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Abstract 
Multivariate batch time-series data sets within Semiconductor 

manufacturing processes present a difficult environment for effective 
Anomaly Detection (AD). The challenge is amplified by the limited 
availability of ground truth labelled data. In scenarios where AD is possible, 
black box modelling approaches constrain model interpretability. These 
challenges obstruct the widespread adoption of Deep Learning solutions.  The 
objective of the study is to demonstrate an AD approach which employs 1-
Dimensional Convolutional AutoEncoders (1d-CAE) and Localised 
Reconstruction Error (LRE) to improve AD performance and interpretability. 
Using LRE to identify sensors and data that result in the anomaly, the 
explainability of the Deep Learning solution is enhanced. The Tennessee 
Eastman Process (TEP) and LAM 9600 Metal Etcher datasets have been 
utilised to validate the proposed framework. The results show that the 
proposed LRE approach outperforms global reconstruction errors for similar 
model architectures achieving an AUC of 1.00. The proposed unsupervised 
learning approach with AE and LRE improves model explainability which is 
expected to be beneficial for deployment in semiconductor manufacturing 
where trustworthy results are critical and interpretable by process 
engineering teams.  

Index Terms - Deep Learning, Fault Detection and 
Classification, Semiconductor Manufacturing, Convolutional 
AutoEncoder, Reconstruction Error 

I. INTRODUCTION

dvanced Semiconductor manufacturing has pushed 
existing Machine Learning (ML) [1] approaches to the 

limits of their capability, leading many practitioners to seek 
improved performance through data-driven Deep Learning 
(DL) approaches. Fault Detection and Classification (FDC) [2]
also referred to as Anomaly Detection (AD), defines the
approach where anomalous operating equipment conditions can
be detected through the real-time processing of time-series
sensor data generated during wafer processing. Semiconductor
processes operate in a multi-re-entrant, batch manufacturing
environment accompanied by inherent variability within
processes that utilise consumable parts [2]. Batch
manufacturing refers to the mode in which equipment sets are
operated with a predefined recipe of which there are multiple
phases executed within a standard process duration. Traditional
ML in this context is one where data is manually pre-processed,
features engineered and selected by a human in the loop, and

established workflows that heavily leverage empirical 
knowledge and subject matter expertise. Comparisons have 
been carried out [3] that implement this paradigm and 
demonstrate that the approach is viable. However, when a 
representative feature space is created through the aggregation 
of time-series signals, information loss is likely, therefore 
decreasing the capacity for an algorithm to detect anomalies [4]. 
Historical FDC approaches have involved Principle 
Components Analysis (PCA)[5], clustering methods such as k-
Means or k-Nearest Neighbours (kNN) [6], Support Vectors 
[7], Decision Trees [8] or an ensemble of ML techniques [9]. 
However, in these instances, the modelled domain space is 
reduced through data aggregation, feature engineering and 
feature removal through a selection process. Deep Learning 
(DL) has been demonstrated to outperform traditional ML
approaches and even human-level performance [10]. Although
there are several fields of interest within DL, AutoEncoders
(AE’s) are effective in unsupervised AD [11] and
dimensionality reduction [12]. AE’s with Dense layers have
been applied for AD [13] in batch manufacturing. However,
Dense AE’s are rigid in their network architecture potentially
reducing the network's ability to capture time-based feature
variation, resulting in less accurate models [14]. An alternative
approach is a Convolutional AutoEncoder (CAE), created
through the stacking of several non-linear layers that enable the
network to extract hierarchical high-level features.
Convolutional layers reduce the feature space through Pooling
or increased kernel strides [14] and have been shown to perform
well as feature extractors [12]. A 2D-Convolutional layer is
preferred if data is related across both the x and y-axis [15].
Conversely, where inputs have only one axis of information
dependence, a 1d-Convolutional layer is more suited to the
input data shape [14]. 1d-CAEs are proficient extractors of
high-level features along a single input axis [16]. For
manufacturing use cases, the 1d-Convolutional kernel is
applied along the time-dependent axis with the remaining axis
containing input sensors [17]. Maggipinto et al [18] have
implemented a hybrid approach where the 1d-CAE is used as a
feature extractor for traditional ML AD algorithms. Zhang et al
[19] implement a hybrid adoption of 1d-Convolutional layers
for unsupervised feature extraction for other models. It is 
observed that 1d-Convolutional layers achieve high 
performance for feature extraction [14] in classification 
frameworks, however, a significant limitation is a requirement 
for the existence of labelled data. It is also noted that traditional 
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Unsupervised ML AD approaches can benefit from 1d-CAE 
feature extraction [18]. However, a limitation of implementing 
the traditional ML techniques is the reduction of modelled 
feature space, creating further abstraction from the raw time-
series trace data that decreases the interpretability of 
predictions. Here we propose a solution based on reconstruction 
error with 1d-CAE which preserves the entire trace for review 
by engineering teams.  

II. DATA DESCRIPTION 

 In this study, there are two datasets used to validate the 
proposed methodology. The Tennessee Eastman Process (TEP) 
and LAM 9600 Metal Etcher datasets are recognised 
benchmarks for AD in manufacturing experiments. The TEP 
dataset was initially introduced as an example for multivariate 
monitoring and control. For this experiment, fault classes 3, 9 
and 15 have been removed as it has been previously reported 
that they lack observable deviation in mean or variance within 
the features [20]. Similarly, within the LAM 9600 Metal Etcher 
dataset, there are 19 input features along with varying process 
lengths. When comparing the 2 datasets, this dataset's contents 
are much closer to the process outputs observed in 
Semiconductor processing. Unlike the TEP dataset, the number 
of sample observations is limited. However, within the Metal 
Etcher dataset of 107 observations, there are 3 distinct 
experimental scenarios from which data is collected: 
Experiment 1 – 34 normal and 9 anomalies, Experiment 2 - 36 
normal and 5 anomalies, Experiment 3 - 37 normal and 6 
anomalies. Within the experiments, anomalies are determined 
based on an unsupervised thresholding method, however, 
retrospectively, predictions are assessed to determine the 
algorithm performance.  

III. METHODOLOGY 

A model training approach that facilitates the Subject Matter 
Expert (SME) to define a known good period of operation, also 
known as a ‘Golden Fingerprint’, in which the data sample 
accurately describes the intended mode of equipment operation. 
This approach is common practice within Semiconductor 
manufacturing and overcomes the need for detailed multi-class 
failure modes. The process of training the AE on known good 
process operation creates a novelty boundary i.e., an error 
threshold. The main assumptions within this framework are that 
the ‘Golden Fingerprint’ is an adequate representative sample 
that encompasses all ‘acceptable’ process variation and within 

future fault situations, error rates are sufficiently large for novel 
data and thus exceed the defined novelty boundary. Within the 
experiment, Nested Cross-Validation (nCV) is leveraged to 
optimise hyper-parameters and ensure generalisation 
performance is estimated thoroughly [21]. 

The 1d-CAE network is configured such that an encoder and 
decoder are symmetric in shape. The design forces the input 
shape to be condensed through 1d-Convolutional layers and 
reconstructed in the decoder using 1d-ConvolutionalTranspose 
Layers, where an identical shape to the input is produced. The 
shape dimensions are required to be identical so that loss can be 
measured across the network. Offline training generates an 
effective model that has learned the necessary novelty 
boundaries of known good observations and to determine 
appropriate threshold boundaries against which new 
observations are evaluated. Increased Convolutional kernel 
strides are preferred to pooling layers to reduce dimensionality 
and early stopping is implemented to monitor training loss. 
Train set normalisation weights, the trained model and the 
reconstruction error thresholds generated in the offline training 
process are preserved for online inference. At each 
Convolutional layer the Rectified Linear Activation Unit 
(ReLU) activation function is used. Adam is the chosen 
network optimiser which works to maintain parameter-specific 
learning rates that improve performance in sparse gradients 
whilst also taking per-parameter learning rates based on recent 
mean magnitudes of weight gradients resulting in a model that 
performs well in non-stationary scenarios.   

Reconstruction error is the approach to calculating the 
difference between an input to a network and the reconstructed 
output. The lower the error in reconstruction the less likely it is 
that the given observation is an anomaly. Where the encoder 𝑔  
and decoder 𝑓  are applied to input observations to generate a 
reconstruction from which relative errors can be derived. There 
are several methods to calculate reconstruction error, within this 
study Mean Absolute Error (MAE), Mean Squared Error (MSE) 
and Root Mean Square Error (RMSE) are evaluated. In the 
context of 1d-CAEs, each observation input column represents 
a different sensor, which has its specific error distribution. 
Condensing the reconstruction error into global representative 
statistics results in channel-specific error signals being 
diminished within the global error distribution. For this reason, 
a Localised Reconstruction Error (LRE) is preferred to Global 
Reconstruction Error (GRE) due to the independence given to 
each input channel or sensor when evaluating reconstruction 

TABLE I 
OUTER FOLD RESULTS FOR PROPOSED METHODOLOGY COMPARED TO SIMILAR STUDIES ON TEP DATASET 

 

Ref Network Type Fault Labels Included Metric Result 

Proposed 1d-CAE with Localised Reconstruction Error  1,2,4,5,6,7,8,10,11,12,13,14,16,17,18,19,20 AUC 1.00 

[14] 1d-CAE 4,6,9,11,12,13 Accuracy 96.3 

[19] 1d Convolutions & SDAE 4,5,9,11,14 Recognition Rate 93.29 

[23] Variational Recurrent AutoEncoder 1,2,4,6,7,8,10,11,12,13,14,15,16,17,18,19,20 Accuracy 96.3 

[22] 2d Convolutions & Generative model 1,2,4,6,8,12 Accuracy 97.87 
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error thresholds. Each channel is evaluated separately, and 
subsequently, an aggregation of all channels occurs such that if 
any resulting channel returns an anomalous result the entire 
observation is registered as anomalous. Area Under the Curve 
(AUC) of the Receiver Operating Characteristics (ROC) is the 
preferred performance metric applied here. 

IV. EXPERIMENTAL RESULTS 

Table I presents the experimental results of the proposed 1d-
CAE with the LRE algorithm when compared to similar studies 
applying deep learning networks to the TEP dataset for FDC. 
Within the table, the general network style, chosen metric of 
evaluation and fault categories included in the experiment are 
compiled. While including more fault categories within the 
experiment the proposed method outperforms a 1d-CAE feature 
learning approach with a SoftMax classifier [14], semi-
supervised deep generative model [22] and a stacked denoising 
autoencoder method [19] when comparing the rate of AD 
achieved. Furthermore, for a similar number of fault categories 
included in the experiment, the proposed 1d-CAE with LRE has 
achieved a higher AD rate than an approach based on 
variational recurrent autoencoders [23]. The result achieved 
here demonstrates that the proposed method generalises well 
across multiple fault scenarios when compared to alternative 
approaches. As the LAM 9600 experiment observation number 
is small when compared to the TEP dataset, this renders nCV 
impractical, therefore, the best hyperparameter settings that are 
obtained through the TEP experiment are used as the default 
settings in the LAM 9600 Etcher new training network. Table 
II details the hyperparameters which obtained the best results 
within the nCV experimental framework from the TEP dataset 
and were successfully used in the LAM etcher experiment. 
Overall, the results achieved across several parameter setups 
highlight that a smaller kernel size is preferred as well as the 
MAE reconstruction approach. Conversely, the Loss function 
has a negligible impact on the model performance, as shown in 
Table II. Comparing experiments applied to the LAM 9600 
etcher dataset, the proposed 1d-CAE with LRE outperforms 
both a traditional ML framework [24] and a Bayesian approach 
[25] as shown in Table III. Solely using reconstruction errors 
facilitate the decomposition of actual inputs and predicted 
observations from the model to improve explainability. Figure 
1 is a decomposition of the raw reconstruction errors for several 
samples which are both faults and normal observations from the 
TEP dataset. The decomposition demonstrates how the 
proposed architecture can be leveraged to improve prediction 
interpretability. In detail, fault 6 (plot label 6 in Figure 3) is a 
failure across several sensors and throughout the processing 

duration after the event of fault occurrence. However, in 
contrast, fault 4 is more isolated and occurs only on a subset of 
sensors. Furthermore, fault 5 is extremely subtle highlighting 
the approach's interpretability and sensitivity to different fault 
categories.  

V. DISCUSSION  

In this study, we demonstrate the 1d-CAE DL algorithm 
combined with local error reconstruction outperforms 
alternative approaches benchmarks in batch manufacturing. 
Considering algorithm performance, maximum accuracies can 
be achieved using both LRE and GRE, as shown in Tables II, 
however, improved robustness is demonstrated when 
byChannel LRE is used. Furthermore, the reconstruction error 
method preserves the point-to-point error rates providing the 
opportunity to review detailed predictions thus creating a 
transparent model. Interpretability is addressed in several of the 
comparative studies, however, only at the global scale through 
the clustering of latent network node weights [14], [19]. To 
encourage further solution adoption, predicted observation 
interpretability is required. The proposed approach leverages 
reconstruction errors, shown in figure 1 as a core component 
that identifies the regions of a higher error rate by observation. 
Similar studies that implement a classification approach are 
restricted in the number of anomalies that can be detected by 
the model. However, the proposed thresholding approach is 
suited to infinite fault scenarios as there is no prescribed 
fingerprint of a fault, only that the defined anomaly threshold 
has been breached. Also, the reconstruction error 
decomposition facilitates the requirement that future features of 
importance remain in the domain space. Model training on a 
‘golden fingerprint’ allows the network to effectively generate 
the novelty boundary that facilitates infinite fault category 
generalisation for future unknown fault scenarios observed in 
the dataset. 

TABLE II 
TEP INNER LOOP HYPER-PARAMETER MEAN AUC 

 

 

mae mse rmse mae mse rmse
mae 0.938 0.952 0.937 0.845 0.918 0.908
mse 0.937 0.951 0.937 0.833 0.903 0.887
mae 0.955 0.969 0.950 0.864 0.935 0.932
mse 0.949 0.968 0.948 0.868 0.936 0.934
mae 0.974 0.968 0.972 0.902 0.940 0.937

mse 0.974 0.970 0.974 0.904 0.941 0.939
mae 0.965 0.963 0.962 0.842 0.921 0.912
mse 0.959 0.963 0.957 0.866 0.928 0.924
mae 0.972 0.967 0.971 0.910 0.941 0.939
mse 0.973 0.969 0.973 0.914 0.942 0.940
mae 0.933 0.946 0.935 0.758 0.846 0.812
mse 0.923 0.949 0.923 0.714 0.827 0.768
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TABLE III 
MEAN AUC ACHIEVED FOR THE 3 EXPERIMENTAL SCENARIOS 

WITHIN THE LAM 9600 METAL ETCHER DATASET 
  

Ref Approach Metric Result 
Proposed Proposed Method AUC 1.00 

[24] Traditional ML AUC 0.94 
[26] GMM & Bayesian Method Accuracy 0.90 

 

 
 
Figure 1 – Reconstruction Error Decomposition for a subset of normal and 
fault categories from the TEP dataset. In these examples, time and sensors are 
represented on the y and x axis respectively, with the colour representing the 
magnitude of reconstruction error 
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VI. CONCLUSIONS AND FURTHER WORK 

This study has demonstrated that the 1d-CAE algorithm 
applied with LRE for anomaly detection outperforms existing 
studies that use the TEP and LAM 9600 datasets. Using the 
experimental paradigm, the models trained using known 
‘Golden Fingerprint’ observations can effectively learn a 
novelty boundary, outside of which anomalous operating 
scenarios can be identified. Furthermore, the study has 
demonstrated that AD model explainability can be improved 
greatly using the local reconstruction error methodology. The 
LRE approach provides independence to each feature when 
determining the observation result whilst maintaining the 
granularity required to decompose features along the time-
dependent axis so that consumers of the algorithm results can 
better understand the mechanistic reason for the fault from a 
process perspective. The improved explainability accompanied 
by the unsupervised algorithm configuration framework results 
in a solution for model development with a potential for 
reduced cost of ownership to engineering teams in a production 
factory deployment environment. Further experimentation is 
required to explore the impact of various contamination 
percentages of anomalies in the training data. Similarly, the 
base assumption of reconstruction error-based methods is the 
anomalous behaviour far enough deviates from the training data 
to break the error threshold. A potential issue for 
Semiconductor AD applications is the seasonality, non-
stationary and multi-modal data scenarios introduced through 
natural process variation and consumable equipment parts 
ageing. Some of this variation can be accounted for within the 
model, however, large deviations from the original training data 
will increase the likelihood of an increased false positive rate. 
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