360 research outputs found

    Fault estimation for time-varying systems with Round-Robin protocol

    Get PDF
    summary:This paper is concerned with the design problem of finite-horizon H∞H_\infty fault estimator for a class of nonlinear time-varying systems with Round-Robin protocol scheduling. The faults are assumed to occur in a random way governed by a Bernoulli distributed white sequence. The communication between the sensor nodes and fault estimators is implemented via a shared network. In order to prevent the data from collisions, a Round-Robin protocol is utilized to orchestrate the transmission of sensor nodes. By means of the stochastic analysis technique and the completing squares method, a necessary and sufficient condition is established for the existence of fault estimator ensuring that the estimation error dynamics satisfies the prescribed H∞H_\infty constraint. The time-varying parameters of fault estimator are obtained by recursively solving a set of coupled backward Riccati difference equations. A simulation example is given to demonstrate the effectiveness of the proposed design scheme of the fault estimator

    Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism

    Get PDF
    summary:This paper is concerned with the design of event-based state estimation algorithm for nonlinear complex networks with fading measurements and stochastic coupling strength. The event-based communication protocol is employed to save energy and enhance the network transmission efficiency, where the changeable event-triggered threshold is adopted to adjust the data transmission frequency. The phenomenon of fading measurements is described by a series of random variables obeying certain probability distribution. The aim of the paper is to propose a new recursive event-based state estimation strategy such that, for the admissible linearization error, fading measurements and stochastic coupling strength, a minimum upper bound of estimation error covariance is given by designing the estimator gain. Furthermore, the monotonicity relationship between the trace of the upper bound of estimation error covariance and the fading probability is pointed out from the theoretical aspect. Finally, a simulation example is used to show the effectiveness of developed state estimation algorithm

    Quantum-classical generative models for machine learning

    Get PDF
    The combination of quantum and classical computational resources towards more effective algorithms is one of the most promising research directions in computer science. In such a hybrid framework, existing quantum computers can be used to their fullest extent and for practical applications. Generative modeling is one of the applications that could benefit the most, either by speeding up the underlying sampling methods or by unlocking more general models. In this work, we design a number of hybrid generative models and validate them on real hardware and datasets. The quantum-assisted Boltzmann machine is trained to generate realistic artificial images on quantum annealers. Several challenges in state-of-the-art annealers shall be overcome before one can assess their actual performance. We attack some of the most pressing challenges such as the sparse qubit-to-qubit connectivity, the unknown effective-temperature, and the noise on the control parameters. In order to handle datasets of realistic size and complexity, we include latent variables and obtain a more general model called the quantum-assisted Helmholtz machine. In the context of gate-based computers, the quantum circuit Born machine is trained to encode a target probability distribution in the wavefunction of a set of qubits. We implement this model on a trapped ion computer using low-depth circuits and native gates. We use the generative modeling performance on the canonical Bars-and-Stripes dataset to design a benchmark for hybrid systems. It is reasonable to expect that quantum data, i.e., datasets of wavefunctions, will become available in the future. We derive a quantum generative adversarial network that works with quantum data. Here, two circuits are optimized in tandem: one tries to generate suitable quantum states, the other tries to distinguish between target and generated states

    Robust distributed secondary voltage restoration control of ac microgrids under multiple communication delays

    Get PDF
    This paper focuses on the robust distributed secondary voltage restoration control of AC microgrids (MGs) under multiple communication delays and nonlinear model uncertainties. The problem is addressed in a multi-agent fashion where the generators’ local controllers play the role of cooperative agents communicating over a network and where electrical couplings among generators are interpreted as disturbances to be rejected. Communications are considered to be affected by heterogeneous network-induced time-varying delays with given upper-bounds and the MG is subjected to nonlinear model uncertainties and abrupt changes in the operating working condition. Robustness against uncertainties is achieved by means of an integral sliding mode control term embedded in the control protocol. Then, the global voltage restoration stability, despite the communication delays, is demonstrated through a Lyapunov-Krasovskii analysis. Given the delays’ bounds, and because the resulting stability conditions result in being non-convex with respect to the controller gain, then a relaxed linear matrix inequalities-based tuning criteria is developed to maximize the controller tuning, thus minimizing the restoration settling-time. By means of that, a criteria to estimate the maximal delay margin tolerated by the system is also provided. Finally, simulations on a faithful nonlinear MG model, showing the effectiveness of the proposed control strategy, are further discussed

    Control Theory: A Mathematical Perspective on Cyber-Physical Systems

    Get PDF
    Control theory is an interdisciplinary field that is located at the crossroads of pure and applied mathematics with systems engineering and the sciences. Recently the control field is facing new challenges motivated by application domains that involve networks of systems. Examples are interacting robots, networks of autonomous cars or the smart grid. In order to address the new challenges posed by these application disciplines, the special focus of this workshop has been on the currently very active field of Cyber-Physical Systems, which forms the underlying basis for many network control applications. A series of lectures in this workshop was devoted to give an overview on current theoretical developments in Cyber-Physical Systems, emphasizing in particular the mathematical aspects of the field. Special focus was on the dynamics and control of networks of systems, distributed optimization and formation control, fundamentals of nonlinear interconnected systems, as well as open problems in control

    Topological changes in data-driven dynamic security assessment for power system control

    Get PDF
    The integration of renewable energy sources into the power system requires new operating paradigms. The higher uncertainty in generation and demand makes the operations much more dynamic than in the past. Novel operating approaches that consider these new dynamics are needed to operate the system close to its physical limits and fully utilise the existing grid assets. Otherwise, expensive investments in redundant grid infrastructure become necessary. This thesis reviews the key role of digitalisation in the shift toward a decarbonised and decentralised power system. Algorithms based on advanced data analytic techniques and machine learning are investigated to operate the system assets at the full capacity while continuously assessing and controlling security. The impact of topological changes on the performance of these data-driven approaches is studied and algorithms to mitigate this impact are proposed. The relevance of this study resides in the increasingly higher frequency of topological changes in modern power systems and in the need to improve the reliability of digitalised approaches against such changes to reduce the risks of relying on them. A novel physics-informed approach to select the most relevant variables (or features) to the dynamic security of the system is first proposed and then used in two different three-stages workflows. In the first workflow, the proposed feature selection approach allows to train classification models from machine learning (or classifiers) close to real-time operation improving their accuracy and robustness against uncertainty. In the second workflow, the selected features are used to define a new metric to detect high-impact topological changes and train new classifiers in response to such changes. Subsequently, the potential of corrective control for a dynamically secure operation is investigated. By using a neural network to learn the safety certificates for the post-fault system, the corrective control is combined with preventive control strategies to maintain the system security and at the same time reduce operational costs and carbon emissions. Finally, exemplary changes in assumptions for data-driven dynamic security assessment when moving from high inertia to low inertia systems are questioned, confirming that using machine learning based models will make significantly more sense in future systems. Future research directions in terms of data generation and model reliability of advanced digitalised approaches for dynamic security assessment and control are finally indicated.Open Acces
    • …
    corecore