
Strathprints Institutional Repository

Dong, Changyu and Dulay, Naranker (2011) Argumentation-based fault diagnosis for home
networks. In: 2nd ACM SIGCOMM workshop on Home networks, 2011-08-15.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9034582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Argumentation-based Fault Diagnosis for Home Networks

Changyu Dong
Department of Computing
Imperial College London

changyu.dong@imperial.ac.uk

Naranker Dulay
Department of Computing
Imperial College London

n.dulay@imperial.ac.uk

ABSTRACT
Home networks are a fast growing market but managing
them is a difficult task, and diagnosing faults is even more
challenging. Current fault management tools provide com-
prehensive information about the network and the devices
but it is left to the user to interpret and reason about the
data and experiment in order to find the cause of a prob-
lem. Home users may not have motivation or time to learn
the required skills. Furthermore current tools adopt a closed
approach which hardcodes a knowledge base, making them
hard to update and extend. This paper proposes an open
fault management framework for home networks, whose goal
is to simplify network troubleshooting for non-expert users.
The framework is based on assumption-based argumenta-
tion that is an AI technique for knowledge representation
and reasoning. With the underlying argumentation theory,
we can easily capture and model the diagnosis procedures of
network administrators. The framework is rule-based and
extensible, allowing new rules to be added into the knowl-
edge base and diagnostic strategies to be updated on the
fly.The framework can also utilise external knowledge and
make distributed diagnosis.

Categories and Subject Descriptors
C2.3 [Computer-Communication Networks]:
Network Management

General Terms
Design, Management

Keywords
Fault Diagnosis, Argumentation, Home Networks

1. INTRODUCTION
As of mid 2009, about 180 million of households world-

wide had home networks [16]. By 2030, this number could

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HomeNets’11, August 15, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0798-7/11/08 ...$10.00.

reach 1 billion [12]. The use of in-home wired and wireless
networking allows multiple computers to share connection
to the Internet. However, many user studies have shown
that managing a home network is a necessary and difficult
task for most of households [13, 7, 9]. Among its subtasks,
fault management is perhaps the most challenging for users.

Compared to enterprise networks, home networks are sim-
pler: they are small (an average of six devices per network
as estimated by TDG [12]) and their topologies are often
not complex (one hop). However, unlike enterprise networks
which are managed by skilled network administrators, home
networks are managed by non-expert users who have no for-
mal training on networking and may not have the motiva-
tion or time to learn how to diagnose and repair networking
problems. For many, rebooting or contacting a third party is
the only solution they understand. In addition, most fault
management tools are designed for people with advanced
knowledge of networking. They provide comprehensive in-
formation about the network and the devices, but leave it
to the user to interpret and reason about the data to find
the cause of a problem. Home users are unlikely to be able
to understand the output from such tools, nor do they have
the necessary background knowledge to reach the correct
conclusions.

Clearly fault management in home networks must take
into account the fact that the users have little technical
knowledges. Therefore fault management tools for home
networks must be easy to use and easy to understand: rather
than just presenting networking information, tools must be
able to analyse the data and form decisions based on their
own knowledge. Ideally, the process should be automatic
with minimum user involvement [19]. Although there are
several tools targeted for home network management, their
fault diagnosis capabilities are poor. As an experiment, we
collected 11 home networking faults reported by our col-
leagues and users in internet forums. They are real faults
which have been experienced by one or more users. We re-
produced those faults and tested 3 tools which are available:
the built-in Windows Network Diagnostics tool on Windows
7, Network Magic Pro 5.5 from Cisco Systems [3] and Home-
Net Manager from SingleClick Systems [1]. The results of
the tests are shown in Table 1. In the table, ! means the
tool could identify the fault correctly and × means the tool
could not identify the fault or could not detect any fault.
From the table, we can see that none of the tools could cor-
rectly identify all the faults. In fact, the best tool could only
identify less than half of the faults (5 out of 11). Many faults
were either not detected or misdiagnosed.

37

Fault
Diagnosis

Windows Diagnostics Tool Network Magic pro HomeNet Manager
Network cable is disconnected ! ! !
Network adapter is disabled ! ! !
Conflicting IP address × × ×
Default gateway address is not
configured

× Cable is not con-
nected

There is a problem with
routing table

The Internet connection to the
ISP is broken

! ! !

DNS address is wrong ! × A problem in the service
provider’s network

DNS address is not configured × × A problem in the service
provider’s network

The address pool of the DHCP
server is exhausted

Adapter doesn’t have a
valid IP configuration

Cable is not con-
nected

A problem with routing ta-
ble

An IPSec policy is enabled which
does not allow unsecured commu-
nication

! A problem with the
home router

A problem with the home
router

Domain name resolution error due
to a modified hosts file

The remote device or re-
source won’t accept the
connection

× ×

Firefox is configured to use a
proxy server which is not accessi-
ble at home

× × ×

Table 1: Faults Diagnosis Result

The problem is inherent in their design. The accuracy
of the diagnoses depends largely on the quality and com-
pleteness of the tools’ knowledge bases. This requires the
knowledge bases to be updatable and extensible in order
to accommodate new diagnostic strategies and new faults
which are not considered initially. However, existing tools
adopt a closed framework which hardcodes the knowledge
bases thus make them hard to modify and extend.

In this paper, we describe an open fault management
framework for home networks. The goal of the framework
is to simplify network troubleshooting for non-expert users.
The framework is based on assumption-based argumenta-
tion which is a technique for knowledge representation and
reasoning. The framework is rule-based and extensible, al-
lowing new rules to be added into the knowledge base and di-
agnostic strategies to be modified on the fly. The framework
can also utilise external knowledge and support distributed
diagnosis.

2. RELATEDWORK
A comprehensive survey of network fault diagnosis is pre-

sented in [17]. However, most existing systems target for en-
terprise networks and require users to have in-depth knowl-
edge of networking technologies. As home networks are usu-
ally managed in-house by non-expert users, current systems
are unwieldy to be used.

A recent user study [19] suggests that network diagnosis
tools for home network have to be easy-to-understand and
easy-to-use. To this end, several research activities have
been carried out. HomeMaestro [14] was designed to diag-
nose performance related faults. The system monitors flows
in a home network and detects performance issues by using
time-series and cross-correlation analysis. It can also iden-
tify whether the problems are caused by contention for net-
work resources. However, the system cannot be adopted or
applied for diagnosing non-performance related faults. Net-
Prints [4] allows automated diagnosis of problems caused

by misconfigurations. The system records and aggregates
configurations of network devices from different households.
The configurations are classified as good or bad and are cor-
related to network faults. If a client experiences a recognised
fault in the future, the system can give suggestions on the
client’s configuration. HNDR [8] can log various data in a
home network and later the data can be used in supporting
fault diagnosis.

3. ARGUMENTATION-BASED FAULT
DIAGNOSIS

3.1 Assumption-based Argumentation
Argumentation [10, 6, 5] is the theory about arguments.

In our work, we use assumption-based argumentation [11]
to formalise the fault diagnosis process and to represent
background information regarding faults. In assumption-
based argumentation, arguments are essentially backward
deductions based on logic rules and supported by sets of
assumptions or facts. An argument attacks another if the
first supports the contrary of an assumption in the second.
Computationally, the reasoning process in argumentation
systems can be represented as building a dispute tree. It
mimics the behaviour of human debate: one party (propo-
nent) proposes and tries to defend his theory while another
party (opponent) tries to attack the theory. More formally,
in assumption-based argumentation we have the following
definitions:

Definition 1 ([11]). Given a deductive system (L,R),
with a language L and a set of inference rules R, and a set
of assumptions A ⊆ L, an argument for c ∈ L, i.e. the con-
clusion or claim, supported by S ⊆ A is a tree with nodes
labelled by sentences in L or by the symbol τ which stands
for an empty set of premises, such that:

• the root is labelled by c

38

• for every node N

– if N is a leaf then N is labelled either by an as-
sumption or by τ ;

– if N is not a leaf and lN is the label of N , then
there is an inference rule lN ← b1, ...bm (m ≥
0) and either m = 0 and the child of N is τ or
m > 0 and N has m children, labelled by b1, ...bm
respectively

• S is the set of all assumptions labelling the leaves.

• an argument for claim c supported by a set of assump-
tions S is denoted by S & c

• an argument S1 & c1 attacks an argument S2 & c2 if
and only if the claim c1 of the first argument is the
contrary of one of the assumptions in S2

• a set of arguments Arg1 attacks a set of arguments
Arg2 if an argument in Arg1 attacks an argument in
Arg2

• a set of arguments Arg defends an argument arg if
Arg attacks all arguments that attack arg

The benefit of using assumption-based argumentation as
our theoretical foundation for the fault diagnosis framework
is that it naturally models the fault diagnosis procedure of
network administrators. To diagnose a fault, a network
administrator first needs to propose what are the poten-
tial causes given the symptom. Then the potential causes
are eliminated through a systematic checking process. For
causes that are not eliminated, further investigation needs
to be conducted to identify the root of the problem. This
is exactly how the assumption-based argumentation system
reasons about faults. The symptoms are captured as goals
and the background knowledge is captured as inference rules.
The possible causes are the assumptions. Arguments are
formed regarding the symptom and the assumptions. Ar-
guments may be attacked by other arguments and therefore
eliminated. For arguments which successfully defend, fur-
ther tests will be done to confirm the assumptions.

Let us illustrate it with a simple example. A possible
symptom might be “cannot access the Internet” and two
possible inference rules regarding this symptom might be
“if the network media (cable and wireless) is disconnected,
then the computer cannot access the Internet” and “if the
connection to the ISP is broken, then the computer cannot
access the Internet”. In the fault diagnosis process, the sys-
tem may first assume “the network media is disconnected”
as the cause. The argument “the computer cannot access
the Internet because the network media is disconnected” is
a valid argument supported by the assumption. However,
if there is another inference rule “if we can ping another lo-
cal devices in the network, then the network media is not
disconnected” and a ping test is successful, then another ar-
gument “the network media is not disconnected because can
ping another neighbour in the network”can be formed which
attacks the first one. Since the second argument is based on
a fact and we cannot find other arguments to defend the first
argument, the first argument is eliminated and the system
needs to find a better theory to explain the symptom. An
argument can then be formed based on the assumption “the
connection to the ISP is broken”. An argument which at-
tacks the new argument can be“the connection to the ISP is

not broken because trace route can reach the 2nd hop”. This
time the test fails and trace route gets no response from the
2nd hop, i.e. the ISP’s router. Then the attack fails and the
failed test also confirms the problem is with the connection
to the ISP.

3.2 Fault Diagnosis Rules
In assumption-based argumentation, arguments are de-

ductions using rules in an underlying logic language. The
rules for diagnosing faults can be represented as logic pro-
gramming rules [15] of the form:

L :− L0, ..., Ln, (n ≥ 0).

Here L,L0, ..., Ln are ground literals, i.e. atoms a or nega-
tion of atoms ∼a. L is the head of the rule and the con-
junction L0, ..., Ln is the body of the rule. In fault diagnosis
rules, we have 3 different types of literals:

• Symptom: A symptom literal represents an abnormal-
ity in the home network perceived by the user. For ex-
ample, “cannotConnectInternet”or “cannotUseEmail”.
It serves as the goal of the reasoning and can only be
used in the head of a rule.

• Assumption: Assumption literals can be used in the
head and the body of rules. Given a rule L : −L0, ...,
Ln, (n ≥ 0), if L is a symptom and Lm, 0 ≤ m ≤ n
is an assumption, then the assumption Lm is a pos-
sible cause of the symptom. If L and Lm are both
assumptions, then Lm is a specialisation of L. For ex-
ample, L can be physicalLayerFault and Lm can be
networkMediaDisconnected.

• Test: A test literal represents a test function to be
performed in order to confirm or eliminate an assump-
tion. It can only be used in the body of a rule in which
the head is an assumption literal. The truth value of
a test literal is determined by the result of the linked
test function.

The diagnosis rules in the example in Section 3.1 can be
represented as the following:

cannotConnect(X) :− physicalLayerFault(X).
cannotConnect(X) :− networkLayerFault(X).

physicalLayerFault() :− networkMediaDisconnected().
∼networkMediaDisconnected() :− canP ingNeighbour().

networkLayerFault(X) :− linkToISPBroken(X).
∼linkToISPBroken() :− canReachHop(2).
linkToISPBroken() :− ∼canReachHop(2).

3.3 Dependency Rule
Modern networks follow a layered model. On each layer,

an instance provides services to the instances at the layer
above and requests services from the layer below, which
means a service at the higher layer is functionally dependent
on the lower layer services. Therefore a fault that appears to
be at a higher layer could be actually caused by one or more
faults at a lower layer. For example, a failed DNS query
could be the result of a disconnected cable.

When diagnosing network faults, we need to work in a
bottom-up approach, i.e. start from the lowest layer of the
protocol stack. In our framework, we use dependency rules

39

to specify the order of the inference rules to be taken into the
reasoning. A dependency rule is of the form L1 < L2, where
L1 and L2 are different assumptions. Intuitively, L1 < L2

means L2 is dependent on L1, therefore L2 should only be
taken into account after L1 has been ruled out. For example,
when a computer cannot connect to the Internet, the fault
could be at the physical layer or the data link layer, and
we should always consider the physical layer fault first. The
rules can be expressed as:

cannotConnect(X) : −physicalLayerFault(X).
cannotConnect(X) : −dataLinkLayerFault(X).

physicalLayerFault < dataLinkLayerFault.

If L1 < L2 and in the reasoning process, an acceptable ar-
gument supported by L1 can be derived, then the reasoning
process will stop. By focusing on one layer and one problem
each time, it also makes it easier for fixing multiple faults.
If a fault has been detected and fixed but the symptom re-
mains, then another iteration can start and other faults at
a higher layer can be found subsequently.

3.4 Distributed Diagnosis
When a user observes a certain symptom on a device, the

cause of the symptom can be local or external. To iden-
tify the fault, local knowledge may not enough. For exam-
ple, many problems caused by network contention are hard
to identify with only local knowledge. Sometimes, external
knowledge may also help make the reasoning process more
efficient.

We can obtain external knowledge from neighbours run-
ning our diagnosis framework. For distributed diagnosis, we
attach the following labels to the test literals:

• @external: the test needs to be run on all the neigh-
bours which are currently available. The local device
does not need to run this test.

• @all: the test needs to be run on all neighbours and
the local device.

• all− >: the truth value of the test literal is the con-
junction of the test results from all the neighbours.
The truth value will be true if all the neighbours re-
turn true, will be false otherwise.

• one− >: the truth value of the test literal is the dis-
junction of the test results from all the neighbours.
The truth value will be false if all the neighbours re-
turn false, will be true otherwise.

For example, you have ruled out all the faults at lower
layers and now you suspect you cannot connect to a website
because the remote server is down. This assumption can
easily be proved wrong if one of the devices in the home
network can ping the remote server. These rules can be
captured as the following:

cannotConnect(X) : −remoteServerDown(X).
∼ remoteServerDown(X) : −{@all, one− >}ping(X).

Another example is that you may suspect your network is
slow because someone is downloading using Bittorrent. You
can run a check across all neighbours to see whether they
have a Bittorrent client running:

networkSlow : −bittorrent.
∼ bittorrent : −{@all, all− >} ∼ bittorrentClient.

Another source of external knowledge which is more spe-
cific is from the information plane architecture [18] we have
developed in the Homework project [2]. The information
plane architecture provides network measurements in real-
time, correlates these measurements and low level network
events to generate high-level events which drive management
and makes the measurement data persist for offline analysis.
To utilise the information plane, we use the following label.

• @gw: the test needs to be run with the data from the
information plane architecture. “gw” means gateway.
This is because the current implementation of the ar-
chitecture runs on a Homework router which is the
gateway of the home network.

The information plane architecture can potentially pro-
vide a huge amount of information which is helpful in net-
work fault diagnosis. For example, a common issue in home
networks which can cause connectivity problems is the fire-
wall. Most home routers have built-in firewalls. If certain
rules have been enabled to block traffic, it is usually hard to
find out the problem with only information collected on the
device being blocked. However this would be relative easy
to check in the information plane whether there has been
traffic blocked events recently, e.g. within the last 1 minute,
with matching source/destination addresses. The rules can
be captured as in the following (in the rule the local address
is implicit):

cannotConnect(X) : −blockedByFirewall(X).
blockedByFirewall(X) : −{@gw}blockEvents(X, 60).

3.5 Diagnosis Example
We have written rules for diagnosing all the faults in Ta-

ble 1. The full set of rules can be found in the Appendix.
Here we describe how the system diagnoses a connectivity
problem.

The diagnosis system first builds a dispute tree as shown in
Fig 1. The dispute tree is built automatically using the rules.
In the dispute tree, white nodes are put forward by the pro-
ponent and the grey nodes are put forward by the opponent.
The initial argument proposed by the proponent is that the
problem is caused by a physical layer problem. This argu-
ment is chosen because physicalLayerFault is at the lowest
layer as specified by the dependency rules. The opponent
then proposes an attacking argument that the problem is
not at the physical layer. The argument is supported by the
fact that the error code gathered from the config manager
suggests that each network card works properly. Being at-
tacked and there is no counter-attack, the proponent’s first
argument is not acceptable. The proponent then proposes
the second argument that the problem is caused by a data
link layer problem. This argument is also attacked by the
opponent and not acceptable.

The third argument by the proponent is that the problem
is caused by a network layer problem. The opponent tries
to form an attacking argument. However, the ping test fails
which means the attacking argument is not supported by
ground fact. Since the opponent’s argument is not able to
attack the proponent’s argument, the proponent can go on
develop his argument. There are several more specific rules
about network layer faults. The proponent first tries to ex-
tend his argument by assuming the fault is caused by conflict
IP addresses. Although the opponent cannot propose an at-
tacking argument for this assumption, this assumption is

40

cannot
Connect(*)

physicalLayerFault
(*)

~physicalLayerFault
(*)

nicConfigManager
ErrorCode(0)

attack

dataLinkLayerFault
(*)

~dataLinkLayerFault
(*)

canPingNeighbour
()

attack

networkLayerFault
(*)

~networkLayerFault
(*)

Ping
(74.125.230.112-116)

ipConictEventInSys
Log()

dhcpFailure()conictIP()

~dhcpFailure
()

~staticIP
()

dhcpEnabled
()

canRenewLease
()

~staticIP
()

dhcpEnabled
()

ipInAPIPA
Range()

Figure 1: The Dispute Tree of a Fault Diagnosis Example

not supported by the test result. So the proponent chooses
another assumption that the fault is because of a failure on
the DHCP server. The opponent can propose an attacking
argument, but the following test shows that the computer
cannot renew DHCP lease. Therefore the opponent’s at-
tacking argument is not supported. The proponent goes on
to test his assumption. This time all tests confirm his as-
sumption. In this case, the system makes the decision that
the problem is very likely to be caused by a DHCP failure.

4. IMPLEMENTATION
We have developed a prototype of the argumentation-

based fault diagnosis tool. The prototype has a simple user
interface. The user selects the symptom he has observed in
his home network, and when necessary, a domain name or
IP address of the external website/service he was accessing.
Currently we focus on connectivity issues, but we are also
extending to performance and other problem domains.

The prototype has two main components: the rule engine
and the test functions.

The rule engine is written in Java. It takes as input a
set of rules and reasons about the faults according to the
rules. The rules are written using the syntax we have shown
in Section 3. The rules are parsed and fed into an inter-
preter. The interpreter then starts building arguments from
the symptom input by the user using a backward chaining
algorithm. When a local test is needed as part of the rea-
soning process, it invokes the corresponding test functions.
For remote tests, it can communicate with neighbours and
the information plane residing on the homework router with
UDP.

The test functions are platform dependant. They are
scripts written in script languages, therefore can be created
or modified easily. For example, on Windows platforms, the
test functions are implemented as batch files or Windows
Management Instrumentation (WMI) scripts. The file name
of a test function must correspond to one used in the diag-
nosis rules. When the rule engine encounters a leave node
in the argument trees, it will try to invoke a test function
using the name of the atom.

5. CONCLUSION AND FUTUREWORK
We have presented an argumentation-based fault diagno-

sis framework. It represents knowledge as logic rules and the
reasoning process is very similar to what network adminis-
trators do when diagnosing faults. The rule-based approach
also makes it highly extensible. Rules can be modified or
added without needing to rebuild the system. In addition,
the framework supports distributed fault diagnosis when ex-
ternal knowledge is available.

A critical question all rule-based systems, including ours,
need to solve is how to break the knowledge bottleneck. To
be useful, the system needs high quality rules which cover
all faults or those which are most likely to be encountered in
a home network. This requires significant amount of knowl-
edge regarding network devices, operating systems and ap-
plications. We hope to tackle the problem in a community-
based approach by leveraging shared information across a
large user population. Rules can be submitted and reviewed
by community experts. This development model has been
proven to be more responsive and efficiently than a “closed”
model. Several successful rule-based open source systems,
e.g. Snort intrusion-detection system, are developed using
this model. Since the rules in our system are loosely coupled,
a rule writer doesn’t need comprehensive knowledge about
the whole rule set. He just needs to construct arguments for
and against certain assumptions. This makes it easier for
people to add and modify rules.

Currently the system supports only simple collaborative
tasks, we would like to investigate what additional function-
alities are needed for distributed diagnosis and to improve
it accordingly in the future.

Acknowledgement
This research was supported by the UK’s EPSRC research
grant EP/F064446/1.

6. REFERENCES
[1] Homenet manager.

http://www.softpedia.com/get/Network-
Tools/Network-Tools-Suites/HomeNet-Manager.shtml.

41

[2] The homework project.
http://www.homenetworks.ac.uk/.

[3] Net work magic pro.
http://www.purenetworks.com/product/pro.php.

[4] B. Agarwal, R. Bhagwan, T. Das, S. Eswaran, V. N.
Padmanabhan, and G. M. Voelker. Netprints:
Diagnosing home network misconfigurations using
shared knowledge. In NSDI, pages 349–364, 2009.

[5] L. Amgoud and H. Prade. Using arguments for
making and explaining decisions. Artif. Intell.,
173(3-4):413–436, 2009.

[6] A. Bondarenko, P. M. Dung, R. A. Kowalski, and
F. Toni. An abstract, argumentation-theoretic
approach to default reasoning. Artif. Intell.,
93:63–101, 1997.

[7] A. Brush. IT@home: Often best left to professionals.
In CHI 2006 Workshop: IT@Home, 2006.

[8] K. L. Calvert, W. K. Edwards, N. Feamster, R. E.
Grinter, Y. Deng, and X. Zhou. Instrumenting home
networks. In Proceedings of the 2010 ACM SIGCOMM
workshop on Home networks, HomeNets ’10, pages
55–60, New York, NY, USA, 2010. ACM.

[9] M. Chetty, J.-Y. Sung, and R. E. Grinter. How smart
homes learn: The evolution of the networked home
and household. In J. Krumm, G. D. Abowd,
A. Seneviratne, and T. Strang, editors, Ubicomp,
volume 4717 of Lecture Notes in Computer Science,
pages 127–144. Springer, 2007.

[10] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning and logic
programming. In IJCAI, pages 852–859, 1993.

[11] P. M. Dung, R. A. Kowalski, and F. Toni.
Assumption-based argumentation. In G. Simari and
I. Rahwan, editors, Argumentation in Artificial
Intelligence, pages 199–218. Springer, 2009.

[12] P. Filipovic. The future of home networks - a global
perspective, 2008.

[13] R. E. Grinter, W. K. Edwards, and M. W. Newman.
The work to make a home network work. In
H. Gellersen, K. Schmidt, M. Beaudouin-Lafon, and
W. E. Mackay, editors, ECSCW, pages 469–488.
Springer, 2005.

[14] T. Karagiannis, C. Gkantsidis, P. Key,
E. Athanasopoulos, and E. Raftopoulos.
Homemaestro: Distributed monitoring and diagnosis
of performance anomalies in home networks. Technical
Report MSR-TR-2008-161, Microsoft Reasearch, 2008.

[15] J. W. Lloyd. Foundations of Logic Programming, 2nd
Edition. Springer, 1987.

[16] K. Scherf. Home networks for consumer electronics,
2009.

[17] M. Steinder and A. S. Sethi. A survey of fault
localization techniques in computer networks. Sci.
Comput. Program., 53(2):165–194, 2004.

[18] J. Sventek, A. Koliousis, O. Sharma, N. Dulay,
D. Pediaditakis, M. Sloman, T. Rodden, T. Lodge,
B. Bedwell, K. Glover, and R. Mortier. An
information plane architecture supporting home
network management. In The proceddings of 12th
IFIP/IEEE International Symposium on Integrated
Network Management, 2011.

[19] J. Yang and W. K. Edwards. A study on network
management tools of householders. In Proceedings of
the 2010 ACM SIGCOMM workshop on Home
networks, HomeNets ’10, pages 1–6, New York, NY,
USA, 2010. ACM.

Appendix
% set dependency
physicalLayerFault<dataLinkLayerFault.
dataLinkLayerFault<networkLayerFault.
networkLayerFault<transportLayerFault.
transportLayerFault<applicationLayerFault.
%%%% physical layer problems %%%%%
cannotConnect(X):-physicalLayerFault(X).
% config manager error code 0 means work properly
~physicalLayerFault(_):-nicConfigManagerErrorCode(0).
physicalLayerFault(_):-networkMediaDisconnected().
~networkMediaDisconnected(_):-canPingNeighbour().
networkMediaDisconnected(_):-

allEnabledAdapterStatus(disconnect).
physicalLayerFault(_):-networkAdapterDisabled().
~networkAdapterDisabled(_):-canPingNeighbour().
networkAdapterDisabled(_):-noAdapterEnabled().
%%%% datalink layer problems %%%%%
% currently empty
cannotConnect(X):-dataLinkLayerFault(X).
~dataLinkLayerFault(_):-canPingNeighbour().
%%%% network layer problems %%%%%
cannotConnect(X):-networkLayerFault(X).
% 74.125.230.112-116: addresses of www.google.com
~networkLayerFault(_):-ping(74.125.230.112-116).
networkLayerFault(_):-conflictIP().
conflictIP():-ipConflictEventInSysLog().
networkLayerFault(_):-dhcpFailure().
~dhcpFailure():-~staticIP(),dhcpEnabled(),

canRenewLease().
% APIPA address: 169.254.0.0/16, self assigned
% when DHCP server is not available
dhcpFailure():-~staticIP(),dhcpEnabled(),

ipInAPIPARange().
networkLayerFault(_):-noDefaultGateWay().
noDefaultGateway():-noDefaultRoute().
networkLayerFault(_):-linkToISPBroken(X).
~linkToISPBroken():-canReachHop(2).
linkToISPBroken():- ~canReachHop(2).
networkLayerFault(_):-noDNS().
noDNS():-dnsNotConfigured().
networkLayerFault(_):-ipSec().
% require security means not to communicate
% with non-IPSec nodes
ipSec():-policyAssigned(),requireSecurity().
networkLayerFault(_):-wrongDNSAddress().
wrongDNSAddress():-nslookupFail().
%%%% transport layer problems %%%%%
% currently empty
cannotConnect(X):-transportLayerFault(X).
%%%% Application layer problems %%%%%
cannotConnect(X):-applicationLayerFault(X).
applicationLayerFault(X):-modifiedHostFile(X).
~modifiedHostFile(X):-~isIPAdress(X).
~modifiedHostFile(X):-~inHostFile(X,_).
modifiedHostFile(X):-nsLookup(X,Y),

~inHostFile(X,Y).
applicationLayerFault(X):-deadProxy(X).
~deadProxy(_):-~proxyConfigured(_).
deadProxy(_):-proxyConfigured(X),~ping(X).

42

