5 research outputs found

    Control Surface Fault Diagnosis with Specified Detection Probability - Real Event Experiences

    Get PDF
    Diagnosis of actuator faults is crucial for aircraft since loss of actuation can have catastrophic consequences. For autonomous aircraft the steps necessary to achieve fault tolerance is limited when only basic and non-redundant sensor and actuators suites are present. Through diagnosis that exploits analytical redundancies it is, nevertheless, possible to cheaply enhance the level of safety. This paper presents a method for diagnosing control surface faults by using basic sensors and hardware available on an autonomous aircraft. The capability of fault diagnosis is demonstrated obtaining desired levels of false alarms and detection probabilities. Self-tuning residual generators are employed for diagnosis and are combined with statistical change detection to form a setup for robust fault diagnosis. On-line estimation of test statistics is used to obtain a detection threshold and a desired false alarm probability. A data based method is used to determine the validity of the methods proposed. Verification is achieved using real data and shows that the presented diagnosis method is efficient and could have avoided incidents where faults led to loss of aircraft.(c) 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Development and Evaluation of an Integral Sliding Mode Fault Tolerant Control Scheme on the RECONFIGURE Benchmark

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.This paper describes the development, application and evaluation of a linear parameter-varying integral sliding mode control allocation scheme to the RECONFIGURE benchmark model to deal with an actuator failure/fault scenario. The proposed scheme has the capability to maintain close to nominal (fault free) load factor control performance in the face of elevator failures/faults, by including a retro-fitted integral sliding mode term and then re-routing (via control allocation) the augmented control signal to healthy elevators without reconfiguring the baseline controller. In order to mitigate any chattering appearing in the elevator demands, the retro-fitted signal is based on a super-twisting sliding mode structure. This produces a control signal which is continuous and does not have the discontinuous switching nature of traditional sliding mode schemes. The scheme is evaluated using an industrial Functional Engineering Simulator developed as part of the RECONFIGURE project. Monte-Carlo campaign results are shown to demonstrate the performance of the proposed scheme.The work in this paper is supported by EU-FP7 Grant (FP7-AAT-2012-314544): RECONFIGUR

    Fault-Tolerant Aircraft Control Based on Self-Constructing Fuzzy Neural Networks and Multivariable SMC under Actuator Faults

    Get PDF
    This paper presents a fault-tolerant aircraft control (FTAC) scheme against actuator faults. Firstly, the upper bounds of the norms of the unknown functions are introduced, which contain actuator faults and model uncertainties. Subsequently, self-constructing fuzzy neural networks (SCFNNs) with adaptive laws are capable of obtaining the bounds. The bound estimation can reduce the computational burden with a lower amount of rules and weights, rather than the dynamic matrix approximation. Moreover, with the aid of SCFNNs, a multivariable sliding mode control (SMC) is developed to guarantee the finite-time stability of the handicapped aircraft. As compared to the existing intelligent FTAC techniques, the proposed method has twofold merits: fault accommodation can be promptly accomplished and decoupled difficulties can be overcome. Finally, simulation results from the nonlinear longitudinal Boeing 747 aircraft model illustrate the capability of the presented FTAC scheme

    Fault Diagnosis and Fault Handling for Autonomous Aircraft

    Get PDF

    Fault tolerant flight control system design for unmanned aerial vehicles

    Get PDF
    Safety and reliability of air vehicles is of the utmost importance. This is particularly true for large civil transport aircraft where a large number of human lives depend on safety critical design. With the increase in the use of unmanned aerial vehicles (UAVs) in our airspace it is essential that UAV safety is also given attention to prevent devastating failures which could ultimately lead to loss of human lives. While civil aircraft have human operators, the pilot, to counteract any unforeseen faults, autonomous UAVs are only as good as the on board flight computer. Large civil aircraft also have the luxury of weight hence redundant actuators (control surfaces) can be installed and in the event of a faulty set of actuators the redundant actuators can be brought into action to negate the effects of any faults. Again weight is a luxury that UAVs do not have. The main objective of this research is to study the design of a fault tolerant flight controller that can exploit the mathematical redundancies in the flight dynamic equations as opposed to adding hardware redundancies that would result in significant weight increase. This thesis presents new research into fault tolerant control for flight vehicles. Upon examining the flight dynamic equations it can be seen, for example, that an aileron, which is primarily used to perform a roll manoeuvre, can be used to execute a limited pitch moment. Hence a control method is required that moves away from the traditional fixed structure model where control surface roles are clearly defined. For this reason, in this thesis, I have chosen to study the application of model predictive control (MPC) to fault tolerant control systems. MPC is a model based method where a model of the plant forms an integral part of the controller. An optimisation is performed based on model estimations of the plant and the inputs are chosen via an optimisation process. One of the main contributions of this thesis is the development of a nonlinear model predictive controller for fault tolerant flight control. An aircraft is a highly nonlinear system hence if a nonlinear model can be integrated into the control process the cross-coupling effects of the control surface contributions can be easily exploited. An active fault tolerant control system comprises not only of the fault tolerant controller but also a fault detection and isolation subsystem. A common fault detection method is based on parameter estimation using filtering techniques. The solution proposed in this thesis uses an unscented Kalman filter (UKF) for parameter estimation and controller updates. In summary the main contribution of this thesis is the development of a new active fault tolerant flight control system. This new innovative controller exploits the idea of analytical redundancy as opposed to hardware redundancy. It comprises of a nonlinear model predictive based controller using pseudospectral discretisation to solve the nonlinear optimal control problem. Furthermore a UKF is incorporated into the design of the active fault tolerant flight control system
    corecore