369 research outputs found

    Clinical Validation of an Optical Surface Detection System for Stereotactic Radiosurgery with Frameless Immobilization Device in CNS Tumors

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia), 2022Stereotactic Radiosurgery (SRS) has been consolidated in recent years as the treatment of choice in selected central nervous system (CNS) tumors. With the introduction of stereotactic approach in clinical practice, accurate immobilization and motion control during treatment becomes fundamental. During SRS treatments, the common practice is to immobilize CNS patients in a cushion molded head support, with specific open-face thermoplastic masks. To verify and correct internal isocenter uncertainties before and during treatment, X-Ray volumetric imaging (XVI) is performed - image guided radiation therapy (IGRT). An alternative to mid‐treatment imaging is optical surface detection (OSD) imaging – a non‐invasive, non‐radiographic form of image guidance – to monitor patient intra-fraction motion. This imaging technique has shown to properly position, accurately monitor, and quantify patient movements throughout the entirety of the treatment – surface guided radiation therapy (SGRT). The aim of this investigation is to test the viability of the implementation of a maskless immobilization approach, using only a vacuum mouthpiece suction system for head fixation in patients with CNS tumors who will undergo SRS treatment under the guidance of an OSD system coupled with 6-Degree of Freedom (6-DOF) robotic couch for submillimeter position correction. This master thesis addresses the five technical performance tests conducted on the Linear Accelerator components – XVI, HexaPOD couch and OSD system in the Radiotherapy Department of Hospital CUF Descobertas. The results obtained lecture the best acquisition orientation to perform image verification; if the HexaPOD couch is correctly calibrated to the XVI radiation isocenter to assure submillimeter corrections; OSD system performance regarding phantom surface detection since some immobilization components can block the signal reading; which coplanar and non-coplanar angles occur most signal inconsistencies due to camera pod occlusion; what is the overall OSD system accuracy and what is the best non-coplanar angle arrangement to perform an SRS treatment with OSD system monitoring

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    ISRS Technical Guidelines for Stereotactic Radiosurgery: Treatment of Small Brain Metastases (≤1 cm in Diameter).

    Get PDF
    The objective of this literature review was to develop International Stereotactic Radiosurgery Society (ISRS) consensus technical guidelines for the treatment of small, ≤1 cm in maximal diameter, intracranial metastases with stereotactic radiosurgery. Although different stereotactic radiosurgery technologies are available, most of them have similar treatment workflows and common technical challenges that are described. A systematic review of the literature published between 2009 and 2020 was performed in Pubmed using the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) methodology. The search terms were limited to those related to radiosurgery of brain metastases and to publications in the English language. From 484 collected abstract 37 articles were included into the detailed review and bibliographic analysis. An additional 44 papers were identified as relevant from a search of the references. The 81 papers, including additional 7 international guidelines, were deemed relevant to at least one of five areas that were considered paramount for this report. These areas of technical focus have been employed to structure these guidelines: imaging specifications, target volume delineation and localization practices, use of margins, treatment planning techniques, and patient positioning. This systematic review has demonstrated that Stereotactic Radiosurgery (SRS) for small (1 cm) brain metastases can be safely performed on both Gamma Knife (GK) and CyberKnife (CK) as well as on modern LINACs, specifically tailored for radiosurgical procedures, However, considerable expertise and resources are required for a program based on the latest evidence for best practice

    The Future of MR-Guided Radiation Therapy

    Get PDF
    Magnetic resonance image guided radiation therapy (MRIgRT) is a relatively new technology that has already shown outcomes benefits but that has not yet reached its clinical potential. The improved soft-tissue contrast provided with MR, coupled with the immediacy of image acquisition with respect to the treatment, enables expansion of on-table adaptive protocols, currently at a cost of increased treatment complexity, use of human resources, and longer treatment slot times, which translate to decreased throughput. Many approaches are being investigated to meet these challenges, including the development of artificial intelligence (AI) algorithms to accelerate and automate much of the workflow and improved technology that parallelizes workflow tasks, as well as improvements in image acquisition speed and quality. This article summarizes limitations of current available integrated MRIgRT systems and gives an outlook about scientific developments to further expand the use of MRIgRT

    Feasibility of automated 3-dimensional magnetic resonance imaging pancreas segmentation.

    Get PDF
    PurposeWith the advent of MR guided radiotherapy, internal organ motion can be imaged simultaneously during treatment. In this study, we evaluate the feasibility of pancreas MRI segmentation using state-of-the-art segmentation methods.Methods and materialT2 weighted HASTE and T1 weighted VIBE images were acquired on 3 patients and 2 healthy volunteers for a total of 12 imaging volumes. A novel dictionary learning (DL) method was used to segment the pancreas and compared to t mean-shift merging (MSM), distance regularized level set (DRLS), graph cuts (GC) and the segmentation results were compared to manual contours using Dice's index (DI), Hausdorff distance and shift of the-center-of-the-organ (SHIFT).ResultsAll VIBE images were successfully segmented by at least one of the auto-segmentation method with DI >0.83 and SHIFT ≤2 mm using the best automated segmentation method. The automated segmentation error of HASTE images was significantly greater. DL is statistically superior to the other methods in Dice's overlapping index. For the Hausdorff distance and SHIFT measurement, DRLS and DL performed slightly superior to the GC method, and substantially superior to MSM. DL required least human supervision and was faster to compute.ConclusionOur study demonstrated potential feasibility of automated segmentation of the pancreas on MRI images with minimal human supervision at the beginning of imaging acquisition. The achieved accuracy is promising for organ localization
    corecore