48,780 research outputs found

    Domain Adaptive Transfer Learning for Fault Diagnosis

    Full text link
    Thanks to digitization of industrial assets in fleets, the ambitious goal of transferring fault diagnosis models fromone machine to the other has raised great interest. Solving these domain adaptive transfer learning tasks has the potential to save large efforts on manually labeling data and modifying models for new machines in the same fleet. Although data-driven methods have shown great potential in fault diagnosis applications, their ability to generalize on new machines and new working conditions are limited because of their tendency to overfit to the training set in reality. One promising solution to this problem is to use domain adaptation techniques. It aims to improve model performance on the target new machine. Inspired by its successful implementation in computer vision, we introduced Domain-Adversarial Neural Networks (DANN) to our context, along with two other popular methods existing in previous fault diagnosis research. We then carefully justify the applicability of these methods in realistic fault diagnosis settings, and offer a unified experimental protocol for a fair comparison between domain adaptation methods for fault diagnosis problems.Comment: Presented at 2019 Prognostics and System Health Management Conference (PHM 2019) in Paris, Franc

    Gas turbine and sensor fault diagnosis with nested artificial neural networks

    Get PDF
    Accurate gas turbine diagnosis relies on accurate measurements from sensors. Unfortunately, sensors are prone to degradation or failure during gas turbine operations. In this paper a stack of decentralised artificial neural networks are introduced and investigated as an approach to approximate the measurement of a failed sensor once it is detected. Such a system is embedded into a nested neural network system for gas turbine diagnosis. The whole neural network diagnostic system consists of a number of feedforward neural networks for engine component diagnosis, sensor fault detection and isolation; and a stack of decentralised neural networks for sensor fault recovery. The application of the decentralised neural networks for the recovery of any failed sensor has the advantage that the configuration of the nested neural network system for engine component diagnosis is relatively simple as the system does not take into account sensor failure. When a sensor fails, the biased measurement of the failed sensor is replaced with a recovered measurement approximated with the measurements of other healthy sensors. The developed approach has been applied to an engine similar to the industrial 2-shaft engine, GE LM2500+, whose performance and training samples are simulated with an aero-thermodynamic modelling tool — Cranfield University’s TURBOMATCH computer program. Analysis shows that the use of the stack of decentralised neural networks for sensor fault recovery can effectively recover the measurement of a failed sensor. Comparison between the performance of the diagnostic system with and without the decentralised neural networks shows that the sensor recovery can improve the performance of the neural network engine diagnostic system significantly when a sensor fault is present. Copyright © 2004 by ASM

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Argumentation-based fault diagnosis for home networks

    Get PDF
    Home networks are a fast growing market but managing them is a difficult task, and diagnosing faults is even more challenging. Current fault management tools provide comprehensive information about the network and the devices but it is left to the user to interpret and reason about the data and experiment in order to find the cause of a problem. Home users may not have motivation or time to learn the required skills. Furthermore current tools adopt a closed approach which hardcodes a knowledge base, making them hard to update and extend. This paper proposes an open fault management framework for home networks, whose goal is to simplify network troubleshooting for non-expert users. The framework is based on assumption-based argumentation that is an AI technique for knowledge representation and reasoning. With the underlying argumentation theory, we can easily capture and model the diagnosis procedures of network administrators. The framework is rule-based and extensible, allowing new rules to be added into the knowledge base and diagnostic strategies to be updated on the fly.The framework can also utilise external knowledge and make distributed diagnosi

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Modeling Fault Propagation Paths in Power Systems: A New Framework Based on Event SNP Systems With Neurotransmitter Concentration

    Get PDF
    To reveal fault propagation paths is one of the most critical studies for the analysis of power system security; however, it is rather dif cult. This paper proposes a new framework for the fault propagation path modeling method of power systems based on membrane computing.We rst model the fault propagation paths by proposing the event spiking neural P systems (Ev-SNP systems) with neurotransmitter concentration, which can intuitively reveal the fault propagation path due to the ability of its graphics models and parallel knowledge reasoning. The neurotransmitter concentration is used to represent the probability and gravity degree of fault propagation among synapses. Then, to reduce the dimension of the Ev-SNP system and make them suitable for large-scale power systems, we propose a model reduction method for the Ev-SNP system and devise its simpli ed model by constructing single-input and single-output neurons, called reduction-SNP system (RSNP system). Moreover, we apply the RSNP system to the IEEE 14- and 118-bus systems to study their fault propagation paths. The proposed approach rst extends the SNP systems to a large-scaled application in critical infrastructures from a single element to a system-wise investigation as well as from the post-ante fault diagnosis to a new ex-ante fault propagation path prediction, and the simulation results show a new success and promising approach to the engineering domain
    corecore