EHR-based methods developed by EU-PEARL

    Get PDF
    Electronic health records; Platform trialsRegistros mĂ©dicos electrĂłnicos; Pruebas de plataformaRegistres mĂšdics electrĂČnics; Proves de plataformaObjective Electronic Health Record (EHR) systems are digital platforms in clinical practice used to collect patients’ clinical information related to their health status and represents a useful storage of real-world data. EHRs have a potential role in research studies, in particular, in platform trials. Platform trials are innovative trial designs including multiple trial arms (conducted simultaneously and/or sequentially) on different treatments under a single master protocol. However, the use of EHRs in research comes with important challenges such as incompleteness of records and the need to translate trial eligibility criteria into interoperable queries. In this paper, we aim to review and to describe our proposed innovative methods to tackle some of the most important challenges identified. This work is part of the Innovative Medicines Initiative (IMI) EU Patient-cEntric clinicAl tRial pLatforms (EU-PEARL) project’s work package 3 (WP3), whose objective is to deliver tools and guidance for EHR-based protocol feasibility assessment, clinical site selection, and patient pre-screening in platform trials, investing in the building of a data-driven clinical network framework that can execute these complex innovative designs for which feasibility assessments are critically important. Methods ISO standards and relevant references informed a readiness survey, producing 354 criteria with corresponding questions selected and harmonised through a 7-round scoring process (0–1) in stakeholder meetings, with 85% of consensus being the threshold of acceptance for a criterium/question. ATLAS cohort definition and Cohort Diagnostics were mainly used to create the trial feasibility eligibility (I/E) criteria as executable interoperable queries. Results The WP3/EU-PEARL group developed a readiness survey (eSurvey) for an efficient selection of clinical sites with suitable EHRs, consisting of yes-or-no questions, and a set-up of interoperable proxy queries using physicians’ defined trial criteria. Both actions facilitate recruiting trial participants and alignment between study costs/timelines and data-driven recruitment potential. Conclusion The eSurvey will help create an archive of clinical sites with mature EHR systems suitable to participate in clinical trials/platform trials, and the interoperable proxy queries of trial eligibility criteria will help identify the number of potential participants. Ultimately, these tools will contribute to the production of EHR-based protocol design.“EU-PEARL has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 853966-2. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and CHILDREN'S TUMOR FOUNDATION, GLOBAL ALLIANCE FOR TB DRUG DEVELOPMENT NON PROFIT ORGANISATION, SPRINGWORKS THERAPEUTICS INC.

    Timely and reliable evaluation of the effects of interventions: a framework for adaptive meta-analysis (FAME)

    Get PDF
    Most systematic reviews are retrospective and use aggregate data AD) from publications, meaning they can be unreliable, lag behind therapeutic developments and fail to influence ongoing or new trials. Commonly, the potential influence of unpublished or ongoing trials is overlooked when interpreting results, or determining the value of updating the meta-analysis or need to collect individual participant data (IPD). Therefore, we developed a Framework for Adaptive Metaanalysis (FAME) to determine prospectively the earliest opportunity for reliable AD meta-analysis. We illustrate FAME using two systematic reviews in men with metastatic (M1) and non-metastatic (M0)hormone-sensitive prostate cancer (HSPC)

    Clinical trial metadata:Defining and extracting metadata on the design, conduct, results and costs of 125 randomised clinical trials funded by the National Institute for Health Research Health Technology Assessment programme

    Get PDF
    Background:  By 2011, the Health Technology Assessment (HTA) programme had published the results of over 100 trials with another 220 in progress. The aim of the project was to develop and pilot ‘metadata’ on clinical trials funded by the HTA programme.   Objectives: The aim of the project was to develop and pilot questions describing clinical trials funded by the HTA programme in terms of it meeting the needs of the NHS with scientifically robust studies. The objectives were to develop relevant classification systems and definitions for use in answering relevant questions and to assess their utility.   Data sources: Published monographs and internal HTA documents.   Review methods: A database was developed, ‘populated’ using retrospective data and used to answer questions under six prespecified themes. Questions were screened for feasibility in terms of data availability and/or ease of extraction. Answers were assessed by the authors in terms of completeness, success of the classification system used and resources required. Each question was scored to be retained, amended or dropped.    Results: One hundred and twenty-five randomised trials were included in the database from 109 monographs. Neither the International Standard Randomised Controlled Trial Number nor the term ‘randomised trial’ in the title proved a reliable way of identifying randomised trials. Only limited data were available on how the trials aimed to meet the needs of the NHS. Most trials were shown to follow their protocols but updates were often necessary as hardly any trials recruited as planned. Details were often lacking on planned statistical analyses, but we did not have access to the relevant statistical plans. Almost all the trials reported on cost-effectiveness, often in terms of both the primary outcome and quality-adjusted life-years. The cost of trials was shown to depend on the number of centres and the duration of the trial. Of the 78 questions explored, 61 were well answered, 33 fully with 28 requiring amendment were the analysis updated. The other 17 could not be answered with readily available data.   Limitations: The study was limited by being confined to 125 randomised trials by one funder.   Conclusions: Metadata on randomised controlled trials can be expanded to include aspects of design, performance, results and costs. The HTA programme should continue and extend the work reported here

    Three Essays on Enhancing Clinical Trial Subject Recruitment Using Natural Language Processing and Text Mining

    Get PDF
    Patient recruitment and enrollment are critical factors for a successful clinical trial; however, recruitment tends to be the most common problem in most clinical trials. The success of a clinical trial depends on efficiently recruiting suitable patients to conduct the trial. Every clinical trial research has a protocol, which describes what will be done in the study and how it will be conducted. Also, the protocol ensures the safety of the trial subjects and the integrity of the data collected. The eligibility criteria section of clinical trial protocols is important because it specifies the necessary conditions that participants have to satisfy. Since clinical trial eligibility criteria are usually written in free text form, they are not computer interpretable. To automate the analysis of the eligibility criteria, it is therefore necessary to transform those criteria into a computer-interpretable format. Unstructured format of eligibility criteria additionally create search efficiency issues. Thus, searching and selecting appropriate clinical trials for a patient from relatively large number of available trials is a complex task. A few attempts have been made to automate the matching process between patients and clinical trials. However, those attempts have not fully integrated the entire matching process and have not exploited the state-of-the-art Natural Language Processing (NLP) techniques that may improve the matching performance. Given the importance of patient recruitment in clinical trial research, the objective of this research is to automate the matching process using NLP and text mining techniques and, thereby, improve the efficiency and effectiveness of the recruitment process. This dissertation research, which comprises three essays, investigates the issues of clinical trial subject recruitment using state-of-the-art NLP and text mining techniques. Essay 1: Building a Domain-Specific Lexicon for Clinical Trial Subject Eligibility Analysis Essay 2: Clustering Clinical Trials Using Semantic-Based Feature Expansion Essay 3: An Automatic Matching Process of Clinical Trial Subject Recruitment In essay1, I develop a domain-specific lexicon for n-gram Named Entity Recognition (NER) in the breast cancer domain. The domain-specific dictionary is used for selection and reduction of n-gram features in clustering in eassy2. The domain-specific dictionary was evaluated by comparing it with Systematized Nomenclature of Medicine--Clinical Terms (SNOMED CT). The results showed that it add significant number of new terms which is very useful in effective natural language processing In essay 2, I explore the clustering of similar clinical trials using the domain-specific lexicon and term expansion using synonym from the Unified Medical Language System (UMLS). I generate word n-gram features and modify the features with the domain-specific dictionary matching process. In order to resolve semantic ambiguity, a semantic-based feature expansion technique using UMLS is applied. A hierarchical agglomerative clustering algorithm is used to generate clinical trial clusters. The focus is on summarization of clinical trial information in order to enhance trial search efficiency. Finally, in essay 3, I investigate an automatic matching process of clinical trial clusters and patient medical records. The patient records collected from a prior study were used to test our approach. The patient records were pre-processed by tokenization and lemmatization. The pre-processed patient information were then further enhanced by matching with breast cancer custom dictionary described in essay 1 and semantic feature expansion using UMLS Metathesaurus. Finally, I matched the patient record with clinical trial clusters to select the best matched cluster(s) and then with trials within the clusters. The matching results were evaluated by internal expert as well as external medical expert
    • 

    corecore