1,731 research outputs found

    Data mining in manufacturing: a review based on the kind of knowledge

    Get PDF
    In modern manufacturing environments, vast amounts of data are collected in database management systems and data warehouses from all involved areas, including product and process design, assembly, materials planning, quality control, scheduling, maintenance, fault detection etc. Data mining has emerged as an important tool for knowledge acquisition from the manufacturing databases. This paper reviews the literature dealing with knowledge discovery and data mining applications in the broad domain of manufacturing with a special emphasis on the type of functions to be performed on the data. The major data mining functions to be performed include characterization and description, association, classification, prediction, clustering and evolution analysis. The papers reviewed have therefore been categorized in these five categories. It has been shown that there is a rapid growth in the application of data mining in the context of manufacturing processes and enterprises in the last 3 years. This review reveals the progressive applications and existing gaps identified in the context of data mining in manufacturing. A novel text mining approach has also been used on the abstracts and keywords of 150 papers to identify the research gaps and find the linkages between knowledge area, knowledge type and the applied data mining tools and techniques

    A review of data mining applications in semiconductor manufacturing

    Get PDF
    The authors acknowledge Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) for its financial support via the project UIDB/00667/2020 (UNIDEMI).For decades, industrial companies have been collecting and storing high amounts of data with the aim of better controlling and managing their processes. However, this vast amount of information and hidden knowledge implicit in all of this data could be utilized more efficiently. With the help of data mining techniques unknown relationships can be systematically discovered. The production of semiconductors is a highly complex process, which entails several subprocesses that employ a diverse array of equipment. The size of the semiconductors signifies a high number of units can be produced, which require huge amounts of data in order to be able to control and improve the semiconductor manufacturing process. Therefore, in this paper a structured review is made through a sample of 137 papers of the published articles in the scientific community regarding data mining applications in semiconductor manufacturing. A detailed bibliometric analysis is also made. All data mining applications are classified in function of the application area. The results are then analyzed and conclusions are drawn.publishersversionpublishe

    A Bayesian network based learning system for modelling faults in large-scale manufacturing

    Get PDF
    Manufacturing companies can benefit from the early prediction and detection of failures to improve their product yield and reduce system faults through advanced data analytics. Whilst an abundance of data on their processing systems exist, they face difficulties in using it to gain insights to improve their systems. Bayesian networks (BNs) are considered here for diagnosing and predicting faults in a large manufacturing dataset from Bosch. Whilst BN structure learning has been performed traditionally on smaller sized data, this work demonstrates the ability to learn an appropriate BN structure for a large dataset with little information on the variables, for the first time. This paper also demonstrates a new framework for creating an appropriate probabilistic model for the Bosch dataset through the selection of statistically important variables on the response; this is then used to create a BN network which can be used to answer probabilistic queries and classify products based on changes in the sensor values in the production process.<br/

    Anomaly Detection in Batch Manufacturing Processes Using Localized Reconstruction Errors From 1-D Convolutional AutoEncoders

    Get PDF
    Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams

    Anomaly Detection in Batch Manufacturing Processes using Localised Reconstruction Errors from 1-Dimensional Convolutional AutoEncoders

    Get PDF
    Multivariate batch time-series data sets within Semiconductor manufacturing processes present a difficult environment for effective Anomaly Detection (AD). The challenge is amplified by the limited availability of ground truth labelled data. In scenarios where AD is possible, black box modelling approaches constrain model interpretability. These challenges obstruct the widespread adoption of Deep Learning solutions. The objective of the study is to demonstrate an AD approach which employs 1-Dimensional Convolutional AutoEncoders (1d-CAE) and Localised Reconstruction Error (LRE) to improve AD performance and interpretability. Using LRE to identify sensors and data that result in the anomaly, the explainability of the Deep Learning solution is enhanced. The Tennessee Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been utilised to validate the proposed framework. The results show that the proposed LRE approach outperforms global reconstruction errors for similar model architectures achieving an AUC of 1.00. The proposed unsupervised learning approach with AE and LRE improves model explainability which is expected to be beneficial for deployment in semiconductor manufacturing where interpretable and trustworthy results are critical for process engineering teams

    Generic and configurable diagnosis function based on production data stored in Manufacturing Execution System

    No full text
    International audienceThe paper proposes a diagnosis approach corresponding to the specific MES level to provide information on the origins of a performance indicator degradation. Our key distribution is the proposal of a set of potential causes that may impact the successful completion of production operations, such as the operator stress, quality of material, equipment or recipe change and their characteristic parameters by exploiting MES historical database. We use Bayesian Network model to diagnose the potential failure causes and support effective human decisions on corrective actions (maintenance, human resource planning, recipe re-qualification, etc) by computing conditional probabilities for each suspected proposed causes

    Dynamic structure identification of Bayesian network model for fault diagnosis of FMS

    No full text
    International audienceThis paper proposes an approach to accurately localize the origin of product quality drifts, in a flexible manufacturing system (FMS). The logical diagnosis model is used to reduce the search space of suspected equipment in the production flow; however, it does not help in accurately localizing the faulty equipment. In the proposed approach, we model this reduced search space as a Bayesian network that uses historical data to compute conditional probabilities for each suspected equipment. This approach helps in making accurate decisions on localizing the cause for product quality drifts as either one of the equipment in production flow or product itself

    Review of Health Prognostics and Condition Monitoring of Electronic Components

    Get PDF
    To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis techniques play an essential role. It is vital to find flaws at an early stage in design, components, material, or manufacturing during the initial phase. This review paper attempts to summarize past development and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL) prediction, and like. The current state of the art in reliability research for electronic components, mainly includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies' vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and the central research gap is highlighted

    Effective Maintenance by Reducing Failure-Cause Misdiagnosis in Semiconductor Industry (SI)

    Get PDF
    Increasing demand diversity and volume in semiconductor industry (SI) have resulted in shorter product life cycles. This competitive environment, with high-mix low-volume production, requires sustainable production capacities that can be achieved by reducing unscheduled equipment breakdowns. The fault detection and classification (FDC) is a well-known approach, used in the SI, to improve and stabilize the production capacities. This approach models equipment as a single unit and uses sensors data to identify equipment failures against product and process drifts. Besides its successful deployment for years, recent increase in unscheduled equipment breakdown needs an improved methodology to ensure sustainable capacities. The analysis on equipment utilization, using data collected from a world reputed semiconductor manufacturer, shows that failure durations as well as number of repair actions in each failure have significantly increased. This is an evidence of misdiagnosis in the identification of failures and prediction of its likely causes. In this paper, we propose two lines of defense against unstable and reducing production capacities. First, equipment should be stopped only if it is suspected as a source for product and process drifts whereas second defense line focuses on more accurate identification of failures and detection of associated causes. The objective is to facilitate maintenance engineers for more accurate decisions about failures and repair actions, upon an equipment stoppage. In the proposed methodology, these two lines of defense are modeled as Bayesian network (BN) with unsupervised learning of structure using data collected from the variables (classified as symptoms) across production, process, equipment and maintenance databases. The proofs of concept demonstrate that contextual or statistical information other than FDC sensor signals, used as symptoms, provide reliable information (posterior probabilities) to find the source of product/process quality drifts, a.k.a. failure modes (FM), as well as potential failure and causes. The reliability and learning curves concludes that modeling equipment at module level than equipment offers 45% more accurate diagnosis. The said approach contributes in reducing not only the failure durations but also the number of repair actions that has resulted in recent increase in unstable production capacities and unscheduled equipment breakdowns
    • …
    corecore