88 research outputs found

    Feasibility Study of Enabling V2X Communications by LTE-Uu Radio Interface

    Full text link
    Compared with the legacy wireless networks, the next generation of wireless network targets at different services with divergent QoS requirements, ranging from bandwidth consuming video service to moderate and low date rate machine type services, and supporting as well as strict latency requirements. One emerging new service is to exploit wireless network to improve the efficiency of vehicular traffic and public safety. However, the stringent packet end-to-end (E2E) latency and ultra-low transmission failure rates pose challenging requirements on the legacy networks. In other words, the next generation wireless network needs to support ultra-reliable low latency communications (URLLC) involving new key performance indicators (KPIs) rather than the conventional metric, such as cell throughput in the legacy systems. In this paper, a feasibility study on applying today's LTE network infrastructure and LTE-Uu air interface to provide the URLLC type of services is performed, where the communication takes place between two traffic participants (e.g., vehicle-to-vehicle and vehicle-to-pedestrian). To carry out this study, an evaluation methodology of the cellular vehicle-to-anything (V2X) communication is proposed, where packet E2E latency and successful transmission rate are considered as the key performance indicators (KPIs). Then, we describe the simulation assumptions for the evaluation. Based on them, simulation results are depicted that demonstrate the performance of the LTE network in fulfilling new URLLC requirements. Moreover, sensitivity analysis is also conducted regarding how to further improve system performance, in order to enable new emerging URLLC services.Comment: Accepted by IEEE/CIC ICCC 201

    Cellular-V2X Communications for Platooning: Design and Evaluation

    Get PDF
    Abstract: Platooning is a cooperative driving application where autonomous/semi-autonomous vehicles move on the same lane in a train-like manner, keeping a small constant inter-vehicle distance, in order to reduce fuel consumption and gas emissions and to achieve safe and efficient transport. To this aim, they may exploit multiple on-board sensors (e.g., radars, lidars, positioning systems) and direct vehicle-to-vehicle communications to synchronize their manoeuvres. The main objective of this paper is to discuss the design choices and factors that determine the performance of a platooning application, when exploiting the emerging cellular vehicle-to-everything (C-V2X) communication technology and considering the scheduled mode, specified by 3GPP for communications over the sidelink assisted by the eNodeB. Since no resource management algorithm is currently mandated by 3GPP for this new challenging context, we focus on analyzing the feasibility and performance of the dynamic scheduling approach, with platoon members asking for radio resources on a per-packet basis. We consider two ways of implementing dynamic scheduling, currently unspecified by 3GPP: the sequential mode, that is somehow reminiscent of time division multiple access solutions based on IEEE 802.11p – till now the only investigated access technology for platooning – and the simultaneous mode with spatial frequency reuse enabled by the eNodeB. The evaluation conducted through system-level simulations provides helpful insights about the proposed configurations and C-V2X parameter settings that mainly affect the reliability and latency performance of data exchange in platoons, under different load settings. Achieved results show that the proposed simultaneous mode succeeds in reducing the latency in the update cycle in each vehicle’s controller, thus enabling future high-density platooning scenarios

    On the Design of Sidelink for Cellular V2X: A Literature Review and Outlook for Future

    Get PDF
    Connected and fully automated vehicles are expected to revolutionize our mobility in the near future on a global scale, by significantly improving road safety, traffic efficiency, and traveling experience. Enhanced vehicular applications, such as cooperative sensing and maneuvering or vehicle platooning, heavily rely on direct connectivity among vehicles, which is enabled by sidelink communications. In order to set the ground for the core contribution of this paper, we first analyze the main streams of the cellular-vehicle-to-everything (C-V2X) technology evolution within the Third Generation Partnership Project (3GPP), with focus on the sidelink air interface. Then, we provide a comprehensive survey of the related literature, which is classified and critically dissected, considering both the Long-Term Evolution-based solutions and the 5G New Radio-based latest advancements that promise substantial improvements in terms of latency and reliability. The wide literature review is used as a basis to finally identify further challenges and perspectives, which may shape the C-V2X sidelink developments in the next-generation vehicles beyond 5G

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Wake-up radio systems for cooperative-intelligent transport systems architecture

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cooperative-Intelligent Transport systems are new applications developed on top of communications between vehicles and between vehicles and fixed infrastructure. Their architecture envisages devices deployed along the routes and streets, transmitting and receiving different kind of messages belonging to different services. Quite often, these devices will be located in isolated places with very low number of vehicles passing nearby. Being in isolated places, these devices will require to be feed with rechargeable batteries and alternative power sources, the usage of which need to be very efficient. The fact of continuously transmitting messages whenever there is no vehicle to receive them demands a solution. In this paper, we propose to use a well-known saving power strategy already used in Internet of Things, the Wake-up Radio systems. As vehicular communications are based on IEEE 802.11 standard, we propose to use a Wake-up Radio system based on this standard as well, being thus no additional hardware needed for the wake-up transmitter. The paper analyses the feasibility of using this solution on several vehicular applications.Peer ReviewedPostprint (author's final draft

    tinyLTE: Lightweight, Ad-Hoc Deployable Cellular Network for Vehicular Communication

    Full text link
    The application of LTE technology has evolved from infrastructure-based deployments in licensed bands to new use cases covering ad hoc, device-to-device communications and unlicensed band operation. Vehicular communication is an emerging field of particular interest for LTE, covering in our understanding both automotive (cars) as well as unmanned aerial vehicles. Existing commercial equipment is designed for infrastructure making it unsuitable for vehicular applications requiring low weight and unlicensed band support (e.g. 5.9 GHz ITS-band). In this work, we present tinyLTE, a system design which provides fully autonomous, multi-purpose and ultra-compact LTE cells by utilizing existing open source eNB and EPC implementations. Due to its small form factor and low weight, the tinyLTE system enables mobile deployment on board of cars and drones as well as smooth integration with existing roadside infrastructure. Additionally, the standalone design allows for systems to be chained in a multi-hop configuration. The paper describes the lean and low-cost design concept and implementation followed by a performance evaluation for single and two-hop configurations at 5.9 GHz. The results from both lab and field experiments validate the feasibility of the tinyLTE approach and demonstrate its potential to even support real-time vehicular applications (e.g. with a lowest average end-to-end latency of around 7 ms in the lab experiment)

    Enhancing the 3GPP V2X architecture with information-centric networking

    Get PDF
    Vehicle-to-everything (V2X) communications allow a vehicle to interact with other vehicles and with communication parties in its vicinity (e.g., road-side units, pedestrian users, etc.) with the primary goal of making the driving and traveling experience safer, smarter and more comfortable. A wide set of V2X-tailored specifications have been identified by the Third Generation Partnership Project (3GPP) with focus on the design of architecture enhancements and a flexible air interface to ensure ultra-low latency, highly reliable and high-throughput connectivity as the ultimate aim. This paper discusses the potential of leveraging Information-Centric Networking (ICN) principles in the 3GPP architecture for V2X communications. We consider Named Data Networking (NDN) as reference ICN architecture and elaborate on the specific design aspects, required changes and enhancements in the 3GPP V2X architecture to enable NDN-based data exchange as an alternative/complementary solution to traditional IP networking, which barely matches the dynamics of vehicular environments. Results are provided to showcase the performance improvements of the NDN-based proposal in disseminating content requests over the cellular network against a traditional networking solution119sem informaçãosem informaçã

    5G Network Performance Experiments for Automated Car Functions

    Get PDF
    corecore