46 research outputs found

    A study of fault-detection in array logic.

    Get PDF

    Detection of Faults in Programmable Logic Arrays

    Full text link

    The effectiveness of different test sets for PLAs

    Get PDF
    It has been theoretically demonstrated that the single stuck-at fault model for a PLA does not cover as many faults as the single crosspoint model. What has not been demonstrated is the real relative effectiveness of test sets generated using these models. This paper presents the results of a study involving presenting a number of test sets to fabricated PLAs to determine their effectiveness. The test sets included weighted random patterns, of particular interest owing to PLAs being random resistant. Details are given of a method to generate weights, taking into account a PLA's structure

    VLSI design methodology

    Get PDF

    Fault tolerant programmable digital attitude control electronics study

    Get PDF
    The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation

    VLSI architectures for high speed Fourier transform processing

    Get PDF

    Public key cryptosystems : theory, application and implementation

    Get PDF
    The determination of an individual's right to privacy is mainly a nontechnical matter, but the pragmatics of providing it is the central concern of the cryptographer. This thesis has sought answers to some of the outstanding issues in cryptography. In particular, some of the theoretical, application and implementation problems associated with a Public Key Cryptosystem (PKC).The Trapdoor Knapsack (TK) PKC is capable of fast throughput, but suffers from serious disadvantages. In chapter two a more general approach to the TK-PKC is described, showing how the public key size can be significantly reduced. To overcome the security limitations a new trapdoor was described in chapter three. It is based on transformations between the radix and residue number systems.Chapter four considers how cryptography can best be applied to multi-addressed packets of information. We show how security or communication network structure can be used to advantage, then proposing a new broadcast cryptosystem, which is more generally applicable.Copyright is traditionally used to protect the publisher from the pirate. Chapter five shows how to protect information when in easily copyable digital format.Chapter six describes the potential and pitfalls of VLSI, followed in chapter seven by a model for comparing the cost and performance of VLSI architectures. Chapter eight deals with novel architectures for all the basic arithmetic operations. These architectures provide a basic vocabulary of low complexity VLSI arithmetic structures for a wide range of applications.The design of a VLSI device, the Advanced Cipher Processor (ACP), to implement the RSA algorithm is described in chapter nine. It's heart is the modular exponential unit, which is a synthesis of the architectures in chapter eight. The ACP is capable of a throughput of 50 000 bits per second

    Random access memory testing : theory and practice : the gains of fault modelling

    Get PDF

    A survey of DA techniques for PLD and FPGA based systems

    Full text link
    Programmable logic devices (PLDs) are gaining in acceptance, of late, for designing systems of all complexities ranging from glue logic to special purpose parallel machines. Higher densities and integration levels are made possible by the new breed of complex PLDs and FPGAs. The added complexities of these devices make automatic computer aided tools indispensable for achieving good performance and a high usable gate-count. In this article, we attempt to present in an unified manner, the different tools and their underlying algorithms using an example of a vending machine controller as an illustrative example. Topics covered include logic synthesis for PLDs and FPGAs along with an in-depth survey of important technology mapping, partitioning and place and route algorithms for different FPGA architectures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31206/1/0000108.pd
    corecore