192 research outputs found

    Research on the System Safety Management in Urban Railway

    Get PDF
    Nowadays, rail transport has become one of the most widely utilised forms of transport thanks to its high safety level, large capacity, and cost-effectiveness. With the railway network's continuous development, including urban rail transit, one of the major areas of increasing attention and demand is ensuring safety or risk management in operation long-term remains for the whole life cycle by scientific tools, management of railway operation (Martani 2017), specifically in developed and developing countries like Vietnam. The situation in Vietnam demonstrates that the national mainline railway network has been built and operated entirely in a single narrow gauge (1000mm) since the previous century, with very few updates of manual operating technology. This significantly highlights that up to now, the conventional technique for managing the safety operation in general, and collision in particular, of the current Vietnamese railway system, including its subsystems, is only accident statistics which is not a scientific-based tool as the others like risk identify and analyse methods, risk mitigation…, that are already available in many countries. Accident management of Vietnam Railways is limited and responsible for accident statistics analysis to avoid and minimise the harm caused by phenomena that occur only after an accident. Statistical analysis of train accident case studies in Vietnam railway demonstrates that, because hazards and failures that could result in serious system occurrences (accidents and incidents) have not been identified, recorded, and evaluated to conduct safety-driven risk analysis using a well-suited assessment methodology, risk prevention and control cannot be achieved. Not only is it hard to forecast and avoid events, but it may also raise the chance and amount of danger, as well as the severity of the later effects. As a result, Vietnam's railway system has a high number of accidents and failure rates. For example, Vietnam Rail-ways' mainline network accounted for approximately 200 railway accidents in 2018, a 3% increase over the previous year, including 163 collisions between trains and road vehicles/persons, resulting in more than 100 fatalities and more than 150 casualties; 16 accidents, including almost derailments, the signal passed at danger… without fatality or casual-ty, but significant damage to rolling stock and track infrastructure (VR 2021). Focusing and developing a new standardised framework for safety management and availability of railway operation in Vietnam is required in view of the rapid development of rail urban transport in the country in recent years (VmoT 2016; VmoT 2018). UMRT Line HN2A in southwest Hanoi is the country's first elevated light rail transit line, which was completed and officially put into revenue service in November 2021. This greatly highlights that up to the current date, the UMRT Line HN2A is the first and only railway line in Vietnam with operational safety assessment launched for the first time and long-term remains for the whole life cycle. The fact that the UMRT Hanoi has a large capacity, more complicated rolling stock and infrastructure equipment, as well as a modern communica-tion-based train control (CBTC) signalling system and automatic train driving without the need for operator intervention (Lindqvist 2006), are all advantages. Developing a compatible and integrated safety management system (SMS) for adaption to the safety operating requirements of this UMRT is an important major point of concern, and this should be proven. In actuality, the system acceptance and safety certification phase for Metro Line HN2A prolonged up to 2.5 years owing to the identification of difficulties with noncompliance to safety requirements resulting from inadequate SMS documents and risk assessment. These faults and hazards have developed during the manufacturing and execution of the project; it is impossible to go back in time to correct them, and it is also impossible to ignore the project without assuming responsibility for its management. At the time of completion, the HN2A metro line will have required an expenditure of up to $868 million, thus it is vital to create measures to prevent system failure and assure passenger safety. This dissertation has reviewed the methods to solve the aforementioned challenges and presented a solution blueprint to attain the European standard level of system safety in three-phase as in the following: • Phase 1: applicable for lines that are currently in operation, such as Metro Line HN2A. Focused on operational and maintenance procedures, as well as a training plan for railway personnel, in order to enhance human performance. Complete and update the risk assessment framework for Metro Line HN2A. The dissertation's findings are described in these applications. • Phase 2: applicable for lines that are currently in construction and manufacturing, such as Metro Line HN3, Line HN2, HCMC Line 1 and Line 2. Continue refining and enhancing engineering management methods introduced during Phase 1. On the basis of the risk assessment by manufacturers (Line HN3, HCMC Line 2 with European manufacturers) and the risk assessment framework described in Chapter 4, a risk management plan for each line will be developed. Building Accident database for risk assessment research and development. • Phase 3: applicable for lines that are currently in planning. Enhance safety requirements and life-cycle management. Building a proactive Safety Culture step by step for the railway industry. This material is implemented gradually throughout all three phases, beginning with the creation of the concept and concluding with an improvement in the attitude of railway personnel on the HN2A line. In addition to this overview, Chapters 4 through Chapter 9 of the dissertation include particular solutions for Risk assessment, Vehicle and Infrastructure Maintenance methods, Inci-dent Management procedures, and Safety Culture installation. This document focuses on constructing a system safety concept for railway personnel, providing stringent and scientific management practises to assure proper engineering conditions, to manage effectively the metro line system, and ensuring passenger safety in Hanoi's metro operatio

    APPLICATION OF FORMAL SAFETY ASSESSMENT FOR DRY DOCKING EVOLUTION

    Get PDF
    This research has evaluated the rules, guidelines and regulations related to docking a ship in floating-graving yards. Historical failure data analysis is carried out to identify associated components, equipment and the area of defects related to ship docking evolution problems. The current status of ship docking evolution is reviewed and possible sources which cause accidents are recognised. The major problems identified in this research are associated with risk modelling under circumstances where high levels of uncertainty exist. Following the identification of research needs, this work has developed several analytical models for the application of Formal Safety Assessment (FSA). Such models are subsequently demonstrated by their corresponding case studies with regards to application of FSA for ship docking evolution. Firstly, in this research a generic floating-graving docking model is constructed for the purpose of hazard identification and risk estimation. The hazards include various scenarios, identified from literature reviewed as the major contributors to ship docking failures. Then risk estimation is carried out utilising fault tree (FT) – FSA where there is sufficient data. Secondly, with increased lack of data, risk estimation is carried out using FT-Bayesian network (BN) where interdepencies exists amongst identified hazards. This risk estimation method is validated with the appropriate case study identified. Thirdly, fuzzy rule base and evidential reasoning approaches are used for risk estimation in terms of three risk parameters to select the major causes of component failure that can lead to pontoon deck failure in a floating dock. Possible risk control options (RCOs) are introduced, based on their effectiveness, to select the best RCO for minimising the risks. Finally, a cost benefit assessment is conducted to select the best risk control option using BN, where selections are based on economic terms. The four subjective novel FSA application methodologies in ship docking evolution are constructed from existing theoretical techniques and applied to real situations where data collection is otherwise not possible. The construction of the novel methodologies and the case study applications are the major contribution to knowledge in this thesis. It is concluded that the methodologies proposed possess significant potential for the application of FSA for ship docking evolution based on the validations of their corresponding case studies, which may also be applied with domain specification knowledge tailored to facilitate FSA application in other shipping industry sectors

    Safety‐oriented discrete event model for airport A‐SMGCS reliability assessment

    Get PDF
    A detailed analysis of State of the Art Technologies and Procedures into Airport Advanced-Surface Movement Guidance and Control Systems has been provided in this thesis, together with the review ofStatistical Monte Carlo Analysis, Reliability Assessment and Petri Nets theories. This practical and theoretical background has lead the author to the conclusion that there is a lack of linkage in between these fields. At the same of time the rapid increasing of Air Traffic all over the world, has brought in evidence the urgent need of practical instruments able to identify and quantify the risks connected with Aircraft operations on the ground, since the Airport has shown to be the actual ‘bottle neck’ of the entire Air Transport System. Therefore, the only winning approach to such a critical matter has to be multi-disciplinary, sewing together apparently different subjects, coming from the most disparate areas of interest and trying to fulfil the gap. The result of this thesis work has come to a start towards the end, when a Timed Coloured Petri Net (TCPN) model of a ‘sample’ Airport A-SMGCS has been developed, that is capable of taking into account different orders of questions arisen during these recent years and tries to give them some good answers. The A-SMGCS Airport model is, in the end, a parametric tool relying on Discrete Event System theory, able to perform a Reliability Analysis of the system itself, that: • uses a Monte Carlo Analysis applied to a Timed Coloured Petri Net, whose purpose is to evaluate the Safety Level of Surface Movements along an Airport • lets the user to analyse the impact of Procedures and Reliability Indexes of Systems such as Surface Movement Radars, Automatic Dependent Surveillance-Broadcast, Airport Lighting Systems, Microwave Sensors, and so on… onto the Safety Level of Airport Aircraft Transport System • not only is a valid instrument in the Design Phase, but it is useful also into the Certifying Activities an in monitoring the Safety Level of the above mentioned System with respect to changes to Technologies and different Procedures.This TCPN model has been verified against qualitative engineering expectations by using simulation experiments and occupancy time schedules generated a priori. Simulation times are good, and since the model has been written into Simulink/Stateflow programming language, it can be compiled to run real-time in C language (Real-time workshop and Stateflow Coder), thus relying on portable code, able to run virtually on any platform, giving even better performances in terms of execution time. One of the most interesting applications of this work is the estimate, for an Airport, of the kind of A-SMGCS level of implementation needed (Technical/Economical convenience evaluation). As a matter of fact, starting from the Traffic Volume and choosing the kind of Ground Equipment to be installed, one can make predictions about the Safety Level of the System: if the value is compliant with the TLS required by ICAO, the A-SMGCS level of Implementation is sufficiently adequate. Nevertheless, even if the Level of Safety has been satisfied, some delays due to reduced or simplified performances (even if Safety is compliant) of some of the equipment (e.g. with reference to False Alarm Rates) can lead to previously unexpected economical consequences, thus requiring more accurate systems to be installed, in order to meet also Airport economical constraints. Work in progress includes the analysis of the effect of weather conditions and re-sequencing of a given schedule. The effect of re-sequencing a given schedule is not yet enough realistic since the model does not apply inter arrival and departure separations. However, the model might show some effect on different sequences based on runway occupancy times. A further developed model containing wake turbulence separation conditions would be more sensitive for this case. Hence, further work will be directed towards: • The development of On-Line Re-Scheduling based on the available actual runway/taxiway configuration and weather conditions. • The Engineering Safety Assessment of some small Italian Airport A-SMGCSs (Model validation with real data). • The application of Stochastic Differential Equations systems in order to evaluate the collision risk on the ground inside the Place alone on the Petri Net, in the event of a Short Term Conflict Alert (STCA), by adopting Reich Collision Risk Model. • Optimal Air Traffic Control Algorithms Synthesis (Adaptive look-ahead Optimization), by Dynamically Timed Coloured Petri Nets, together with the implementation of Error-Recovery Strategies and Diagnosis Functions

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Integrated Power Systems in All Electric Ships: Dependability Oriented Design

    Get PDF
    This work aims at providing a comprehensive and, as far as possible, standard and widely supported approach to a dependable design of all electric ship integrated power systems. The proposed approach is based upon latest development of dependability theory made recently available, from its founding lexicon and taxonomy to investigation tools and relevant international rules. In its first part, this work analyses present rule requirements governing the discipline of designing an integrated power system serving an all electric ship. Analysis covers system definitions (what is what) in terms of taxonomy and associated concepts; system required performances both in terms of delivered services and in terms of reaction to anticipated reactions to predetermined fault scenarios. In its second part, this work briefly presents latest developments in the theory and in the tools theory brings along: lexicon, taxonomy, system analysis, benchmarking and enforcing techniques. During this development, emphasis is posed on the fact that design documentation, be it owners’ technical specification, classification society rule book or international standard, often recall dependability concepts, without fully exploiting the potential theory is promising, or the completeness of its definition corpus. In its third part, this work applies dependability concepts to a real case scenario, an integrated power system installed on a recent cruise ship vessel. This application, albeit suffering from an important lack of information, due to copyrighting and industrial intellectual property rights, produces an informative example on the enquiring method and relevant deliverable: a system model, obtained in a strongly standardized way that permits a comprehensive and accurate dependability study, to be realized using tools and techniques defined in international standard. Results of this analysis are, as a consequence of method strong structure, repeatable and consistent, and allow quick verification of requirements. Analysis results, even though partial and superficial owing to already mentioned lack of accurate information, are offering some original view points. They are commented and classified according to indexes defined earlier. In its fourth part, this works presents proposals to be applied to systems which exhibited low values of indexes. Such proposals are briefly analyzed in terms of index value variations; in doing this a quantification of improvement that could be obtained is given. Finally, in its fifth part, this work shortly presents future research directions to improve investigation method. This work reports elements of project management and maritime law as well, this in force of the multidisciplinary nature of dependability theory, and its repercussion on different sector of the marine industry, besides engineering. It is show how present method can fit the actual engineering process, and can provide a common language serving as substrate for various disciplines, like the ones mentioned

    Integration of OHS into risk management in an open-pit mining project in Quebec (Canada)

    Get PDF
    Despite undeniable progress, the mining industry remains the scene of serious accidents revealing disregard for occupational health and safety (OHS) and leaving open the debate regarding the safety of its employees. The San JosĂŠ mine last collapse near CopiapĂł, Chile on 5 August 2010 and the 69-day rescue operation that followed in order to save 33 miners trapped underground show the serious consequences of neglecting worker health and safety. The aim of this study was to validate a new approach to integrating OHS into risk management in the context of a new open-pit mining project in Quebec, based on analysis of incident and accident reports, semi-structured interviews, questionnaires and collaborative field observations. We propose a new concept, called hazard concentration, based on the number of hazards and their influence. This concept represents the weighted fraction of each category of hazards related to an undesirable event. The weight of each category of hazards is calculated by AHP, a multicriteria method. The proposed approach included the creation of an OHS database for facilitating expert risk management. Reinforcing effects between hazard categories were identified and all potential risks were prioritized. The results provided the company with a rational basis for choosing a suitable accident prevention strategy for its operational activities

    Emerging technologies and future trends in substation automation systems for the protection, monitoring and control of electrical substations

    Get PDF
    Tese de Mestrado Integrado. Engenharia ElectrotÊcnica e de Computadores (Automação). Faculdade de Engenharia. Universidade do Porto. 201

    A Bayesian-Based Framework for Making Inspection and Maintenance Decisions from Data and Expert Knowledge

    Get PDF
    PhDIt is estimated that more than one-third of current infrastructure maintenance expenditure is wasted through poor decision-making. To make better decisions about maintenance, there is a need to provide better predictions of asset deterioration, and further, to use this information to plan inspections and appropriate repair actions. A number of statistical modelling techniques have been proposed to predict deterioration. However, these approaches can be difficult to apply in practice, for example when the time of deterioration is only known approximately from periodic inspections. Also, these approaches lack an easy way to incorporate knowledge about the deterioration process that can readily be considered when judgements are made by experienced maintainers. Moreover, in practice, the size of available datasets on deterioration is often limited; hence there is a need to blend data with knowledge. This thesis presents a framework for predicting deterioration and reasoning about the effects of repair using both the available data and expert knowledge that can support inspection and maintenance-related decisions. The framework uses Bayesian modelling, combining two types of Bayesian approaches: Bayesian statistical models and Bayesian Networks (BNs). Bayesian statistical models are used to estimate the parameter of statistical distributions, modelled as continuous variables. On the other hand, BNs model causal or influential relationships between (primarily) discrete variables to make predictions and can be based on elicited knowledge. This thesis builds on earlier work that combines these two forms of model, with both the continuous variables from Bayesian statistical models and the discrete variables of BNs. We refer this type of model to as a hybrid BN. The use of hybrid BNs is possible using an already existing algorithm that dynamically discretises continuous variables in a BN. BNs within the framework can be combined to model the different aspects of deterioration needed in different circumstances. The rate of deterioration can be learnt from censored deterioration data inferred from inspection records and knowledge elicited from engineers. Asset sharing similar characteristics can be grouped, and when a group contains only a few instances in the available data, data from related groups can be used to constrain the parameter learning. Deterioration through multiple condition states can be modelled. The deterioration of different components of complex structures can be combined. Finally, we model the effect of repair actions and show how to plan maintenance. A case study using data from the US National Bridge Inventory is used to validate the deterioration prediction models. We show how real-world inspection records can be integrated with engineering knowledge to predict the deterioration. Compared with other published approaches, the proposed models show better performance, especially when the group of similar assets is small. We then apply the models to reason about inspection and maintenance-related decisions. We use case studies of maintenance practices in the GB and US to show how the models can be used to assist both operational and strategic maintenance decision making. Many features of the proposed framework need to be adapted and combined to create a maintenance model applicable in a particular circumstance. Examples include the number of deterioration states, the decomposition of assets into components and the grouping of assets. The challenge is to create a complex and large-scale asset management system to allow a maintenance analyst to apply the framework, without needing expertise in Bayesian modelling. By representing our framework as a set of generic models using an extended form of BN – a probabilistic relational model – we show, with a simple prototype, how such a system could be realised
    • …
    corecore