
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1980

A study of fault-detection in array logic.
Suk-In Yoo

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Yoo, Suk-In, "A study of fault-detection in array logic." (1980). Theses and Dissertations. Paper 2295.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228651189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F2295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2295?utm_source=preserve.lehigh.edu%2Fetd%2F2295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A STUDY OF FAULT-DETECTION IN ARRAY LOGIC

Suk-In Yoo

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Electrical Engineering

Lehigh University

1980

V_^3

ProQuest Number: EP76571

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76571

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in partial fulfillment

of the requirements for the degree of Master of Science in Electrical

Engineering.

August 8, 1980
(date)

Professor in Charge

Chairman of Department

11

Acknowledgements

The author wishes to express his appreciation to Professor Alfred

K. Susskind for his guidance and stimulation, and also thanks to Lehigh

University for the teaching ass.istantship given to him during the

graduate program for the degree of Master of Science.

Finally the author wishes to thank his wife, Hae-gung, for her

encouragement and indulgence in allowing him the interrupted time to

complete this project.

111

Table of Contents

Page

Abstract 1

Section 1 Introduction. 2

Section 2 Testing Simple PLA's 3

2 .1 Crosspoint Defects 5

2.2 Stuck Lines 6

2.3 Shorts » 7

2.4 More General Decoder Form and Application
0f co 9

2.41 Single or Multiple Missing Devices . 11

2.42 Single or Multiple Extra Devices 11

2.43 Stuck Lines in the PLA 12

2.44 Shorts in the PLA 12

2.45 Stuck Lines in the Decoders 12

Section 3 Testing the Associative Logic Matrix 14

3.1 Effect of Other Faults in the ALM's 16

3.11 Single or .Multiple Missing Devices 16

3.12 Single or Multiple Extra Devices 17

3.13 Stuck Lines in the G-array 20

3.14 Shorts Between Word Lines 22

3.15 Shorts Between Input Lines in the AND Array.. 22

3.16 Shorts Between a Word Line and an Input Line
in the AND Array 24

3.17 Shorts Between a Word Line and the Collector
Line of the G-array 24

3.18 Shorts Between a Word Line and an Output
Line g* of the G-array. 26

3.2 Discussion 28

Section 4 Fault-Detection in Programmable Storage/
Logic Arrays 28

4.1 Effects of Faults 37

IV

Table of Contents Con'd

Page

4.11 Stuck Lines 37

4.12 Single or Multiple Missing (Extra) Devices at
the Crosspoints 38

4.13 Shorts 39

4.2 Change in the Number of States Due to Faults.... 40

4.21 NST's 40

4.22 IO's 41

4.23 IST's 46

4.3 Modification of the Circuits 46

4.4 Testing Methods for Sequential Circuits 49

4.41 C. R. Kime's Technique 49

4.42 R. L. Martin's Technique 50

4.5 Application of Testing Methods to the FSM in
the SLA 53

Ref erenc es 59

Vita 61

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fi-g. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fig. 30

List of Figures

Page

Basic PLA . 4

Typical Pair of Word Lines 4

PLA With Two-Bit Decoders 10-

Two-Bit Decoder 10

Associative Logic Matrix 15

ALM of Fig. 5 Redrawn 15

Feedback from g Due to Extra Device 19

Feedback from g Due to Extra Device 19

Feedback Due to Extra Device on Collector Line.. 21

Feedback that Can Cause Oscillation 21

Feedback Due to Short I 23

Feedback Due to Short II 23

Feedback Due to Short III 25

Feedback Due to Short IV 25

Feedback Due to Short V ". 27

Feedback Due to Short VI 27

PLA With Feedback 29

Storage/Logic Array (SLA) 29

Basic Cells of an SLA « 31

Finite-State Machine Implemented by an SLA 32

Flow Table of Mj ^,. . 35

Realization of M.. 36

Faulty Version of M 43

Result of Fault in M 43

Machine M2 44

Machine M With Faults 44

Resulting Mealy Machine M 45

Resulting Moore Machine M 45

Machine M With Faults 47

Machine M 47

vi

M

List of Figures Con'd

/ ^ Page

Fig. 31 Modified SLA for M3 48

Fig. 32 Machine M 51

Fig. 33 Kime's Augmentation of M. 51

Fig. 34 FSR Realization 52

Fig. 35 Machine M. Modified in.Accordance With Martin's
Scheme 52

Fig. 36 Machine M 54

Fig. 37 Mealy Equivalent of M 54

Fig. 38 Mealy Equivalent Modified 55

Fig. 39 Moore Equivalent Converted 55

Fig. 40 General Form of Moore-Machine Arranged for
Application of a New Testing Scheme 56

Fig. 41 General Form"of Moore-Machin« Modified for
Testing ' 56

Fig. 42 Moore Machine M,. Directly Modified 58

V /

Vll

Abstract

The effects of all sirtgle and various multiple fault models in

programmable logic arrays (PLA's), associative logic matrices (ALM's),

and programmable storage/logic arrays (SLA's) are examined for the

^purpose of testing.

As one of the testing schemes, for PLA's and ALM's, an exhaus-

tive testing method is considered, which is very simple and detects

all single and many multiple faults in PLA's, but not all of them in

ALM's. Conventional testing schemes need tedious computations to

detect some of the faults in PLA's and ALM's, but the number of tests

required by these schemes is relatively small.

Conventional testing schemes for finite state machines (FSM's)

are briefly reviewed and an appropriate testing scheme for Moore-

type FSM's implemented by programmable storage/logic arrays (SLA's)

is discussed. A new scheme for making an FSM more readily testable

is given. It is directly applicable to Moore-type FSM, whereas other

means for improving testability need conversions between Moore and

Mealy forms. The previous methods may increase the number of states

in the Moore machine to achieve testability, which is not desirable.

The new scheme does not increase the number of states, i.e., the

number of states in the Moore machine modified for testing is the

same as that in the original Moore machine. However, the length of

the test sequence will be greater.

1. Introduction

Programmable Logic Arrays (PLA's) provide an economical way of

realizing combinational switching functions [1]. The PLA, which is

simply two-level logic, becomes attractive in LSI due to its memory-

like regular structure, as will be explained in Section 2. To

achieve combinational functions with more than two levels of logic,

the Associative Logic Matrices (ALM's),[9] may well have an advan-

tage over PLA's.

As with any other logic circuit, PLA's and ALM's should be

tested to insure that they operate correctly. The testing scheme

considered here is to apply all possible input vectors to the array

and check to see if the sum of all responses is correct, which will

be called "checking C ". This scheme has the disadvantage of re-

quiring a large number of steps, i.e., with n inputs these are 2

steps. But because fault models in PLA's or ALM's may well have to

be more diverse than in other combinational circuits, because of the

way PLA's or ALM's are fabricated, the conventional testing schemes

require tedious computations when it is desired to consider the

large variety of possible faults. The exhaustive testing scheme

eliminates all of these computations, but does so at the cost of

long test sequences. Another advantage of exhaustive testing is

the simplicity of the test apparatus, both with respect to logic and

memory.

Another type of array considered here is the programmable

Storage/Logic Array (SLA) [10]. It can realize sequential circuits

efficiently, as will be explained in Section 4. We consider the

conventional testing scheme for sequential circuits based on dis-

tinguishing sequences and show how the SLA proposed in the liter-

ature could be modified to make testing by distinguishing sequences

feasible as well as more efficient.

2. Testing Simple PLA's

A simplified schematic of the basic PLA array is given in Fig. 1.

We show n-p-n transistors which, under* the positive-logic convention

(parameter representing logical value is larger for logical 1 than for

logical 0) and with the parallel, grounded emitter configuration shown

mechanize the NOR function. Thus our configuration realizes the NOR-

NOR-INVERT or NOR-OR logic form. Since NOR is the product of the

inverted inputs (e.g., A + B = AB),- it follows that the array shown in

Fig. 1 realizes functions in the form of a sum of products, where the

products consist of the complements of the connected inputs. In parti-

cular, Fig. 1 shows the following functions

fl = X1X3 + X2X4

f2 = X2X4 + X1X2X3

f3 = X1X3 + X2X3X4

The' horizontal lines at the output of the first level of gating, which

mechanize the individual products, are frequently called the word 1ines

and we shall use that term here. The inputs x. and x. are sometimes

called the decoder outputs because in some" PLA applications these inputs

are not single literals, but products of more than one variable (typical

two). This has been shown to be advantageous in some applications and

will be discussed later.

We show below that the basic PLA can be tested by checking the value

of C„ at each output. This method of testing allows us to detect not

only the commonly assumed single stuck-at faults, but also a variety of

multiple faults, errors in programming, and even shorts.

x! x2 X3 *4

V

£

Y Y

^

\7
b

f f f
1 <2 (3

AAA

^

75 i Pt
?£ -i,, i

7
-t

T ft:
_r

■x

f KT

AND ARRAY

< K5-I
OR ARKAY

Fig. 1 Basic PLA

x xj x2 x2

2"

X X
ii n

T

V r'

A A A

T

T

A.

^ R7

Fig. 2 Typical Pair of Word Lines

2.1 Crosspoint Defects.

If in the AND array there is a missing device and the missing device

should provide a connection to input line x*, then the logical product

mechanized on the word line to which the transistor should have been

connected will have the variable x* missing. In other words, the product

P = x?x.*-*x will become P' = x.,#,x . We say that this fault causes
i J s 3 s

a growth because P1. covers a larger subcube (implicant) than P, and so

the function to which the. word line is connected will have its true body

enlarged (providing the connection to x* was not redundant). It is easy

to see that when more than one device is missing in the AND array, there

results a growth in one or more of the functions realized in the array.

In particular, if a word line has no connection in the AND array, then

all functions to which that word line is connected in the OR array are

set to the logical constant 1.

It follows that checking C» will detect any combination of missing

devices in the AND array.

If there is a device missing in the OR array and that device should

connect row r to function k, f, , then the product realized on row r is

no longer an implicant of f,. We say that the missing device causes a

drop because the true body of f has been diminished by the dropping of
K

a product in the sum (unless the missing product was redundant). More

than one missing device in the OR array will cause various kinds of

drops, and any multiplicity of these will always be detected by

checking C„.

Missing devices in both the AND array and the OR array, however,

are not necessarily detected by checking C„. Consider, for example, the

realization of the majority function M = AB + AC + BC, with word lines

L.. through L realizing the products AB, AC, and BC, respectively. If

there is a device missing between input line A and L as well as devices

missing where connections to lines L„ and L should be made, the faulty

function realized is M = B. Because M1 has four ones as does M,

checking C„ will fail to reveal the assumed multiple fault pattern.

Ail extra device in the AND array connected to input x* will result

in the product realized on the corresponding word line having x* added.

We will call this a shrinkage, because the augmented product will cover

a smaller subcube (implicant), and so the function to which the word

line with the extra device is connected will have its true body

diminished. Unless there is redundancy, the effect of the extra device

will be detected by checking C„. Similarly, multiple extra devices in

the AND array will also be detected. For the special case where the

extra device connects to x* and the word line also has a connection to
1

x*, the result is a drop of the nominal product, and C„ will detect

this case as well.

One or more extra devices in the OR array add extra products to

the function(s) realized. These faults are detected by checking C„.

No general statement can be made about the effectiveness of check-

ing Cn in the presence of extra devices in both the AND array and the

OR array.

In summary, we have shown that checking C„ detects all single

crosspoint defects as well as a variety of multiple defects, but not all

possible combinations.

2.2 Stuck Lines

An input line stuck in 1 causes all word lines connected to that

input line to be set to logical zero. This causes one or more drops

and is detected by checking C . An input line x* stuck in 0 causes every

product with nominal x* to become independent of x*. (P = x*x.*,-x,

becomes P' = x.--,x,). Hence this fault causes one or more growths and

these are detected by checking Cn-

It is easy to see that output lines stuck are detected by checking

co-

A word line stuck in 1(0) is the extreme case of a growth (drop)

i.e., the corresponding product has grown to the logical constant 1(0).

2.3 Shorts

Consider Fie. 2 and let there be a short between word lines L.
i

and L.. This short has an effect only when the inputs are such that the
J

nominal product on L. is true (false) and that on L. is false (true).

In the first case, L. is nominally high (low) while L. is nominally low

(high). The short, however, makes both lines low in both cases, so

that the word lines act as though there were devices in all places where

there are input-line connections to L. or L.. In other words, the

behavior due to the short is equivalent to extra devices in the AND

array. As was pointed out above, any combination of extra devices in

the AND array is detected by checking C-, and thus shorted word lines

in any combination are detected.

Next, we consider those lines that feed the inputs to the inverters;

we will call these lines "function lines". Since shorts between lines

cause the lower line to dominate, both shorted lines will carry logical

0 when either has a nominal 0. In the case of shorted function lines,

this is equivalent to both lines having devices in all the places of

the OR array where either has a device. As was shown before, extra

devices in the OR array are detected by checking Cn, and therefore so

are shorts between function lines.

A short between a word line L. and a function line that nominally
I

is not connected to L. will result in lowering the function line when

one or more of the transistors connected to L. conducts. Since the
I

function realized on L. is a product P. (of the complements of the

variables connected to transistors on that word line), the word line is

low whenever one or more of the connected variables is true, and so the

output f. in the presence of the short becomes f! = f. + P.. Thus the

true body of the faulty output is enlarged, and verifying Cn for output

f. does check for the assumed type of short.

To illustrate, suppose there is a short in the OR array of Fig. 1

between function line 2 and the topmost word line. Then f_ becomes one

whenever x is high or x is high. Thus we get the faulty function

f~ = x_x. + x,x~x_ + x. + x, = x_x. + x. + x,, which has 13 ones, where- 2 24 1231 3 24 1 3
as the fault-free output f„ has only six ones.

In the case where the short involves a function line that is

connected to the word line L. in the fault-free circuit, the effect

is that of a short.between base and collector of the transistor that

makes the connection. This causes the function line to become stuck

in 0, i.e., the output will be stuck in 1. This is detected by

checking C„.

When an input line connected to x* is shorted to word line L.,

then L. is low whenever x* is low or one or more of the other inputs
1 I — '

x* through x£ to L. is low. Thus instead of realizing the product

P. = x*-'-x*, the word line realizes P.' = x* • P., which is called a
I ■} k ill

shrinkage, if the fault-free circuit has no connection to x?; if it

does have a connection to x*, then there is a short between base and
I

collector of the connecting transistor. This makes L. stuck in 0,

i.e., it causes a drop. Checking C on the corresponding output will

detect the fault in both cases.

Since shorts between lines cause the lower line to dominate, both

of the shorted lines will be low when either is nominally low. If both

of the shorted lines, x* and x*, are connected to word line L , then the
1 J _ _ m

faulty product on L would be P' = fx* + x*) • x* ••• x* instead of the r m _ m 1 j p q
nominal product P = xt • x* • x* •'• x*. If one of the lines, x* fx*),

is connected to word line L , then P1 = P + P • x* (x*), where the
n. n _ n n n j l

nominal product is P = P , • x*(x?). In either case, the true body of v n n l jJ

the product is enlarged, and so is that of the corresponding output f..

It is apparent that checking C„ for the output f. always detects shorts

between input lines.

Similarly to before, when an input line connected to x* and a func-

tion line are shorted, then the function line will mechanize f! = f. • x*
1 J ■ x

(f! = f. + x*), because the lower line always dominates the higher one.

(Whenever x* is low, the function line will be low; the function line

is still low regardless of the x* value whenever the nominal function

line is low). The true body of output j is thus enlarged. This short

can also be detected on some other output. If the input line x* i,s

connected to word line L, , then the product realized on word line L, in
k 0

the presence of the short will become P' = P, + P, • f-., where the
0 - K K k j

nominal product is P, = P, • x*. This growth in P, can be detected on
K K 1 K

any output that is connected to L, . Since in both cases the true body

of the output is enlarged; it is easy to see that the' shorts assumed

here are also detected by checking C„.

2.4 More General Decoder Form and Application of C_

Sometimes it is advantageous to use more than one literal (typically

two) as the inputs to the PLA's. For simplicity, consider Fig. 3,

where two literals are used as the inputs to the AND array and n-p-n

transistors are used in the NOR-OR logic form in the PLA. From Fig. 3,

where the decoders are of the form shown in Fig. 4 , we have

P1 = Product mechanized on L = (x1+x_)(x1
+x?)(x+x.)(x +x)

P„ = Product mechanized on L_ = (x +x„) (x+x.) (x+x,,) (x+x,)

P = Product mechanized on L = (x. +x_) (x +x) (x+x.) (x,+x.) (x,.+x,)

p. = Product mechanized on L. = (x.+xj (x.+x.) (x,+x.) (Xr+xJ

9

x, x2

J_l
Two-Bit Decoder

HT '^

x, A4 ',5 ,'6

Two-Bit Decoder

LA
T^o-Bit Decoder

£"

fl f2 fJ

AAA

K ^
i

3T
4

RT 2"
C

■Apj j''cc

3T T K c ^

r-:r~^
^.

^ ? 5L

Fig. 3 PLA with Two-Bit Decoders

X} X.

r

G-i ©-2

0-1

©
<}"

©-1
©-1

0 0 0

© *<*-
©

©-2
©-2

1

©

©-2 |

6
x.x.

1 J
x.x.

1 J
^ x.x.
♦ 1 J

. x.x.
♦ 1 J

Fig. 4 Two-Bit Decoder

10

' fl = Pl + P3

f2 = P2 + P4

f3 = Pl + P2
s

In general, the product P realized on the word line L is

P = fx* + x*)fx* + x*) ••• fx* + x*), where i ^ j , k ^ I, and m i n in v i y v k £ m n ■ '

2.41 Single or Multiple Missing Devices

If the missing device is in the AND array and the missing device

should provide a connection to the input line x*x*, then the product

P = (x* + x*) (x* + x*) ' • • (x* + x*l will become P* = (x* + x*) • ■ • (x* + x*)
1 y k £J K m nJ k £^ *• m n'

so that this fault causes a growth. Similarly, more than one device

missing in the AND array results in a growth in one or more of' the

functions realized in the array.

If the missing device is in the OR array and the device should

connect row r to function f, then the function f = P + P. + ••• + P.
r l ' j

will become f = P. + ••• + P., so that this fault causes a drop. It

is evident that more than one device missing in the OR array results

in various kinds of drops. In all cases C verification can serve as

a test.

2.42 Single or Multiple Extra Devices

An extra device in the AND array connected to input x*x* will

result in the product realized on the corresponding word line having

(x* + x*) added, which causes a shrinkage. (The nominal product

P = (x* + x*)•••(x* + x*) will become P' = (x* + x*lfx* + x*)•••(x* + x*)
I nr p q ^ l jJ ^ l m v p q

due to the fault). Similarly, multiple extra devices in the AND array

result in a shrinkage, in one or more of the functions and this is

detected by checking C in the array.

If an extra device in the OR array connects row r to function f,

then the function f = P. + ••• + P. will become f = f + P , so that
l j r

11 J

the true body is enlarged by the fault. Multiple extra devices in the

OR array enlarge the true body of,.one or more*of the corresponding

outputs. Clearly these faults are all detected by checking C_.

'2.43 Stuck Lines in the PLA

. As explained in Section 2.2 most of the stuck lines are equiva-

lent to single (multiple) missing devices or single (multiple) extra

devices, and it is not difficult to see that stuck lines not equivalent

to missing or extra devices are also, detected by checking Cn.

2.4-4 Shorts in the PLA

In all cases of shorted lines, the same arguments as given under

shorts in Section 2.3 are applicable here, except that the input

literals in the products are not x* but (x* + x*) for i / j . Therefore,

we can say that the effectiveness of testing by verifying CL is not

reduced when a two-bit decoder is used.

2.45 Stuck Lines in the Decoders

Refer to Fig. 4. Assuming that all pins are fault-free, input

lines to the AND gates in the decoder stuck in 0 are equivalent to

output lines from the AND gates stuck in 0, which are equivalent to

input lines to the AND array of the PLA stuck in 0.

If the fan-out line x* to the AND gate (i.e.,(T)- 1 or(T)- 2 in

Fig. 4.) is stuck in 1, then the output from the corresponding AND

gate becomes x*, while nominally it is x?x*, so that the word line L 6 3 } i J _ m
connected to the output from the decoder realizes P1 = x?(xj+x*)••• r m] k * m _
(x* + x*) as its product, whereas its nominal product is P = (x*+ x*)
pqr ^ mij

(x* + x*)•••(x* + x*). If the fan-out point x* to the AND gate
Z m p q i

(i.e.,^in Fig. 4.) is stuck in 1, then the two outputs from the AND

gates become x* and x* where the nominal outputs are x*x* and x?x*,

respectively. This causes the word line L to realize P' = x* • x* •
m m j j

(x* + x*)•••(x* + x*) = 0, if both outputs from the decoder are con-
Z m p q r

nected to the word line L . Otherwise (i.e., only one output connected),

12

the faulty product becomes P = x*(x* + x*)*''(x* + x*) or P = J r m j I m p q m
x*(x* + x*)•••(x* + x*). Since in either case the fault causes a drop,

j *■ l m p q SL

this is detected by checking C„.

13

3. Testing the Associative Logic Matrix

Greer's Associative Logic Matrix [9] makes possible the effi-

cient realization of multiple output, multiple level, combinational

and sequential networks by means of the regular interconnection

structure of read-only memory and programmable logic arrays. For the

implementation of complex multiple-output Boolean functions, which

frequently can be expressed efficiently in more than two levels of

logic, Associative Logic Matrices (ALM's) may well be advantageous

over Programmable Logic Arrays (PLA's), which are typically restricted

to two-level logic.

The ability to implement networks involving more than two levels

of logic is achieved in the ALM through the use of "internal function

logic". This logic involves additional bit lines which serve the dual

role of forming logical sums (or products) and providing the resulting

signals as inputs in the formation of subsequent functions. For sim-

plicity, we restrict the realization of associative logic to four-

level combinational circuits. All connections in the array are "wired-

NOR"ed by means of n-p-n transistors. In Fig. 5, the internal

function g is g = xixi+ x?> one output is f = x g + x g + x,x x., and

another output is f„ = x.g + x„g.

The structure of the ALM differs from that of the PLA in the addi-

tion of the G-array, which realizes the internal functions. Hence the

ALM consists of the AND array, the OR array, and the G-array, as shown

in Fig. 5. The rightmost bit line of the G-array will be called the

"collector line of the G-array" and the other two lines, which are used

as inputs in the formation of the output functions, will be called the

"output line g of the G-array" and the "output line g of the G-array",

respectively, as shown in Fig. 5.

To ease fault-detection in the ALM's, we will add extra logic. It

consists of one extra output, f , which is fed by all word lines con-

nected to the output line g of the G-array. Thus f is of the form

f = gx*--"x* + ••• + gx*---x*. (In Fig. 5, the extra output is
C 1 J K Jo

f
e=SX4).

14

f, f, f 1 2 e

Xl xl x2 x2 x3 x3 X4 X4

Hi T
T

G-ARRAY

T
e- ^

£ RT

A

J_ v
! cc

T Hi
-€>

'^

HT 7
T

^i, i.'/S:

J\

\ cc

AND ARRAY

Output Output Collector
Line g Line g Line

OR ARRAY

Fig. 5 Associative Logic Matrix

o
o^

O-iipO
g

-O—>—v

z^>^=C> 1>

o TFO^O—D>"- ri

Fig. 6 ALM of Fig. 3.5 Redrawn

15

To avoid duplicating previous explanations in Section 2, we

list those faults that have the same effect in ALM's as in PLA's and

omit further discussion of these:

1. Single or multiple missing (extra) devices in the AND array,

where the corresponding word lines do not feed the internal

function (i.e., the corresponding word lines are not con-

nected to the collector line of the G-array).

Single or multiple missing (extra) devices in the OR array.
yStuck lines not in the G-array.

4. Shorts between word lines, unless one or both of the shorted •

lines feed the internal function.

5. Shorts between input lines in the AND array that have no path

to the collector line of the G-array.

6. Shorts between output lines in the OR array*

7. Shorts between a word line and an output line in the OR array.

8. Shorts between a word line and an input line in the AND array.

9. Shorts between an input line in the AND array and an output

line in the OR array.

3.1 Effect of Other Faults in the ALM's

3.11 Single or Multiple Missing Devices

If a missing device in the AND array should provide a connection to

the input line x* and the word line L, to which the device should have r I k
been connected is one of the word lines feeding the internal function g,

then the product realized on L, will become P,' = x*«-'x* instead of r k k m n
P, = x* • P', which 'we have called a growth. This fault will enlarge

the true body of the internal function g and also that of the extra out-

put f . Checking C„ on f will detect the fault. It is easy to se
^ e b 0 e J

that multiple missing devices in the AND array will be detected by

checking C„ on f if at
"0 e

the internal function g.

put f . Checking C„ on f will detect the fault. It is easy to see
^ e b 0 e J

multiple missing devi

checking C„ on f if at least one of the corresponding word lines feeds

16

If a missing device in the G-array should provide a connection to

the output line g*, then the product realized on its corresponding word

line L will become P1 = xj-'*x* instead of P = g* • P1, and hence m m a m mm
there is a growth. Since this will enlarge the true body of the output

f.. fed by the word line L , checking C„ on f. will detect it.
1 J m ■ 0 1

A missing device in the -G-array which should provide a connection

to the collector line drops the product on its corresponding word line,

and so the true body of the extra output f is reduced, which will be

detected by checking L on f , Moreover, either multiple missing devices

in the AND array and the output line g* of the G-array or missing devices

in the OR array and the collector line of the G-array will be surely

detected by checking C_. But multiple missing devices in both the out-

put line g* and the collector line of the G-array are not necessarily

detected by checking C .

3.12 Single or Multiple Extra Devices

If an extra device in the AND array connects the word line L, to

the input x* and the word line L, does feed the internal function g,

then the product on L, will become P, = x? • P, , which we have called a

shrinkage. This will reduce the true body of the internal function g

and also that of the extra output f . Checking C_ of f will detect r e 0 e •' •
this fault. Multiple extra devices in the AND array will be surely

detected by checking C„ of the extra output f , if at least one of the

corresponding word lines feeds the internal function g.

One or more extra devices in the output line g* of the G-array,

except for special case A discussed below, will be detected by checking

C„ of the output f, fed by the corresponding word line, because the

fault causes a shrinkage and reduces the true body of the output f,.

It is not difficult to see that multiple extra devices in both the AND

array and the output line g* will be detected by checking C .

One or more extra devices in the collector line of the G-array, except

for case B treated below, cause one or more products realized on the

corresponding word lines to become additional implicants of the internal

17

function g, and so the true body of the extra output f is enlarged,

which will be surely detected by checking C_ of f . Multiple extra

devices in both the OR array and the collector line of the G-array

will also be detected by checking C„.

Case A

If one or more extra devices are connected to the output line g*

of the G-array and at least one of the corresponding word lines

nominally feeds the internal function g, then this fault will cause

feedback. Consider Fig. 5 and Fig. 6 , which is a conventional

representation of Fig. 5 . If an extra device connects the output

line g to the word line L , then the extra device will cause feedback,

as shown in Fig. 7 . (This situation is illustrated by the top circle

in Fig. 5.) Suppose x,, x„, and x are, respectively, 1, 1, and 0,

so that nominally L.= 1, L„ = 0 and g = 1. With the fault, however,

if g were 1, the three inversions around the closed loop would comple-

ment g, so the value of g could not remain 1 and in fact the value of

g would oscillate. This is the kind of fault that a static type of

test just cannot detect; only waveform observation will be sure to

result in detection.

If an extra device connects the output line g to a word line L ,

then it will cause feedback as shown in Fig. 8. (This situation is

illustrated by the circle on Line L„ of Fig. 5.) This feedback

over an even number of inversions can be detected by a sequence of two

tests. The first makes both L. and L_ low, so that g = 1. This is a

stable condition in the presence of the feedback. The second test

makes L_ nominally high while keeping L, low, so that nominally g^= 0.

If feedback is present, however, the second test will leave g un-

changed, i.e., it remains 1. While the assumed fault is detectable,

simply checking C„ will not always work.

Case B

If one or more extra devices connect word lines to the collector

line of the G-array and at least one of the corresponding word lines

is nominally connected to the output line g*, then this will cause

18

^

Ll

o—=■
L2

£>
V

g -

Fig. 7 Feedback from g Due to Extra Device

t> Ll

o
o

Fig. 8 Feedback from g Due to Extra Device

19

feedback. Refer to Figs. 5 and 6. If an extra device connects the

word line L to the collector line of the G-array, then the extra device

will cause feedback as shown in Fig. 9. (This situation is illustrated

by the circle on the third line of Fig. 5.) As before, this feedback

can be detected by a sequence of two tests. The first makes both g

and x. low, so that L = 1, which is a stable condition in the presence

of the feedback. The second test makes g nominally high while keeping

x low, so that nominally L = 0. If feedback is present, then the

second test will leave L_ unchanged, i.e., it remains 1. However,

simply checking Cn will not necessarily detect this fault.

If an extra device connects the word line L. to the collector line
4

of the G-array, then the extra device will cause feedback as shown in

Fig. 10. (This is illustrated by the circle on the fourth line of

Fig. 5.) As before, when an input combination which makes all of

L , L , and x low is given, the value of L will oscillate due to the

feedback. A static type of test cannot detect this fault; only wave-

form observation can.

3.13 Stuck Lines in the G-array

Since an output line g* stuck in the G-array is equivalent to one

or more missing devices or one or more extra devices in the G-array,

this will be easily detected by checking C .

If the collector line of the G-array is stuck at 1(0), then the

fault will be equivalent to both the output line g stuck at 0(1) and

the output line g stuck at 1 (0). The output line g stuck at 1(0)

reduces (enlarges) the true body of the extra output f , so that

checking C„ of f will detect the collector line stuck. If a word
0 e ,- ■ ~

line L, is stuck and L, is one of the word lines feeding the internal

function g, then the fault will surely enlarge (reduce) the true body

of the internal function g and also that of the extra output f .

This fault will be detected by checking C,. of f .
U e

20

o^-a> o
o Y

Fig. 9 Feedback Due to Extra Device on
Collector Line

o-^ a>
o v

Or
Fig. 10 Feedback that Can Cause Oscillation

21

3.14 Shorts Between Word Lines

If both of the shorted word lines feed the internal function, then

the short between lines is equivalent to extra devices in both word

lines. Extra devices in both lines will reduce the true body of the

internal function g and also that of the extra output f , so that

checking Cn of f will surely detect the fault.

Similarly, if one of the shorted lines feeds the internal function

g and the other, L, ., is not connected to the output line g* of the

G-array, then both the true body of the internal function and that of

the output fed by the word line L, will be reduced, because the short

is equivalent to extra devices in both lines. This will also be

detected by checking C_.

However, if one of the lines feeds the internal function g and

the other is connected to the output line g (g) of the G-array, then

the fault will (not) always be detected by checking C„. Refer to

Fig. 5 and Fig. 6. If the word line L is shorted to the word

line L., which is connected to the output line g of the G-array,

then the circuit will be changed to that shown in Fig. 11, where

the signals on L1 and L. will oscillate. This is not detected by a

static type of test. If the word line L is shorted to the word line

L_ connected to the output line g of the G-array, then this will be

detected by checking Cn on the extra output f . Refer to Fig. 12.

Once L becomes low both L1 and L will be stuck at 0 due to the

short, so that the true body of f will be reduced.

3.15 Shorts Between Input Lines in the AND Array

As explained in the discussion of the PLA, shorts between input

lines enlarge the true body of the products realized on all word

lines connected to those input lines. If one or more word lines

connected to those input lines feed the internal function g, then

checking C„ on the extra output f will detect this fault, because

the fault will enlarge the true body of the internal function g as

well as the extra output f .

22

Short

xx—4 S°~

Fig. 11 Feedback Due to Short I

Short

Li

Fig. 12 Feedback Due to Short II

23

3.16 Shorts Between a Word Line and an Input Line in the AND Array

If a word line L, is not connected to the input line x* in the
k . . 1

fault-free circuit and L is one of the word lines feeding the internal

function g, then the product realized on L, will become P,' = P, + x*
K K K 1

due to the short, because the short between lines makes the lower

value dominate. This-enlarges the true body of the internal function

g, and also that of the extra output f , which is readily detected by

checking C. of f . Otherwise (e.g., L. is nominally connected to x* b 0 e . " k i
and L, is one of the word lines feeding the internal function g),

L, will become stuck at 0 due to the short, which connects base and
k ■, - -

collector of the transistor nominally driven by xt. This will be

also detected by checking C„ of f . to 0 e

3.17 Shorts Between a Word Line and the Collector Line of the G-array

If the shorted word line L, is not connected to the output line

g* of the G-array and L, does not feed the internal function g in the

fault-free circuit, then the short between L, and the collector line
K

will result in the faulty internal function g' = P, + g, so that the

true body of the extra output f will be enlarged. Checking C of f

will detect the fault. If L. feeds the internal function g in the
k b

fault-free circuit, then there is a base-to-collector short and the

short will result in the collector line stuck at 0. As discussed in

3.213, this is detected by checking C of f .

When the word line L, is nominally connected to the output line g

of the G-array and L is shorted to the collector line of the G-array,
K •

then checking C^ on the extra output f will detect this fault.
0 r e

Consider Figs. 5 and 6. If the word line L. and the collector

line of the G-array are shorted, then the circuit will be changed to

that shown in Fig. 13. In Fig. 13, since the circuit locks up with

both g and L. stuck at 0 once g becomes low, the short will enlarge

the true bodies of the internal function g and the extra output f .

Hence, checking Cn of f will detect the fault. b 0 e

24

x3

Short

O^

£>

FO

x2 1 S*

Fig. 13 Feedback Due to Short III

o-^
o

=J>

Fig. 14 Feedback Due to Short IV

25

However, if the word line L is nominally connected to the output
k

line g of the G-array and it is shorted to the collector line of the

G-array, then simply checking C will not detect the fault. Consider

Figs. 5 and 6. If the word line L and the collector line of the

G-array are shorted, then the circuit will be changed to that shown

in Fig. 14. The short will make the values of g and L oscillate.

3.18 Shorts Between a Word Line and an Output Line g* of the G-array

If the word line L, is not connected to the output line g* and

L, does not feed the internal function g in the fault-free circuit,

then the short between L, and the output line g* of the G-array will

result in P' = P, • g*, which will reduce the true body of the output

f. fed by the word line L. . Checking C_ on f. will surely detect the
I k to 0 I J

fault. But if L is connected to the output line g* in the fault-free
K

circuit, then L, will become stuck at 0 due to the fault, so that the k
true body of the output f. fed by L will be reduced. The fault can

be detected by checking Cn of f..

When the word line L, does feed the internal function g in the

fault-free circuit, the short between L, and the output line g of the

G-array will be always detected by checking C . • Consider Figs. 5

and Fig. 6. if the word line L and the output line g of the G-array

are shorted, then the circuit will be changed to that shown in Fig. 15.

As before, once L becomes low, both L and g will be stuck at 0. This

will reduce the true body of the internal function g, so that checking

Cn of f will detect the fault. 0 e

However, if L, does feed the internal function g in the fault-

free circuit, the short berween L, and the output line g of the G-array

will not be detected by simply checking C . Consider Fig. 5 and

Fig. 6. if the word line L. and the output line g of the G-array

are shorted, then the circuit will be changed to that shown in Fig. 16.

Since the values of L1 and g oscillate due to the short, checking Cn

will no longer detect the fault.

26

Short

*1 £>

O

Fig. 15 Feedback Due to Short V

Short

Fig. 16 Feedback Due to Short VI

27

3.2 Discussion

While the ALM, because of the addition of the G-array, is not

limited to the realization of two-level combinational logic, faults in

the G-array are not easily detected. In particular, some faults cause

oscillation and cannot be detected by a static type of test, but only

by waveform observation. Thus we conclude that testing of PLA's is

easier than testing of ALM's.

4. Fault-Detection in Programmable Storage/Logic Arrays

Patil and Welch's programmable Storage/Logic Array (SLA) [10] is

a form of PLA which contains flip-flops distributed throughout the

array. Because in some computer designs purely combinational PLA's

are difficult to use extensively due to pin limitations, some PLA's

with flip-flops providing internal feedback from the outputs back to

the inputs, as shown in Fig. 17, have been proposed [1], [2].

SLA's differ from previously described PLA's in that the AND and OR

arrays are folded together so that input lines and output lines are

alternated within a single array (see Fig. 18). As described in

[10], "This has two important effects: (1) substantially more

flip-flops can be added without the need for excess input-output

routing space, and (2) rows of the array...can be subdivided into

multiple independent segments which can represent independent varia-

bles over smaller portions of the array." Furthermore, the columns

can also be subdivided into segments carrying independent variables

with localized access by adding more flip-flops at the intervals

along the columns.

28

Inputs

a
Outputs

I Flip- { 1
Feedback

I 1
f\

AND ARRAY OR ARRAY

Fig. 17 PLA with Feedback

1. .1. .1, .1
Storage
Cell

Row

Storage
Cell

Output I Input

I I 1
Storage
Cell

OR ARRAY AMD ARRAY

Fig. 18 Storage/Logic Array (SLA)

29

In the SLA circuit shown in Fig. 19, row-column connections are

made by transistors with collectors that are selectively connected in

a wired-NOR structure, and "storage cells" consist of cross-coupled

NAND gates with complemented inputs S and R (i.e., set-reset flip-

flops are used), so that the two outputs from the NAND gates, Q and Q,

will be 0(1) and 1(0), respectively, if the two inputs S and R are 1(0)}

0(1), respectively. Outputs Q and Q maintain the previous values if

S and R are both 1, and Q and Q are unpredictable if S and R are both 0.

(Here and later the superscript + denotes the signal shortly after set

and/or reset values have been established.)

Since the leads in the storage cell contain breakpoints, it can

be used, by opening the breakpoints, for purposes other than the flip-

flop described above. For example, the feedback loop can be broken

so that the outputs of the cell are simple combinational functions of

the inputs.

As one example of SLA logic, we consider here finite-state machines

(FSM's). Refer to Fig. 20. If the machine has m states, n bivalued

inputs, and k bivalued outputs, then the total number of cells required

in the SLA will be (k + n + 3 + flog ml) where fp] is the integer equal

to or just larger than p. Of this number, n cells are used for the n

inputs, one for the reset input, and one for the clock-pulse input.

These cells are buffers obtained by breaking the feedback loops. A

total of |log m] flip-flop cells are used for the storage of the state

variables, q., and k flip-flops for the storage of the k outputs, Z..

One flip-flop, F , is used for determining the proper time duration of

the clock-pulse. This flip-flop will be called the clock-pulse modifier.

There is one row in the array for each possible state transition

and the corresponding outputs. Thus if under some input state S. can

go to S., under another input S. can go to S , and under the third

input S. stays unchanged, then there is a total of two rows involving

state S.. Given in states and p different inputs, there can be at most

mp rows. The transition is made and the associated output is established

30

Column
Break
Points

x : Programmable Break Points

Fig. 19 Basic Cells of an SLA

Row
Break
Point

31

3
PH

3
O

L

<l>
i—i
X>
cd

•H

>

■P
03
+J
CO

L

Vo
to

3
PH
c

(/)
i—(
3 f-f

CL, (L)
•H

^ 4H
O -H
O 13
H O
U 2

O I-I
—I 3

M

0) 3

OS t-H
<-i/5"

£.
SL

:£.

£

:£.

l£

-if
f£

2^1
.2£

il
Y* "V^"

:£
-**♦■

-yd-

2^
ii£il

-^

£ A-
■-^" -y4

:£
-y*'

2£l

ki<

•y*' •yH'

^

-i/)-©"**|-3

IN

-IO:

-lo

-y^'

£

:£

-IN

-IOC

-10-

-IOC

-lo-

-loi"

-V

-IV

-l«r o

-lo« -H

-lu

-II/I nj

0)
+->
rt
+-> </>
H
O

O

-*N*

N

e
bo
O

n
P.

<

£>

T3
<0

+->

§

6
• H

•H

O

S

t/i
i

<D
•P
• H
£

o

• H
P-,

when the corresponding row is activated, i.e., made high. There are

also two extra rows. One will reset the machine; the other will set

the machine into the initial state when activated. For proper opera-

tion the machine is first reset and then becomes set by activating

the corresponding row. The row to reset the circuit, which will be

called the reset row, is driven by the negated reset input, and each

input line S.(R.) to the state flip-flops and output flip-flops is

connected to the reset row, so that the initial values of the state

variables and outputs are inserted when the reset row is activated.

Tlie input line R to the flip-flop F is also connected to the reset r a a
row. When the reset input is high, the reset row is activated, and

because Q = 1, all other rows are made low, so that the initial

conditions and outputs will be stored in the flip-flops in accordance

with their connections to the reset row. (In Fig. 20, the initial

state-variable values and outputs will all be zero.) The row to set

the machine, which will be called the set row, is connected to S

and 0 of the flip-flop F . The set row is also connected to the

reset input and the clock-pulse input. When both reset input and

clock pulse are low (note that Q (Q) became low (high) when the

circuit was first reset), then the set row will be activated. Thus

Q (Q) is changed to high (low), which will cause the set row to go

back to low, but Q (Q) still remains high (low). This makes the
a or °

circuit ready for state transitions, because all rows for state

transitions are connected to Q .
a

Each row for implementing a state transition is connected to the

state variables q* at the outputs of the state flip-flops and the

input variables Y* applied from outside the array. The input lines

S.,R. to the state flip-flops and the input lines to the output

flip-flops are connected to the appropriate rows. All rows for

state transitions are connected to the negated clock-pulse input from

the outside, so that a row (no row if the present state is expected

to be unchanged) is activated for a state transition only when the

present state and inputs are appropriate and the clock pulse becomes

high.
33

All rows for state transitions are also connected to the output

line Q from flip-flop f , which serves to protect the circuit from

improper clock-pulse length. The input line R to flip-flop F is

also connected to each of these rows. If one of the rows for state

transitions is then activated when the clock pulse is high, the cor-

responding next state variables q.'s and outputs Z.'s will be stored in

the state and output flip-flops, and at the same^time Q (Q) from the

flip-flop F will become low (high). This value of Q (Q) , which is

not changed unless the clock pulse becomes low, will make all rows for

state transitions low. In other words, more than one state transition

for one clock pulse is not allowed, even if the length of a clock pulse

is excessive. (This scheme achieves the effect of edge triggering.)

As a simple example, consider machine M with the flow table shown

in Fig. 21. It has four states, one output, one input, and seven

state transitions, so that there will be seven cells (1 + 1 + 3 + log 4 =

7). The cell for the input, the one for the reset input, and the one

for the clock-pulse input do not have feedback loops. Nine rows (a

reset row, a set row, and seven rows for state transitions^ in the SLA

are shown in Fig. 22. When the reset input is made high, row r is

activated, so that Q (Q) will become low (high), and both state vari-

ables q and q will become low. This represents the initial state A,

and the output Z of the initial state A will be low. If next the reset

input is changed to low and the clock pulse is made low, then row r„

will be activated, and so Q (Q) will be changed to high (low), but

state variables q1, q~ and the output Z are unchanged. There are two

rows, r and r., which recognize the initial value of the state variables

(q..q„ = 00), so that if the input Y is made low and the clock pulse goes

high, then row r will be activated and so q1, q , and Z become, respec-

tively, low, high, and low, which represents the next state B(q..q„ = 01)

and its output (Z = 0). Similarly, when the next clock pulse occurs,

one of the two rows r^ and r, will be activated for the corresponding

state transition and output.

34

)

qxq2

I
1 Y = 0 Y= 1 Output

00 A B C 0

01 B C D 0

10 c C D C 1

11 D A 0

Fig. 21 Flow Table of M
1

35

o o o s

O t—

^Z5

V4

£

£.
»£

"\ £. 2£L

_/*•

.<.

i^

2£l

2d: 2^

£_k'
y+'

4—

-^ rvl

yi' 2£L

'•>

..y

ad:

£_::£

m

:*L

M-

k:
.^

—i— 1 or

£iL2£",

2£

^£Lb^l

^-

:2£ll

y1'

£

.y V- b^, ~
U

y-l- -yl

2£L

2£L

fc£

Q;

-#•

nx_ K
£_

£J£

£_££:
^•- ,^l-

y*"' Y1" "V*1'

■S-

A*

c\j co I m

Q: 00 ^
v V

ff

2£,

•y* pd:

o
c
o

IX i',£

V r^1" K

■5; DO CO O

r*~«-£ * 00 en I CT*

36

4.1 Effects of Faults

4.11 Stuck Lines

Refer to Fig. 20. Input line S to the flip-flop stuck at 1(0)

will cause the output Q to be reset (or it becomes unpredictable, as

explained later in case C) if the other, R, is nominally low. Other-

wise (i.e., R nominally high), the output Q will be unchanged (set)

due to the fault. Similarly, input line R stuck at 1(0) will cause

the output Q to be set (unpredictable) if S is nominally low. Other-

wise, the fault will cause Q to be unchanged (reset). Thus the fault

may result in the incorrect next state, but it will leave the outputs

correct if the flip-flop F is one of the state flip-flops. The pos-

sible malfunction will be called an incorrect state transition (1ST).

If the flip-flop involved is one of the output flip-flops, an incor-

rect output, denoted 10, may occur. Except for case A, if the input

line R to the flip-flop F for the clock-pulse modifier is stuck at

1(0), then the circuit will no longer be synchronous, unless the fault

is redundant, so that the next state and the outputs may be incorrect,

which will also be called an incorrect state transition (1ST). The

input line S stuck at 1(0) (except for case C) will make all the

rows connected to Q low, so that no_ state transitions (NST) will

occur.

The output line Q*(Q*) from a state flip-flop F. (the flip-flop F)

stuck-at-1 keeps all the rows connected to Q*(Q*) from being activated,

so that the corresponding state transitions cannot occur. This will

result in NST. If the output line Q?(Q*) is stuck at 0, then a row

connected to 0?(Q*) may be activated for a state transition when it
j a

should not be, so that the next state and the output may be incorrect.

Hence we have an 1ST. If the output line Q* from the output flip-flop

F, is stuck at 1(0), then it will clearly cause the 10.

An input line Y* stuck-at-1 keeps all the rows connected to Y*

from being activated, i.e., it results in NST. If Y* is stuck at 0,

37

then one of the rows connected to Y* may be activated when it should

not be, so that it will result in an 1ST.

The reset-input line stuck at 1(0) will keep the circuit from

being set (reset), so that this will result in NST (1ST).

The clock-pulse input line stuck-at-1 keeps all rows connected to

it from being activated,. which results in NST, while the clock-pulse

input line stuck-at-0 causes the circuit to be no longer synchronous,

so that it could result in an 1ST. It is easy to see that row r,
k

stuck at 1(0) will cause an 1ST (NST).

Case C

If both inputs S and R to the flip-flop F become low due to the
+ -+

fault, then the outputs Q and Q from F will be unpredictable.

4.12 Single or Multiple Missing (Extra) Devices at the Crosspoints

If a missing device disconnects the input line S(R) from the row r ,

then the output Q from the flip-flop F remains unchanged when it should

be changed. Thus the fault will cause an 1ST, but the outputs will be

correct, if the flip-flop F is one of the state flip-flops, or an 10 will

result if the flip-flop F is one of the output flip-flops. A missing

device in the output line Q* causes the corresponding row to be activated

when it should not be activated, so that the next state and the outputs

may be incorrect; hence there results in an 1ST. Similarly, multiple

missing devices will cause IST's and/or 10's.

An extra device in the input line S(R), except for case C, may

cause the output Q to be different from the nominal value, so that the

next state may be incorrect, hence the result is arr~IST. If an extra

device connects the output line Q* to row r , then row r will not be
IK K

activated when it should be, so that the present state and the outputs

will be unchanged, hence the result is NST. Similarly, multiple extra

devices will cause IST's and/or NST's.

A missing device in the input line Y* which is nominally connected

to row r, causes the row r, to be activated when row r, should not be,

38

which results in an 1ST. If an extra device connects the input line Y*

to row r, , then row r, will not be activated due to the fault when it

should be, so the result is NST. It is not difficult to see that

multiple missing (extra) devices in the input lines will cause IST's

and/or NST's.

Similarly, one or more missing (extra) devices in the reset-input

line and the clock-pulse line will cause IST's and/or NST's.

4.13 Shorts

Here, as before, we assume that a short between lines makes the

lower value dominate. In the SLA, if two rows, r and r , are shorted,
m n

then they will always remain low (i.e., be never activated) because at

least one of any pair of rows is always low. The result of the short

is NST.

Except for case C explained previously, consider a short between

the input line S.(R.) and the output line Q* from flip-flop F.. The

input line S.(R.) becomes high when the clock pulse is low. If the

output line Q* is nominally low, then the short between Q* and S.(R.)

will make S.(R.) low, so that the output Q* from the flip-flop F. will

become 1(0). This may cause an 1ST if F. is one of the state flip-

flops, an 10 if F. is one of the output flip-flops, and an 1ST or NST

if F. is the clock-pulse modifier.

A short between S. and Q. (or R. and Q.) will not affect the
I

xi *• l xi

normal values of Q. and Q.. If there is a short between S. and Q. xi xi l xi

(or R. and Q.)> then the value of Q.(Q.) may oscillate between 1 and 0,

so that the fault is not easily modelled.

Given the input Y* low, the short between S.(R.) and Y* will make
_ _ 1 11 j

S.(R.) low when S.(R.) should be high. Similarly to the short between
I I i^i b

Q* and S.(R.), this will cause one of the following: an 1ST, an 10,

or NST, depending on what the flip-flop F. is used for. It is not

difficult to realize that a short between two columns other than

those considered above will cause either an 1ST, an 10, or NST.

39

Next we consider shorts between a row and a column. When the clock

pulse is low, all rows in the array become low, and so all input lines

S.(R.) become high. The short between row r, and the input line S.(R.)

will cause S.(R.) to be low, so that, as explained in the previous case,

this will cause either an 1ST, an 10, or NST. Consider a short between

row r, and the output line Q* from the flip-flop. If r, and Q* are

nominally high and low, respectively, then the short will cause r, to

be low. In other words, r, will not be activated, hence NST. If r,

and Q* are nominally low and high, respectively, then Q* will become

low due to the short, so that it will cause an 1ST (an 10) if the flip-

flop F. is one of the state (output) flip-flops. Similarly, if the

input line Y* and the row r are nominally low (high) and high (low),
1 K

respectively, then the short between Y* and r, will cause NST (an 1ST).
1 K

It is easy to see that a short between a row and the reset-input line

(the clock-pulse input line) will cause either NST or an 1ST.

To summarize, our exhaustive examination has shown that the effect

of faults in the SLA will be one of the following:

1. No State Transition (NST)

2. Incorrect State Transition (1ST)

3. Incorrect Output (10)

4.2 Change in the Number of States Due to Faults

In preparation for later discussion of the proper method of fault-

detection in an SLA, we examine first the effect of faults on the number

of states.

4.21 NST's

Since the fault does not allow the present state S. to be changed

to the next state S., the total number of states in the machine may be

decreased. In other words, once the machine reaches the state S., it

cannot reach the state S., so that the state S. will no longer occur
J J

if S. is the only state through which the machine can reach S..

40

For example, assume that q is stuck-at-1 in Fig. 22. Then rows

r„, r,, rr) and rr will never be activated, which will keep state 3 4 5 6
transitions (A->-B) , (A+C), (B->-C), and (B+D) from occurring. Thus, if

the initial state is A, then the machine will always remain in state A,

so that it ceases being an FSM.

4.22 10's

In the SLA as described, when a clock pulse occurs, the next state

and the new output are uniquely determined by the present state and the

inputs. If there are faults in one or more of the output flip-flops,

then these faults may cause incorrect outputs, and furthermore, some

of the faults may make the outputs of the next state no longer depend

only on the present state and the inputs. The fault that makes an

output constant reduces the number of states. On the other hand, if a

fault makes the outputs of the next state depend on more than the present

state and the inputs, as will be explained below, then the number of

states will be increased- over the nominal number.

Theorem 1. In a Moore-machine implemented by means of an SLA,

the number of states will be increased due to some faults if the

machine has at least two distinct states, S. and S., the outputs

of which are different, and one or more of the next states

(successors) of one state, S., is the same as one or more of the

next states of the other state, S.. '
J

Proof of Theorem 1

For simplicity, assume that only one output flip-flop, F , is used

in the SLA. Either S or R is nominally connected to each row for
z z '

implementing a state transition, so that, when the row is activated,

the proper output will be stored at the output line Q . Consider three

rows, r., r., and r, which implement the state transitions, respectively,

(S.+S.), (S.->-S,), and (S,->-S). and let the outputs of states S. and S.
ik'jk' ^ k n r I j

be respectively, 0 and 1. If the fault (due to missing devices) dis-

connects the three rows from the input lines S and R , then the output

41

of state S will be the output of the previous state S. when row r. is

activated, but it will be the output of the previous state S. when row

r. is activated. Thus the state S. will have two different outputs,
j k

0 and 1, associated with it. /^When the row r, is activated, the output

of state S will remain unchanged and so it will be the output of the

previous state S, , which has two different outputs depending on the

state previous to S,. Since the output of the next state is not

uniquely determined by the present state and the inputs, one or more

extra states have been effectively added. Q.E.D.

For example, consider machine M , whdch is strongly connected.

Refer to Figs. 21 and 22. Since there are two states B and C

satisfying the condition assumed in Theorem 1, the number of states

could be increased due to some faults. If the two devices at the cross-

points between r_ and R and between r and R are missing, then the
/ Z o Z

output of state D will be 1 when row r is activated, but it will be 0

when row r is activated, so that the output of state A when row rR is

activated will not be uniquely determined, because the output of state

A is the output of the previous state D. This is shown in the flow-

table of Fig. 23. The state D has two different outputs, so that by

adding one extra state, E, we can complete the flow table of the faulty

machine, which is shown in Fig. 24. (This is a Mealy-machine.)

As, a second example, consider machine M which is not strongly

connected, but satisfies the condition assumed in Theorem 1.. Its

flow table is shown in Fig. 25. States A and B have different

outputs and the same successor D. Assuming that the row for the state-

transition (A-*B) is represented by r , if all devices between S (R)
AD Z Z

and rows r. , r , and r„. are missing, then the flow table will be

changed to that shown in Figs. 26 through 28. The two different

possible output values of state D will cause extra states A , D1 to be

added as shown in Fig. 27. The resulting Mealy machine, M , can be

transformed to its Moore equivalent, M°, as shown in Fig. 28.

42

V'2 Y= 0 Y = 1

00 A B,0 c,i

01 B C,l U,0

10 C D,l c,i

11 __ D

t
B,0

•the output of the state D

Fig. 23 Faulty Version of M,

Y = 0 Y = 1

A B,0 C,l

B C,l D,0

C E,l C,l

D A,0 B,0

E A,l B,0

Fig. 24 Result of Fault in M.

43

Y= 0 Y= 1 Output

A B D 0

B D C 1

C C C 0

D D A 0

Fig. 25 Machine M„

Y = 0 Y = 1

A

B

B, 1 D,0*-

C C, 0 C, 0

D

i
A.O

>

the output of
state A

the output of
state B

the output of the previous
entry leading to D

Fig. 26 Machine M with Faults

44

Y = 0 Y = 1

A B,l D,0

B D2,l C,0

C C,0 C,0

D D,0 A,0

Dl Dr,l Arl

Al
B,l D^l

Fig. 27 Resulting Mealy Machine M„

Y = 0, Y = 1 Output

A B D 0

B E C 1

C C C 0

D D A 0

E E F 1

F B E 1

Fig. 28 Resulting Moore Machine M„

45

4.23 IST's

If there is an 1ST, the number of states will never be increased

over the nominal number. This is so because once the state, whether

correct or not, and the inputs are given, the output flip-flops will

generate a unique output pattern based on that state and the inputs.

For example, if the input line Y is stuck at 0 in Fig. 22, then rows

r_, r,., r_, and r~ become independent of the Y-value, so that both

rows r, and. r. will be activated when only row r. should be, and
3 4 J 4 . '

similarly both rr and r, rather than only r, will be activated, both
O D O

r and r instead of only r , and row r? will be activated when it

should not be. The flow table will be changed to that shown in

,/Fig. 29. Note that the number of states is unchanged.

4.3 Modification of the Circuits

As explained in Section 4.22, some faults in the output flip-flops

may cause the number of states to be increased over the nominal number.

This effect makes it difficult to apply conventional testing methods

for sequential circuits [11], [12] to an SLA because these methods

are successful in circuits i^iere faults cannot increase the number of

states. We propose here that SLA circuits be modified so that faults

cannot increase the number of states. It will be shown that this can be

achieved by generating the outputs by means of combinational logic

circuits rather than output flip-flops.

The added combinational logic circuits consist of extra rows and

cells with feedback loops that are all broken. See Fig. 31, where

there is one output cell at the right. (The number of output cells

will be I y I if the number of output flip-flops that they replace in

the original SLA is k.) Each extra row is connected to the proper

state variables q* to satisfy the outputs of all the states of the

Moore machine and then each input line to the output cells is connected

to one or more extra rows to generate the outputs of the machine. (See

46

- Y = 0 Y = 1

A B,0 D,x

B c,i C,x

C D,0 D,0

D A,0 A,0

x : Unpredictable output

Fig. 29 Machine M with Faults

■q!q2.
Y = 0 Y = 1 Outputs [Z^LS)

00 A B C 00

01. B C A 10

10 C A D 11

11 D D B 01

Fig. 30 Machine M,

47

OJ (D

3 _-X

k^1" Us

O

o

tJ±h^L

o

tj

o

48

the example below.) It is easy to see that the structure of the combina-

tional circuits described above is exactly that of the two-level PLA,

where the inputs to the AND array are the state variables q* and the

outputs from the OR array are the outputs from the cells. Since no

fault in the PLA can cause the number of states to be increased (i.e.,

a PLA is not changed to a sequential circuit due to faults as discussed

in Section 2), no fault in the modified SLA will cause the number of

states to be increased over the nominal number. Thus conventional test-

ing methods can be applied to the modified SLA.

For example, consider machine M with the flow table shown in

Fig. 30. The combinational circuits for the outputs (Z Z) in the

modified SLA consist of three extra rows (r ,, r „, and r „) and one
el e2 e3

cell. The latter has all feedback loops broken, so that the two output

lines from that cell will carry outputs Z.. and Z . (Note that two flip-

flop cells are required for two outputs Z and Z„ in the original SLA.)

As shown in Fig. 31, the products realized on the extra rows r -, r „,

and re3 aTe' resPectively» p
el = q^' Pe2 = qlV and Pe3 = qlV The

outputs Z. and Z0 from the cell will be Z. = P 1 + P _ and Z_ = P _ + P 7. r 1 2 1 el e2 2 e2 e3

4.4 Testing Methods for Sequential Circuits

We will say that a FSM is diagnosible if it has a distinguishing

sequence. Techniques for making FSM's diagnosible will first be briefly

reviewed and then a novel technique, more appropriate for SLA applica-

tion, will be given.

4.41 c. R. Kime's Technique [12]

Consider the flow-table of a Mealy machine. We shall say that the

machine M contains the machine M if deleting some of M 's columns

creates M„, which has no equivalent states. If M is diagnosible, then

M. will also be diagnosible. If M does not contain such a machine,

Kime suggested appending to it a single column which is an irreducible

machine M„ that has a distinguishing sequence. Adding this column by

49

11

means of one extra input symbol will make any machine diagnosible.

As Ref. [12] summarizes it "The column Kime adds is a "divide-by-two

column." In other words, state S., with binary assignment b., maps to

the state with assignment J — b. I Q J signifies integer part of).

The output for the state S. is the rightmost bit of its state assign-

ment (e.g., for the assignment 01, the output would be 1)."

For an example of this procedure, Ref. [12] gives the machine M

shown in Fig. 32. The divide-by-two column is added, resulting in

the machine shown in Fig. 33. .

The effect of the added column is to shift the state assignment

one digit to the right and introduce a zero as the new leftmost digit.

It follows that the added column has a distinguishing sequence of length

k when there are k bits in the state assignment. In the four-state

example, the distinguishing sequence will generate an output sequence

which consists of the state variables q„ and q of each state.

4.42 R. L. Martin's Technique [12]

Martin's technique for making FSM's diagnosible is based on "feed-

back-shift-register (FSR) realization" of the machine. Fig. 34 shows

the typical FSR circuit, where the state variable q. of the next state

in the machine is the variable q. of the present state. If a machine

is modified for FSR realization, then it has a distinguishing sequence

of length k when there are k bits in the state assignment. As described

j in [12], "We propose adding a cycle of length 2 column with outputs

(added) so tha,t any sequence of k inputs of this added column generates

an output sequence which is the state assignment of the initial state...

Further, since adding the cycle column to any SM makes it strongly con-

nected, the rather unfortunate constraint of strongly connectedness

usually assumed in diagnosing techniques can be discarded." For example,

consider machine M. given previously in 4.41. As shown in Fig. 35, a

distinguishing sequence of length 2 exists due to the cycle column under

input 2, and the output sequence will be the state variables q. and q_

of each state.

50

qlq2 0

00 A A/0

01 B A/0

10 C B/l

11 D B/l

c/o

D/l

A/1

C/0

Fig. 32 Machine M.

ql«2 0 1 2

00 A A/0 C/0 A/0

01 B A/0 D/l A/1

10 C B/l A/1 B/0

11 D B/l C/0 B/l

Fig. 33 Kime's Augmentation of M,

51

*

\

Extra
Output

Fig.

(

34

k
q2. h * ii *

Feedback

Logic

Input

FSR Realization, where "q.q, _1
Binary State Assignment.

Output

••q2q1"
is the

r

qlq2 0
;

1
\

2

00 A A/0 C/0 B/0

01 B A/0 D/l D/0

10 C B/l A/1 A/1

11 D B/l . C/0 C/l

Fig. 35 Machine M Modified in Accordance with Martin's Scheme

52

4.5 Application of Testing Methods to the I-'SM in the SLA

W Because Kime 's" teclinique for making FSM's diagnosible fails to

make the machine strongly connected, it leads to a realization that it

is not necessariJLy simple to check. Mence we prefer Martin's technique

for achieving testability.

If the Moore machine contained in an SLA is directly modified in

"""accordance with Martin's scheme,^then in most cases it will become a

M-ealy machine due to the output requirements in the added column. Thus

the number of states is likely to be increased over the original number,

which is an undesirable result, when the modified machine (Mealy machine)

is converted to the. Moore equivalent for SLA-implementation.

An alternative approach for applying Martin's technique would be to

apply conversion twice. First, the original machine is converted to its

Mealy equivalent with a minimum number of states. Then after_ modifica-

tion in accordance with Martin's scheme the machine is converted to its

Moore equivalent. But still the modified Moore machine may have more

states than the original Moore machine, as is illustrated in the follow-

ing example. ~ ' .

Consider Moore machine M with the flow table shown in Fig. 36.

When this machine is converted to the Mealy machine shown in Fig. 37,

the number of states is not changed. As a next step, we add the extra

column under new input 2. If the modified Mealy machine of Fig. 38

is converted back to a Moore machine, then the number of states is

increased by one over that of the original machine M,.. This is shown

in Fig. 39.

We suggest here an alternative way of adding a column which is

directly applicable to Moore machines and does not increase the number

of states. Assume a machine in which m states have the output 0 and n

states have the output 1. If the flow table of the machine is arranged

so that states-having the output 0 are placed in the first m rows and

the others, having the output 1, are placed in n rows following the

first m rows, we get a flow table like that shown in Fig. 40. In tfo'e

53

0 1 Output

A 13 C 0

B C A 0

C D B 1

D A D 0

1

Fig. 36 Machine M .

0 1

A B/O C/l

B C/l A/O

C D/0 B/0

D A/0 D/O

Fig. 37 Mealy Equivalent of M

54

V2 0 1 2

00 A B/0 C/l B/0

01 B C/l A/0 D/0

10 C D/0 B/0 A/1

11 D A/0 D/0 C/l

Fig. 38 Mealy Equivalent Modified

0 1 2 Out pi

A B C B 0

B C A D 0

C D B E 1

D A D C 0

E B C B 1

Fig. 39 Moore Equivalent Converted

55

m rows

n rows

0 1 Output

" sl
I 0

S2

1

i

1

0

•
1

•

S
_ m

0

~s i m+1 1

• •

• .

S
m+n 1

Fig. 40 General Form of Moore-Machine Arranged for
Application of a New Testing Scheme.

0 1 2 Output

sl 1 S2
0

S2 1

1

S3
0

S
m

•
•

s i m+1
0

s / m+1 Sm+2
1

S
m+n Sl

1

Fig. 41 General Form of Moore-Machine Modified for Testing.

56

added column, the successor state to state S. will be S. n for 1 l+l

i = 1,2,...,m + n - 1, and for present state S , the next state r m+n
will be S1, as shown in Fig. 41. The modified machine will be

diagnosible because the added column has a distinguishing sequence

of length m-l(n-l) if m(n) is bigger than n(m).. The property of

strongly connectedness is assured since all states are in a single

cycle. As an example, we return to machine M^ of Fig. 36. By

adding the one column shown in Fig. 42, the machine has a distin-

guishing sequence of length 2, and the number of states is not

changed.

57

J

B

D

0 1 2

B C B

C A £
A D c

D B A

Output

0

0

0

Fig. 42 Moore Machine Mq Directly Modified

58

References

[1] H. Fleisher and L.I. Maissel, "An introduction to array
logic," IBM J. Res. Develop., vol. 19, pp. 98-109', March
1975.

[2] J.E. Lagne, et al., "Hardware implementation of a small
system in programmable logic arrays," IBM J. Res. Develop.,
pp. 110-119, March 1975.

[3] E.B. Eichelberger and E. Lindbloom, "A heurisri-e^t-est-
pattern generator for programmable logic arrays," IBM J.
Res. Develop., vol. 24, pp. 15-22, January 1980.

[4] C.W. Cha, "A testing strategy for PLA's," in 15th Design
Auto. Conf. Proc, 1978, pp. 326-331.

[5] D.L. Ostapko and S.J. Hong, "Fault analysis and test
generation for programmable logic arrays," IEEE Trans.
Comput., vol C-28, pp. 617-627, September 1979.

[6] J.E. Smith, "Detection of faults in programmable logic
arrays," IEEE Trans. Comput., vol. C-28, pp. 845-853,
November 1979.

[7] Y. Kambayashi, "Logic design of programmable logic arrays,"
IEEE Trans. Comput., vol. C-28, pp. 609-617, September 1979.

[8] E.L. Muehldorf and T.W. Williams, "Optimized stuck fault
test pattern generation for PLA macros," in Dig. Semicon-
ductor Test Symp., Cherry Hill, N.J., October 25-27, 1977,
pp. 88-101, IEEE catalog no. 77ch-12f-7c.

[9] D.L. Greer, "An associative logic matrix," IEEE J. Solid-
State Circuits, vol. SC-11, pp. 679-691, October 1976.

[10] S.S. Patil and T.A. Welch, "A programmable logic approach
for VSLI," IEEE Trans. Comput., vol. C-28, pp. 594-601,
September, 1979.

[11] C.R. Kime, A Failure Detection Method of Sequential Circuits,
Department of Electrical Engineering, University of Iowa
Technical Report, 66-130 (January 1966).

[12] R.L. Martin, Studies in Feedback-Shift-Register Synthesis
of Sequential Machines, Research Monograph No. 50, The
M.I.T. Press, Cambridge, Mass.

59

[13] F.C. Hennie, Finite-State Models for Logical Machines,
John Wiley § Sons, Inc., New York, 1968.

[14] Z. Kohavi, Switching and Finite Automata Theory, Second
Edition, McGraw-Hill Book Co., New York 1970.

V

60

	Lehigh University
	Lehigh Preserve
	1-1-1980

	A study of fault-detection in array logic.
	Suk-In Yoo
	Recommended Citation

	tmp.1451580486.pdf.KpAbE

