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Abstract

The removal of the runningonditions influencing data acquisitions in rotgtimachinery is a very important ti because it
could avoid some misunderstandings when diagnostic tqalesiare applied. This paper introcs a new parameter that cot
be able to identify damage in a rotating elemera ailler bearing removing the effect of speed extérnal load. The pemeter
proposed in this paper is evaluated throlghpirical Mode Recomposition (EMD). Our algorithm proposes firstlye

decomposition of the acceleration vibratisignals into a finite number dntrinsic Mode FunctiongIMFs) and then th

evaluation of the energy feeach one of these. Data are acquired both faadtly bearing and foone witha 450um large
indentation on a rolling elementhree different speeds and three radial loadsremaitored for both cases, so nine conditi
can be evaluated for each type of bearimgrall. The parameters obtained, namely energyuated for a certain number

IMFs, are then used to train a O8&ss Support Vector Machine (OCSVM). Healthy datboriging to the nine differer
conditions are taken into account and OCSVM is &diwtile other acquisitions are given to the classiéisrtest object. Sinc
the real class membershigpknown, we consider how many errors the labelpngduces. We compare these results with t

obtained by considering a wavelet decompositiorergies re evaluated for each level of decomposition ara frevious
approach is then applied to these parameters.

Keywords: Empirical Mode Decomposition; One Class SVM; faliftgnosis; speed and load effect rem«

1. Introduction

One of the most widely used cponents in machinery are surely rolling bear and theircondition monitoring
had become more and maneportant in order to prevent the occurrence oakdowns Between th wide range of
methods proposed since the Seventigmad analysis hacertainly beeran important topic in mechanical fa
diagnosis research and applications thanks tdvitiyato identify the fault patternsFor example, iethods such as
time-domain and-ourier analysis take into account the signal aeq, but their imit is that theyare based on the
assumptiorof stationarity and linearity athe process generating the signal its&lie main drawback for fau
detection is that, howevethe faults are time localised transient eventsthé® kind of techniques wuld give a
wrong information.

Randall and Antoni developpmie possible ways to oviome these aspects in [ccording to themin this
tutorial they want toshow various aspect related the diagnostic analysis of acceleration signalsnfrolling
element bearings, especially wharong masking signals from other machine compansunth as gee are present.
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The purpose of the authors is the explanation pbwaerful procedure and its validation through sdndustrial
applications that confirm the reliability of theirethods.

Other interesting and useful tools to analyse rtatiemary signals such as those related to beaibrgtions are
time-frequency analysis techniques such as thetShiore Fourier Transform (STFT), Wavelet TransfofWT)
and Wigner-Ville distribution (WVD). In particulathe wavelet transform provides powerful multi-resion
analysis in both time and frequency domain andetinerbecomes a rather useful tool to extract thesirary
features of non-stationary vibration signals prelby the faulty bearing. In general, this analyssuilts in a series
of wavelet coefficients indicating how close thgrsil is to the particular wavelet itself. In orderextract the fault
feature of signals more effectively, an approprigéeelet base function should be selected. ltdarcihat the power
of this method comes from the simultaneous intégpien of the signal in both time and frequency damthat
allows local, transient or intermittent componetisbe exposed. One of the main drawback, howeeeitsi
dependence on wavelet basis function choice. Ameplais the Morlet wavelet, which is mostly appliedextract
the rolling element bearing fault feature becausisdarge similarity with the impulse generateylthe damaged
bearing. Li shows an application in [2], where g@praach for the detection of localized faults ie thuter or the
inner races of a rolling element bearing usingtthee scale spectrum of complex Morlet wavelet igestigated.
The experimental results obtained on a gearbox aitblling element bearing under simulated crackheninner
race or the outer race show that this method ctactefely diagnose the faults. Other examples ofelet-based
analysis technique for damage identification iratiog machinery from the vibrating signature afg[43,[5].

An innovative technique developed by Huang et ml90s and related to the time-frequency domairhés
Empirical Mode Decomposition (EMD) [6]. This methaliows the decomposition of any complicated signa a
collection of Intrinsic Mode Functions (IMFs) based the local characteristic time scale of the aighs strength
is the self-adaptiveness, due to the fact that &sléts, working as a basis functions, is determibgdhe signal
itself rather than being pre-determined. This aidhe EMD to be highly efficient in non-stationatgta analysis.
Many applications to a wide range of problems hbgen proposed so far, from geophysics to structuzalth
monitoring as presented in [7]. Lots of authorplgf=MD to rotating machines and bearing with diesfit intents,
usually in association with other techniques. Scemamples are in [8], where combined mode functiares
introduced and with also a comparison with wavdégtomposition, in [9], where EMD is used jointljtlwan Auto
Regressive model and [10], where an Artificial Ng@WNetwork (ANN) classifier is trained with the EMenergy
entropies.

An aspect that is rather important in the diagmogtimework is the search for methods able to rentine
effects produced in vibrations by external fact@sch as temperature or test rig assemblies. Amgbeais
presented in [11], where the multi-variate stat@dtitechnigue named Principal Component AnalysiBAPis
successfully used in bearing and rotating shatt fdetection. Varying load and speed are othemfacinfluencing
vibrations related to rotating elements: a chandinghese parameters could produce biased resultsei fault
detection. Bartelmus and Zimroz show in [12] how tlondition monitoring of planetary gearboxes latesl to the
identification of the external varying load conditi They analyse in detail how many factors infeethe vibration
signals generated by a system which presents a&tplgngearbox and they show how the load has aistens
contribution. As regards bearings, some works aesemted by Cocconcelli et al. in [13] and [14].réjethey
inspect the continuous change of rotational spdetieomotor, that represent a substantial drawbaderms of
diagnostics of the ball bearing. Almost all theaalthms proposed in the literature, in fact, neembastant rotation
frequency of the motor to identify fault frequergim the spectrum. They tackle this problem witliccemaging
results aided by ANN and Support Vector MachineNBV

These last two are Machine Learning techniquesiafged in the field of mechanical systems rese&WiM in
particular, is widely applied in relation with cdtidn monitoring and damage classification, as shamw[15] and
[16]. It is based on the concept of separation dhtierent classes of data with the knowledge béidferent type of
instances since the beginning of the analysis.egkifip case of SVM is the One-Class SVM (OCSVM)tigalarly
well suited for diagnostic technique purpose. ket,fd requires the knowledge of only one clasdaif, that is what
usually happens in damage detection, i.e only healata are available in the starting phases ofttaysis. An
example of this application is in [17], where OCS\iMadopted for machine fault detection and clasgibn in
electro-mechanical machinery from vibration measuets.
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With our work we want to find a parameter able émove the various conditions influence in ordedétect
properly a damage in a roller bearing. The paperganised as follows. Section 2 shows the EMD oektivhile
Section 3 present SVM and the particular applicatioOne Class case. Our algorithm is explaine8idation 4 and
then its application on a test rig is develope8eation 5, with a wavelet decomposition results garson too.

2. Empirical M ode Decomposition method
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Fig. 1. Acceleration signal of a healthy roller bearing tfleind one with a fault on a rolling element (riglaind their

decomposition using EMD.

Huang et al. presented a new technique based oled¢hkcharacteristic time scales of a signal namegirical
Mode Decomposition in [6]. This is a self-adaptsignal processing method that could be appliedtelmear and
non-stationary process. It consists in the decoitippsof a complex signal into a number of intringnode
functions (IMFs), where each one contains frequenchanging with the signal itself. Every IMF hasatisfy the

following properties:
In the entire data set, the number of extrema hachumber of zero crossings must either be equdiffer at

most by one.
* At any point, the mean value of the envelope defing the local maxima and the envelope definedhieyldcal

minima is zero.

In this way, each IMF represents the simple ogmilamode involved in the signal. Huang et al. deped a
sifting process which goal is the extraction of the IMiesrf a given signat(t) [6]. It consists of different steps:
1. Identify all the extrema of the signal, and connalttthe local maxima by a cubic spline line as thmper

-3-
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envelope. Use the same procedure to produce ther lenvelope with the local minima.
2. Being m, the mean of the two envelopes, compute the differdretween the signatgt) andm, as the
first componenth,, i.e.
x(t) — my =hy (1)
If h, is an IMF takeh, as the first IMF component aof(t). Otherwise, usé, as if it is the original signal and
repeat the first two step. Obtain

h’l - mll = hll' (2)
Repeat the sifting process upkdimes until wherh;,becomes an IMF:
hyte-1y — My = Ay )
The first IMF component is then named as
Cl = h’lk' (4)
3. Separate; from the original signat(t) and obtain the residug:
= x(t) — ¢. (5)

4. Considerr; as the original signal and repeat the above psacéisnes. The other IMFs,, c3, ..., c,are obtained
and they satisfy
n— Cy=T2
: (6)
The1— Cp = Tn.
5. Stop the decomposition process wherbecomes a monotonic function and no other IMFs lmarextracted.
Summing Eq. (5) and Eq. (6) we obtain
x(t) = Xy ¢ + 1. (7)
Eq. (7) shows how the signa(t) could be decomposed intoempirical modes and a residge which could be
seen as the mean trend of the signal. Each éMis considered stationary and in each one of ticesgponents
various frequency bands are considered, ranging figh to low.
Fig. 1 presents the acceleration signal for a hga#tnd for a damaged roller bearing with their 5BV
decomposition.

3. One-class Support Vector Machine

origin

N\

Fig. 2. One class SVM classifier with the origintias only member of one class.

During the 80s Vapnik developed a computationainieg method named Support vector machine (SVM].[18
It is based on the statistical learning theory #@rid well suited for classification: in fact, ginesome data points
belonging to a certain class, it is able to statediass of a new data point. Given-dimensional input data with
samples belonging to two different classes, pasitivnegative, this method is able to built a hgfzare separating
the two classes. The particularity of this boundarthat its distance from the nearest data pamesach class is
maximal. In such a way, the optimal separating hglp@e named the maximum margin is created. Thoggy
belonging to the different classes and neareshito margin are called support vectors and theyaiomall the
information necessary to define the classifier. Whenew element appears, it is classified accortinghere it
-4 -
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places with respect to the separating hyperplane.

In case of non-linear application SVM could be &xplusing a proper functiob(x) that maps data onto a high-
dimensional feature space, where the linear claasihn is then possible. If we want to avoid t@lkexate explicitly
®(x) in the feature space, we could apply a kerneltfand((x;, x;) = ®"(x;) - ®(x;). Some examples of kernel
functions that could be used are linear, polynomiabaussian ones. The use of kernel is rathetamdig because
it enables SVM to be used in case of very largéufeaspaces since the dimension of classified veaoes not
influence directly the classifier performance.

SVM could be applied also when more than two cksse present with the name of Multi-class SVMtHis
case, two different approaches are considered:a@agst-all (OAA) and One-against-one (OAO). In tingt one
the i-th SVM is trained with all the elements in tjxh class with positive labels and all the othethwiegative
labels, while in the latter each classifier isrieal on data from two classes.

Looking at the previous cases, it could be seenttta or more classes of data are given since #gnbing of
the analysis. If we think to more general diagroapiplications, usually only one type of elementldde acquired
at the early stage, that is the healthy one. Théama we could refer to anomaly detection, i.e.déeection of
patterns in data that do not conform to a wellrmdi notion of normal behaviour. For SVM we can tilout One-
Class SVM as presented by Schélkopf et al. in [TBey construct a hyper-plane around the one-dass and it
has to be maximally distant from the origin. Morenvit must separate the region where there awge fdain those
that do not contain any. To obtain this, they psgpthe use of a binary function that returns +dgion containing
data and -1 elsewhere. For a hyper-planehich separates the datafrom the origin with maximal margip, the
following quadratic program has to be solved:

i Sl + =3 8
u:EF,iICHLgl,pER 2 w n - € P ()

subject to  (w-®(z;)) > p—e€, >0 9)

wheree represents the slack variable ands a variable taking values between 0 and 1 nf@atitors the effect of
outliers (hardness and softness of the boundayndrdata).
Whenw andp solve the minimisation problem presented in Ejja®l Eq. (9), the decision function

f(x) = sign((w - ®(x;)) — p) (10)
is positive for most instances representing theoritgjof data.
Figure 2 shows graphically the idea presented heth,the origin that becomes one of the few eletsiém the
class labelled -1.

4. M ethodology

In the previous sections the background and therdieal aspects of the two methods that now wetwanse
together have been presented. In our study we teatite search for a parameter able to identify matge in a
rotating element of a roller bearing by removing #ifect of external conditions that influencesrations.

Our diagnosis method is developed through diffeséeyps:

1. Collect vibration signals considering various caiodi of speed and radial load applied, for botrealtiny and a
damaged bearing.

2. Apply EMD to decompose the original signal into ®olvIFs. The firsth are chosen to create the feature vector
used during the analysis.

3. Evaluate the total energy for theselected IMFs as:

+ oo
E; = / lej () dt j=1,...,n (12)
— o0
4. Create a feature vector with the energies ohtselected IMFs:
F =[E, ..., Ey] (12)

5. Normalise the feature vector divididgfor Ey:
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Ey = (Z Ejg) (13)

6. Obtain then-dimension feature vector after the normalisation:
F' = [E1/Ey, ..., En/Ey] (14)

7. Divide the healthy data in two groups: 75% are m@ered as training, the remaining 25% and the dachaigta
as test. $Analyse all loads and speeds together.

8. Train the One-Class SVM classifier on training datal use the classifier to label the test dataceSthe real
class of any data is known, errors in labellinglddxe computed.

9.To give statistical significance to the analysipe&t point 6. and 7. 30 times changing healthy dader and
evaluate the error percentage in labels assignment.

5. Application to bearing data

60 —1- " - - -

55 ’:’ O heahy |- -~ -~ “~_ sl \\‘\\ ~
50 ,f’ A damaged/(,f’ ,:/“\‘ S~ R I~

P S SRR N

load [kN]

speed [RPM]

(©

(b)
Fig. 3. The test rig (a) and the roller bearingdugaring the tests, with the damaged roller inwimnéte circle (b). RMS value
for healthy and damaged bearing (c).

Data acquisition on our test rig are influencedvbsious conditions such as rig speed, externalptieg load on
a bearing, temperature variations. The detectiahthe removal of these factors is important to dvamy bias
during the application of diagnostic techniquesafwhanging in speed or in the temperature ofdiheirculating
in a system gives rise, in fact, to variations thatliagnostic algorithm may erroneously detect afamage,
producing a false alarm. In this paper we wanhtmduce a parameter that would help in identifyandamage in a
rotating element of a roller bearing with the remloaf speed and external load influences.

The test rig used for the acceleration acquisitimas assembled by the Dynamics & ldentification daesh
Group (DIRG) at Department of Mechanical and AeaagpEngineering and is shown in Fig. 3a. This tisshrig
designed to perform accurate testing of bearindls ifferent levels of damage in controlled laborgtconditions.
It regards especially the reduction of spuriousaig coming from the mechanical sounds of otheribgs, rotating



Pirra et al./ Vibrations, Shocks and Noise 2012

0.18 e ‘ 0.18 ‘ ‘ ‘ —
9000 1.4 10500 1.8 —
017 < ° | | O training |
- O 900016 A 1200014 : YV  test label corr.
016] + 900018 % 12000 1. ] 0161 % test label uncorr. J
O 1050014 | 12000 1.8
015 o 1050016 1 0.15} 1
o 0.4 1 R ouaf |
2 o 2 v
3 013 ...: o 1 3o o% o i
2 012 + +++ ° 2owlo o "
w o . 0 @0 % w > 0 O W v
onn)  *4qo ¥ s 1 o} Pgv®o g A4 1
’ A ’ o
o
¢ oA ] , ° " ¥4y |
0.1 L% 0.1 o 8 0 @®
o o * v 0 o8 6% "
0.09} ¢ 7 Vg A 0.09} o AN 8
S0 o o v
008 L L L L L L 008 L L L L L L
0.65 07 0.75 08 0.85 0.9 0.95 1 0.65 07 0.75 08 0.85 0.9 0.95 1
Energy IMF1 Energy IMF1
(@) (b)

Fig. 4. Empirical Mode Decomposition: (a) 2-dimemsfeature vector representation with various cons: in the legend the
first number is the speed expressed in RPM, thenskis the load expressed in kN. (b) 2-dimensiatuiie vector after OCSVM
classification.

shafts, gear wheels meshing and other vibratinghehs. In this way, we are sure that the only varna in
accelerations are caused by speed and load, elethentan be properly monitored.

In our analysis we consider three different spealdes (9000, 10500 and 12000 RPM) and three riahalls
(1.4, 1.6 and 1.8 x £N) and we acquire data for each combination. \Wéster 1 second of vibrating signal with
sampling frequency 102.4 kHz for 10 times and facheof the 9 different cases. These acquisitioasrgpeated
both for a healthy bearing and for a damaged oige.3B shows this last one, characterized by aigb@amage on
a rolling element. The temperature of the oil dating is almost constant between the differenugitions, so that
the only variations detected through vibrationsaesed by load and speed changing.

Figure 3c presents the Root Mean Square valuesiaeal for the 10 acquisitions with the dependemcepzed
and load. It is clear from this plot that therenis particular variation among the 10 measures gaverertain
speed/load combination, while the speed influenbesvalues rather than the load. In particular,dtiference in
RMS between healthy and undamaged case increase:s tik speed is higher. If we observe the values fo
damaged data at 9000 Hz in Fig. 3c (triangles) wtice that they are very similar to those for altigabearing
(square) but at 12000 Hz. In this way, if we cdesiall the nine conditions together, the exactringa
identification may be strongly biased. So, it ise&sary to use a parameter that could avoid thedeokerrors.

Following the technique developed in Section 4,ewaluate a normalised feature vector consideripgfitht 8
IMFs. In [20] we consider different vector dimensiand also various SVM kernel. We analyse the greocentage
in the labels given by the OCSVM classifier and eteck the number of dimensions necessary to hawettar
damage identification. We obtain that when thegifaes uses a Gaussian kernel on a feature vectéolenup of the
first two IMFs as dimensions the error percentageery low. The ability in the identification coulte observed
from Figure 4a in the fact that damaged and healdita composes two different groups of data. Mcge@ny
dependence on different loads and speeds seenesramoved: each symbol corresponds to a combinatidmo
particular agglomeration related to the nine défdrconditions is noticed.

If we apply OCSVM as explained in points 7 and &#ction 4 to the data in this 2-dimension spacebtain
Figure 4b. The circles are the training data, the. 75% of healthy measures with all load and speedlitions
considered together. The testing data, composeateb®5% of healthy and all damaged instances, ar&ed with
triangles if correctly labelled by the classifiardawith crosses when there is some mistake. Incé®, only one
cross is present, so the error percentage amauft89%. Following point 9 in Section 4 we obtdiatt0.42% of
label are wrongly assigned by the OCSVM classiserthis could be considered a proper identificatechnique.
Moreover, the various load and speed do not sedrave any influence in the results, so this mégeems to be
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Fig. 5. Wavelet decomposition: (a) 2-dimension deaitvector representation with various conditionsthe legend the first
number is the speed expressed in RPM, the secahe i®ad expressed in kN. (b) 2-dimension featwetor after OCSVM
classification.

independent from these conditions in the properatgntetection.
5.1. Comparison with wavelet decomposition

The same approach described in Section 4 is adaotatysing another signal processing method, namely
wavelet decomposition. We consider a Haar wavedebrhposition stopped at th& Bvel, as for EMD. Then we
follow points 3-9 in the methodology procedure aralevaluate the errors obtained during the detegoblem by
the classifier.

The first aspect to be noticed is clear from Figbse where the 2-dimension vector of energies etatlduring
the 10 acquisitions for each one of the 9 conditioh speed and load is plotted. The comparison dxtwthis
picture with Figure 4b highlights the differencetween these two methods. In fact, while in the c#sEMD no
particular division is due to the influence of theparameters (speed and load), the wavelet decdiopos
application leads to the creation of various groapsording to the different condition. FurthermareFigure 5a it
is clear that the separation between healthy andadad elements is more difficult, mainly becausethsf
dependence on the parameters. It is easy to forthsgethe risk of error in the recognition of theak class
membership is higher in this case.

In Figure 5b are presented the results obtainext #fe OCSVM classifier application to the datddwing the
explained methodology. The kernel parameters ame shme adopted for the EMD case to have better
correspondence in the results that are howeveendifferent. In fact, the error percentage amoumt$9.64% for
this picture and to 20.18% after 30 permutatiocpading to point 9 of the methodology. This mearet with this
parameter the risk of labelling bias is higher, daethe influence that the speed and the load ¢pedraits
evaluation. We tried also other type of waveletshsas Daubechies and Symlets, but in general thétseseem to
be dependent on the effects of the speed/load womsli A possible way to overcome this fact wouldtb use
classification techniques able to create a narrdwendary around the known data.

6. Conclusions

In this paper we proposed a method for the deteaifodamages in roller bearings with the removaspdéed and
load dependence. Our technique considers the in@tween Empirical Mode Decomposition, exploiteghtoduce
the proper feature vector, and the One-Class Supfemtor Machine, which classifies the data. If agply the

same methodology to obtain the feature vector tinoa wavelet decomposition instead of EMD, we abtass
-8-
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precise results. Thus, we can state that EMD preslacfeature able to remove speed and load depsndenthat
any bias in data interpretation and identificatisnavoided. Further applications could deal witk thfluence
removal of other factors conditioning vibrationschk as oil temperature.
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