1,579 research outputs found

    A Back-to-Basics Empirical Study of Priority Queues

    Full text link
    The theory community has proposed several new heap variants in the recent past which have remained largely untested experimentally. We take the field back to the drawing board, with straightforward implementations of both classic and novel structures using only standard, well-known optimizations. We study the behavior of each structure on a variety of inputs, including artificial workloads, workloads generated by running algorithms on real map data, and workloads from a discrete event simulator used in recent systems networking research. We provide observations about which characteristics are most correlated to performance. For example, we find that the L1 cache miss rate appears to be strongly correlated with wallclock time. We also provide observations about how the input sequence affects the relative performance of the different heap variants. For example, we show (both theoretically and in practice) that certain random insertion-deletion sequences are degenerate and can lead to misleading results. Overall, our findings suggest that while the conventional wisdom holds in some cases, it is sorely mistaken in others

    Spartan Daily, January 25, 1946

    Get PDF
    Volume 34, Issue 40https://scholarworks.sjsu.edu/spartandaily/3697/thumbnail.jp

    Spartan Daily, January 25, 1946

    Get PDF
    Volume 34, Issue 40https://scholarworks.sjsu.edu/spartandaily/3697/thumbnail.jp

    Distributed-Memory Breadth-First Search on Massive Graphs

    Full text link
    This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.Comment: arXiv admin note: text overlap with arXiv:1104.451

    The Sugar Shell

    Full text link

    The Cuervo Clipper, 06-23-1911

    Get PDF
    https://digitalrepository.unm.edu/cuervo_clipper_news/1063/thumbnail.jp

    Routing on the Channel Dependency Graph:: A New Approach to Deadlock-Free, Destination-Based, High-Performance Routing for Lossless Interconnection Networks

    Get PDF
    In the pursuit for ever-increasing compute power, and with Moore's law slowly coming to an end, high-performance computing started to scale-out to larger systems. Alongside the increasing system size, the interconnection network is growing to accommodate and connect tens of thousands of compute nodes. These networks have a large influence on total cost, application performance, energy consumption, and overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which define the packet paths through the network, do not utilize this important resource efficiently. Topology-aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are irregular by design, or most often a result of hardware failures. Exchanging faulty network components potentially requires whole system downtime further increasing the cost of the failure. This management approach becomes more and more impractical due to the scale of today's networks and the accompanying steady decrease of the mean time between failures. Alternative methods of operating and maintaining these high-performance interconnects, both in terms of hardware- and software-management, are necessary to mitigate negative effects experienced by scientific applications executed on the supercomputer. However, existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. Using the fail-in-place strategy, a well-established method for storage systems to repair only critical component failures, is a feasible solution for current and future HPC interconnects as well as other large-scale installations such as data center networks. Although, an appropriate combination of topology and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either during system design or while it is in operation. On top of this foundation, a key contribution is a novel scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall network utilization. The scheduling-aware routing performs frequent property preserving routing updates to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic, scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem. Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the channel dependency graph, which allows the design of an universally applicable destination-based routing capable of optimizing the path balancing without exceeding a given number of virtual channels, which are a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during path calculation, instead of solving both problems separately as all previous solutions

    Architectural Support for High-Performance, Power-Efficient and Secure Multiprocessor Systems

    Get PDF
    High performance systems have been widely adopted in many fields and the demand for better performance is constantly increasing. And the need of powerful yet flexible systems is also increasing to meet varying application requirements from diverse domains. Also, power efficiency in high performance computing has been one of the major issues to be resolved. The power density of core components becomes significantly higher, and the fraction of power supply in total management cost is dominant. Providing dependability is also a main concern in large-scale systems since more hardware resources can be abused by attackers. Therefore, designing high-performance, power-efficient and secure systems is crucial to provide adequate performance as well as reliability to users. Adhering to using traditional design methodologies for large-scale computing systems has a limit to meet the demand under restricted resource budgets. Interconnecting a large number of uniprocessor chips to build parallel processing systems is not an efficient solution in terms of performance and power. Chip multiprocessor (CMP) integrates multiple processing cores and caches on a chip and is thought of as a good alternative to previous design trends. In this dissertation, we deal with various design issues of high performance multiprocessor systems based on CMP to achieve both performance and power efficiency while maintaining security. First, we propose a fast and secure off-chip interconnects through minimizing network overheads and providing an efficient security mechanism. Second, we propose architectural support for fast and efficient memory protection in CMP systems, making the best use of the characteristics in CMP environments and multi-threaded workloads. Third, we propose a new router design for network-on-chip (NoC) based on a new memory technique. We introduce hybrid input buffers that use both SRAM and STT-MRAM for better performance as well as power efficiency. Simulation results show that the proposed schemes improve the performance of off-chip networks through reducing the message size by 54% on average. Also, the schemes diminish the overheads of bounds checking operations, thus enhancing the overall performance by 11% on average. Adopting hybrid buffers in NoC routers contributes to increasing the network throughput up to 21%

    1931 Ray Family Papers

    Get PDF
    • …
    corecore