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Abstract— This paper deals with the Dial and Ride Problem 
(DARP), while using randomized greedy insertion techniques 
together with constraint propagation techniques. Though it 
focuses here on the static version of Dial and Ride, it takes into 
account the fact that practical DARP has to be handled 
according to a dynamical point of view, and even, in some case, 
in real time contexts. So, the kind of algorithmic solution which 
is proposed here, aim at making easier to bridge both points of 
view. The model is a classical one, and considers a performance 
criterion which is a mix between Quality of Service (QoS) and 
economical cost. We first propose the general framework of the 
model and discuss the link with dynamical DARP, next describe 
the algorithm and end with numerical experiments.   

I. INTRODUCTION 

iterature in the field of urban systems and geomatics 
hint a trend to a surge of  new “on demand”  flexible 
transportation systems (ODT): ad hoc shuttle fleets,  

vehicle sharing (AUTOLIB...), co-transportation (see for 
instance [3], [9]). This trend reflects from both 
environmental (climate change, overcrowded megalopolis…) 
and economical concerns (surge of energy prices…). It has 
also to be associated with technological advances: internet, 
mobile communication, geo-localization…, which allow 
efficient monitoring of complex mobility system and large 
sets of heterogeneous requests.  
   An important Operations Research model for the 
management of flexible reactive transportation system is the 
DARP, which tries to optimize the way a given fleet of 
vehicles meet mobility demands emanating from people, or, 
in some cases from some combination of people and goods. 
DARP is a complex problem, which admits several 
formulation, most of them NP-Hard. It usually does not fit 
well the Integer Linear Programming framework [2] and one 
must try do handle it through heuristic techniques: Tabu 
search [4], genetic algorithms [7], partial branch/bound [2], 
Simulated Annealing [6], VNS techniques [8], [10], 
Dynamic Programming [2]-[3], Insertion techniques [11]-
[12]. Moreover, a basic features of DARP is that it usually 
derives from a dynamic context. So, algorithms for static 
DARP should be designed in order to take into account the 
fact that they will have to be adapted to dynamic and reactive 
context, which means synchronization mechanisms, 

interactions between the users and the vehicles, and 
uncertainty about fore coming demands. 
   So, what is done inside this paper is to consider a generic 
DARP model with time windows and a mix 
QoS/Economical-Cost performance criterion, and propose 
algorithms for this model which are based upon randomized 
insertion techniques and constraint propagation, and so, 
which will easily adapt themselves to dynamic contexts, 
where demand package has to be inserted into (or eventually 
removed from) current vehicle schedules, in a very short 
time, while taking into account some probabilistic 
knowledge about fore coming demand packages.  
   The paper is organized as follows: we first introduce the 
problem and discuss the link between static and dynamic 
formulations, next describe our formal model, together with 
the performance criterion which we use. Then we present the 
general insertion mechanism together with the constraint 
propagation techniques which we use in order to filter 
insertion parameters and to select the demands to be 
inserted. We conclude with experimental experiments and 
comparison with [7] and [8].       

II.  THE STANDARD DIAL A RIDE PROBLEM 

A. General Dial a Ride Problem 

We can find in literature several mathematical formulations 
for the DARP. But, the complexity of all these linear 
programs doesn't allow finding an exact solution with a 
solver, the operation is too time consuming. In fact, it mixes 
a lot of booleans and plenty of fractional numbers. Refer to 
[4], [7] for the principal formulations. 

A Dial a Ride Problem instance is essentially defined by: 
- a Transit network G = (V, E), which contains at 

least some specific node Depot, and whose arcs e  
E are endowed with riding times l(e) ≥ 0, and, 
eventually, with other technical characteristics; 

- a vehicle fleet VH; 
- a Demand set D = (Di, i  I), any demand Di being 

defined as a 6-uple Di = (oi, di, i, F(oi), F(di), Qi), 
where:  

o oi V is the origin node of the demand Di; 

L 
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o di V is the destination node of the 
demand Di; 

o i ≥ 0 is an upper bound (transit bound) 
on the duration of demand Di’s processing; 

o F(oi) is a time window related to the time 
Di starts being processed;  

o F(di) is a time window related to the time 
Di ends being processed;  

o Qi is a description of the load related to Di. 
Dealing with such an instance means planning the 

handling demands of D, by the fleet VH, while taking into 
account the constraints which derive from the technical 
characteristics of the network G, of the vehicle fleet VH, and 
of the 6-uples Di = (oi, di, i, F(oi), F(di), Qi), and while 
optimizing some performance criterion which is usually a 
mix of an economical cost (point of view of the fleet 
manager) and of QoS criteria (point of view of the users).  
   All along this work, we are going to deal with 
homogeneous fleets and with nominal demands, and we 
shall limit ourselves to static points of view but our insertion 
process allows flexibility for using it in a dynamic context. 
Still, we shall pay special attention to cases when temporal 
constraints are tight. 

B. Discussion: Dynamic versus Static DARP 

   DARP is essentially a problem which arise in dynamic 
contexts, and the trend is about reactivity delays which 
become smaller and smaller [5]. Basically, one should 
consider a system which is identified by a vehicle set V, a 
user community C, and a supervision system S, which, 
because of advances in the field of geo-localization, mobile 
communications and remote monitoring, permanently 
disposes of a full knowledge about the current state of the 
vehicles (position, load, roadmap...) and maintains 
communication with both users and vehicles. All along the 
time, the system (centralized or decentralized) receives user 
request, which, in the simplest case, are characterized by a 
load, an origin and a destination node, and time windows 
related load and unload transactions, as well as about trip 
duration. At some instant t, supervisor S decides to launch a 
scheduling process P, which consider as its input the current 
state E of the vehicles of V, together with the currently 
waiting demand set D, and which, for any demand d in D, 
either rejects it or insert it into the current schedule of some 
vehicle  in V, without modifying in a significant way the 
way v is supposed to meet previous demands. Running P 
require a  computing time, and, at time t + , propositions 
are transmitted to users and updated schedules are 
transmitted to the vehicles, which apply them until instant t’, 
when the whole process takes place again. Meanwhile, it 
may occur that some demands are dropped or that vehicles 
register failure (delays or user fault…) [14].  

In any case, one see that, in case vehicles are moving 
inside a small area (a urban area) and deal with a large size 
set of demands, process P has to insert in a fast way a 
demand set D into a current schedule E, and that it has to do 
it in a way which keeps most features of E, and preserves the 

ability of the system to efficiently deal with fore coming 
demands, that means with demands which are likely to be 
formulated after the instant t when P is launched. This point 
is the key one which motivates the approach which is going 
to be described here. We want an algorithmic framework 
which is going to be naturally compatible with this context: 
the use of insertion techniques is clearly going to fit the input 
(E, D) of the dynamic context, and the use of constraint 
propagation techniques is going to make easier uncertainty 
about fore coming demands handling.   

Also, one should notice that, under this prospect, the 
virtual complete network which is going to be the key input 
data for the static model (see next section III.A), is, in 
practice, going to be a dynamic network.   

III.  THE FRAMEWORK 

A. The Considered Network 

We treat here the general Dial a Ride Problem described 
above. It is known that we do not need to consider the whole 
transit network G = (V, E), and that we may restrict 
ourselves to the nodes which are either the origin or the 
destination of some demand, while considering that any 
vehicle which visits two such nodes in a consecutive way 
does it according to a shortest path strategy. This leads us to 
consider the node set {Depot, oi, di, i  I} as made with 
pairwise distinct nodes, and provided with some distance 
function DIST, which to any pair x, y in {Depot, oi, di, i  
I}, makes correspond the shortest path distance from x to y 
in the transit network G. 

As a matter of fact, we also split the Depot node according 
to its arrival or departure status and to the various vehicles of 
the fleet VH, and we consider the input data of a Standard 
Dial a Ride Problem instance as defined by:  

- the set {1..K = Card(VH)} of the vehicles of the 
homogenous fleet VH;  

- the common capacity CAP of a vehicle in VH; 
- the node set X = {DepotD(k), DepotA(k), k = 1..K}  {o i, di, i  I}; 
- the distance matrix DIST, whose meaning is that, 

for any x, y in X, DIST(x, y) is equal to the length, 
in the sense of the length function l, of a shortest 
path which connect x to y in the transit network G: 
we suppose that DIST, satisfies the triangle 
inequality.  

Moreover the following characteristics, which, to any 
node x in X, make correspond:  

- its status Status(x): Origin, Destination, DepotA, 
Depot D; we set Depot = DepotD  Depot A; 

- its load CH(x):   
o if Status(x)  Depot then CH(x) = 0; 
o if Status(x) = Origin then CH(x) = Qi;          
o if Status(x) = Destination then CH(x) = -Qi;          

- its twin node Twin(x): 
o if x = DepotA(k) then Twin(x) = DepotD(k) 

and conversely; 
o if x = oi then Twin(x) = di and conversely; 



 
 

 

 

- its time window F(x): for any k = 1..K,  
F(DepotA(k)) = [0, +  [ = F(DepotD(k)). Also, we 
suppose that any F(x), x  X, is an interval, which 
may be written F(x) = [F.min(x), F.max(x)];  

- its transit bound (x): if x = oi or di, then (x) = i, 
and (x) =  else, where  is an upper bound which 
is imposed on the duration of any vehicle tour.   

According to this construction, we understand that the 
system works as follows: vehicle k  {1..K}, starts its 
journey from DepotD(k) at some time t(DepotD(k)) and ends 
it into DepotA(k) at some time t(DepotA(k)), after having 
taken in charge some subset D(k) =  {Di, i  I(k)} of D: that 
means that for any i in I(k), vehicle k arrived in oi at time 
t(oi)  F(oi), loaded the whole load Qi, and kept it until it 
arrived in di at time t(di)  F(oi) and unloaded Qi, in such a 
way that t(di) - t(oi) ≤ i. Clearly, solving the Standard Dial a 
Ride Problem instance related to those data (X, DIST, K, 
CAP) will mean computing the subsets D(k) = {Di, i  I(k)}, 
the routes followed by the vehicles and the time values t(x), 
x  X,  in such a way that both economical performance and 
quality of service be the highest possible.   

B. Discussion:  Durations and Waiting Times 

Many authors include what they call service durations in 
their models.  That means that they suppose that loading and 
unloading processes related to the various nodes of X require 
some time amount (x), (service time) and, so, that they 
distinguish, for any node x  X, time values t(x) (beginning 
of the service) and t(x) + (x) (end of the service). By the 
same way, some authors suppose that the vehicles are always 
running at their maximal speed, and make a difference 
between the time t*(x), x  X, when some vehicle arrives in 
x, and the time t(x) when this vehicle starts servicing the 
related demand (loading or unloading process). We do not 
do it. Taking into account service times, which tends to 
augment the size of the variables of the model and to make it 
more complex it, has really sense only if we suppose that the 
service times (x) depend on the current state (its current 
load) of the vehicle at the time the loading or unloading 
process has to be launched. Making explicitly appear waiting 
times t(x) – t*(x) is really useful if we make appear the speed 
profile as a component of the performance criterion. In case 
none of the situation holds, the knowledge of the routes of 
the vehicles and of the time value t(x), x  X, is enough to 
check the validity of a given solution and to evaluate its 
performance, and then it turns out that ensuring the 
compatibility of the model with data which involve service 
times and waiting times t(x) – t*(x), x  X, is only a matter 
of adapting the times windows F(x), the transit bounds (x), 
x  X, and the distance matrix DIST (cf. Fig. 1). 

 
Fig. 1 Considered times between two nodes 

 

C. Modeling and Evaluation Techniques 

The model described in this section needs some 
definitions, we set: 

- First() = First element of ; Last() = last element 
of ; 

- for any z in :  
o Succ(, z) = Successor of z in ;  
o Pred(, z) = Predecessor of z in ; 

- for any z, z’ in :  
o z << z’ if z is located before z’ in ; 
o z <<= z’ if z << z’ or z = z’. 
o Segment(, z, z’) = the subsequence 

defined by all z” in  such that z  <<= z” 
<<= z’. If z = Nil, then Segment(G, Nil, 
z’) denotes the subsequence defined by all 
z” in  such that z” <<= z’. 

In any algorithmic description, we use the symbol ← in 
order to denote the value assignment operator: x ← , means 
that the variable x receives the value .  Thus, we only use 
symbol = as a comparator. 

In order to provide an accurate description of the output 
data of our standard Dial a Ride Problem instance (X, DIST, 
K, CAP), we need to talk about tours and related time value 
sets.    

A tour  is a sequence of nodes of X, which is such that:  
- Status(First()) = DepotD; = Status(End()) = 

DepotA;  
- For any node x in , x ≠ First(), End(, Status(x) 

 Depot;  
- No node x  X appears twice in ; 
- For any node x = oi (resp. di) which appears in , 

the node Twin(x) is also in , and we have: x << 
Twin(x) (resp. Twin(x) <<  x). 

This tour  is said to be load-valid iff:  
- for any x in , x  First(), we have  y\y << x CH(y)  

≤ CAP.  
Moreover, this tour  is said to be time-valid iff it is 

possible to associate, with any node x in , some time value 
t(x), in such a way that:                                           
(E1) 

- for any x in , x  Last(), t(Succ(, x)) ≥ t(x) + 
DIST(x, Succ(, x));  (Distance Constraints) 

- for any x in , t(Twin(x)) – t(x) ≤  (x);  



 
 

 

 

- for any x in , t(x)   F(x). 
In case the tour  is time-valid, any time value set t = 

{t(x), x X}, which satisfies (E1) is said to be a valid 
related time value set. We denote by Valid() the set of the 
related time value set t. 
In case we need to consider F as a variable, we say that  is 
time-valid in relation to F.    
   The tour  is said to be valid if it is both time valid and 
load valid.  
   For any pair (, t) defined by some time-valid tour  and 
by some valid related time value set t, we may set:   

- Glob(, t) = t(End()) – t(First()): this quantity 
denotes the global duration of the tour ; 

- Ride(, t) =  i in Γ (t(di)-t(oi)) ; this quantity may be 
viewed as a QoS criterion, and denotes the sum of 
the duration of the individual trips of the demanders 
which are taken in charge by tour ;  

- Wait(, t) = Glob(, t) – ( x\x   Last()  DIST(x, 
Succ(, x))) : this quantity denotes the « waiting 
time » of the vehicle involved in , the waiting time 
related to some node x being  the time the vehicle is 
supposed to wait before loading or unloading x in 
case it runs full speed on the route which connects 
Pred(, x) to x.   

   If A, B, C are three multi-criterion coefficients, we may 
define the performance criterion CostA, B, C(, t) as follows: 
CostA, B, C(, t) = A.Glob(, t)  + B.Ride(, t) + C.Wait(, t). 
  In section V, we use different coefficients in order to 
compare with other techniques found in literature. Our 
insertion techniques allow some flexibility for this change. 
   So, let us suppose that we deduced from the data G = (V, 
E), VH = (K, CAP), D = (Di = (oi, di, i, F(oi), F(di), Qi), i  
I), a 4-uple (X, DIST, K, CAP), and that we are also provided 
with 3 multi-criterion coefficients A, B and C ≥ 0. Then we 
see that solving the related Standard Dial a Ride Problem 
instance means computing: 

- for any vehicle index k in 1..K, a valid tour T(k); 
- a time value set t = {t(x), x X}; 

 in such a way that:  
- the restriction of t to any T(k), k = 1..K, defines a 

valid time value set related to T(k); 
- the tour set T = {T(k), k = 1..K} induces a partition 

of X; 
- the quantity PerfA, B, C(T, t)   k = 1..K CostA, B, C(T(k), 

t) is the smallest possible.  

IV.  AN INSERTION ALGORITHM 

A. Handling Constraints 

  Let  a tour. The algorithm which we are going to 
describe in this section will essentially be based upon the use 
of insertion techniques. Thus, we must be able to check in a 
fast way, whether the insertion of some demand Di inside  
will maintain the validity of , and to get an evaluation of the 
quality of this insertion. Since we want to pay a special 
attention to the case when temporal constraints are tight, we 

are first going to provide ourselves with a package of 
constraint handling tools for testing the valid tours. 
  First, checking the load validity of  is easy. In order to be 
able to test the impact of the insertion of some demand into 
the tour  on the charge-validity of this tour, we associate, 
with any such a tour, the quantities C(, x), x   , defined 
by: 

- for any x in , C(, x)  =  y\y <<or y = x CH(y).   
Then it comes that  is load-valid iff for any x in , C(, 

x)  ≤ CAP.  
  Second, checking the time validity of  according to a 
current time window set FS = {FS(x) = [FS.min(x), 
FS.max(x)], x  } may be performed through propagation 
of the following inference rules Ri, i = 1..5:  
 
Rule R1: y = Succ(, x); FS.min(x) + DIST(x, y) >  
FS.min(y) |=  FS.min(y) ←  FS.min(x) + DIST(x, y); NFact 
← y; 
Rule R2: y = Succ(, x); FS.max(y) - DIST(x, y) <  
FS.max(x) |=  FS.max(x) ←  FS.max(y) - DIST(x, y); NFact 
← x; 
Rule R3: y = Twin(x); x <<  y ; FS.min(x) <  FS.min(y) – 
(x,y) |=  FS.min(x) ← FS.min(y) - (x,y); NFact ← x; 
Rule R4: y = Twin(x); x <<  y ; FS.max(y) >  FS.max(x) + 
(x,y) |=  FS.max(y) ←   FS.max(x) + (x,y) ; NFact ←  y; 
Rule R5:  x  ; FS.min(x) > FS.max(x) |=  Fail. 
 

Propagating these rules may be performed as follows:  
 
Procedure Propagate 
Input: (: Tour, L: List of nodes, FS: Time windows set 
related to the node set of ); 
Output: (Res: Boolean, FR: Time windows set related to 
node set of );  
Not Stop;  
While L Nil and Not Stop do 

 z ← First(L); L ← Tail(L); 
For i = 1..5 do Compute all the pairs (x, y) which make 
possible an application of the rule Ri and which are such 
that x = z or y = z; 
For any such pair (x, y) do  

Apply the rule Ri;   
If NFact is not in L then Insert NFact in L; 
If Fail then Stop;  

Propagate ← (Not Stop, FS); 
  

Proposition 1 
The tour  is time-valid according to the input time window 
set FS if and only if the Res component of the result of a call 
Propagate(FS, ) is equal to 1. In such a case, any valid 
time value set t related to and FS is such that: for any x in , t(x)  FS(x).      
 
 
 
 



 
 

 

 

Proof 
The part (only if) of the above equivalence is trivial, as well 
as the second part of the statement. As for the part (if), we 
only need to check that if we set, for any x in :  

- FS(x) = [FS.min(x), FS.max(x)]; 
- t(x) = FS.min(x);  

then we get a time value set t ={t(x), x   X()}  which is 
compatible with  and FS. 
End-Proof.  
 

We denote by FP() the time window set which result from 
a call Propagate(L,F. FP() may be considered as the 
largest (in the inclusion sense) time window set which is 
included into F and which is stable under the rules Ri, i = 
1..5, and is called the window reduction of F through .  

B. Evaluating a Tour 

Let us consider now the tour , provided with the window 
reduction set FP(). We want to get some fast estimation of 
the best possible value CostA, B, C(, t) = A.Glob(, t)  + 
B.Ride(, t) + C.Wait(, t), t Valid(). We already noticed 
that it could be done through linear programming or through 
general shortest path and circuit cancelling techniques. Still, 
since we want to perform this evaluation process in a fast 
way, we design two ad hoc procedures EVAL1 and EVAL2: 

- the EVAL1 procedure works in a greedy way, by 
first assigning to the node First() its largest 
possible time value, and by next performing a 
Bellman process in order to assign to every node x 
in  its smallest possible time value. 

- the EVAL2 procedure starts from a solution 
produced by EVAL1, and improves it by 
performing a sequence of local moves, each move 
involving a single value t(x), x  .  

 
Procedure EVAL1(: Tour): (Val: Number, : value set) 
For any x in , let us set set: [a(x), b(x)] = FP(); 
(First()) ←  b(First());  x ← First();  
While x  Last() do  

y < Succ(, x); (y) ← Sup(a(y), (x) + DIST(x, y)); 
x ← y; ← {(x), x  }; Val ← CostA, B, C(, ); 

EVAL1 ← (Val, );  
 
Procedure EVAL2(: Tour): (Val: Number, : value set) 
For any x in , let us set: [a(x), b(x)] = FP(); 
For any x in  do (x) ← EVAL1(, FS).; Not Stop; 
While Not Stop do Search the node x in  such that one of the two statements 

(E2) or (E3) below is true:  
o (E2):  (x < 0)  (Status(x)  {Origin, DepotD})  

((x)   Inf(b(x), (Succ(, x) – DIST(x, Succ(, 
x))); 

o (E3):  (x > 0)  (Status(x)  {Destination, 
DepotA})  ((x)   Sup(a(x), (Pred(, x) + 
DIST(Succ(, x)), x)); 

If Fail(Search) then  

Stop;  
EVAL2 ←   ( = {(x), x  X(G)}; Val = CostA, B, 

C(, ));  
Else  

If (E2) then (x) ← Inf(b(x), (Succ(, x) – DIST(x, 
Succ(, x))); 
Else if (E3) then ((x) ← Sup(a(x), (Pred(, x) + 
DIST(Pred(, x)), x)); 

EVAL2 ← (CostA, B, C(, ), );  
 
Proposition 2 
Both EVAL1 and EVAL2 yield a time value set  which is 
compatible with  and F (with  and FP()). Besides, if B = 
C = 0, then EVAL1 yields an optimal value Val, that means 
yields the smallest possible value CostA, B, C(, ),   
Valid(, F).  
 
Proof 

As in the description of both procedures EVAL1 and 
EVAL2, we suppose that for any x in , the time window 
FP() may also be written FP() = [a(x), b(x)]; 
The first part of the above statement is trivial. In case B and 
C = 0, minimizing CostA, B, C(, ) means minimizing (Last()) – (First()).  We must deal with two cases: 

- First Case: there exists x    and x  Last()  such 
that:  

o (x) = a(x); 
o For any y such that x  <<= y  << Last(), 

we have: (Succ(, y)) – (y) =  DIST(y, 
Succ(, y));  

Then the stability of FP()(x) under the inference 
rule R3 allows us to deduce (Last()) = a(Last()), 
and the result since (First()) =  b(First()).  

- Second Case: for any x in X(), x  Last(), we 
have (Succ(, x)) – (x) =  DIST(x, Succ(, x)). 
Then the result comes in an immediate way.  

End-Proof. 
  being some valid tour, we denote by VAL1() and 
VAL2() the values respectively produced by the 
application of EVAL1 and EVAL2 to .  

C. The Insertion Mechanism 

It works in a very natural way. Let  be some valid tour, let 
Di = (oi, di, i, F(oi), F(di), Qi) be some demand whose origin 
and destination nodes are not in , and let x, y be two nodes 
in , such that x <<= y. Then we denote by INSERT(, x, y, 
i) the tour which is obtained by:  

- locating oi between x and Succ(, x); 
- locating di between y and Succ(, y). 

We say that the tour INSERT(, x, y, i) results from the 
insertion of demand Di into the tour  according to the 
insertion nodes x and y. The tour INSERT(, x, y, i) may not 
be valid. So, before anything else, we must detail the way the 
validity of this tour is likely to be tested.  
 



 
 

 

 

Testing the Load-Admissibility of INSERT(, x, y, i).  
We only need to check, that for any z in Segment(, x, y) = { 
z such that x  <<= z  <<= y} we have, C(, z) +  Qi  ≤ CAP. 
It comes that we may set:  
 
Procedure Test-Load(, x, y, i):  
Test-Load ← {For any z in Segment(,x, y), C(, z) +  Qi  ≤ 
CAP};  
 
Testing the Time-Admissibility of INSERT(, x, y, i).  
It should be sufficient perform a call Propagate(, {o i, di}, 
FP()), while using the list {oi, di} as a starting list. Still, 
such a call is likely to be time consuming. So, in order to 
make the testing process go faster, we introduce several 
intermediary tests, which aim at interrupting the testing 
process in case non-feasibility can be easily noticed: 

- the first test Test-Node aims at checking the 
feasibility of the insertion of a node u, related to 
some load Q, between two consecutive node z and 
z’ of a given tour . It only provides us with a 
necessary condition for the feasibility of this 
insertion. 

- the second test Test-Node1 aims at checking the 
feasibility of the insertion of an origin/destination 
node u, v, related to some load Q, between two 
consecutive node z and z’ of a given tour . Again, 
it only provides us with a necessary condition for 
the feasibility of this insertion. 

 
Procedure Test-Node(, z, z’: nodes in , u: node out , Q: 
load): Boolean 
Let us set, for any x in , [a(x), b(x)] = FP()(x); 
Let us set: [,] = F (u); 
Test node ← (a(z) + DIST(z, u) ≤ ) ( + DIST(u, z’) ≤ 
b(z’)) (a(z) + DIST(z, u) + DIST(u, z’) ≤ b(z’))  (C(, z) 
+ Q  ≤ CAP); 

 
Procedure Test-Node1(, z, z’: nodes in , u, v: nodes out , Q: load): Boolean 
Let us set, for any x in , [a(x), b(x)] = FP()(x); 
Let us set, for any x in {u, v}: [(x), (x)] = F()(u); 
Test node1  ←  (a(z) + DIST(z, u) ≤ (u)) ((u) + DIST(u, 
v) ≤ (v)) ((v) + DIST(v, z’) ≤ b(z’))  (a(z) + DIST(z, u) 
+ DIST(u, v) ≤ (v)) (a(z) + DIST(z, u) + DIST(u, v) 
DIST(v, z’) ≤ b(z’))  ((u) + DIST(u, v) +DIST(v, z’) ≤ 
b(z’))  (C(, z) + Q  ≤ CAP); 

 
  So, testing the admissibility of a tour INSERT(, x, y, i) 
may be performed through the following procedure:  
 
Procedure Test-Insert(, x, y, i): (Test: Boolean, Val: 
Number); 
If x  y then Test ← Test-Node(, x, Succ(, x), oi, Qi)  
Test-Node(, y, Succ(, y), di, Qi); 
Else Test ← Test-Node1(, x, Succ(, x), oi, di, Qi); 
If Test = 1 then Test ← Test-Charge(, x, y, i); 

   If Test = 1 then (Test, F1) ← Propagate(, {o i, di}, FP(); 
      If Test = 1 then Val ← EVAL1(INSERT(, x, y, i), 
F1).Val;  
Else Val ← Undefined; 
Test-Insert ← (Test, Val – Val1());  

D. The Insertion Process 

  So, this process takes as input the demand set D = (Di = (oi, 
di, i, F(oi), F(di), Qi), i  I), the 4-uple (X, DIST, K, CAP), 
and 3 multi-criterion coefficients A, B and C ≥ 0, and it 
works in a greedy way through successive insertions of the 
various demands Di = (oi, di, i, F(oi), F(di), Qi) of the 
demand set D. The basic point is that, since we are 
concerned with tightly constrained time windows and transit 
bounds, we use, while designing the INSERTION algorithm, 
several constraint propagations tricks. Namely, we make in 
such a way that, at any time we enter the main loop of this 
algorithm, we are provided with:  

- the set I1  I of the demands which have already 
been inserted into some tour T(k), k = 1..K; 

- current tours T(k), k = 1..K: for any such a tour 
T(k), we know the related time windows 
FP(T(k))(x), x  T(k), as well as the load values 
C(T(k), x), x  T(k), and the values VAL1(T(k)) 
and VAL2(T(k));  

- the knowledge, for any i in J = (I - I1) of the set 
FREE(i) of all the 4-uple (k, x, y, v), k = 1..K, x, y  T(k), v  Q, such that a call Test-Insert(T(k), x, 
y, i) yields a result (1, v). We denote by N-FREE(i) 
the cardinality of the set V-FREE(i) = {k = 1..K, 
such that there exists a 4-uple (k, x, y, v) in 
FREE(i)}: N-FREE(i) provides us with the number 
of vehicles which are still able to deal with demand 
Di.   

   Then, the INSERTION algorithm works according to the 
following scheme: 

- First, it picks up some demand i0 in J, among those 
demands which are the most constrained, that 
means which are such that N-FREE(i0) is small: 
more specifically, if there exists i such that N-
FREE(i) = 1, then i0 is chosen in a random way 
among those demand indices i in J which are such 
that N-FREE(i) = 1; else we select randomly  in a 
set of demands j with N-FREE(j) inside {2, N-
FREEMAX }. N-FREEMAX becomes a parameter 
of the INSERTION.                                        (E4) 

- Next, it picks up (k0, x0, y0, v0) in FREE(i0) which 
simultaneously corresponds to one of the smallest 
values v, and to one of the smallest values 
EVAL2(INSERT(T(k), x, y, i0)).Val – VAL2(T(k)): 
more specifically it first builds the list L-Candidate 
of the N1 (up to five) 4-uples (k, x, y, v) in 
FREE(i0) with best (smallest value v). For any such 
a 4-uple, it computes the value w = 
EVAL2(INSERT(T(k), x, y, i0)).Val – VAL2(T(k)), 
and it orders L-Candidate according to increasing 
values w.  Then it randomly chooses (k0, x0, y0, v0) 



 
 

 

 

among those N2 ≤ N1 first 4-uples in L-Candidate. N1 
and N2 become two parameters of the INSERTION 
procedure.                                      (E5) 

- Next it inserts the demand Di0 into  T(k0) according 
to the insertion nodes  x0, y0, which means that it 
replaces T(k0)  by INSERT(T(k0), x0, y0, i0); 

- Next it defines, for any i  J, the set (i) as being 
the set of all pairs (x, y) such that there  exists some 
4-uple  (k0, x’, y’, v) in FREE(i), which satisfies: 

o (x’ = x) or ((x’ = x0 ) and x’ = Pred(T(k0), 
x)) or ((x’ = x0 = y0) and (x’ = 
Pred(Pred(T(k0),x)))); 

o (y’ = y) or ((y’ = y0 ) and y’ = Pred(T(k0), 
y)) or ((y’ = x0 = y0) and (y’ = 
Pred(Pred(T(k0),y))));                          (E6) 

- Finally, it performs, for any pair (x, y) in (i), a call 
Test-Insert(T(k0), x, y, i), and it updates FREE(i) 
and N-FREE(i) consequently.  

   This can be summarized as follows: 
 
Procedure INSERTION(N1 and N2: Integer): (T: tour set, t: 
time value set, Perf: induced PerfA, B, C(T, t) value, Reject: 
rejected demand set);     
For any k = 1..K do  

T(k) ← {DepotD(k), DepotA(k)};  
t(DepotD(k)) = t(DepotA(k)) ← 0;   

I1 ← Nil ; J ← I ; Reject ← Nil; 
For any i  J do  

N-FREE(i) ← K; 
FREE(i) ← all the possible 4-uple (k, x, y, v), k = 1..K, 
x, y { DepotD(k), DepotA(k)}, x <<T(k) y, v = 
EVAL2({ DepotD(k), oi, di, DepotA(k)}).Val; 

While J  Nil do    
Pick up some demand i0 in J as in (E4); Remove i0 from 
J;     
If FREE(i0) = Nil then Reject ← Reject  {i 0} 
Else 

Derive from FREE(i0) the L-Candidate list and Pick 
up (k0, x0, y0, v0) in L-Candidate as in (E5); 
T(k0) ← INSERT(T(k0), x0, y0, i0);  ← EVAL2(T(k0)).;  Insert i0 into I1 ; 
For any x in T(k0) do t(x) ← (x);   
For any i  J do (i) ← {all pairs (x, y) such that there exists 

some 4-uple  (k0, x’, y’, v) in FREE(i), which 
satisfies (E6); 
For any pair (x, y) in (i) do  

(Test, Val) ←  Test-Insert(T(k0), x, y, i); 
Remove (k0, x, y, v) from FREE(i) in case 
such a 4-uple exists and update N-FREE(i) 
consequently; 
If Test = 1 then insert (k0, x, y, Val) into 
FREE(i) and update N-FREE(i) 
consequently;  

Perf ← PerfA, B, C(T, t); 
INSERTION ← (T, t, Perf, Reject); 

 

  Since the above (I1) and (I2) instruction may be written in a 
non deterministic way, the whole INSERTION algorithm 
becomes non deterministic and may be used inside some 
MONTE-CARLO framework:  
 
RANDOM-INSERTION(N1, N2, P: Integer) Scheme; 
For p = 1..P do  

Apply the INSERTION(N1, N2) procedure; 
Keep the best result (the pair (T, t) such that |Reject| is 
the smallest possible, and which is such that, among 
those pairs which minimize |Reject|, it yields the best 
PerfA, B, C(T, t) value).  

V.  COMPUTATIONAL EXPERIMENTS 

Our experimentations deal with the randomly generated 
instances of Cordeau and Laporte [4]. To analyse the 
behavior of our solution, we used the same objective 
function used in [7] and adapted in [8]. The instances have 
between 24 and 144 requests which have to be supported by 
a fleet of 3 to 13 vehicles. The maximum route duration is 
480 for each vehicle and for each instance. The capacity is 
equal to 6 and the maximum ride time is 90. 
[7] used the objective function given in equation (4), the 
terms penalizing the violations have been removed. Thus, we 
minimize travel distance (c), excess ride time (r, cf. (1)), 
passenger waiting (l, cf. (2)), the total duration Glob (g) and 
early arrival (e, cf. Fig. 1 & (3)). We set the weight like in [7] 
and [8] to w1=8, w2=3, w3=1, w4=1, w5= |D|.  
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  Table I gives the values of the COST obtained with the 
proposed insertion techniques using constraint propagation. 
We take best results over 25.104 replications with a variation 
in the values of N-FREEMAX, N1 and N2 (each lower than 
4). We noted only the objective function of the two works. 
So we compare our Insertion Techniques (IT) with the 
Variable Neighborhood Search (VNS) and the Genetic 
Algorithm (GA). Refer to [13] and [8] for the other values.  
  As with the VNS technique, we obtained results always 
better than the GA. Moreover, we often obtained better 



 
 

 

 

results than the variable neighborhood search. So we found a 
large difference between [7] and the others works, but 
solutions obtained by us and by Parragh and al. [8] are close 
even though in R10a we obtain a large gap. In fact, time 
constraints of this instance are very tight and we use a simple 
learning algorithm without computing a precise order for 
introducing the demands already rejected. 
  Early arrivals have the largest weight in the objective 
function and the related column gives us numbers close to 0 
(except for R10a). As a result, no vehicle arrives at a node 
before the beginning of a node’s time window. 
  [8] used an Intel Pentium D computer at 3.2 GHz and the 
results of this paper are computed with an Intel Q8300 at 2.5 
GHz (only one thread has been used). Our CPU times are 
close to the VNS’ runs with the same number of iterations 
(e.g. we required only one minute for R1a and 38 minutes for 
R10a).  

VI.  CONCLUSION 

  The static multi-vehicle DARP with Time Windows 
required approximate solutions for being able to be solved in 
a reasonable time. We have described an implementation of 
some insertion techniques using constraint propagation. This 
solution allows obtaining good results in little time. In 
addition, we formulate an objective function which optimizes 
quality of service. But, in order to compare with tests found 
in literature we prove the flexibility of our framework by 
changing the objective function without modification of the 
framework itself. Despite this change, we obtain good 
results.         
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TABLE I. 

INSERTION TECHNIQUES (IT) COMPARED TO GA ([7]) AND VNS ([8]) 

Instances  Customers 
Total Cost f 

(GA) 
Total Cost f 

(VNS) 

Total Cost f 

(IT) 

Travel 
distance 

(IT) 

Excess 
ride (IT) 

Passenger 
wait. (IT) 

Total 
duration 

(IT) 

Early 
Arrival 

(IT) 

R1a 24 4696 3234.60 3371.41 272.81 145.55 0.00 752.28 0.00 

R2a   48 19426 14640.16 8152.32 495.29 711.18 46.75 1625.71 8.00 

R3a    72 65306 15969.08 10361.79 861.78 388.59 0.00 2301.78 0.00 

R5a    120 213420 23852.00 14006.79 1054.57 705.22 0.00 3454.57 0.00 

R9a   108 333283 13806.40 14081.01 1056.17 805.16 0.00 3216.17 0.00 

R10a  144 740890 25016.46 43889.79 1517.66 1568.67 85.74 4553.24 155.58 

R1b    24 4762 2825.53 2809.75 235.80 69.16 0.00 715.81 0.00 

R2b    48 13580 5003.11 5066.46 449.26 21.04 0.00 1409.26 0.00 

R5b    120 98111 12360.50 12528.93 1001.21 372.68 0.00 3401.21 0.00 

R6b    144 185169 16499.44 16005.12 1321.22 411.38 0.00 4201.22 0.00 

R7b    36 9169 4601.71 4480.11 395.98 65.43 0.00 1115.98 0.00 

R9b    108 167709 13412.76 13586.04 1062.19 622.11 0.00 3222.19 0.00 

R10b  144 474758 16420.00 17546.52 1411.27 655.03 0.00 4291.27 0.00 


