653 research outputs found

    Quality 4.0 in action: Smart hybrid fault diagnosis system in plaster production

    Get PDF
    UIDB/00066/2020Industry 4.0 (I4.0) represents the Fourth Industrial Revolution in manufacturing, expressing the digital transformation of industrial companies employing emerging technologies. Factories of the future will enjoy hybrid solutions, while quality is the heart of all manufacturing systems regardless of the type of production and products. Quality 4.0 is a branch of I4.0 with the aim of boosting quality by employing smart solutions and intelligent algorithms. There are many conceptual frameworks and models, while the main challenge is to have the experience of Quality 4.0 in action at the workshop level. In this paper, a hybrid model based on a neural network (NN) and expert system (ES) is proposed for dealing with control chart patterns (CCPs). The idea is to have, instead of a passive descriptive model, a smart predictive model to recommend corrective actions. A construction plaster-producing company was used to present and evaluate the advantages of this novel approach, while the result shows the competency and eligibility of Quality 4.0 in action.publishersversionpublishe

    Condition diagnosis of bearing system using multiple classifiers of ANNs and adaptive probabilities in genetic algorithms

    Get PDF
    Condition diagnosis in bearing systems needs an effective and precise method to avoid unacceptable consequences from total system failure. Artificial Neural Networks (ANNs) are one of the most popular methods for classification in condition diagnosis of bearing systems.Regarding to ANNs performance, ANNs parameters have important role especially connectivity weights.In several running of learning processes with the same structure of ANNs, we can obtain different accuracy significantly since initial weights are selected randomly. Therefore, finding the best weights in learning process is an important task for obtaining good performance of ANNs.Previous researchers have proposed some methods to get the best weights such as simple average and majority voting.However, these methods have some limitations in providing the best weights especially in condition diagnosis of bearing systems.In this paper, we propose a hybrid technique of multiple classifier-ANNs (mANNs) and adaptive probabilities in genetic algorithms (APGAs) to obtain the best weights of ANNs in order to increase the classification performance of ANNs in condition diagnosis of bearing systems. The mANNs are used to provide several best initial weights which are optimized by APGAs.The set optimized weights from APGAs, afterward, are used as the best weights for condition diagnosis. Our experiment shows mANNs-APGAs give better results than of the simple average and majority voting in condition diagnosis of bearing systems.This experiment also shows the distinction of maximum and minimum accuracy in mANNs-APGAs is lower than the two existing methods

    Enhanced genetic algorithm-based back propagation neural network to diagnose conditions of multiple-bearing system

    Get PDF
    Condition diagnosis of critical system such as multiple-bearing system is one of the most important maintenance activities in industry because it is essential that faults are detected early before the performance of the whole system is affected. Currently, the most significant issues in condition diagnosis are how to improve accuracy and stability of accuracy, as well as lessen the complexity of the diagnosis which would reduce processing time. Researchers have developed diagnosis techniques based on metaheuristic, specifically, Back Propagation Neural Network (BPNN) for single bearing system and small numbers of condition classes. However, they are not directly applicable or effective for multiple-bearing system because the diagnosis accuracy achieved is unsatisfactory. Therefore, this research proposed hybrid techniques to improve the performance of BPNN in terms of accuracy and stability of accuracy by using Adaptive Genetic Algorithm and Back Propagation Neural Network (AGA-BPNN), and multiple BPNN with AGA-BPNN (mBPNNAGA- BPNN). These techniques are tested and validated on vibration signal data of multiple-bearing system. Experimental results showed the proposed techniques outperformed the BPPN in condition diagnosis. However, the large number of features from multiple-bearing system has affected the complexity of AGA-BPNN and mBPNN-AGA-BPNN, and significantly increased the amount of required processing time. Thus to investigate further, whether the number of features required can be reduced without compromising the diagnosis accuracy and stability, Grey Relational Analysis (GRA) was applied to determine the most dominant features in reducing the complexity of the diagnosis techniques. The experimental results showed that the hybrid of GRA and mBPNN-AGA-BPNN achieved accuracies of 99% for training, 100% for validation and 100% for testing. Besides that, the performance of the proposed hybrid accuracy increased by 11.9%, 13.5% and 11.9% in training, validation and testing respectively when compared to the standard BPNN. This hybrid has lessened the complexity which reduced nearly 55.96% of processing time. Furthermore, the hybrid has improved the stability of the accuracy whereby the differences in accuracy between the maximum and minimum values were 0.2%, 0% and 0% for training, validation and testing respectively. Hence, it can be concluded that the proposed diagnosis techniques have improved the accuracy and stability of accuracy within the minimum complexity and significantly reduced processing time

    The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Explainable Neural Networks based Anomaly Detection for Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) are the core of modern critical infrastructure (e.g. power-grids) and securing them is of paramount importance. Anomaly detection in data is crucial for CPS security. While Artificial Neural Networks (ANNs) are strong candidates for the task, they are seldom deployed in safety-critical domains due to the perception that ANNs are black-boxes. Therefore, to leverage ANNs in CPSs, cracking open the black box through explanation is essential. The main objective of this dissertation is developing explainable ANN-based Anomaly Detection Systems for Cyber-Physical Systems (CP-ADS). The main objective was broken down into three sub-objectives: 1) Identifying key-requirements that an explainable CP-ADS should satisfy, 2) Developing supervised ANN-based explainable CP-ADSs, 3) Developing unsupervised ANN-based explainable CP-ADSs. In achieving those objectives, this dissertation provides the following contributions: 1) a set of key-requirements that an explainable CP-ADS should satisfy, 2) a methodology for deriving summaries of the knowledge of a trained supervised CP-ADS, 3) a methodology for validating derived summaries, 4) an unsupervised neural network methodology for learning cyber-physical (CP) behavior, 5) a methodology for visually and linguistically explaining the learned CP behavior. All the methods were implemented on real-world and benchmark datasets. The set of key-requirements presented in the first contribution was used to evaluate the performance of the presented methods. The successes and limitations of the presented methods were identified. Furthermore, steps that can be taken to overcome the limitations were proposed. Therefore, this dissertation takes several necessary steps toward developing explainable ANN-based CP-ADS and serves as a framework that can be expanded to develop trustworthy ANN-based CP-ADSs

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    Third Conference on Artificial Intelligence for Space Applications, part 1

    Get PDF
    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed

    Intelligent Data Fusion for Applied Decision Support

    Get PDF
    Data fusion technologies are widely applied to support a real-time decision-making in complicated, dynamically changing environments. Due to the complexity in the problem domain, artificial intelligent algorithms, such as Bayesian inference and particle swarm optimization, are employed to make the decision support system more adaptive and cognitive. This dissertation proposes a new data fusion model with an intelligent mechanism adding decision feedback to the system in real-time, and implements this intelligent data fusion model in two real-world applications. The first application is designing a new sensor management system for a real-world and highly dynamic air traffic control problem. The main objective of sensor management is to schedule discrete-time, two-way communications between sensors and transponder-equipped aircraft over a given coverage area. Decisions regarding allocation of sensor resources are made to improve the efficiency of sensors and communications, simultaneously. For the proposed design, its loop nature takes account the effect of the current sensor model into the next scheduling interval, which makes the sensor management system able to respond to the dynamically changing environment in real-time. Moreover, it uses a Bayesian network as the mission manager to come up with operating requirements for each region every scheduling interval, so that the system efficiently balances the allocation of sensor resources according to different region priorities. As one of this dissertation\u27s contribution in the area of Bayesian inference, the resulting Bayesian mission manager is shown to demonstrate significant performance improvement in resource usage for prioritized regions such as a runway in the air traffic control application for airport surfaces. Due to wind\u27s importance as a renewable energy resource, the second application is designing an intelligent data-driven approach to monitor the wind turbine performance in real-time by fusing multiple types of maintenance tests, and detect the turbine failures by tracking the turbine maintenance statistics. The current focus has been on building wind farms without much effort towards the optimization of wind farm management. Also, under performing or faulty turbines cause huge losses in revenue as the existing wind farms age. Automated monitoring for maintenance and optimizing of wind farm operations will be a key element in the transition of wind power from an alternative energy form to a primary form. Early detection and prediction of catastrophic failures helps prevent major maintenance costs from occurring as well. I develop multiple tests on several important turbine performance variables, such as generated power, rotor speed, pitch angle, and wind speed difference. Wind speed differences are particularly effective in the detection of anemometer failures, which is a very common maintenance issue that greatly impacts power production yet can produce misleading symptoms. To improve the detection accuracy of this wind speed difference test, I discuss a new method to determine the decision boundary between the normal and abnormal states using a particle swarm optimization (PSO) algorithm. All the test results are fused to reach a final conclusion, which describes the turbine working status at the current time. Then, Bayesian inference is applied to identify potential failures with a percentage certainty by monitoring the abnormal status changes. This approach is adaptable to each turbine automatically, and is advantageous in its data-driven nature to monitor a large wind farm. This approach\u27s results have verified the effectiveness of detecting turbine failures early, especially for anemometer failures

    The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition

    The 1989 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The following topics are addressed: mission operations support; planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; and modeling and simulation
    corecore