Clinical Validation of an Optical Surface Detection System for Stereotactic Radiosurgery with Frameless Immobilization Device in CNS Tumors

Abstract

Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia), 2022Stereotactic Radiosurgery (SRS) has been consolidated in recent years as the treatment of choice in selected central nervous system (CNS) tumors. With the introduction of stereotactic approach in clinical practice, accurate immobilization and motion control during treatment becomes fundamental. During SRS treatments, the common practice is to immobilize CNS patients in a cushion molded head support, with specific open-face thermoplastic masks. To verify and correct internal isocenter uncertainties before and during treatment, X-Ray volumetric imaging (XVI) is performed - image guided radiation therapy (IGRT). An alternative to mid‐treatment imaging is optical surface detection (OSD) imaging – a non‐invasive, non‐radiographic form of image guidance – to monitor patient intra-fraction motion. This imaging technique has shown to properly position, accurately monitor, and quantify patient movements throughout the entirety of the treatment – surface guided radiation therapy (SGRT). The aim of this investigation is to test the viability of the implementation of a maskless immobilization approach, using only a vacuum mouthpiece suction system for head fixation in patients with CNS tumors who will undergo SRS treatment under the guidance of an OSD system coupled with 6-Degree of Freedom (6-DOF) robotic couch for submillimeter position correction. This master thesis addresses the five technical performance tests conducted on the Linear Accelerator components – XVI, HexaPOD couch and OSD system in the Radiotherapy Department of Hospital CUF Descobertas. The results obtained lecture the best acquisition orientation to perform image verification; if the HexaPOD couch is correctly calibrated to the XVI radiation isocenter to assure submillimeter corrections; OSD system performance regarding phantom surface detection since some immobilization components can block the signal reading; which coplanar and non-coplanar angles occur most signal inconsistencies due to camera pod occlusion; what is the overall OSD system accuracy and what is the best non-coplanar angle arrangement to perform an SRS treatment with OSD system monitoring

    Similar works