5,170 research outputs found

    Testing demand responsive shared transport services via agent-based simulations

    Full text link
    Demand Responsive Shared Transport DRST services take advantage of Information and Communication Technologies ICT, to provide on demand transport services booking in real time a ride on a shared vehicle. In this paper, an agent-based model ABM is presented to test different the feasibility of different service configurations in a real context. First results show the impact of route choice strategy on the system performance

    Historical Evidence of Importance to the Industrialization of Flat-plate Silicon Photovoltaic Systems, Volume 2

    Get PDF
    Problems which may arise as the low cost silicon solar array (LSSA) project attempts to industrialize the production technologies are defined. The charge to insure an annual production capability of 500 MW peak for the photovoltaic supply industry by 1986 was critically examined, and focused on one of the motivations behind this goal-concern over the timely development of industrial capacity to supply anticipated demand. Conclusions from the analysis are utilized in a discussion of LSSA's industrialization plans, particularly the plans for pilot, demonstration and commercial scale production plants. Specific recommendations for the implementation of an industrialization task and the disposition of the project quantity goal were derived

    Analysis and operational challenges of dynamic ride sharing demand responsive transportation models

    Get PDF
    There is a wide body of evidence that suggests sustainable mobility is not only a technological question, but that automotive technology will be a part of the solution in becoming a necessary albeit insufficient condition. Sufficiency is emerging as a paradigm shift from car ownership to vehicle usage, which is a consequence of socio-economic changes. Information and Communication Technologies (ICT) now make it possible for a user to access a mobility service to go anywhere at any time. Among the many emerging mobility services, Multiple Passenger Ridesharing and its variants look the most promising. However, challenges arise in implementing these systems while accounting specifically for time dependencies and time windows that reflect users’ needs, specifically in terms of real-time fleet dispatching and dynamic route calculation. On the other hand, we must consider the feasibility and impact analysis of the many factors influencing the behavior of the system – as, for example, service demand, the size of the service fleet, the capacity of the shared vehicles and whether the time window requirements are soft or tight. This paper analyzes - a Decision Support System that computes solutions with ad hoc heuristics applied to variants of Pick Up and Delivery Problems with Time Windows, as well as to Feasibility and Profitability criteria rooted in Dynamic Insertion Heuristics. To evaluate the applications, a Simulation Framework is proposed. It is based on a microscopic simulation model that emulates real-time traffic conditions and a real traffic information system. It also interacts with the Decision Support System by feeding it with the required data for making decisions in the simulation that emulate the behavior of the shared fleet. The proposed simulation framework has been implemented in a model of Barcelona’s Central Business District. The obtained results prove the potential feasibility of the mobility concept.Postprint (published version

    Transfers in the on-demand transportation: the DARPT Dial-a-Ride Problem with transfers allowed

    Get PDF
    International audienceToday, the on-demand transportation is used for elderly and disabled people for short distances. Each user provides a specific demand: a particular ride from an origin to a destination with hard time constraints like time windows, maximum user ride time, maximum route duration limits and precedence. This paper deals with the resolution of these problems (Dial-a-Ride Problems - DARP), including the possibility of one transshipment from a transfer point by request. We propose an algorithm based on insertion techniques and constraints propagation

    Feasibility algorithms for two pickup and delivery problems with transfers

    Get PDF
    International audienceThis presentation follows the PhD thesis of Renaud Masson [1] on the Pickup and Delivery Problem with Transfers (PDPT). The motivating application is a dial-a-ride problem in which a passenger may be transferred from the vehicle that picked him/her up to another vehicle at some predetermined location, called transfer point. Both the PDPT and the Dial-A-Ride Problem with Transfers (DARPT) were investigated. An adaptive large neighborhood search has been developed to solve the PDPT [2] and also adapted to the DARPT [3]. In both algorithms, multiple insertions of requests in routes are tested. E ciently evaluating their feasibility with respect to the temporal constraints of the problem is a key issue

    Insertion techniques and constraint propagation for the DARP

    Get PDF
    International audienceThis paper deals with the Dial and Ride Problem (DARP), while using randomized greedy insertion techniques together with constraint propagation techniques. Though it focuses here on the static version of Dial and Ride, it takes into account the fact that practical DARP has to be handled according to a dynamical point of view, and even, in some case, in real time contexts. So, the kind of algorithmic solution which is proposed here, aim at making easier to bridge both points of view. The model is a classical one, and considers a performance criterion which is a mix between Quality of Service (QoS) and economical cost. We first propose the general framework of the model and discuss the link with dynamical DARP, next describe the algorithm and end with numerical experiments

    Constraint Propagation for the Dial-a-Ride Problem with Split Loads

    Get PDF
    International audienceAbstract. This paper deals with a new problem: the Dial and Ride Problem with Split Loads (DARPSL), while using randomized greedy insertion techniques together with constraint propagation techniques. Though it focuses here on the static versions of Dial and Ride, it takes into account the fact that practical DARP has to be handled according to a dynamical point of view, and even, in some case, in real time contexts. So, the kind of algorithmic solution which is proposed here, aim at making easier to bridge both points of view. First, we propose the general framework of the model and discuss the link with dynamical DARP, second, we describe the two algorithms (DARP and DARPSL), and lastly, show numerical experiments for both
    • …
    corecore