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Control Surface Fault Diagnosis with Specified Detection Probability -

Real Event Experiences

Søren Hansen1 and Mogens Blanke2

Abstract— Diagnosis of actuator faults is crucial for aircraft
since loss of actuation can have catastrophic consequences. For
autonomous aircraft the steps necessary to achieve fault toler-
ance is limited when only basic and non-redundant sensor and
actuators suites are present. Through diagnosis that exploits
analytical redundancies it is, nevertheless, possible to cheaply
enhance the level of safety. This paper presents a method for
diagnosing control surface faults by using basic sensors and
hardware available on an autonomous aircraft. The capability
of fault diagnosis is demonstrated obtaining desired levels of
false alarms and detection probabilities. Self-tuning residual
generators are employed for diagnosis and are combined with
statistical change detection to form a setup for robust fault
diagnosis. On-line estimation of test statistics is used to obtain
a detection threshold and a desired false alarm probability. A
data based method is used to determine the validity of the
methods proposed. Verification is achieved using real data and
shows that the presented diagnosis method is efficient and could
have avoided incidents where faults led to loss of aircraft.

I. INTRODUCTION

One of the main challenges when dealing with autonomous

aircraft is diagnosis and handling of faults in sensors and

actuators. Loss or partly loss of actuation is particularly

critical for the aircraft. Since price and weight are impor-

tant competition parameters for unmanned aerial vehicles

(UAVs), cheap materials and solutions are sometimes used,

which increase the risk of faults. Diagnosis of such faults

can enhance the safety and usability of UAVs and thereby

increase their value both in terms of economy but more

importantly in terms of safety.

The subject of fault diagnosis (FDI) and fault tolerant

control (FTC) for general aircraft is a huge field of interest

in academia as well as in industry. A recent survey [1]

analyzed different approaches to FDI and FTC where meth-

ods using observer-based design, on-line recursive parameter

estimation, sliding mode control with control allocation and

predictive control were all investigated. Recent FDI work for

general aircraft also include [2] and [3] where model based

approaches were treated and [4] where the methods used by

Airbus were explained. A general structural analysis were

conducted in [5] for a non-linear aircraft model, and struc-

tural detectability and isolability properties were determined.

Loss of control surfaces was the topic of [6] and [7]

where a flight controller robust towards partial loss of flaps
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was designed for a general aircraft. Oscillations in control

surfaces for large passenger aircraft were investigated in [8]

that also covered performance monitoring of the surfaces.

Extensive research has been conducted for UAVs related

to control surface faults. These include [9] and [10] where

the focus was on how faults directly affect the UAV’s ability

to maneuver. Reconfigurations of the control and guidance

systems were done to accommodate the reduced capabilities

of the aircraft. The FDI was achieved by using an extended

version of multiple model adaptive estimation (MMAE) first

reported in [11]. The faults were modelled as an unknown

signal controlling the actuators, which were then estimated

by extended Kalman filters in the enhanced MMAE method.

In [12] FTC for a small UAV subject to control surface faults

was investigated. The authors estimated the reduction of

UAV’s flight envelope and used active FDI to isolate faults on

the control surfaces. Methods using linear parameter varying

methods were dealt with in [13]. The problem of probability

of timely diagnosis and recovery was dealt with in [14].

The subject of this paper is also FDI for control surfaces

of a small UAV. A low-order model between the aircraft

control surface deflections and the measured angular rates

is estimated online and utilized to create a set of residual

signals. These signals indicate faults and are used directly for

the detection. Statistical methods are used to accept or reject

hypothesis about the UAV’s condition. A salient feature is

shown to be that self-tuning is possible during a flight. In the

paper, this is demonstrated using real data from both normal

and faulty flights. Although only a few cases of actual faults

were recorded, this will be shown to allow us to investigate

the performance in diagnostic terms of detection and false

alarm probabilities from real data.

The paper is organized as follows. Introduction and a brief

description of the UAV used in the tests is followed by,

a general FDI setup with parameter adaptation in residual

generators, where-after model structure and adaptation algo-

rithm are elaborated. A statistical framework leading to a

hypothesis test is then introduced and performance of the

system is discussed based on processing of real data. A

conclusion summarizes the paper.

II. TEST AIRCRAFT

The aircraft considered in this paper is a Banshee target

drone build by Meggitt Defence System [15] (Fig. 1). The

drone is a delta wing aircraft equipped with a small rear

mounted Wankel engine which gives thrust through a 2

bladed wooden propeller. It is launched from a catapult

system and lands by parachute. The aircraft is equipped with



a basic autopilot system and is operated from ground by

an operator. The aircraft can be flown by remote control

but this is only done rarely. During normal missions the

aircraft is flown by its autopilot and the operator merely

gives waypoints that it should follow.

The aircraft is equipped with only two actuators, in

addition to an engine throttle δt , which is not considered

in this paper. The actuators are ailerons δa and elevators δe.

Both are placed side by side on the delta wing. The aircraft

has a fixed tail without rudder. The pair of ailerons are locked

together in software such that actuation of one flap is not

possible without also moving the other. In the remaining

part of the paper the ailerons are treated as one actuator

and the same applies to the elevators. None of the flaps has

angle measurement attached, with the consequence that the

autopilot is vulnerable to stuck or disconnected surfaces.

Fig. 1. Banshee drone at a Danish Defense exercise. Foto: VFD

The Banshee is equipped with a barometric sensor which

measures the flying height, h and a pitot tube to measure

the airspeed, va. The onboard Inertial Measurement Unit

(IMU) estimates the attitude of the aircraft ΦΦΦ=
[

φ θ ψ
]

T

.

This is done based on measurements from inertial navigation

sensors such as the three-axis gyro measuring the aircraft turn

rates ωωω =
[

p q r
]

T

. Apart from these a standard GPS is

onboard to get the position of the aircraft and correct the

attitude estimate.

Telemetry data is send to a ground station over a radio

link. This is the data used for the FDI. Due to the limited

bandwidth of the radio link, sensor values are not available

at full rate. This entail that faster dynamics are lost and this

issue need be considered when designing the FDI system.

III. FAULT DIAGNOSIS MODEL

The FDI setup used in this paper is illustrated in Fig. 2.

The general idea is to use a model that is adapted, online,

to the smaller variations in aircraft and external conditions.

The output of this model is compared to the measurements

of the aircraft to form a residual signal. The adaptation is

achieved by feeding back the residual signals and change

model parameters to give a better fit in next iteration. The

residual signal is also monitored by a change detection

Fig. 2. Adaptive fault detection setup.

system, which stops the adaptation if a too abrupt change

happens. This would indicate that a fault has occurred on

the aircraft. By stopping the adaptation it is avoided to adapt

the model to a faulty state of the system.

The FDI setup is developed as an aid to the UAV operator

and is therefore not integrated in the autopilot hardware even

though this could easily be done. This means all processing is

done on telemetry signals send from the aircraft to the ground

station. The limited sample-rate available from the telemetry

entails that the chosen model does not need to include fast

dynamics as these will not be identifiable anyway. Since the

operator must act on the alarm signals coming from FDI

system it is important to investigate if the system is able

to raise alarms fast enough to give the operator sufficient

reaction time before the aircraft is lost.

IV. CONTROL SURFACE FAULT MODEL

An aircraft can be described by a 6 degree of free-

dom model including kinematic and dynamic equations (see

eg. [16]). Utilizing this model implies detailed knowledge

about the aerodynamic coefficients and this information is

not always available for cheaper UAV’s. For control surface

fault diagnosis the important feature is the relationship

between surface deflection and angular rates. In this paper

an adaptive model of this relationship is employed. The

following three relations for roll rate (p), pitch rate (q) and

yaw rate (r), calculated at sample k, is related to the aileron

deflection δa and elevator deflection δe.

p[k] = apaδa[k]+bpa (1)

q[k] = aqeδe[k]+bqe (2)

r[k] = araδa[k]+brar[k−1]+ cra (3)

where bpa, bqe and cra are bias terms and apa, aqe and

ara are gain factors. Equation (3) includes the integrating

effect between the aileron and yaw rate in the bra term. This

approach separates the lateral and longitudinal states since

the aileron is only related to roll and yaw and the elevator

is related to pitch.

Equations (1) to (3) can be described on the form

y[k] = ϕϕϕ [k]TΘΘΘ[k]+ e[k] (4)



TABLE I

FAULT DEPENDENCIES OF RESIDUALS

p q r δa δe

Rpa 1 0 0 1 0
Rqe 0 1 0 0 1
Rra 0 0 1 1 0

with e[k] being the unmodelled behavior. For (1) the param-

eters would be:

y[k] = p[k] (5)

ϕϕϕ[k] =

[

δa[k]
1

]

(6)

ΘΘΘ[k] =

[

apa

bpa

]

(7)

From the general expression given by (4) residuals are,

ε [k] = y[k]−ϕϕϕ [k]TΘΘΘ[k] (8)

Control surface defects will give rise to rapid change in the

input/output signals and hence in the prediction error (8) and

subsequently appear as a parameter adaptation to the faulty

case.

Three residuals are formed based on (8): Rpa from (1),

Rqe from (2) and Rra from (3).

Rpa = p[k]−apaδa[k]−bpa (9)

Rqe = q[k]−aqeδe[k]−bqe (10)

Rra = r[k]−araδa[k]−brar[k−1]− cra (11)

This gives rise to a binary dependency between residuals

and actuator faults as shown in Table I. To truly isolate a fault

the column-wise signature of each variable must be unique.

As seen from the table both q and the elevator deflection

δe has the column signature [0,1,0]. This means that if

residual Rqe indicates a fault but Rpa and Rra does not, it

is not possible to isolate whether the fault is caused by the

sensor for q or the elevator. Active fault diagnosis methods

are useful to isolate this type of fault. However since practical

experience with this particular drone shows that flap faults

are much more likely to occur than single faults on gyros, a

single indication on Rqe is interpreted as an elevator fault.

A. Online parameter estimation

The a, b and c parameters of the residuals (9)-(11) are

estimated online using recursive least squares (RLS),

ε [k] = y[k]−ϕϕϕ[k]TΘ̂ΘΘ[k−1] (12)

P[k] =
(

λ f P[k−1]−1 +ϕϕϕ [k]ϕϕϕ[k]T
)−1

(13)

Θ̂ΘΘ[k] = Θ̂ΘΘ[k−1]+P[k]ϕϕϕ[k]εεε [k] (14)

In this, λ f is the forgetting factor and P[k] is the estimators

covariance. The initial value of P[k] is found empirically

from several test flights. This is done by running the esti-

mator for data from steady wings-level flight and see what

value of P[k] settles at. The forgetting factor is tuned such

that past measurements does not influence the estimate too

much. This is done to decrease the risk of raising false alarms
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Fig. 3. Parameter estimates for Rra. The estimation is started just after
500 s.

because of small unmodelled disturbances. Fig. 3 shows how

the parameters of the estimator for (11) develop over time.

The parameters are in this case initialized at 0 to see how

quickly they converges to a steady value. For ara and cra it

takes around 200 s to settle. To reduce the initial transient,

parameters are initialized with their expected normal values.

B. Residual whitening

By analyzing the residuals power spectrum density and

autocorrelation functions it is found that a heavy correlation

is present on the signals. This is illustrated for Rpa in the

leftmost two plots of Fig. 4. The correlation is due to the

low-order model used when generating the residuals. In order
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Fig. 4. Power spectrum density and autocorrelation of residual (9) before
and after whitening.

not to degrade the performance of the change detector by

this correlation the signals are run through a whitening filter

before further processing. A finite impulse response (FIR)

representation of a linear estimator can be used to estimate



the deterministic part of the signal

ε̂ [k] =
J

∑
j=1

a jε [k− j] (15)

By subtracting the estimate ε̂ [k] from the actual signal only

the stochastic part will be left.

ε̃ [k] = ε [k]− ε̂[k] (16)

In practice, a size of J = 5 in (15) was found sufficient

and the coefficients a j were found by optimization over a

representative data-set of each residual. This was done once.

In the right plots of Fig. 4 the autocorrelation is shown after

whitening. Although the signal is not perfectly white this is

found to be satisfactory for the change detection.

C. Distribution of Residuals

The residual signals given in Table I is found to follow

the Laplacian distribution which have the following density

function

p(x;a,b) =
1

2b
exp

(

−
|x−a|

b

)

(17)

where a is the median and b is the scaling. By running

a Kolmogorov-Smirnov test on the data it is verified that

they follow the Laplacian distribution. This is done for a

sample of consecutive residual data which are tested against

a distribution where a and b in (17) are substituted by

their maximum likelihood estimates (MLEs). The result is

that with a p-value of 0.064 the data come from the same

distribution. A similar test is done for the MLE Gaussian

distribution but with a p-value of only 4.5×10−4, data cold

not be Gaussian. Both tests were done on the data after the

whitening process.

V. HYPOTHESIS TEST

Changes in the three residual signals are detected using

the Generalized Likelihood Ratio Test (GLRT). The GLRT

distinguishes between two different hypothesis about the

parameters, ΘΘΘ, of the involved probability distribution. In

this case ΘΘΘ = a in (17).

The nominal case, H0, for the residuals is when their

median value a is close to zero. A median different from

zero indicate a discrepancy between the aircraft model and

the measurements which in terms indicate a fault (See eg.

Fig. 2). The two hypothesis for fault detection are therefore

H0 : a = 0 (18)

H1 : a 6= 0 (19)

The scaling parameter, b, is not known for either case and

is therefore to be estimated.

A. GLR test for Laplacian

A test statistic for the Laplacian distribution for changes to

the median a, can be formulated by the following expression

T ′
L(xxx) =

(

b̂0

b̂1

)N

> γ ′ (20)

TABLE II

GLRT PARAMETERS FOR RESIDUALS.

Window size (N) Threshold (γ)

Rpa 100 100
Rqe 100 100
Rra 75 50

with the MLE’s of the parameters given by

b̂0 =
1

N

N

∑
n=1

|x[n]| (21)

b̂1 =
1

N

N

∑
n=1

|x[n]−median(xxx)| (22)

When the value of T ′
L(xxx) is larger than the threshold value

γ ′ the H0 hypothesis is rejected and data indicate a median

significantly apart from 0.

To achieve an expression that is more suitable for practical

calculations and does not have numerical issues the following

conversion of (20) is done.

TL(xxx) = N log

(

b̂0

b̂1

)

> γ (23)

The threshold value γ should be chosen appropriately and a

data based method for doing this is given in the next section.

See eg. [17] for a details of the general GLRT.

VI. DETECTOR PERFORMANCE

The parameters for the detectors working on the three

residual signals are given in Table II.

The window size N is chosen such that a suitable batch of

data is treated in each recursion. The threshold is chosen

based on a statistical analysis of values from the GLRT

output, an approach first presented by [18] and applied in

airspeed sensor fault diagnosis for UAVs in [19]. Fig. 5

shows a probability plot of this output for two different

flights. The plotted time-history is from residual Rra, the

other residuals have a similar appearance. The output follows

approximately a Weibull distribution with the following

distribution function,

P(x;bw,kw) = 1− exp

(

−

(

x

bw

)kw
)

(24)

It is possible to estimate the scale parameter bw and shape

parameter kw by eg. MLE methods. By using the right-

tail probability Q(x;bw,kw) = 1−P(x;bw,kw) a measure of

the probability of false alarms PFA for certain thresholds is

given. For γ = 50 a probability of P(x;bw,kw) = 0.9999 is

achieved. This means that statistically 0.9999 of H0 data will

be located below the threshold which entail a PFA = 0.0001.

The residuals Rpa and Rqe is more noisy and therefore higher

values of γ are found for them.

By using data from an incident related to aileron mal-

function it is possible to analyze performance of the change

detection system. Fig. 6 shows roll and pitch angles together

with commanded aileron deflection. The first observation
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Fig. 6. Selected telemetry records from aircraft just before crash.

is that much of the dynamics of the aileron signal is lost

due to the low sample-rate of the telemetry data. Secondly

just before t = 4110 s the aircraft starts rolling right, even

though the autopilot commands a left roll. From this point

on there is no relation between the commanded signal and

the aircraft’s maneuvers. This clearly shows that the relations

of (9) is violated. The aircraft crashes shortly after and the

subsequent investigation of the crash determined that control

of an aileron was lost in flight.

To give an assessment of the diagnosis systems ability to

detect faults with the data chosen threshold value, analysis

of data belonging to the H1 case is done. Since the starting

point of a H1 condition is not known exact there is some

uncertainty in the following analysis. However it gives a fair

estimate of the actual detection probability, PD, under real-

life conditions. Fig. 7 shows TL for Rra for two different

cases where faults occurs on the ailerons of a Banshee. The

top plot is from a case where the linkage mechanism, which
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Fig. 7. Probability plot of the test statistic output TL for two different fault
cases. The vertical dashed line indicates the detector threshold.

drives one of the flaps, slips in its gears causing an actuator

offset. This does not trigger a crash in this particular case

but could lead reduced maneuverability since the deflection

to one side is decreased. The PD for this case is 58%. The

bottom plot of Fig. 7 is the case of total loss of aileron

actuation illustrated in Fig. 6 that within shortly caused a

crash of the aircraft. This case has a PD of 98%.

Fig. 8 shows normalized histograms for Rpa for two

segments of flight. The nominal segment is centered around

0 as expected, and the faulty segment shows an shift in

median. The Laplacian shape of the H1 data are slightly
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Fig. 8. Histogram for a segment of Rpa of normal flight shown together
with a faulty segment. The switch in median value is apparent.

blurred because the fault does not affect the residual in a

sharp step but rather in a softer fashion. The hypothesis test

can, anyway, be done over a window size of 100 samples.

Fig. 9 depicts the time development for the three residuals

(9)-(11) for this flight. There is an indication of a change in

center value at the end of the plots.

Fig. 10 shows the test statistics for the three residuals (9)-

(11), In this figure the fault indication at around t = 4100 s

is more significant than on Fig. 9. The fault is detected

12−14 s before control of the aircraft is lost at t = 4116 s.

This fault signal could give the UAV operator enough time
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to react and deploy the parachute in order to bring down

the aircraft in a controlled manner, but a automatic fail-

safe mechanism integrated in the UAV’s autopilot could have

saved the aircraft.

VII. CONCLUSIONS

This paper investigated change detection methods used

for detection of control surface faults for UAVs. The sug-

gested method utilized that the control surfaces have direct

influence on the aircraft angular rates. A number of low-

order models relating these rates to the actuator deflections

were presented and by utilizing parameter estimation small

disturbances could be overcome. Results with real-life data

assessed the need for whitening filters before the GLRT

change detection methods could be used. The thresholds for

the test statics were found by analyzing segments of real-

life data. The suggested method does not require a large
amount on computational power and is therefore well suited

for implementation in an existing autopilot system.
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