418 research outputs found

    Linear feature selection and classification using PNN and SFAM neural networks for a nearly online diagnosis of bearing naturally progressing degradations.

    No full text
    International audienceIn this work, an effort is made to characterize seven bearing states depending on the energy entropy of Intrinsic Mode Functions (IMFs) resulted from the Empirical Modes Decomposition (EMD).Three run-to-failure bearing vibration signals representing different defects either degraded or different failing components (roller, inner race and outer race) with healthy state lead to seven bearing states under study. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are used for feature reduction. Then, six classification scenarios are processed via a Probabilistic Neural Network (PNN) and a Simplified Fuzzy Adaptive resonance theory Map (SFAM) neural network. In other words, the three extracted feature data bases (EMD, PCA and LDA features) are processed firstly with SFAM and secondly with a combination of PNN-SFAM. The computation of classification accuracy and scattering criterion for each scenario shows that the EMD-LDA-PNN-SFAM combination is the suitable strategy for online bearing fault diagnosis. The proposed methodology reveals better generalization capability compared to previous works and it’s validated by an online bearing fault diagnosis. The proposed strategy can be applied for the decision making of several assets

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602

    External condition removal in bearing diagnostics through EMD and One-Class SVM

    Get PDF
    The removal of the running conditions influencing data acquisitions in rotating machinery is a very important task because it could avoid some misunderstandings when diagnostic techniques are applied. This paper introduces a new parameter that could be able to identify damage in a rotating element of a roller bearing removing the effect of speed and external load. The parameter proposed in this paper is evaluated through Empirical Mode Decomposition (EMD). Our algorithm proposes firstly the decomposition of the acceleration vibration signals into a finite number of Intrinsic Mode Functions (IMFs) and then the evaluation of the energy for each one of these. Data are acquired both for a healthy bearing and for one with a 450 μm large indentation on a rolling element. Three different speeds and three radial loads are monitored for both cases, so nine conditions can be evaluated for each type of bearing overall. The parameters obtained, namely energy evaluated for a certain number of IMFs, are then used to train a One-Class Support Vector Machine (OCSVM). Healthy data belonging to the nine different conditions are taken into account and OCSVM is trained while other acquisitions are given to the classifier as test object. Since the real class membership is known, we consider how many errors the labelling produces. We compare these results with those obtained by considering a wavelet decomposition. Energies are evaluated for each level of decomposition and the previous approach is then applied to these parameter

    Intelligent Health Monitoring of Machine Bearings Based on Feature Extraction

    Get PDF
    This document is the Accepted Manuscript of the following article: Mohammed Chalouli, Nasr-eddine Berrached, and Mouloud Denai, ‘Intelligent Health Monitoring of Machine Bearings Based on Feature Extraction’, Journal of Failure Analysis and Prevention, Vol. 17 (5): 1053-1066, October 2017. Under embargo. Embargo end date: 31 August 2018. The final publication is available at Springer via DOI: https://doi.org/10.1007/s11668-017-0343-y.Finding reliable condition monitoring solutions for large-scale complex systems is currently a major challenge in industrial research. Since fault diagnosis is directly related to the features of a system, there have been many research studies aimed to develop methods for the selection of the relevant features. Moreover, there are no universal features for a particular application domain such as machine diagnosis. For example, in machine bearing fault diagnosis, these features are often selected by an expert or based on previous experience. Thus, for each bearing machine type, the relevant features must be selected. This paper attempts to solve the problem of relevant features identification by building an automatic fault diagnosis process based on relevant feature selection using a data-driven approach. The proposed approach starts with the extraction of the time-domain features from the input signals. Then, a feature reduction algorithm based on cross-correlation filter is applied to reduce the time and cost of the processing. Unsupervised learning mechanism using K-means++ selects the relevant fault features based on the squared Euclidian distance between different health states. Finally, the selected features are used as inputs to a self-organizing map producing our health indicator. The proposed method is tested on roller bearing benchmark datasets.Peer reviewe

    Sequential fault detection for sealed deep groove ball bearings of in-wheel motor in variable operating conditions

    Get PDF
    Sealed deep groove ball bearings (SDGBBs) are employed to perform the relevant duties of in-wheel motor. However, the unique construction and complex operating environment of in-wheel motor may aggravate the occurrence of SDGBB faults. Therefore, this study presents a new intelligent diagnosis method for detecting SDGBB faults of in-wheel motor. The method is constructed on the basis of optimal composition of symptom parameters (SPOC) and support vector machines (SVMs). SPOC, as the objects of a follow-on process, is proposed to obtain from symptom parameters (SPs) of multi-direction. Moreover, the optimal hyper-plane of two states is automatically obtained using soft margin SVM and SPOC, and then using multi-SVMs, the system of intelligent diagnosis is built to detect many faults and identify fault types. The experiment results confirmed that the proposed method can excellently perform fault detection and fault-type identification for the SDGBB of in-wheel motor in variable operating conditions

    Classification of bearing faults through time-frequency analysis and image processing

    Get PDF
    The present work proposes a new technique for bearing fault classification that combines time-frequency analysis with image processing. This technique uses vibration signals from bearing housings to detect bearing conditions and classify the faults. By means of Empirical Mode Decomposition (EMD), each vibration signal is decomposed into Intrinsic Mode Functions (IMFs). Principal Components Analysis (PCA) is then performed on the matrix of the decomposed IMFs and the important principal components are chosen. The spectrogram is obtained for each component by means of the Short Time Fourier Transform (STFT) to obtain an image that represents the time-frequency relationship of the main components of the analyzed signal. Furthermore, Image Moments are extracted from the spectrogram images of principal components in order to obtain an array of features for each signal that can be handled by the classification algorithm. 8 images are selected for each signal and 17 moments for each image, so an array of 136 features is associated with every signal. Finally, the classification is performed using a standard machine learning technique, i.e. Support Vector Machine (SVM), in the proposed technique. The dataset used in this work include data collected for various rotating speeds and loads, in order to obtain a set of different operating conditions, by a Roller Bearing Faults Simulator. The results have shown that the developed technique provides classification effectively, with a single classifier, of bearing faults characterized by different rotating speeds and different loads

    Development of new fault detection methods for rotating machines (roller bearings)

    Get PDF
    Abstract Early fault diagnosis of roller bearings is extremely important for rotating machines, especially for high speed, automatic and precise machines. Many research efforts have been focused on fault diagnosis and detection of roller bearings, since they constitute one the most important elements of rotating machinery. In this study a combination method is proposed for early damage detection of roller bearing. Wavelet packet transform (WPT) is applied to the collected data for denoising and the resulting clean data are break-down into some elementary components called Intrinsic mode functions (IMFs) using Ensemble empirical mode decomposition (EEMD) method. The normalized energy of three first IMFs are used as input for Support vector machine (SVM) to recognize whether signals are sorting out from healthy or faulty bearings. Then, since there is no robust guide to determine amplitude of added noise in EEMD technique, a new Performance improved EEMD (PIEEMD) is proposed to determine the appropriate value of added noise. A novel feature extraction method is also proposed for detecting small size defect using Teager-Kaiser energy operator (TKEO). TKEO is applied to IMFs obtained to create new feature vectors as input data for one-class SVM. The results of applying the method to acceleration signals collected from an experimental bearing test rig demonstrated that the method can be successfully used for early damage detection of roller bearings. Most of the diagnostic methods that have been developed up to now can be applied for the case stationary working conditions only (constant speed and load). However, bearings often work at time-varying conditions such as wind turbine supporting bearings, mining excavator bearings, vehicles, robots and all processes with run-up and run-down transients. Damage identification for bearings working under non-stationary operating conditions, especially for early/small defects, requires the use of appropriate techniques, which are generally different from those used for the case of stationary conditions, in order to extract fault-sensitive features which are at the same time insensitive to operational condition variations. Some methods have been proposed for damage detection of bearings working under time-varying speed conditions. However, their application might increase the instrumentation cost because of providing a phase reference signal. Furthermore, some methods such as order tracking methods still can be applied when the speed variation is limited. In this study, a novel combined method based on cointegration is proposed for the development of fault features which are sensitive to the presence of defects while in the same time they are insensitive to changes in the operational conditions. It does not require any additional measurements and can identify defects even for considerable speed variations. The signals acquired during run-up condition are decomposed into IMFs using the performance improved EEMD method. Then, the cointegration method is applied to the intrinsic mode functions to extract stationary residuals. The feature vectors are created by applying the Teager-Kaiser energy operator to the obtained stationary residuals. Finally, the feature vectors of the healthy bearing signals are utilized to construct a separating hyperplane using one-class support vector machine. Eventually the proposed method was applied to vibration signals measured on an experimental bearing test rig. The results verified that the method can successfully distinguish between healthy and faulty bearings even if the shaft speed changes dramatically

    Rolling element bearings fault diagnosis based on CEEMD and SVM

    Get PDF
    According to the nonstationary characteristics of rolling element bearing fault vibration signal, a fault diagnosis method of rolling element bearings based on Complementary Ensemble Empirical Mode Decomposition and support machine vector is proposed. The method consists of three stages. Firstly, CEEMD is used to decompose the rolling element bearings signal into several IMFs. Then, the IMF components containing main fault information was selected for constructing the faulty characteristic vector. Secondly, PCA is used to reduce the feature vector dimensions. Finally, the GA-optimized SVM is employed for rolling element bearings fault diagnosis. The presented method is applied to the fault diagnosis of rolling element bearings, and testing results show that the GA-optimized SVM can reliably separate different fault conditions, which has a better classification performance compared to the BP neural networks
    • …
    corecore