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Abstract: This paper focuses on the robust distributed secondary voltage restoration control of
AC microgrids (MGs) under multiple communication delays and nonlinear model uncertainties.
The problem is addressed in a multi-agent fashion where the generators’ local controllers play the
role of cooperative agents communicating over a network and where electrical couplings among
generators are interpreted as disturbances to be rejected. Communications are considered to be
affected by heterogeneous network-induced time-varying delays with given upper-bounds and the
MG is subjected to nonlinear model uncertainties and abrupt changes in the operating working
condition. Robustness against uncertainties is achieved by means of an integral sliding mode control
term embedded in the control protocol. Then, the global voltage restoration stability, despite the
communication delays, is demonstrated through a Lyapunov-Krasovskii analysis. Given the delays’
bounds, and because the resulting stability conditions result in being non-convex with respect to
the controller gain, then a relaxed linear matrix inequalities-based tuning criteria is developed to
maximize the controller tuning, thus minimizing the restoration settling-time. By means of that,
a criteria to estimate the maximal delay margin tolerated by the system is also provided. Finally,
simulations on a faithful nonlinear MG model, showing the effectiveness of the proposed control
strategy, are further discussed.

Keywords: microgrid; voltage control; multi-agent systems; secondary control; sliding mode control;
time delay systems; consensus algorithms; linear matrix inequalities

1. Introduction

Microgrids (MGs) are small-scale power systems consisting of localized grouping of
Distributed Generators (DGs), storage systems and loads. In general, MGs operate either
in islanded, autonomous mode or connected to the main power system. Recently the
MG control system has been standardized into three layers [1]. The inner layer is called
“Primary Control”. It generates the actual command for the DG power converters’ DC-AC
interfaces. Commonly, it is implemented in a decentralized way and consists of the droop
power control terms which aim to establish a desired power sharing among DGs and
the inner voltage and current control loops. The “Secondary Control” layer enables the
compensation of the frequency and voltage deviations introduced by the droop power
control terms. This is because inverter-based DGs have no inertia [2]. Lastly, to optimize the
DGs injected power from/to the main grid, a “Tertiary Control” layer is further designed.
It allows us to adapt online the droop coefficients accordingly with the energy costs and the
demand constraints imposed by the energy provider and vendors. It is worth mentioning
that, among the three control layers, the secondary one is that of more practical interest to
make compliant the integration of renewable resources within the AC power transmission
paradigm. Moreover, due to the possibility of temporarily modifying the DGs’ frequencies
and output voltages to certain set-points while preserving the power sharing it would
also be useful to perform the seamless and safe transition of the MG from islanded to the
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grid-connected mode and vice-versa [3]. In particular this paper focuses on the design of a
model-free robust multi-agent oriented secondary controller to guarantee the exact voltage
restoration despite model uncertainties, unbalanced load variations, abrupt unplanned
events and the effect of time-varying network-induced communications delays.

1.1. Literature Review

Earlier secondary control algorithms were centralized [1,4]. These solutions are
now discouraged in favour of distributed approaches because they scale better with the
MG size, are more robust to failures, and dispense with costly central computing and
communication units [5]. Pioneer distributed controllers were based on Proportional-
Integral (PI) schemes and assume the secondary control set-points globally available to all
the DGs, see [6,7]. As an example, in [7] a Distributed Averaging PI control, combined with
quadratic voltage feedbacks and feed-forward power terms is proposed to achieve voltage
restoration under the additional reactive power sharing constraint among DGs. There, it
is shown that only a compromise between the reactive power sharing accuracy and the
voltage regulation precision can be achieved. On the other hand, since to reduce losses
the reactive power flowing in the MG needs to be kept a close to zero as possible, then
such an additional constraint is often not considered during the voltage control design.
Despite this, and because the DG dynamics are strongly non-linear and coupled with each
other, these strategies allow us to conclude stability properties only in the local sense. Thus,
particular effort has been spent on designing robust strategies that aim to achieve the control
objectives despite the presence of non-linearities and model uncertainties (see [6,8-10]).
These investigations show that, to achieve the exact voltage restoration, the DG models
must be perfectly known to properly design ad-hoc feedback linearization terms. These
works further remove the requirement of globally available set-points, thus increasing the
system flexibility while minimizing communications and global variables. Indeed, now
the secondary control set-points are known only to a few DGs, referred to as “leader(s)”.
This enables the service provider to integrate higher level control strategies and ancillary
services in the system through only local interaction. Compared with [7], and thanks to
the perfect MG model knowledge, these works are enabled to guarantee global stability
features; namely, in the large sense. Let us further note that among References [6,8-10],
the proposal in [8] is superior since it guarantees the finite-time convergence property.
However, since MGs consist of complex systems subjected to disturbances, uncertainties
and changes in the operating conditions, the assumption of a perfect knowledge of the DG
models is quite unrealistic in practice. Thus, aiming to introduce the concept of robustness
in the secondary control layer design, ref. [11] proposed a model-free continuous voltage
sliding-mode control (SMC) protocol that, under certain boundedness assumptions on the
injected power by the DGs, globally solve the secondary control objective in finite-time as
well. Finally, it is also worth mentioning [12] where the robust voltage restoration problem
has been studied in the discrete-time setting, and [13], which adopts active disturbance
rejection control technique combined with extended state observers to compensate model
uncertainties and unknown perturbations.

Although all the mentioned strategies require a communication infrastructure, net-
work induced delays that may degrade the MG performance, and even destabilize it, have
been ignored. The impact of a constant identical delay for all the communications within
the secondary control layer, that is, Tj =T, is analysed first by [14], where i and j denote
that DG j communicates with DG i. A step beyond is [15], where under the assumption
that each communication from DG i to j yields 7;(t) = 7;(t) for all j; a multi-agent voltage
control protocol accounting either averaging, and power compensation terms is proposed.
Therein, sufficient conditions on the delay bounds that guarantee that the voltages will
stay within a given boundary layer depending on the reactive power sharing accuracy
is also provided. It is also worth mentioning the voltage secondary controllers proposed
in [16-18], which assume, resp., a single constant and multiple constant delays per link.
More realistic heterogeneous time-varying delays, such that 7;;(t) is different for each pair
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(i,7), are recounted in [19]. Therein, under the assumption of Markovian distributed delays
and globally known set-points, a new stochastic small-signal MG model and a secondary
controller is proposed. Small-signal analysis of an MG equipped with a time-delayed sec-
ondary voltage control is also studied in [20]. Therein, an analytical formula is developed
to determine the individual delay margin for each link with respect to different sets of
controller gains and leader pinning conditions. Lastly, we further mention [21], which
proposes a time-delay tolerant distributed observer to track the average voltage of all DGs.
Then, thanks to this estimation the implementation of lower level decentralized restoration
strategies is enabled. Notice now that, although all the previously mentioned works ac-
count for the presence of different types of delays, all consist of a linear control protocol,
thus they suffer the same limit of [7]. Indeed, they can only provide stability features
in a local sense since their results are obtained by means of small signal analysis. More-
over, since they are linear, they cannot also face-off the presence of model non-linearities
and/or disturbances.

Summarizing from the previous discussion it can be concluded that the control proto-
cols that account robustness features against model uncertainties and disturbances are not
able to face-off communication delays, whereas those designed to deal with the presence
of communication delays lack robust control features because they are usually control
protocols. Moreover, among the delay-oriented strategies, only [20] proposes a criterion for
the secondary control tuning, whereas the other limits their analysis to provide necessary
conditions for the closed loop stability within a local domain.

1.2. Statement of Contributions

Thus motivated, this paper proposes a robust voltage secondary control strategy that
is able to perform the exact distributed tracking of the voltage set-point despite the absence
of feedback-linearisation terms, and the presence of heterogeneous network-induced time-
varying delays. Let us further note that the proposed control protocol is integral with
discontinuous derivative thus well-suited to fed the inner control layers. It consists of
two terms: (1) a distributed Integral SMC [22] component that aims to enforce each agent
(DG) to behave as a reference unperturbed dynamic; (2) an ad-hoc designed distributed
averaging control term aiming to globally, exponentially, achieve voltage restoration despite
the non-uniform time-varying communication delays. A Lyapunov-Krasovskii analysis
that used the simpler averaging problems, without [23], and with leaders [24], is also
provided, and an LMI tuning criterion is established. Differently to the State-of-the-Art: (a)
at the same time, both robust control concepts and the presence of multiple non-uniform
time-varying communication delays are considered; (b) under the assumption that the
power flowing within the MG is bounded, conditions for the robust global exponential
stability of the system are established; (c) a new stability analysis for the MG’s secondary
control problem is proposed; (d) an off-line LMI-based algorithm aimed to find the maximal
controller gain that, under the given delays bounds, guarantees the control objective is
given along with criteria to estimate the corresponding maximal tolerated delay margin; (e)
the robustification method in [22] is extended to the presence of delays among the agents’
communications. Preliminary results of this research have been presented in [25]. However,
although the controller structure here proposed is the same as in [25], this paper differs
from that in the following aspects:

¢ Here a much more faithful MG modelization expressed in the d-g-reference frame is
considered, whereas in our past work DGs were simply modelled as second-order
coupled oscillators.

®  The tuning criteria in our past work involves non-convex optimization which can
thus hardly be solved in practice. On the other hand, our novel Algorithm 1 is
based on the solution of a standard LMI problem, solvable by means of standard
interior-point solvers.

¢ Here Lemma 1 proofs that matrix @ in Algorithm 1 is always negative definite,
whereas in our past work this was an operating assumption;
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e The proposed control protocol is now tested on a realistic MG model which accounts,
along with time-varying delays, 3-phase PWM controlled power bridges, noisy mea-
surements with a realistic Signal-to-Noise Ratio, and unplanned faults.

Algorithm 1 Tuning algorithm for k in (35).

e Initialize the control gains k = k with k > 0.

e Define the gain decrement 0 < Ak < k, the edges weight ajj of G 11 (0UV,EN11), the
delay bounds 7" > 0,07 > 0,6, < 1,6, <1, B=B-[1,2]

e Repeat until k > 0

(a) Determine V / and g the matrices A; (k) = [A;(;,(k)], Aq(k) = [Ag(w) (k)] € R2N*2N

where
X —rxiOkB' if T ="T,r= I=i
AI(N) (k) - { 05>  otherwise ’

)

—Dél']'kB if O’gZTl']', 175], sz:i
Agryy (k) wjjkB i og =T, iFjr=i,y=j,

05>  otherwise

and the negative definite matrix ®(k) < 0

q m
D(k) = Ao+ Y Ai(k)+ Y Ag(k) <0 , Vk>0 with Ag=Iy®A (2
=1 g=1

(b) Solve for 7 > 0 and the positive definite matrices P, Q;, Qg, Rg, W), W, € R2Nx2N
the LMI problem

q m m
POT (k) + PO (k) < —(Z Qi+ ) Q¢ Zag*Rg> 3)
=1 g=1 g=1
m m q
— ) 0;Rg < —11- A] (2 ogWe+ ) rl*wl> Ap 4)
g=1 g=1 =1
m q
—(1—d)Q; < —U'AlT(k)<Z Ug*Wg+2Tz*W1>Al(k) @)
g=1 =1
m q
—(1—dg)Qq < —1- A} (k) (Z TgWy + ) TI*W1> Ag(k) 6)
g=1 =1

(c) If the given solution satisfies (3) then: Break
Else: k = k — Ak EndIf.

1.3. Paper Organization

This manuscript is organized as follows—in Section 2 the nonlinear modelization of
a MG for secondary control purposes is given. The voltage secondary control problem,
along with the proposed robust control strategy and the main paper results are illustrated
in Section 3. In Section 4, the robustness of the proposed controller is confirmed by
means of simulations on a faithful 3-phase nonlinear MG model accounting IGBT power-
converters, time-varying communication delays, noisy measurements and uncertainties,
and unplanned faults. Lastly, in Section 5, concluding remarks and possible hints for future
research are provided.

1.4. Mathematical Notation

The set of real numbers is denoted by R. Let A = [a;5] € R"™", with n > 0, its
transpose is AT, whereas a;; € R denotes its entry in position (i, j). Assume A is symmetric,

A = 0 (A = 0) denotes A positive (semi-)definite. Let |A|, and ||A|[p = /trace{ATA}
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be the Euclidean and Frobenius norms, then it holds that ||A|], < ||A||r. Let B € R"*",
A®B = [a;;B] € R¥*2" denote the Kronecker product between A and B, with i and
j=1,2,...,n. The sign operator sign(a) is understood in the Filippov sense [22], such that
sign(a) = 1ifa > 0, —1if a < 0, otherwise it is set-valued as follows sign(a) € [—1,1]. I,
denotes the n-dimensional identity matrix. 1, and 0, are the all 1, and all 0, n-dimensional
column vectors. Let x € R”, and A > 0, and h > 0, the Jensen inequality for the integral
terms Lemma 2.1 in [26] states that

_ h/oh x(s)TAx(s)ds < — </0h x(s)ds)TA</O.h x(s)ds). (7)

1.5. Nomenclature

For the sake of clarity, the list of variables of the considered nonlinear model of MG,
expressed in the d-g (direct-quadrature) reference frame, is provided below. The reader
is referred to Figure 1 for a graphical explanation of the meaning of some variables. The
considered nomenclature for the DG variables is as follows:

weom: Speed of the common rotating reference frame

wj: Speed of the rotating reference frame of the i-th DG

6;: Angle between the local and common reference frames

Ui, wyit Voltage and frequency secondary control commands;

Ugi, Ikit 3-ph voltages and currents at node k of the i-th DG

Ukdis Ukgi: d-q voltages of the i-th DG at node k

ikdis ixgit d-q currents of the i-th DG at node k

k =1,0,b: Denote the input “k = 1”, output “k = 0” and bus node “k = b”of a DG

wy, vg: Desired voltage and frequency secondary restoration values

P;, Qj: Active and reactive powers dc-components at the output node of the i-th DG

(P v;‘qi: d-q voltage set-points of the i-th DG

Pai, gt d-q voltage error’s integral of the i-th DG

i3 i;“qi: d-q current set-points of the i-th DG

Pai, Pgic d-q current error’s integral of the i-th DG

o* . 7
Zl : Inverter Vi . Voi Outpur Ubi
qe LC Filter Connector
Voltage 4> Current ‘[—-@*WW-‘"“——[
Controller e+ Controller, 4 1.
N

L g e
Loqi) tog;

Vogi [Vodi
x
v¥,.
O/d'l, l\ Power | gz
'U*/ . Controller ‘ ré‘
oqi
Vni Wni

Figure 1. Primary control block diagram of an inverter-based Distributed Generator (DG).

2. Microgrid (MG) Modeling for Secondary Control Design

An MG is a cyber-physical system in which physical and software components are
deeply intertwined. At the physical level, an MG is a geographically distributed power
system consisting of DGs and loads connected by transmission lines. On the other hand,
the supervisory and control algorithms, and in particular the secondary control layer, run
over a communication infrastructure as shown in Figure 2.
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Figure 2. MG cyber-physical representation for secondary control purposes.

An inverter-based DG includes a 3-ph power converter in which the DC side is
connected to a dc power source (e.g., photovoltaic panels [27], fuel cell system [28] or a
wind turbine [8]), while its AC side is connected to the 3-phase power grid by the series of
the coupling and the output filters, see Figure 1.

The Primary Control layer consists of three nested feedback control loops that aim to
adjust the power, voltages, and currents injected within the main grid. The behaviour of
a primary controlled DG is generally nonlinear. This is because the current and voltage
control loops are expressed in the d-q local DG reference frame, rotating at the frequency
wj [29]. The Secondary Control layer aims at generating the commands/references for the
inner Primary Control layer. In particular, through the signals w,,; and v,;, the local DG
frequencies w; and the direct voltage components v,4; should be restored to their respective
set-points w,.r and v,.r. In general, the phase angle J; of each DG i is expressed with
respect to a specifically selected DG considered as the common reference frame. Let weom
be the rotating speed of the common reference frame, then one has that

do;(t)
dt

= Wi(t) — Wcom- (8)

The local frequency and voltage droop primary control characteristics are as follows

wi(t) = wyi(t) —m; - Pi(t) )
Uodi(t) = vyi(t) — i - Qi(t) (10)
Uogi(t) =0, (11)

where m; and n; represent the droop power coefficients, which aim to mimic the generator’s
inertia. Then, P;(t) and Q;(t) denote the DC components of active and reactive power
flows at the DG outputs. A low-pass process with cut-off frequency w. < w; < wy; is
designed to obtain P;(t) and Q;(t) as next

dP;(t)
dt

d%lit(t) = —weiQi(t) + Wi (Vogi(t) - foai(t) — Voai(t) - iogi(t)). (13)

= _wcipi(t) + wci(vodi(t) ’ iodi(t) + qui(t) : ioqi(t)) (12)
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Finally, the inner voltage and current primary control loops consists of cascaded
PI controllers combined with feed-forward compensation terms. The voltage control is
as follows

dipgi(t)

T kivi (Vi (t) — Voai(t)) (14)

A, (t
I (02 0) = o) (15
i3 (1) = Pai(t) + Kpoi (V54 (t) = Voai (1)) + kfoitoai (t) — @Crivegi(t) (16)
101 (£) = Wgi () + Kpoi (V505 (£) — Vogi (1)) + kpoioqi () + @Crivoai(t), (17)

whereas the inner current controller satisfies the next relations

WD) _ o izt) — i) (18)
dgg(t . .

P00 ki (6) = (1) (19
i (t) = @i (t) + kpei (75 (t) — i1ai(t)) — L £t (t) (20)
Ul (£) = Pgi(t) + kpei (175 (£) — i1gi(t)) + @L g1 (t), (21)

where @ is specified as the nominal angular frequency of the MG. Lastly, L¢; and Cy; denote
the inductance and capacitance of the coupling filter drawn in Figure 1, and ki, kivi, kv
and ky.;, kici, kfc; denotes, respectively, the proportional, integral and feed-forward gains
of those controllers.

Finally, the voltage and current dynamics associated with the local LC filter and the
output connector are

Pt = 1)+ 1 oualt) ~ 1) + i) 2
Bilt) _ _Izzil,ﬁu) + Llf (019i (1) — voqi(1)) — wi(Dirai(1) @3
% - Clﬁ(i,di(t) — ioai(t)) + wi(t)vygi(t) @)
) L (i) g) ”
% _ —%iodi(t) + Lid(vodi(t) — pai (1)) + @i (F)ingi (1) (26)
Lol _ i (1)+ 1 (vun(1) = 00 (1)) = i B (1), @)

where, in accordance with Figure 1, vy;(t), vpgi(t) denote the d-q voltages at the connection
bus. Let vj;(f) and vj,,(t) in (20) and (21) express the smooth signals presented by inner
current primary control loop, whereas vy4;(t) and vy,(t) in (22) and (25) represent the
effective non-smooth dispatched voltages of the inverter at the AC port after a high
frequency PWM process. It is worth mentioning that, since the switching frequencies of
power bridges are very high, the inverter dynamics can safely be ignored by comparing the
MG dynamics. Hence, according to the averaging principle, (20) and (21) can be replaced
for vj4; and vy, into (22) and (23), more details can be found in [30,31].
Henceforth, the following reasonable assumption is assumed to hold.
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oodi(t)

Assumption 1. Consider the primary controlled MG (8)—(21). Let a priori known bounds 117 and

T1€ exist, such that, for each DG the active and reactive powers at the DG's output node “0” are
assumed to be bounded by

. . P . .
|vodilodi + quiloqi| <II ’ |U0qilodi - Uodiloqi| < HQ- (28)

Remark 1. Assumption 1 is justified because the power flowing in the lines and/or absorbed by
the load is bounded everywhere due to: (a) the passive behaviour of loads and lines; (b) the bounded
operating range of the inverter voltages and currents due to their physical limits; (c) the presence of
protection apparatus and the inner voltage and current primary control loops. This keeps the power
flows within pre-specified ranges as discussed for instance in [11,30,32].

As discussed in [8,11,15,31], the cascaded voltage and current control loops in, resp.,
(14)—(17) and (18)—(21), are theoretically justified based on time-scale separation techniques.
In particular because of the filter inductance Ly; in (22), and because the inverse of the
current integral gain 1/k;; in (18) can reasonably be considered small enough, then from
(18), (20), (22) the following the Singular Perturbation analysis takes place

g [iai(t)

ol [ 2) - [ Y]« o

where € = max{L¢;, 1/kj;} is the so-called perturbation parameter. Now according to the
singular perturbation method and setting e = 0, the quasi steady-state behaviour of the
current fast dynamics can be obtained as

{;ﬁiiﬁiﬂ = [—kpa- —1Rfi—1} i (t). (29)

Hence, at the quasi-steady mode the current control induces the inverter to send its
set-point (16) almost immediately despite the inherent connection between the d and g
component. Likewise one also obtains that ilqi(t) = il*q ;(t). From (16), (24) and (29) the
reduced-order relation between v,4; and the control input v,; is

_ 1 - . kpvi
" Ch ((wi(t) — @)Uogi(t) + Pai(t) + (kpoi — 1)lodi(f)) + C—ﬁ(vni(t) — Uogi(t))- (30)
For later use, we express (30) in the next augmented form
%di(f)] A [Uodi(t)} kpoi . ,
.. = . + B n,(E) — Uggi) +Wi(t) |, 31
Lodi(t) Ooai(t) Cri (0 (£) = Dodi) + i (1) 1)
with

33 o[}

where v, is the actual voltage secondary control command and
Wi(t) = Wi(t)vogi(t) + (wi(t) — @)0oqi(t) + (kfoi — Diogi(t)  [wi(t)| < W; (33)

plays as a matched unknown term accounting perturbation, parameter uncertainties,
unmodelled dynamics, as well as chances in the MG working-point. Let us further note
that due to Assumption 1, and the inherent boundedness of the MG variables enforced by
the Primary Control, which makes the DG’s frequency and voltages smooth, with bounded
derivatives, then the existence of a sufficiently large constant W; such that (33) holds if
fairly reasonable.
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MG’s Network Models

To achieve the Secondary Control objectives in a distributed way, DGs are assumed to
be provided with computing and communication facilities embedded within their local
controllers. Thus, each DG plays the role of autonomous agent over a networked cyber-
physical system. Agents communicate over a network in which topology is encoded by
a real-weighted graph Gy = (V,€n), where V = 1,2,..., N is the set of local secondary
controllers (or without loss of generality simply DGs), whereas £y is the set of the available
communication links between DGs, and A = [w;j] € RN*N is the so-called adjacency
matrix, where a;; = 1if (i,j) € £y, namely if DG i can receive data delivered by DG j,
otherwise a;; = 0. Accordingly with the leader—follower paradigm, we further assume
the existence of a root node, labelled by 0 in the augmented graph Gn+1(0U V,En+1),
which aims to provide the secondary control set-points to a non-empty set of DGs. Accord-
ingly with Appendix A, where preliminary results on Graph Theory are provided, in the
remainder, £ and L1 denote the Laplacian matrices associated with Gy and Gy 1. In
the remainder, communications will be assumed to be affected by the network-induced
time-varying delays. Further details on that will be given in the next section.

3. Voltage Secondary Control Design

Let the desired voltage set-point provided by the virtual node 0 be denoted by
Ug = U > 0. In the absence of a secondary control loop, and by assuming the volt-
age set-point globally available to each DG, thus by letting v,; = vy, it can be noted that,
due to the droop-power terms in (10) and (11) and the voltage drops in (30), at the resulting
equilibrium vy;(t) will be smaller than vy, thus restoration is needed. Our control objective
can thus be summarized as follows

tlim Uoai(t) = v vVi=12,...,N, (34)
— 00

where vy is available only to a subset of DGs. To globally solve the secondary control
problem (34) in a distributed way and by accounting network-induced delays in the
communication links the next control protocol is proposed

() = L (k- (6) = m;-sign(s (1) )

poi

where s;(f) is the desired integral sliding mode control manifold designed as follows

si(t) = Voai(t) + voai(t) — zi(t) (36)
k vi
zi(t) = k- u(t) + gf, “Oodi(t),  2i(0) = —004i(0) — 0oai (0), (37)
and
wilt) = =X g [voas(t — ij(£)) — vag (£ — (1) + -

~2 5 [ Boai (= T (1)) — g (= (1)),

where m; > 0 and k > 0 are some constant gains to be designed, and «;; denotes whether
DG j is enabled to communicate with DG i, namely a;; = 1if (i, ) € Eny1. Finally 7;(t)
is the time-varying delay associated with the communication from DG j to DG i, with
(i,]) € Ensa-

Remark 2. It is worth remarking that the DG’s output voltage derivatives are not available for
measurements. However, they can easily be estimated and then used for output feedback purposes
by means of differentiators implemented within each local controller. Following [33], and thanks to
the finite-time convergence properties provided by the well-known Levant’s exact differentiator,
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ﬁoqi(f) = —Cig V| Vodi(t) — Dogi(£)] - sign(voai (t) — Doai(£)) + @;(t) (39)
@i(t) = —cip-sign(vegi(t) — 0oai(t))
¢i1>15/C;, cip > 1.1C;, (40)

where if C; large enough, it results that, after a finite interval of time the estimation 0,,;(t) coincides
with the true value v,q;(t). This is the reason why in (35)—(38) the quantities v,q;(t) are treated as
if they were known.

Remark 3. According to Figure 2, the DGs dynamics are coupled with each other due to the
interconnecting power lines and are also affected by the local utilities. Although (9)—(27) do not
explicitly show this coupling, these effects can be encoded by the bus voltages vy; [31]. Let us
further note that, differently to [9,10], where these voltages were considered to be known and then
compensated using feedback-linearization/feedforward approaches, in the present work they are
supposed to be unknown. It is also worth mentioning that the considered model is strongly nonlinear
because the primary control is designed in the d-q reference frame. Thus, due to its inherent
nonlinear behaviour and because of, to the best of our knowledge, all the available time-delay tolerant
secondary controllers are linear, then they can provide stable results only in the local sense. On the
contrary, here, by means of the proposed robust control protocol, we can account for both the presence
of communication delays and model nonlinearities/uncertainties without any model approximation,
thus providing stability in the large sense.

Remark 4. The design (35)—(38) is inspired by the robustification method proposed in [22] for
arbitrary distributed consensus and optimization problems. Differently to that, here also the presence
of communication delays is accounted for. The discontinuous term consists of an ISMC control
term that aims to enforce each DG to behaves as a nominal multi-agent system, namely such that
U; = k- u;. Then, u;(t) is properly designed to fulfil (34) under the given communication topology
and delays.

For later use, the collection of delays affecting the available communication links
between the leader (node 0) and the generic DG j will be denoted by the set 7 (t) =
{t, @, ..., 15}, where each element 7;(t) € 7 (t) is such that

Tl(t) = TiO(t)/ Vi: (1,0) € 5N+1/ | = 1,2,...,!]. (41)

Then, we indicate with S(t) = {01,02,...,0n} the collection of delays affecting the
oriented communications among DGs, and where 0¢(t) € S(t) is such that

0g(t) = (1), V (i) € On, ¥ g =1,2,...,m (42)

Note that the indexes m < N(N — 1) and g < N equal their maximum values only if
Gn+1 is a complete graph, and all the delays, for a given time ¢, are different. The common
assumption of slowly-varying, bounded delays is made in [15,23,24,34,35].

Assumption 2. Let a priori known bounds T, (7;:, 01, 6¢ > 0 exist, such that, for each delay
T €Tandog €S,
T =Tp€ [0,7), |t <4 <1
; ,Vt>0. 43
Uy =T € [O,ag*), Itij] <dg <1 = (43)

To correlate the data received from a DG for feedback purposes we further assume that:

Assumption 3. Each communication delay T;j(t) is detectable for all t > 0, and (i,j) € Gn 1.
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Remark 5. Communication protocols used to include the data-packet timestamp, thus the require-
ment of detectable delays is costless [36]. Once the delay is detected by means of local buffers each
controller is enabled to retrieve its own state at that time and performs (38). These averaging laws
are common in networked applications with multiple delays [15,23,24,371, and others.

The main results of the present paper are now presented:

Theorem 1. Consider an MG of N DGs in which voltage dynamics satisfy (31), under the voltage
control (35)—(38). Let the communication topology Gy be connected and undirected. Let node 0 be
a root node over the augmented graph Gn1(0U V, En1). Let the communications subjected to
heterogeneous time-varying delays T;;(t) with given upper-bounds ", 03, and 6; < 1and 5¢ < 1
as in (43). Let Assumptions 1, 2, 3, be in force. Let m; > W in (33). If the matrix inequality
problem (1)—(6) admits a feasible solution with respect to k > 0, 1 > 0, and the symmetric positive
definite matrices P, Q;, Qg, R, W, W € R2N*2N thop the voltage restoration objective (34) can
be globally uniformly asymptotically achieved.

Proof of Theorem 1. See the Appendix D. [

Remark 6. The matrix inequality problem (1)—(6) is strongly non-linear with respect to k, thus
standard convex optimization solvers will fail in finding their solutions because of the quadratic
dependence from k of (5), and (6). However, for a given k, (1)-(6) degenerates into a set of LMIs, thus
is solvable by means of standard convex optimization solvers, as for instance the well-known feasp
MATLAB’s LMI solver which is based on the Nesterov and Nemirovski’s Polynomial Projective
Method. The following Algorithm 1 is thus proposed to provide a method to find systematically,
if it exists, the maximal feasible gain k* for (35)—(38) such that, for the given delays’ bounds, the
fulfilment of the control objective is guaranteed.

Before presenting Algorithm 1 the next instrumental lemma is provided.

Lemma 1. Consider an undirected connected communication graph Gn (V, En) and its augmented
graph Gy 1 (0UV, Enyq) and V = 1,2,..., N. Let node 0 be a root node over Gy 1. Consider
the matrices A;(k), and Ag(k) as in (1) and the matrix ® (k) as in (2). Then (k) is Hurwitz ¥
k> 0.

Proof. See Appendix C. O
Corollary 1. Assume the condition of Theorem 1 to be satisfied. Hence a k = k* exists such that,
for the given delays’ bounds the control objectives can be fulfilled. Then, Algorithm 1 will find

such a feasible gain value k*; (b) Let H = 22,”:1 We + Zlqzl W) and k = k*, an estimation of the
maximum delay tolerated by the control system is given by

*

= min
v1g

o ol ool oy sl ]

AR Ta@ [, Ta®mRab],

Proof. Consider the LMI (5). Independently from the given k > 0 and 5 > 0, the delays’
bounds, and the positive definite matrices W; and W, there will always exist a suffi-
ciently large positive definite matrix Q; > 0 such that —(1 — 6;)Q; + 77 (A; (k)T L5 o3 Wy +
Zlq:l W A(k)) < 0,V L. It follows that (5) is always feasible. The same can be con-
cluded for (6) and V g. Consider now the LMIs (3) and (4), which are coupled to each
other by means of the matrices R¢ > 0, and which play as dummy variables. Thus by
substituting the right-hand side of (4) into (3), and by letting Q = (Z?:l Qr+ 2?21 Q¢ +

n-Ab (Z?:l ogWe + Y TZ*WZ)AO), the following LMI takes place: ®TP + P® + Q < 0.

Thus, because of Lemma 1, provided in Appendix B, ® is Hurwitz, and Q is, by construc-
tion, positive definite, then a matrix P > 0 can be found, satisfying the resulting Lyapunov
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equation TP + PP + O = —ehy, Ve > 0. Thus, (3) is also always feasible. It follows
that, if a feasible gain k* exists, by means of Algorithm 1, the feasibility problem associated
with (1)—(6) can be numerically studied iteratively for different k, until such a value k = k*
is found. If the actual k does not correspond with a feasible solution then k is decreased by
Ak > 0, and the routine is repeated. On the other hand, if k becomes smaller than or equal
to zero, it means that for the given delays’ bounds, Ak and k, a feasible k* does not exist.
This confirms sentence (a).

Once a feasible solution for (1)—(6) is found, a lower estimation of the maximum delay
tolerated T* by the system can be easily derived as follows: (1) Let us first replace such
a solution on (1)—(6); (2) Then, by substituting T*(Zg,”zl W, + Z?:1 W) to Z?:l oz We +
Z?:l 7'W;, a set of inequality in which the only unknown variable is T* takes place; (3)
Finally, by solving for t*, by applying norms to the numerator and denominator and
because || - |2 < || - ||, after manipulations, (44) is obtained. [

Remark 7. The achievement of the voltage restoration condition (34) through the proposed robust
control protocol (35)—(38) does not affect the stability of the DGs’ frequencies. In fact, because of the
presence of the droop power control (9)—(10), which guarantees the MG synchronism and stability to
load changes/variations, and because the achievement of (34) simply implies some smooth changes
on P;(t) in accordance with (12), now v,g; — vo. Then, the achievement of the voltage restoration
will simply modify the actual frequency equilibria, which will correspond, following the analysis
in [2], to the next quantity w;(o0) = wy; — Y ; Pi(t) /(X m;l) Let us further note that, because
at each time t the total power in the MG is time-invariant, then the current’s steady equilibria will
change accordingly, as well. The results shown in Figure 3 corroborate these statements.

50 —wi /27 2 —io1(t)|Rss
wy/2m i02(t)|Rars
—ws3/2m 2003 (t)| rass |
—wy/2m —io4(t)|rRars
15r 1
49.99

ogl 0L
0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75

Time [s] Time [s]

(@) (b)

Figure 3. (a) Frequencies of the DG’s output voltages measured by 3-phase Phase Locked Loop sensors; (b) RMS inverters’

output currents.

4. Results and Discussion
4.1. Test Rig Design

The proposed voltage control is tested on a realistic MG model developed by means of
the Simscape Power Systems™ MATLAB/Simulink toolbox. Figure 2 depicts the schematics
of the considered inverter-based MG. Each DG model comprises a 3-ph An IGBT bridge with
10 kVA of rated power provided by a 800 V dc-source. PWM Generators with 2 kHz carrier
are employed to control the switching devices. In accordance with Equations (9)—(21) and
(35)-(38), the primary and secondary controls are described in the local rotating reference
frames by means of d-q Parks’ Transformations. The dynamics of the LC filters (22)—(25),
and of the output connectors (26) and (27), and the 3-ph power lines are instead formulated
in the abc frame by using 3-ph Series RLC Branches. Loads consists of 3-ph Parallel RLC
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Loads. The current and voltage outputs of the inner voltage and current Pls, as well as the PWM
modules, are saturated in accordance with the DGs’ rated powers, resp., 380Vph_ph, 32A.
The MG and DGs parameters are listed in Table 1. Lastly, to show the robustness of the
proposed control rule to sudden unplanned events, a 3-ph to ground fault on Line 3 of
Figure 2 will be scheduled throughout the simulation. Then, due to the surge of transient
currents generated by the faults and according to the delays of protection devices, 10 ms
later, two circuit breakers located at the branch buses of DG 3 and DG 4 will isolate the MG
in two portions accordingly with the fault location.

The Runge-Kutta fixed-step solver is employed in the MATLAB environments to carry
out the simulation with sampling time T; = 2 ps. The primary and secondary controllers
have been discretized using a sampling step T; = 500 us. It is also worth mentioning that
all the measurements used for feedback control are affected by realistic measurement noise.
In particular, the MG currents and voltages measurements were first converted into the
4 =20 mA wired protocol with power transmission equal to 0.2 W, and were then corrupted
by an Additive White Gaussian Noise with a realistic Signal-to-Noise Ratio of 90dB [11].

The communication topology is chosen to be connected and undirected as in
Figure 2. Only DG 1 can access the voltage set-point vg from the virtual node 0. Com-
munication delays are time-varying such that, for each oriented link (i, ) € Eny1, T;(t)
is randomly uniformly distributed within the open-interval (—1,1). The delays’ bounds
in (43) are 77 = 07 = 0.03s,and d; = dg = 0.999, VIl and g.

Table 1. Parameters Values for the Microgrid Test System [11].

DG'’s Parameters DG1 DG 2 DG 3 DG4
Droop my 10x 107> 6x107° 4x107° 3x107°
Control no 1x1072 1x102 1x 1072 1x 1072

kpo 0.4 0.4 0.4 0.4
Voltage
Control kio 500 500 500 500
ko 0.5 0.5 0.5 0.5
Current kpc 0.4 0.4 0.4 0.4
Control kic 700 700 700 700
Rf 0.1 0.1 0.1 0.1
LC Filter
[Q], [mH], [wF] Lf 1.35 1.35 1.35 135
Cy 50 50 50 50
Connector R¢ 0.03 0.03 0.03 0.03
[Q2], [mH] L. 0.35 0.35 0.35 0.35
Line 1 Line 2 Line 3
Lines
[Q], [uH] Rpy 0.23 R 0.23 Rj3 0.23
Ly 318 Li 324 Lis 324
Load 1 Load 2 Load 3 Load 4
Loads
[KW], [kVar]  Fr1 3 Prp 3 Pr3 2 Py 3
Qr1 1.5 Q12 1.5 Q13 13 Qua 1.5

4.2. Voltage Secondary Control Implementation

Algorithm 1 has been implemented in the MATLAB environment, and the LMI prob-
lem (1)—(6) built by means of the 1lmiedit symbolic interface. The implementation of
step (b) takes instead the advantage of the feasp LMI solver. Algorithm 1 is initialized
with k = 5 and Ak = 0.01. For the given delays’ bounds and the communication topology
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GN+1, it results in an optimal maximal gain k = k* = 3.42, which corresponds to a delay
stability margin of T* = 0.0781s. On the other hand, the discontinuous gain m; has been set
equal to 140. It is also worth mentioning that to reduce the so-called chattering effect the
sign operator in (35) is approximated as a sigmoidal function, namely sign(a) ~ a/(|a| + ¢)
with ¢ = 0.01, and where a € R denotes the operator argument. Finally the differentiators
gains in (40) are chosen to be large enough. In particular, we set C; = 1000.

4.3. Case Study

The system is tested for 75s, and the delays are randomly initialized as next 7;;(0) €
[0.57*, T*]. The list of events scheduled throughout the test is displayed:

e  Step1(t = 0s): Only the primary control is active with w,; = 2750 Hz, v,;; = 220 Vrms
(per phase rms);

* Step 2 (t = 5s): The voltage control with v,; as in (35)=(38) and vy = 220 Vrys is
activated;

e Step 3 (t = 15/25s): An additional load (Pr3, Qr3) is connected/disconnected at the
bus 3;

* Step 4 (t = 35s): A 3-ph to ground fault occurs on the Line 3;

e  Step 5 (t = 35.1s): Over-current protection devices isolate Line 3, thus DG4 results
electrically isolated;

e Step 6 (t = 45s): The set-point for the voltage Secondary Control is changed to
vo = 225 VRwis;

Consider Figure 4a. In the first five seconds, when only the primary control is active, all
the DG voltages are less than the reference value of 220 Vgys. It is evident that restoration
is needed. Once at t = 55 the proposed voltage control is activated, promptly the DGs’
output voltages are globally, asymptotically, restored to the desired setpoint, despite
the communication delays. Then, the MG operating working points change after the
connection/disconnection of the additional load (Pr3, Qr3) by means of a 3-ph breaker.
This verifies that the proposed controller is robust against unexpected changes of demands.
Moreover, at t = 35 s also a 3-ph to ground fault is triggered on the line between DG 3 and
DG 4. Then, 10 ms later that line is isolated and the MG is sectioned into two sub-MGs, one
consisting of DG 1, DG 2, and DG 3 and the respective loads, and another composed only
of DG 4 and the local load (Pr4, Qr4). From Figure 4a it can be observed that although the
occurrence of such a critical event at t = 35 s, and the fact that now DG 4 is isolated, all the
DG’s voltages remain at the desired nominal setpoint v, = 220 Vryps. Then, att =45s
such a setpoint is changed to vy = 225 Vyy1s. Consequently, all the DG’s voltages converge
to it. Finally, the time evolution of the voltage secondary control signals is shown in
Figure 4b. The results justify that the proposed scheme provides a satisfactory performance
and smooth control signals. Following what was stated in Remark 7, and with the aim
of showing that the achievement of the voltage restoration by means of the proposed
controller does not affect the MG stability, in Figure 3a the DGs’ frequencies measured
by means of 3-phase Phase-Locked Loop sensors deployed at the DGs’ output nodes are
drawn. Then, for the sake of completeness, the temporal response of the DGs” RMS currents
is also further provided in Figure 3b.
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Figure 4. (a) RMS inverter’s output voltages; (b) Secondary voltage restoration control actions.

5. Conclusions

Most of the existing time-delay tolerant MG control protocols are linear. Thus, because
an MG is a strongly nonlinear system, all those approaches can only provide stability fea-
tures in the local sense under additional model approximation or linearization procedures.
Our approach instead improves the current State-of-the-Art by providing stability features
in the large sense by means of a co-design control method, which inherits both the robust-
ness features of the sliding mode control paradigm and the resilience of the LMI-based
controller against network induced time-varying communication delays. Future research
activities will be devoted to removing the assumption of slowly varying delay and will
consider more general communication topologies. Moreover, extensions of the proposed
method to the frequency restoration problem are currently under investigation.
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Appendix A. Graph Theory

A directed graph Gy (V, ) is a topological tool used to describe pairwise interactions
between objects, abstractly referred as nodes, or agents in the multi-agent research area.
The node setis V = {1,2,..., N}, whereas the edges set Ey C {V x V} describe the node’s
pairwise interactions. Let (7,j) € €y, we refer to i; and j as the tail and head of the edge.
The adjacency matrix of Gy is A = [a;] € RN*N and a;; denotes the edge weight. If (i,j) & €
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then aj; = 0, otherwise a;; = 1. A directed path is an alternating sequence of nodes and edges
with both endpoints of an edge appearing adjacent to it in the sequence. Node i is a root node
if it can reached from any other vertex by traversing a directed path. If there exists a root
node then Gy is said to have a spanning tree. Let B = diag{b,...,b,}, with b; = Z]N: 1%ij,
Vi €V, the Laplacian matrix of Gy is L = B — A. Since by construction L1y = Oy, then
1y is an eigenvector of £ associated with a 0 eigenvalue. If (i,j) € £ = (j,i) € £, Gn
is undirected, and it results that £ = LT. An undirected graph is connected if it has not
disconnected nodes.

Proposition 1. (In [38]) If G has a directed spanning-tree then its Laplacian matrix L satisfies:
(a) rank{ L} is equal to N — 1; (b) The rest N — 1 eigenvalues all have positive real part. In
particular, if Gy is undirected and connected, then they are all positive and real.

Appendix B. Stability of Time-Delay Systems
Theorem 2. (Lyapunov-Krasovskii Stability Theorem [34]) Consider the retarded system

X:f(t,xt), Withf:thO XC([—h,O},Rn) — R" (Al)
x(to+60) =¢(0), 6 € [—h,0]

where h > 0 is the delay, ¢ € C(|—h,0],R") the initial condition, x;(0) = x(t+0) : x; €
C([—h,0],R™). If there exist continuous non-decreasing functions u, v, w, such that u(6) > 0
v(0) >0V 0 > 0,and u(0) = v(0) = 0. Let there exists a continuous differentiable functional
V(t,¢) : Rx C([—h,0],R") — R such that

u(l9(0)]) < V(t,9) < o(I9lle-noen) (A2)
V(t9) < —a(lp(O)]) (A3)

then the trivial solution of (A1) is uniformly stable. If additionally w(6) > 0 for 6 > 0, (A1) is
uniformly asymptotically stable. Moreover, if limg_,o, u(6) = +oo, (Al) is globally uniformly
asymptotically stable.

Appendix C. Proof of Lemma 1

Since node 0 is a root node over the graph Gy 41, from Proposition 1, its corresponding
Laplacian matrix

0| 0%
ewn = (318 (A9

has a simple 0 eigenvalue, whereas the rest N — 1 have all positive real part, where
b = [by,...,bN]T € RV is such that rank{[b,C]} = N, with b; = 1if (i,0) € En,1, 0
otherwise. Let us now define F = [f;j] = B+ £, with B = diag{b} € RN*N and L is the
Laplacian matrix associated with the reduced graph Gy (V, £n). It is easy note that F is
diagonally dominant, namely |f;;| > };; fij V i, and symmetric. Thus, the eigenvalues of
F are real and non-negative. Let us now define x = 1yx(, with xy € R and note that the
following continued equality holds

Lx=0 = Bx+Lx=Blyxyg = Fx=Blyx0 = 3 F L (A5

Thus, because of F is invertible, we can conclude that —F is Hurwitz. Let us now
consider the matrices A;(k), and Ag(k) in (1), and matrix ®(k) in (2). By inspection it
results that

q m
k)= Iyo A+ Y A+ Y Ajk) = Iy® A—KF®B with A—(O 1),B_<0 0). (A6)
g=1

0 0 1 2

I=1
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Let D be the matrix which contains the generalized eigenvectors of F as columns, it

results that
A

Jp=D7'FD = (A7)
AN

where A; > 0. Let us now note that the Jordan Canonical representation associated with
matrix (A6) satisfies

A—kMB
Jo = (D—1®12)¢(D®12) —IN®A—kD 'FD®B = . (A8)
A—kANB
Consider, now the eigenpolynomial of ®, we have
N
det{®(k) — sI,} = det{D ! ® L}det{Jp — sLy}det{D ® L,} = H(52 FkAs + 2k/\i). (A9)

i=1

From (A9), we can immediately conclude that the eigenvalues of ®(k) will be strictly
negative for all A;, and k > 0. This conclude the proof of Lemma 1.

Appendix D. Proof of Theorem 1
Let us consider the sliding manifold (36), provided below for the clarities” sake

5i(t) = Vogi(t) + voui(t) — zi(t). (A10)

By substituting the proposed voltage secondary control (35)-(38) into the DG’s voltage
dynamics (31), one has

o] = ALoate] + o 2 )
si(t) = w;(t) — m; - sign(s;(t)). (A12)

For the discontinuous differential Equations (A11) and (A12), their solutions can be
understood in the Filippov sense. Namely, as the solution of an appropriate differential
inclusion, the existence of which is guaranteed and for which its absolute continuity is
in force. The reader is referred to [22] for a comprehensive account of the necessary
notions of non-smooth analysis. Particularly, following Theorem 3 in [22], namely by
differentiating the locally Lipschitz Lyapunov functional V = YN, [s;(t)|, it results that,
except for Lebesgue measure zero points, which can be disregarded, it yields

V< —min{m;—W;} <0, Vt>0. (A13)
icy

Thus, thanks to (33), and m; > FZP , it results that condition s; = $; = 0 is time-invariant
for all + > 0. By substituting u;(t) in (38), and s; = $; = 0, into (A13), the following
secondo-order closed-loop local dynamic takes place

Vodi| _ o [Vodi|  ovm. Vodi (t = Tij(t)) — voaj(t — Tij (1))
|:Uodi] =4 |:00d1':| kB];J“u 1 2] l'Jodi(t—Tij'(t))—%d;‘(f—fij‘(f))} (818

The point now is to find which conditions (A14) have to meet to asymptotically achieve
the control objective (34). Let us first define the following voltage restoration error vector

e(t) = (1(8), ext) .. en(®)T with e(t):[zzgg:zﬂ (A15)
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Consider now (1), by differentiating e;(t), after some algebraic manipulations,
one derives

¢i(t) =A-e(t) — aigkB - ei(t — Tio (1)) + i akB - [ei(t = 7j(t)) —¢;(t — 5i(1))]. (A16)
j=1

Now, in order to provide a compact state-space representation of the networked error

dynamics associated with the vectors (A15), and accordingly with the notation introduced
for the delays in (41) and (42), where g = card{7 (¢)} and m = card{S(t)}, it results

é(t) =Ape(t) + i Ae(t—1(t) + i Age(t —og(1)). (A17)
I=1 g=1

For stability analysis purposes, and on the basis of the so-called Leibniz-Newton
formula we introduce the following transformations

4ﬁ-d0)_ea)—zi(ﬂd@m. (A18)

Hence, from (A18), the networked closed-loop dynamic in (A17) can be recast as next

ZAI/

tTI)

s)ds — 2 Ag / é(s)ds, (A19)

og(t)

where ® = Ag + Z?:l A+ 2?21 A ¢ is, by Lemma 1, Hurwitz. Now, consider the following
Lyapunov-Krasovskii functional

— 9. rt
Vi) =eTPe(t) + 1 [ els)Qels m+§:/ (5)7Qge(s)ds

q 0 t
" 2/ / é(s)TWié(s)dsd6 + 1 Z / / S)TW,é(s)dsdd,  (A20)
=177 Jt+0 og Jt+6

where P, Q;, Qg, W, W € R2N*2N are constant, symmetric, and positive definite matrices
to be determined and 7 is a positive scalar. Let T = max; o {7/, 03} > 0,and let

a(e(t)) = e(t)TPe(t), (A21)

Ble(t)) = e(t)TPe(t +2/ ‘Qe%+2le®wﬂms

771_21/f /t+9é(s)TWlé( )dsdf + 1 Z/ / ¢(s)TW,é(s)dsdd,  (A22)

then, it results that V in (A20) mets the requirements of Theorem 2 in Appendix B, namely,

ale(t)) < V(t) < Ble(t — 7). (A23)

Now, differentiating (A20) along the trajectories of (A19), it follows that
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V() = e(t)T(®TP + PD)e( TPZAl/t Tl(t)é(s)ds—Ze(t)TPgiAg/tigg(t)é(s)ds
073 Qe lil (t = (6T Que(t = () (1 4(1)
+e(t)T Z Qge(t) — gile(t — 0g(£))TQge(t — og(#)) (1 — dg(t))
+ né(t) qu*W,e 172/ (s)TW;é(s)ds
+e(t) Za Weé(t) — 1 Z / (5)TWee(s)ds (A24)

Because of Assumption 2, and by adding to the right-hand side of (A24) the next
identically zero quantity

m
Z TRge Z (7 e( TRge =0,

where R¢ > 0 is a matrix to be determined, (A24) can be upper-estimated as next

V(t) <e(t)T (¢TP+P®+ZQ1+ZQg+ZURg>e TPEAZ/ é(s)ds

= g:l gf t—7 t)
q

— 2¢(t)TP z Ag [ e(s)ds— Y- elt —u(t)TQuelt — u (1)1~ d)

g (t) =1

—Zet—ag )TQge(t — og(t))(1 —dg) 4 né(t) (ZTIWl—l—ZU Wg>e()

=1 g
q t m t
-1 /t_ é(s)TWié(s)ds — i ) / é(s)TWeé(s)ds — e( Z g Rge(t) (A25)
Let us now introduce the following matrix

m 9
H=) oW+ ) 7W, (A26)
g=1 I=1

and, as in [26], the following state vector

t t T
)= |e(®)T, 5(s)Tds, 5(s)Tds | € ROV, A27
(1) <e<> J s, [ ) ) (A27)

Now, by applying the Jensen inequality (7) on the following integral terms

q t ' ) 7 ! ' T g ¢ ‘
—7 l; /t_Tl* é(s)TWé(s)ds < s (/t—rl* e(s)ds) E W (/t—rl* e(s)ds) ,

. . n(rt . Tom b
q; é(s)TWeé(s)ds < —ox </t—0'§* e(s)ds) ; We (/t—a§ e(s)ds) , (A28)

8
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and after substituting (A26), and (A28), the inequality (A25) can further be upper-estimated

as follows
q

V(t) <p(t)TEp(t) + neé(t)THe(t) — IZ e(t —7(t)TQre(t — u(t)) (1 —dy)
=1
(A29)

—e(t)T ilag*Rge(t) - ile(t — g (1))TQge(t — g (t))(1 —dg)
8= 8=

where

OTP+ PO+ Y] Q+ X0, (Qg T agRg) ~2PY] | A, —2PYM Ag
I = —Lyl W O2nx2N . (A30)
1
0 — % Lg=1 Wy

Define now the following augmented state vector

&) =[e)T, e(t—n(t)T, ..., e(t—7(t)T, e(t—ar(t)7,..., e(t—ow(t)T]T, (A31)
then, by substituting (A17) into the second term of (A29), and after lengthy manipulations,

(A29) can finally be recast as next
V(1) < p(H)TZp(t) + 72 (1) TOE(H), (A32)

where © is an upper triangular block matrix in the from

2AJHA, 2AJHA;
2ATHA, 2A]HA;

©11 2AJHA 2AJHA,,
2ATHA,,

©, 2ATHA
0= (A33)
. 24T HA,
®q+m+1,q+m+1
and which diagonal blocks take the following form
1 m
@(1,1) = —5 (Tg*Rg + AgHAo,
g=1
1—-d
®(l+l,1+l) = _( ;7 Z)QZ+A?—HAZI l == 1/2/-‘-;‘]/
(A34)

® _ o)y L ATHA, =12
(14+g+g1+q+g) — — 7 Qg"’ g g &§=4L4...,m
Hence, if the LMIs (3)—(6) are satisfied, then the matrices ¥ in (A30) and ® in (A33)
are negative definite. Therefore, it results that V(¢) < 0 and thus also condition (A3) of

Theorem 2 is satisfied. Moreover, by choosing «(s) as in (A21), it follows that lims_,c a(s) =
+o00, and hence the error vector e(t) globally uniformly converges to zero, which it further

implies the voltage restoration achievement. This concludes the proof.



Energies 2021, 14, 1165 21 of 22

References

1.  Guerrero, ].M.; Vasquez, J.C.; Matas, J.; De Vicufia, L.G.; Castilla, M. Hierarchical control of droop-controlled AC and DC
microgrids—A general approach toward standardization. IEEE Trans. Ind. Electron. 2011, 58, 158-172. [CrossRef]

2. Simpson-Porco, ].W.; Dérfler, F.; Bullo, F. Synchronization and power sharing for droop-controlled inverters in islanded microgrids.
Automatica 2013, 49, 2603-2611. [CrossRef]

3.  Drsilva, S.; Shadmand, M.; Bayhan, S.; Abu-Rub, H. Towards Grid of Microgrids: Seamless Transition between Grid-Connected
and Islanded Modes of Operation. IEEE Open ]. Ind. Electron. Soc. 2020, 1, 66-81. [CrossRef]

4. Lopes, ].P; Moreira, C.; Madureira, A. Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 2006,
21,916-924. [CrossRef]

5. Dorfler, E; Simpson-Porco, ].W.; Bullo, F. Breaking the hierarchy: Distributed control and economic optimality in microgrids.
IEEE Trans. Control Netw. Syst. 2016, 3, 241-253. [CrossRef]

6.  Shafiee, Q.; Guerrero, ]. M.; Vasquez, ].C. Distributed secondary control for islanded microgrids—A novel approach. IEEE Trans.
Power Syst. 2014, 29, 1018-1031. [CrossRef]

7. Simpson-Porco, ] W.; Doérfler, E; Bullo, F. Voltage stabilization in microgrids via quadratic droop control. IEEE Trans. Autom.
Control 2017, 62, 1239-1253. [CrossRef]

8.  Guo, F; Wen, C.; Mao, ].S.Y. Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based
microgrids. IEEE Trans. Ind. Electron. 2015, 62, 4355-4364. [CrossRef]

9. Bidram, A.; Davoudi, A.; Lewis, FL.; Ge, S.S. Distributed adaptive voltage control of inverter-based microgrids. IEEE Trans.
Energy Convers. 2014, 29, 862-872. [CrossRef]

10. Bidram, A.; Davoudi, A.; Lewis, EL.; Qu, Z. Secondary control of microgrids based on distributed cooperative control of
multi-agent systems. IET Gen. Trans. Distrib. 2013, 7, 822-831. [CrossRef]

11. Pilloni, A.; Pisano, A.; Usai, E. Robust Finite-Time Frequency and Voltage Restoration of Inverter-Based Microgrids via Sliding-
Mode Cooperative Control. IEEE Trans. Ind. Electron. 2018, 65, 907-917. [CrossRef]

12. Xu, Y,; Guo, Q.; Sun, H.; Fei, Z. Distributed discrete robust secondary cooperative control for islanded microgrids. IEEE Trans.
Smart Grid 2019, 10, 3620-3629. [CrossRef]

13. Zhang, M,; Li, Y; Liu, F; Lee, WJ.; Peng, Y.; Liu, Y.; Li, W,; Cao, Y. A robust distributed secondary voltage control method for
islanded microgrids. Int. J. Electr. Power Energy Syst. 2020, 121, 105938. [CrossRef]

14. Liu, S.; Wang, X.; Liu, PX. Impact of Communication Delays on Secondary Frequency Control in an Islanded Microgrid. IEEE
Trans. Ind. Electron. 2015, 62, 2021-2031. [CrossRef]

15. Lai, J.; Zhou, H,; Lu, X; Yu, X.; Hu, W. Droop-based distributed cooperative control for microgrids with time-varying delays.
IEEE Trans. Smart Grid 2016, 7, 1775-1789. [CrossRef]

16. Xie, Y.; Lin, Z. Distributed Event-Triggered Secondary Voltage Control for Microgrids With Time Delay. IEEE Trans. Syst. Man
Cybern. Syst. 2019, 49, 1582-1591. [CrossRef]

17.  Jingang, L.; Lu, X.; Monti, A. Distributed secondary voltage control for autonomous microgrids under additive measurement
noises and time delays. IET Gener. Transm. Distrib. 2019, 13, 2976-2985.

18.  Afshari, A.; Karrari, M.; Baghaee, H.R.; Gharehpetian, G.B. Resilient cooperative control of AC microgrids considering relative
state-dependent noises and communication time-delays. IET Renew. Power Gener. 2020, 14, 1321-1331. [CrossRef]

19. Zhao, C.; Sun, W.; Wang, J.; Li, Q.; Mu, D.; Xu, X. Distributed Cooperative Secondary Control for Islanded Microgrid With
Markov Time-Varying Delays. IEEE Trans. Energy Conv. 2019, 34, 2235-2247. [CrossRef]

20. Lou, G,; Gu, W,; Lu, X.; Xu, Y;; Hong, H. Distributed Secondary Voltage Control in Islanded Microgrids With Consideration of
Communication Network and Time Delays. IEEE Trans. Smart Grid 2020, 11, 3702-3715. [CrossRef]

21. Du, Y; Tu, H; Yu, H; Lukic, S. Accurate Consensus-Based Distributed Averaging With Variable Time Delay in Support of
Distributed Secondary Control Algorithms. IEEE Trans. Smart Grid 2020, 11, 2918-2928. [CrossRef]

22. Pilloni, A.; Franceschelli, M.; Pisano, A.; Usai, E. Sliding mode based robustification of consensus and distributed optimization
control protocols. IEEE Trans. Autom. Control 2020, 99, 1. [CrossRef]

23. Sun, Y.G.; Wang, L.; Xie, G. Average consensus in networks of dynamic agents with switching topologies and multiple time-
varying delays. Syst. Control Lett. 2008, 57, 175-183. [CrossRef]

24. Petrillo, A ; Salvi, A.; Santini, S.; Valente, A.S. Adaptive synchronization of linear multi-agent systems with time-varying multiple
delays. J. Frankl. Inst. 2017, 354, 8586—-8605. [CrossRef]

25.  Gholami, M.; Pisano, A.; Usai, E. Robust Distributed Optimal Secondary Voltage Control in Islanded Microgrids with Time-
Varying Multiple Delays. In Proceedings of the 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics
(COMPEL), Aalborg, Denmark, 9-12 November 2020; pp. 1-8.

26. Shi, L.; Zhu, H.; Zhong, S.; Zeng, Y.; Cheng, ]. Synchronization for time-varying complex networks based on control. . Comput.
Appl. Math. 2016, 301, 178-187. [CrossRef]

27. Xin, H.; Qu, Z; Seuss, ].; Maknouninejad, A. A self-organizing strategy for power flow control of photovoltaic generators in a
distribution network. IEEE Trans. Power Syst. 2010, 26, 1462-1473. [CrossRef]

28. Liu, J.; Vazquez, S.; Wu, L.; Marquez, A.; Gao, H.; Franquelo, L.G. Extended state observer-based sliding-mode control for

three-phase power converters. IEEE Trans. Ind. Electron. 2016, 64, 22-31. [CrossRef]


http://doi.org/10.1109/TIE.2010.2066534
http://dx.doi.org/10.1016/j.automatica.2013.05.018
http://dx.doi.org/10.1109/OJIES.2020.2988618
http://dx.doi.org/10.1109/TPWRS.2006.873018
http://dx.doi.org/10.1109/TCNS.2015.2459391
http://dx.doi.org/10.1109/TPEL.2013.2259506
http://dx.doi.org/10.1109/TAC.2016.2585094
http://dx.doi.org/10.1109/TIE.2014.2379211
http://dx.doi.org/10.1109/TEC.2014.2359934
http://dx.doi.org/10.1049/iet-gtd.2012.0576
http://dx.doi.org/10.1109/TIE.2017.2726970
http://dx.doi.org/10.1109/TSG.2018.2833100
http://dx.doi.org/10.1016/j.ijepes.2020.105938
http://dx.doi.org/10.1109/TIE.2014.2367456
http://dx.doi.org/10.1109/TSG.2016.2557813
http://dx.doi.org/10.1109/TSMC.2019.2912914
http://dx.doi.org/10.1049/iet-rpg.2019.1180
http://dx.doi.org/10.1109/TEC.2019.2935501
http://dx.doi.org/10.1109/TSG.2020.2979503
http://dx.doi.org/10.1109/TSG.2020.2975752
http://dx.doi.org/10.1109/TAC.2020.2991694
http://dx.doi.org/10.1016/j.sysconle.2007.08.009
http://dx.doi.org/10.1016/j.jfranklin.2017.10.015
http://dx.doi.org/10.1016/j.cam.2016.01.017
http://dx.doi.org/10.1109/TPWRS.2010.2080292
http://dx.doi.org/10.1109/TIE.2016.2610400

Energies 2021, 14, 1165 22 of 22

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Ahumada, C.; Cérdenas, R.; Saez, D.; Guerrero, ]. M. Secondary control strategies for frequency restoration in islanded microgrids
with consideration of communication delays. IEEE Trans. Smart Grid 2016, 7, 1430-1441. [CrossRef]

Bidram, A.; Davoudi, A.; Lewis, FL.; Guerrero, ].M. Distributed cooperative secondary control of microgrids using feedback
linearization. IEEE Trans. Power Syst. 2013, 28, 3462-3470. [CrossRef]

Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid.
IEEE Trans. Power Electron. 2007, 22, 613-625. [CrossRef]

Pilloni, A.; Pisano, A.; Usai, E. Voltage Restoration of Islanded Microgrids via Cooperative Second-Order Sliding Mode Control.
IFAC-PapersOnLine 2017, 50, 9637-9642. [CrossRef]

Levant, A. Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 2003, 76, 924-941. [CrossRef]
Gu, K; Kharitonov, V.; Chen, J. Stability of Time-Delay Systems. In Control Engineering; Birkhdauser: Boston, FL, USA, 2012.
Fridman, E.; Orlov, Y. Exponential stability of linear distributed parameter systems with time-varying delays. Automatica 2009, 45,
194-201. [CrossRef]

Luo, Y.; Effenberger, F. Timestamp Provisioning in IEEE 802.3. IEEE 802 LAN/MAN Standards Committee. 2009. Available
online: www.ieee802.org/3/time_adhoc/ (accessed on 15 December 2020).

Chen, G.; Lewis, FL. Leader-following control for multiple inertial agents. Int. . Robust Nonlinear Control 2011, 21, 925-942.
[CrossRef]

Olfati-Saber, R.J.; Fax, A.; Murray, R.M. Consensus and cooperation in networked multi-agent systems. Proc. IEEE 2007, 95,
215-233. [CrossRef]


http://dx.doi.org/10.1109/TSG.2015.2461190
http://dx.doi.org/10.1109/TPWRS.2013.2247071
http://dx.doi.org/10.1109/TPEL.2006.890003
http://dx.doi.org/10.1016/j.ifacol.2017.08.1723
http://dx.doi.org/10.1080/0020717031000099029
http://dx.doi.org/10.1016/j.automatica.2008.06.006
www.ieee802.org/3/time_adhoc/
http://dx.doi.org/10.1002/rnc.1642
http://dx.doi.org/10.1109/JPROC.2006.887293

	Introduction
	Literature Review
	Statement of Contributions
	Paper Organization
	Mathematical Notation
	Nomenclature

	Nomenclature
	Microgrid (MG) Modeling for Secondary Control Design
	Voltage Secondary Control Design
	Results and Discussion 
	Test Rig Design
	Voltage Secondary Control Implementation
	Case Study

	Conclusions
	Graph Theory
	Stability of Time-Delay Systems
	Proof of Lemma 1
	Proof of Theorem 1
	References

