
ARCHITECTURAL SUPPORT FOR HIGH-PERFORMANCE,

POWER-EFFICIENT AND SECURE MULTIPROCESSOR SYSTEMS

A Dissertation

by

BAIK SONG AN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2012

Major Subject: Computer Science

ARCHITECTURAL SUPPORT FOR HIGH-PERFORMANCE,

POWER-EFFICIENT AND SECURE MULTIPROCESSOR SYSTEMS

A Dissertation

by

BAIK SONG AN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Eun Jung Kim
Committee Members, James Caverlee

Natarajan Gautam
Guofei Gu

Head of Department, Duncan M. Walker

August 2012

Major Subject: Computer Science

iii

ABSTRACT

Architectural Support for High-Performance, Power-Efficient and Secure

Multiprocessor Systems. (August 2012)

Baik Song An, B.S., Seoul National University; M.S., Seoul National University

Chair of Advisory Committee: Dr. Eun Jung Kim

High performance systems have been widely adopted in many fields and the

demand for better performance is constantly increasing. And the need of powerful

yet flexible systems is also increasing to meet varying application requirements from

diverse domains. Also, power efficiency in high performance computing has been one

of the major issues to be resolved. The power density of core components becomes

significantly higher, and the fraction of power supply in total management cost is

dominant. Providing dependability is also a main concern in large-scale systems

since more hardware resources can be abused by attackers. Therefore, designing

high-performance, power-efficient and secure systems is crucial to provide adequate

performance as well as reliability to users.

Adhering to using traditional design methodologies for large-scale computing sys-

tems has a limit to meet the demand under restricted resource budgets. Intercon-

necting a large number of uniprocessor chips to build parallel processing systems is

not an efficient solution in terms of performance and power. Chip multiprocessor

iv

(CMP) integrates multiple processing cores and caches on a chip and is thought of

as a good alternative to previous design trends.

In this dissertation, we deal with various design issues of high performance mul-

tiprocessor systems based on CMP to achieve both performance and power efficiency

while maintaining security. First, we propose a fast and secure off-chip interconnects

through minimizing network overheads and providing an efficient security mecha-

nism. Second, we propose architectural support for fast and efficient memory pro-

tection in CMP systems, making the best use of the characteristics in CMP envi-

ronments and multi-threaded workloads. Third, we propose a new router design for

network-on-chip (NoC) based on a new memory technique. We introduce hybrid

input buffers that use both SRAM and STT-MRAM for better performance as well

as power efficiency.

Simulation results show that the proposed schemes improve the performance of

off-chip networks through reducing the message size by 54% on average. Also, the

schemes diminish the overheads of bounds checking operations, thus enhancing the

overall performance by 11% on average. Adopting hybrid buffers in NoC routers

contributes to increasing the network throughput up to 21%.

v

ACKNOWLEDGMENTS

First of all, I would like to thank my academic adviser, Dr. Eun Jung Kim,

for her guidance. Her advises made it possible to complete my PhD study at Texas

A&M University. I am truly grateful for her encouragement and constant motivation

throughout this work. Also, I would like to thank my committee members, Dr. James

Caverlee, Dr. Guofei Gu and Dr. Natarajan Gautam. Many thanks also go to Dr. Ki

Hwan Yum for support throughout my PhD study, especially for his careful reading

and comments on papers.

Second, I would like to thank all of the previous and current members of Dr.

Kim’s High Performance Computing Laboratory, especially Manhee Lee, Heung Ki

Lee, Yuho Jin, Sungho Park, Lei Wang, Poornachandran Kumar, Rahul Boyapati,

Jagadish Chandar Jayabalan, Wen Yuan, Hyunjun Jang, Rohan Kansal and Sagar

Narayanan, for supporting and helping my research.

Last, but not least, I am especially grateful to my parents for their incredible

support, patience and trust for me. Without their dedication and belief in me, I

couldn’t have completed this study.

vi

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . v

TABLE OF CONTENTS . vi

LIST OF TABLES . viii

LIST OF FIGURES . ix

1. INTRODUCTION . 1

2. LOW-OVERHEAD AND SECURE OFF-CHIP INTERCONNECTS . . . 6

2.1 Introduction . 6
2.2 Related Work . 10

2.2.1 Data Compression Mechanism 10
2.2.2 Secure Processor Architecture 11

2.3 Threat Model and Security Operations 12
2.4 Variable Size Compression (VSC) . 13

2.4.1 Efficient Data Compression Utilizing Variable Size Pattern Fre-
quency . 14

2.4.2 Selective Update in VSC . 20
2.4.3 Data Packet Elimination Using Temporal Locality 22

2.5 Hybrid Counter Management
Scheme . 26
2.5.1 Per-block Counter vs. Global Counter 26
2.5.2 Managing Counters with Perfect Prediction 28
2.5.3 Implementation Issues . 32

2.6 Performance Evaluation . 33
2.6.1 Simulation Framework . 33
2.6.2 Simulation Results . 34

2.7 Conclusions . 44

3. EFFICIENT MEMORY PROTECTION SCHEME FOR CMP SYSTEMS 46

3.1 Introduction . 46

vii

Page

3.2 Related Work . 50
3.3 Architectural Support for Efficient Bounds Checking 52

3.3.1 Bounds Information Sharing To Avoid Redundant Storing . . 53
3.3.2 Reducing Overheads Using Smart Tagging 54
3.3.3 Implementation Issues . 57
3.3.4 System Overheads . 59

3.4 Managing Bounds Information in CMPs 60
3.4.1 Chip-Multiprocessor Architecture 61
3.4.2 BCache Architecture in CMP 61
3.4.3 Handling Bounds Information in BCache 64
3.4.4 Scalable Design of BCache Architecture 69
3.4.5 Design Alternatives for Large-Scale BCache Architecture . . . 70
3.4.6 Using BCache for General Purposes 73

3.5 Performance Evaluation . 74
3.5.1 Simulation Framework . 74
3.5.2 Simulation Results . 77

3.6 Conclusions . 85

4. PERFORMANCE AND POWER-EFFICIENT INPUT BUFFER DE-
SIGN FOR ON-CHIP INTERCONNECTS 86

4.1 Introduction . 86
4.2 Related Work . 89

4.2.1 STT-MRAM . 89
4.2.2 Utilizing NVMs in Processors and Memories 90

4.3 Performance and Power Model of STT-MRAM 91
4.4 An On-Chip Router Architecture with Hybrid Buffer Design 93

4.4.1 Generic Baseline Router Architecture 94
4.4.2 An On-Chip Router Architecture with Hybrid Buffer Design . 96

4.5 Performance Evaluation . 99
4.5.1 System Configuration . 101
4.5.2 Performance Analysis with Synthetic Workloads and Bench-

marks . 102
4.5.3 Power Analysis . 109

4.6 Conclusions . 111

5. CONCLUSIONS . 113

REFERENCES . 115

VITA . 120

viii

LIST OF TABLES

TABLE Page

2.1 System parameters . 34

2.2 The percentage of notifications from owner nodes 39

2.3 Mixed packets in two adjacent periods 40

3.1 Expanding a register for bounds checking 53

3.2 Overheads of special instructions . 59

3.3 System parameters . 74

3.4 Number of bounds checking . 75

3.5 Storage overheads . 84

4.1 CMP system configuration . 100

4.2 SRAM and STT-MRAM parameters . 100

ix

LIST OF FIGURES

FIGURE Page

1.1 A CMP-based HPC System . 2

2.1 Compression procedure of a cache block 14

2.2 Compression and candidate tables . 15

2.3 Data compression with various unit sizes 18

2.4 Compressed data block structure . 18

2.5 Handling a cache miss with the hybrid counter management 28

2.6 Compression ratios . 35

2.7 Overall system performance . 35

2.8 Average cache miss latency . 36

2.9 Average data packet latency . 38

2.10 Eliminated data packets . 38

2.11 Compression rates under various update periods 41

2.12 Effect of selective update . 41

2.13 Pad hit and miss rates . 42

2.14 Encryption overheads . 44

3.1 Bounds checking in HardBound . 52

3.2 Sharing bounds information . 55

3.3 Skipping bounds checking with Smart Tagging 55

x

FIGURE Page

3.4 A tiled 16-core CMP architecture . 62

3.5 BCache architecture . 62

3.6 Managing bounds information in BCache 65

3.7 Scalable BCache design in CMP systems 71

3.8 Design alternative using 3D stacking . 71

3.9 Effect of sharing bounds information . 75

3.10 Average miss latencies of accessing bounds information 79

3.11 Scalability of BCache architecture . 80

3.12 Average miss latencies for read-only data 83

3.13 Performance improvement of memory accesses 83

3.14 Energy consumption in caches and interconnects 84

4.1 The two states of an MTJ module . 90

4.2 Maximum intra-router latency of an on-chip router (SRAM#: SRAM
buffer size per VC) . 94

4.3 Generic router architecture . 94

4.4 A generic SRAM input buffer (a) and a hybrid input buffer (b) 95

4.5 Simple flit migration scheme in hybrid buffer design 98

4.6 CMP layout . 100

4.7 Performance comparison with synthetic workloads 103

4.8 Performance comparison with O1TURN routing algorithm 104

4.9 Performance comparison with different topologies 104

xi

FIGURE Page

4.10 Performance comparsion with various STT-MRAM write latencies 105

4.11 Throughput with different STT-MRAM write latencies 107

4.12 SPLASH-2 benchmark results . 107

4.13 Comparison of power efficiency . 109

4.14 Performance comparison with different threshold in lazy migration 110

1

1. INTRODUCTION

The demand for high performance computing (HPC) solutions has been con-

stantly increasing since the computing environments were commercialized and pop-

ularly adopted by industry and government. In particular, with the current trend

regarding cloud computing or big data processing as one of the hottest topics in an

IT domain, designing efficient enterprise-level HPC systems in terms of both per-

formance and power has been a highlighted issue that everyone pays attention to

nowadays. So far, this demand was generally met with parallel processing systems,

where a lot of processor chips are interconnected by off-chip networks such as In-

finiband [1]. However, these previous mechanisms have a limitation on improving

efficiency. In order to achieve a high degree of parallelism,a large number of proces-

sor chips must be connected and used, which increases the cost to build up systems

significantly. Furthermore, integrating lots of off-chip components results in a huge

amount of power consumption. Under a strict power budget, this cannot help being

a critical limitation on system design.

Chip multiprocessor (CMP) has been successfully deployed on a commercial scale

and widely adopted. CMP integrates multiple processing cores and cache banks on

a single chip and shows better efficiency compared to the existing uniprocessor in

terms of both performance and power. To this day, the number of cores and cache

banks was not large and a shared bus was generally regarded as a communication

This dissertation follows the style of IEEE Transactions on Parallel and Distributed Systems .

2

!"#$!"#$!"#$

"%&'()$ "%&'()$

!'

(%$

*+,(%-$./$

#('0%11'($!'(%$2$#(34,5%$.61$

7890+3:$;<5%(0'<<%05$

=$

=$
Fig. 1.1.: A CMP-based HPC System

medium providing enough bandwidth between nodes. But, as the technology trend

moves to manycore design where a large number of cores, possibily more than a

hundred, are fabricated in a chip, there is a growing need to introduce faster and more

efficient interconnects.Network-on-chip (NoC) is being adopted as a new emerging

solution of scalable interconnects. Accordingly, designing HPC systems using NoC-

based manycore CMPs is beneficial compared to uniprocessor-based systems. In the

case of large-scale systems for high performance requirements that a single CMP

cannot satisfy, a multi-chip CMP systems can be built through connecting a number

of CMP chips via off-chip interconnects.

Figure 1.1 illustrates a generic HPC systems with multiple CMP chips. A number

of CMPs are interconnected with off-chip memories and each CMP contains multiple

nodes each of which consists of a processor core, private L1 caches an d a part of

shared L2 cache. All nodes in a CMP are connected through a mesh-style NoC.

3

This dissertation addresses a number of design issues regarding high performance

multiprocessor systems based on CMP to achieve both performance and power effi-

ciency. While performance and power efficiency is the first and foremost requirement

in HPC, providing security cannot be neglected. Security issues are even more cru-

cial in large-scale systems because the systems may be more vulnerable to attacks

as they become more complicated due to abundant resources available to attack-

ers. Therefore, security issues in multiprocessor systems are also considered in this

dissertation.

This dissertation proceeds from macro to micro, starting from off-chip compo-

nents to CMP and NoC design. First, we address the design issue of off-chip com-

ponents including memory, last-level cache (LLC) and interconnects. Considering

that networking overheads in multiprocessor systems are becoming one of the most

influential factors in overall system performance, we attempt to reduce off-chip com-

munication overheads through a data packet compression technique integrating a

cache coherence protocol. We propose Variable Size Compression (VSC) scheme

that compresses or completely eliminates data packets while harmonizing with ex-

isting cache coherence protocols. Also, we propose a hybrid counter management

scheme that reduces the overheads of counter mode encryption mechanism.

Second, we propose fast and secure CMP design that protects systems from mem-

ory attacks with marginal performance overheads. Even though spatial safety of

memory accesses is one of the main concerns for programs written in C/C++ to

4

prevent runtime attacks and errors, most existing approaches either fail to solve the

runtime overhead issues or cannot provide the complete solution for memory pro-

tection. Moreover, none of the previous work considers multi-threaded workloads

running in multiprocessor systems. So we provide an architectural support for fast

and efficient bounds checking for multi-threaded workloads in CMP environments.

Bounds information sharing and smart tagging help to perform bounds checking more

effectively by utilizing the characteristics of a pointer. Also the BCache architecture,

a new cache and interconnect for efficient bounds checking, allows fast accesses to

the bounds information.

Finally, a new design of NoC router based on a next-generation memory cell

technology is proposed. Using high-density memories in input buffers helps to re-

duce the bottleneck through increasing throughput. Spin-Torque Transfer Magnetic

RAM (STT-MRAM), a new non-volatile memory technology, can be a suitable so-

lution due to its nature of high density and near-zero leakage power. But its long

latency and high power consumption in write operations still need to be addressed.

We explore the design issues in using STT-MRAM for NoC input buffers. Motivated

by short intra-router latency, we use the previously proposed write latency reduc-

tion technique sacrificing retention time. Then we propose a hybrid design of input

buffers using both SRAM and STT-MRAM to hide the long write latency efficiently.

Considering that simple data migration in the hybrid buffer consumes more dynamic

5

power compared to SRAM, we also provide a lazy migration scheme that reduces the

dynamic power consumption of the hybrid buffer.

6

2. LOW-OVERHEAD AND SECURE OFF-CHIP INTERCONNECTS

2.1 Introduction

With the current trend in information technology, multiprocessor systems have

been widely adopted to achieve better performance in diverse computing environ-

ments. Relying on traditional methods such as instruction-level parallelism (ILP)

in uniprocessor environments has a limitation on performance improvement. Most

software in recent days adopts multithread program structures, which were mainly

used for high-performance computing environments exclusively. Under a high degree

of parallelism, networking performance is getting more dominant than computation

power in determining overall system performance. Since a traditional approach us-

ing shared buses is not a scalable solution, switch-based interconnection networks are

regarded as a promising alternative in large-scale multiprocessor systems. Providing

an effective solution to reduce communication overheads has been one of the major

goals in the multiprocessor system design.

There has been plenty of research carried out to diminish overheads of intercon-

nection networks in multiprocessor environments. This goal can be achieved in two

ways: adopting a faster network with shorter latency and wider bandwidth, or de-

creasing the amount of network workloads. Some studies focus on the latter through

data compression to reduce data packet overheads. Data compression used in mem-

ories and interconnects of multiprocessor systems helps to decrease the size of cache

7

block data that is tranferred in the form of data packets through the network. Re-

cently, a static data compression scheme [2] has been proposed to compresses data

based on predefined fixed patterns, which fails to exploit dynamic communication

behavior. To overcome this drawback, an adaptive compression scheme [3] uses ta-

bles containing frequently used patterns and updates them dynamically. However,

both schemes simply reduce the packet size through compression and never attempt

to incorporate the compression with underlying cache coherence protocols, which

limits the amount of performance improvement at a certain level.

This research tries to take a step forward to overcoming the limitation. Here we

attempt to reduce communication overheads through data packet compression that

is aware of an intrinsic cache coherence mechanism. In the best case, the compres-

sion scheme enables data packets to be completely eliminated, which contributes to

simplifying the miss handling procedure in coherent caches and reduces cache miss

latency significantly. Data packets can be eliminated if the data pattern is known to

the requestor without having to actually send and receive packets. It must be guar-

anteed that eliminated packets do not make any conflicts or errors with the existing

cache coherence protocols. Also, the compression scheme used in multiprocessor sys-

tems must show good performance in handling a cache block whose size is small, not

larger than 64 bytes in general.

We propose Variable Size Compression (VSC) scheme that is scalable and effi-

ciently eliminates or compresses data packets. Packet elimination in VSC is done

8

by managing matching status bits in the directory that denote whether each cache

block data matches the most frequent pattern in the system. A reply message from

the directory to the requestor carries the bit to notify that the requestor does not

need to wait for a data message from the sender if the bit is set. If VSC fails to elim-

inate data packets, it divides the cache block into multiple units for compression.

Unlike the existing schemes, VSC provides data compression with various unit sizes

in parallel for more efficient compression.

Also, protecting systems from various malicious attacks has become another es-

sential requirement in high-performance computing. Attackers may place a hard-

ware device inside the system to steal information or purposefully modify system

data. Moreover, institutes that handle confidential data and personal information

necessitate a high level of security since any kind of information leakage could be

extremely dangerous in mission-critical environments. Thus, providing enhanced se-

curity to protect computer systems from physical attacks is becoming one of the

most important issues in modern computing. As the server markets move on to mul-

tiprocessor systems, new security issues unique to the multiprocessor environment

are raised: protecting messages used for cache coherency. However, all the previous

studies in multiprocessor systems [4], [5], [6], [7], [8], [9], [10] suffer from different

amounts of performance overheads stemming from common underlying problems,

longer/more messages. The longer and more messages caused by security mecha-

nisms have been considered to be inevitable by all previous research because each

9

message needs to carry extra data for security and additional messages are necessary

to help or maintain the protection schemes. Although the performance implications

of the longer/more messages were not investigated in the previous studies, it is quite

straightforward to expect the longer/more messages to affect performance adversely.

For fast encryption/decryption, hardware security schemes [4], [6], [7], [8] have

used a counter-mode scheme where a counter, not a plaintext, becomes an input

of the security function to generate a one-time pad that will be later XORed with

the plaintext to make a ciphertext. Therefore, if communicating parties can pre-

dict next counter values accurately and pregenerate pads ahead of time, they can

encrypt or decrypt data by XORing with the pads without any delay. Due to the

unpredictability of communication sequences in multiprocessor systems, there can

be some mispredictions on counter values and they result in performance overhead,

which is unacceptable in high-performance systems.

We propose a new hybrid counter management scheme that does not require

embedding a counter value in a data packet. All previous schemes assume that each

packet carries a counter value, which increases the message length by the counter size.

We eliminate counters from data messages by enabling perfect prediction through

a global counter scheme. We also use per-block counters to protect data stored in

memory with a small storage overhead. Accurate prediction and low storage overhead

can be achieved together with this hybrid scheme.

10

Simulation results show that the proposed scheme can reduce the message size

by 54% on average and the overall performance by 23%, compared with the most

recent compression scheme for interconnects proposed in [3].

The remainder of this study is organized as follows. We discuss related work

in Section 4.2. In Sections 2.4 and 2.5, we explain the data compression technique

and the hybrid counter management scheme in detail. Section 4.5 presents simu-

lation results and analysis, and finally Section 5 summarizes our work and makes

conclusions.

2.2 Related Work

2.2.1 Data Compression Mechanism

Various data compression techniques have been introduced to improve perfor-

mance by increasing the capacity or reducing the latency [11], [12], [13], [14], [15],

[2], [16], [3], [17]. Among them, a large number of hardware-based compression

schemes implement dictionary-based compression algorithms [16], [14]. Dictionary-

based schemes depend on building a dictionary which contains data words appearing

in a message, and use the entries to encode repeated words. Significance-based

schemes compress data by removing redundant information such as the high-order

portion of address values or sign extension bits [11], [13]. Frequency-based mecha-

nisms are based on the observation that small sets of values are found in load/store

operations more frequently than other values [15], [17].

11

Data compression mechanisms have been adopted in diverse system domains.

Cache or memory compression makes better use of the limited memory by compress-

ing and storing data in a smaller space so that two or more compressed blocks can

fit in a single block space [11], [16], [14]. Buses also can be utilized more efficiently

through compression. Bus-Expander is proposed in [12], where frequent values of the

most significant bits of the bus are stored in a table and used to efficiently cut the

size of data in half. Even in on-chip interconnects, compressed messages can improve

network utilization and system performance by reducing packet latency [2], [3].

2.2.2 Secure Processor Architecture

Several encryption and authentication schemes for secure uniprocessor systems

were proposed in [18], [19], [20], [21], [22], [4], [9], [23], [7]. Caching or predicting

counters have been explored to pregenerate pads before encrypted data blocks arrive

at the processor from the memory [21], [9], [20]. Galois/Counter Mode (GCM) was

adopted by Yan, et al. to accomplish authentication with encryption [4]. A per-

block authentication scheme was first used in eXecute Only Memory (XOM) [18],

but it is vulnerable to replay attacks. To overcome this vulnerability, a hash tree was

proposed to authenticate memory and its performance overhead for authenticating

all levels of the hash tree per memory transaction was reduced by authenticating a

series of memory accesses at a later time. [23], [4], [7]

12

With the popularity of multiprocessor architectures, new security issues that

cannot be properly solved by uniprocessor security schemes became main research

interests. Shi, et al. proposed a speculative execution mechanism [24] and Zhang, et

al. exploited the characteristics of bus-based multiprocessor systems [10]. Rogers, et

al. found that there is a strong locality of communication such that one processor

communicates with a relatively small number of processors at a time [6]. Lee, et

al. proposed I2SEMS in which a global counter controller helps processors predict

next counters more accurately [5]. Rogers, et al. proposed a single-level memory

protection scheme to reduce the additional security translation overhead incurred by

memory controllers [8].

2.3 Threat Model and Security Operations

First, we clarify which components in the system are assumed to be secure and

which are not. The threat model assumed in this study is similar to those of other

work which deals with security issues in multiprocessor systems. Every component

in a chip, including processor core, registers, ALU and on-chip cache is assumed to

be secure. We assume off-chip components, such as memory, data bus or intercon-

nection network, to be insecure. Attackers can deploy special devices to the data

bus or the interconnection network to eavesdrop and steal information during data

transmission. Therefore, to guarantee confidentiality, data must be encrypted using

cipher functions.

13

Before data messages are injected to untrusted components, they are encrypted

using a block cipher function 1 with secret keys which are known only to the commu-

nicating pair. Encrypted data messages are decrypted at the receiver’s side using the

same cipher function with secret keys to restore original information. One problem

with using encryption schemes is that encryption cannot begin until the entirety of

the data becomes available. Consequently, encryption latency is added to the crit-

ical path. To hide the encryption latency, a counter-mode encryption scheme can

be adopted. It uses counters to feed encryption engines, and precomputes one-time

pads before the data becomes ready. Then one-time pads are XORed with actual

data to obtain final ciphertexts. Since pads are generated in advance and XOR op-

eration latencies are negligible compared with the encryption latency, we can reduce

the encryption time. However, counter values must be predicted as accurately as

possible to pregenerate one-time pads.

2.4 Variable Size Compression (VSC)

In this section, we explain how to eliminate packets and to compress and decom-

press data values in our framework. We propose a new compression scheme, which

is called Variable Size Compression (VSC). Figure 2.1 summarizes the compression

procedure of our scheme. With VSC, a cache block can be eliminated or divided into

1For encrypting data, block cipher functions are normally used. Stream cipher functions are known
to be less powerful than block cipher mechanisms. 3DES and AES are well-known block cipher
functions.

14

!"#$%&'()$#*+',

- -

./'+012)33)4%+012)33)4

%+012)33)4$%&'()$#*+',

5$6*707/&8+/ 9$%+012)337+/

:;%$

-$

Fig. 2.1.: Compression procedure of a cache block

multiple small units to be compressed. After the compression, there can be com-

pressed and uncompressed units, which will be explained in the following section.

We assume that only data messages are compressed.

2.4.1 Efficient Data Compression Utilizing Variable Size Pattern Frequency

VSC uses two types of tables, compression and candidate tables, to compress or

eliminate a cache block. Compression tables used in VSC contain most frequent data

patterns in the network data traffic. After a cache block is divided into multiple com-

pression units, each compression unit is compared to each entry in the compression

table. If it matches one of the entries in the compression table, it is encoded into

its corresponding index. If no entry is a hit, the unit is transferred uncompressed.

15

64B Cache Block

Compression Table Candidate Table

Ready for network injection

UncompressedCompressed

!"

Fig. 2.2.: Compression and candidate tables

Each entry needs to count the number of hits to be used in the table update. In this

manner, compression units become ready to be encrypted either in a compressed or

uncompressed form. After the packet arrives at the receiver and is decrypted, com-

pressed units are converted into original units by looking up the compression table

at the receiver’s side. Uncompressed units are directly delivered as they are. All

nodes have the same contents in the compression tables so updating the compression

tables is performed regularly in a centralized manner reflecting dynamic behavior of

data patterns.

Candidate tables contain the most frequent values among uncompressed units and

they are managed and updated dynamically and independently per node. Figure 2.2

16

describes how compression and candidate tables are used to compress cache block

data. After compression, each uncompressed unit is compared to candidate table

entries. If it matches one of the entries, the corresponding hit count of the entry

increases. If not, one entry is evicted and replaced with the uncompressed unit data

based on the Least Frequently Used (LFU) policy. Since accessing candidate tables

is done after compression, the access latency is not in the critical path.

Updating compression tables is done as follows. First, hit counts of compression

table entries and values/hit counts of candidate table entries in all nodes are gathered.

Then hit counts of compression table entries for all nodes are summed up and all

candidate table entries are merged and sorted in the descending order of total hit

counts. Hit counts of the most highly ranked entries in the merged table are compared

to those of compression table entries. If the hit count of a merged table entry is

bigger than any of compression table entries’ hit counts, the compression table entry

is evicted and updated with the merged table entry. Finally, all hit counts of a newly

updated compression table are initialized to zero to prevent aging effect and then

the new compression table is broadcast to all nodes. Note that the update procedure

is off the critical path, meaning that it can be done without affecting cache miss

handling.

But in reality, the broadcast messages cannot reach all nodes at the same time

due to the variation of packet transmission time. So there may be a synchronization

issue between the two adjacent periods using different pattern sets, meaning that

17

some nodes already receive the new pattern set while others do not. Here we handle

this issue by using one-bit information, which is called a period bit (PB). A PB

differentiates two adjacent periods by flipping the bit every time a new pattern set

is ready. For example, if current period is represented by zero, the next period

using a new pattern set can be represented by one. Each node maintains its own

PB, updating the bit when it gets a new pattern set. Since the current period and

the period after next are represented by the same bit value, some might think we

should consider how to make difference between the two. However, it is a reasonable

assumption that each period is long enough so that we do not need to be concerned

about the issue. Also the amount of data traffic during the time when two pattern

sets are used mixedly is quite minimal, which will be explained in detail in Section 4.5.

Every time a cache coherence packet is injected into the network, the packet carries

a sender’s PB to let a receiver know the sender’s status. Suppose that a sender of a

cache block already got a new pattern set while a receiver did not. Then the sender

must not use the new pattern for compression because the receiver cannot restore

compressed data to its original one.

To minimize the packet size, we investigate how VSC can be applied, mostly

the number of entries, each entry size, and the new cache-to-cache coherence packet

structure. We ran 49 combinations of simulations with seven different entry sizes and

seven different numbers of compression table entries in 8 and 16-processor systems.

The results show that a four byte-long entry provides a very good compression ratio

18

64B

Compression Tables

64B Cache Block

64B

Candidate Tables

Pick up

the smallest

16B

4B

16B

4B

Fig. 2.3.: Data compression with various unit sizes

0101 10 01

uncompressed

1111 11000010 0001

1111 11001 0101 10 01

compressed

compression bitmask

1111 11001

entry size bit

Fig. 2.4.: Compressed data block structure

only with four entries in a 64-byte cache block architecture. Since the entry size is

four bytes and the index is just two bits long, assuming four entries per table, the

19

unit size is reduced by a factor of 16. However, it would be beneficial to achieve a

better compression rate if we try different unit sizes in every data compression and

choose the best one. It is reasonable because VSC is free from the scalability issue,

and adopting extra compression and candidate tables with different entry sizes is

not problematic. So we use three different compression entry sizes: 4-byte, 16-byte

and 64-byte as shown in Figure 2.3. For 4-byte and 16-byte, both compression and

candidate tables have four entries. But, in the case of 64-byte that is the same as

a cache block size, a compression table has only one entry, even though a candidate

table has four entries as in the other two cases. The reason is that we do not need

to use even index values once the cache block is compressed with 64-byte unit size,

which means data could be completely eliminated. We will make a more detailed

description of how it works in the next section. Also, each node maintains two sets of

compression tables to handle two different pattern sets used in the adjacent periods.

To integrate VSC into a 64-byte block system, we divide a 64-byte block into a

number of compression units, and compare each unit against the compression table.

Then, each data packet should have additional information about which units are

compressed. Figure 2.4 describes the structure of a compressed data packet, which

depicts four 16-byte units belonging to one cache block. The content in each unit is

displayed as a 4-bit number for simplicity, even though it should be actually 16 bytes

long. An entry size bit that indicate the unit size used for compression is located

at the head. If the bit is set, it means a 16-byte unit size is used. If it is clear,

20

a 4-byte unit size is used. We do not have to adopt an extra bit for 64-byte unit

size since a data packet itself could be completely eliminated and does not need to

be sent. Note that all units in a cache block are compressed with the same unit

size denoted by the entry size bit that shows the best compression rate. Then it is

followed by a compression bitmask, which indicates whether each unit is compressed.

The compression bitmask will be used by the receiver to restore the original data

packet. Uncompressed and compressed units are located in order at the tail. In

Figure 2.4, the receiver restores the original data block by getting the first and third

uncompressed units from the packet and reading the second and fourth units from

the compression table.

Since we divide one data block into multiple units, it takes much time to process

each compression unit sequentially. Therefore, we adopt a number of duplicated

compression tables to compress/decompress multiple units in parallel for each com-

pression unit size. Latencies are overlapped through parallel compressions using

duplicated tables. Note that we do not need to duplicate candidate tables because

accessing candidate tables could be done off the critical path.

2.4.2 Selective Update in VSC

As explained in the previous section, updating the compression tables is per-

formed in a centralized way. However, it may cause the scalability problem as the

system size grows because all the information of compression and candidate tables

21

must be collected from all nodes regularly to update the compression tables. It is

already observed and well-known that the communication behavior in the intercon-

nects of multiprocessor systems exhibits the high level of temporal locality. Also it

is verified that only a few pattern dominates the total data traffic in overall [11],

[2]. Therefore, we gather the information not from all nodes, but from some se-

lected nodes that aggressively communicate with other nodes. The communication

pattern between nodes looks asymmetric in many cases, meaning that some nodes

send more packets than received packets and other nodes receive more packets than

sent packets. Since each data packet is shown to both a sender and a receiver, it is

a good way of reducing overheads to select only one of the two groups, aggressive

senders or aggressive receivers. Here we get the information from aggressive senders

transmitting data packets more than receiving them.

Selective update in VSC can be performed as follows. Each node i can be chosen

to provide the information for update if

si > k · ri,

where si and ri are the numbers of sent and received packets in node i, respectively.

k is a constant for adjusting how selective VSC should be in choosing the nodes. As

k becomes bigger, VSC becomes more selective and the number of chosen nodes de-

creases. It can reduce the update overheads, but it may worsen the compression ratio

22

since the amount of gathered information also decreases. We will show a detailed

analysis of the selective update in Section 3.5.2.

2.4.3 Data Packet Elimination Using Temporal Locality

While compression facilitates to reduce the data packet size, we can further elim-

inate data packets exploiting the frequent data patterns. Data packets can be com-

pletely eliminated using the compression table with only one 64-byte entry. Here we

explain in detail how it is done. In previous section, we already described how the

64-byte compression table entry is shared by all nodes and how it is updated. We use

extra one-bit information per cache block to denote whether each up-to-date cache

block data matches the current table entry or not and it is assumed to be stored in

a directory. We call it matching status bit (MSB) hereafter. In the case of fetching

from disks, the memory becomes the owner. Since the directory is usually located

along with memory, it is not a problem to keep track of most recent patterns for

data blocks. However, if a store operation occurs, the processor becomes the owner.

The processor compares the previous data pattern with the newly written one. If

the two are different and one of them matches the compression table entry, it means

the corresponding MSB should be updated and the processor notifies the directory.

Note that the notification is needed only when the matching result changes after a

store operation, and it is normally only a small fraction of total store operations.

Detailed experimental results regarding this will be provided in Section 4.5. Using

23

this method, the directory is able to keep track of the matching status of most recent

data values for all cache blocks.

When a cache miss occurs, the processor sends a request message to the directory.

Then the directory looks up the MSB of the corresponding requested block. If the

MSB in the directory is clear, meaning that the block does not match the compression

table entry, the directory follows the normal cache miss procedures to provide data

to the requestor by forwarding the request to another owner node or sending the

data block by itself if the memory is an owner. However, if the MSB is set, the

directory sends a reply message to the requestor to notify that the data packet has

been eliminated. Once the requestor receives the reply message from the directory,

it does not need to wait for another message but only has to copy the compression

table data to the corresponding cache line. The cache miss handling finishes at this

moment, reducing the miss latency significantly.

As in the case of compression tables, the directory contains two MSBs for each

cache block to handle two different pattern sets. The two bits are used alternately

for each period by switching to the other bit every time a new pattern set is ready.

Also, a valid bit should be assigned to each MSB to invalidate all MSBs used for

the previous period when a new pattern set appears in the system. Thus, space

overheads of MSBs and their valid bits are 4 bits per cache block, which corresponds

to 0.7% of cache block size assuming 64-byte block. All control packets used for

24

Algorithm 1 Procedures for a requestor

Request to the directory with PB[Req]

procedure HandleReplyMsg

if MSBPB[Req] is set then
Fetch the data block from the frequent
pattern for PB[Req]

else
Wait for a data msg

end if
end procedure

procedure HandleDataMsg

Restore the data block through decompression
Store the data block in a cache

end procedure

25

Algorithm 2 Procedures for a directory

procedure HandleReqMsg

if V alidPB[Req] & MSBPB[Req] then
Reply to the requestor with MSB set

else
Reply to the requestor with MSB clear
Forward to the owner with PB[Req]

end if
end procedure

procedure HandleNotifyMsg

Store the new MSB in MSBPB[Own]

Set V alidPB[Own]

end procedure

procedure HandleDiskFetch

Compare with two old/new frequent patterns
Update MSBold & MSBnew

Set V alidold & V alidnew
end procedure

procedure NewPeriod

MSBnew/V alidnew become MSBold/V alidold
and vice versa
Clear all V alidnew bits

end procedure

Algorithm 3 Procedures for an owner

procedure HandleForwardMsg

Compress with the pattern for PB[Req]
Send the compressed data to the requestor

end procedure

procedure HandleStore

Compare with the frequent pattern for PB[Own]
if MSBPB[Own] needs update then

Notify the directory
end if

end procedure

26

packet elimination such as request, reply or notification messages must carry the

sender’s PB to handle two different pattern sets that may be used mixedly.

Algorithms 1, 2 and 3 describe the procedures of handling cache misses with the

data packet elimination scheme. The period bits of a requestor, a directory and an

owner are denoted by PB[Req], PB[Dir] and PB[Own], respectively. And the value

of each period bit can be either old or new. MSB and its valid bit of two adjacent

periods are denoted by MSBold/V alidold and MSBnew/V alidnew.

2.5 Hybrid Counter Management

Scheme

In this section, we propose a new hybrid counter management scheme that uses

global and per-block counters together to enable perfect counter prediction with

affordable storage overhead. First, we explain the advantages and disadvantages of

the two counter schemes and how the hybrid scheme integrates them efficiently. Then

we make a detailed description of how it works in a cache-coherent multiprocessor

system according to the state of a cache block. Using the hybrid scheme, counter

values are removed from data messages, thus reducing network overheads.

2.5.1 Per-block Counter vs. Global Counter

There are two types of counters used for counter-mode encryptions: a per-block

counter and a global counter. In a per-block counter scheme, a system maintains

27

a separate counter for each data block. The counter is incremented each time its

corresponding data block is encrypted. A block address along with its counter value,

which ensures the global uniqueness, is the input to the encryption function. The

advantage of a per-block counter is that the counter size need not be large, since the

counter is managed per block and a long wrap-around time is guaranteed even with

a small counter size. However, it is difficult to predict the next counter value since

we must maintain the counter information for each data block. In a global counter

scheme, one global counter is maintained for the entire system. No additional infor-

mation is necessary as input to the encryption function, because any two counters

used in the system cannot be identical. The counter should be large enough, at least

64 bits, to prevent early wrap-around, which may cause a storage overhead problem.

Our hybrid counter management scheme takes advantage of the two schemes

above. While adopting per-block counters for data blocks stored in memory to reduce

storage overhead, we use a global counter for processor-to-processor or processor-to-

memory communications to make it easy to predict the value accurately. The entire

counter range is divided by the number of communication pairs and assigned to each

of them. Each time a sender transmits a data message to a receiver, the counter value

associated with the communication pair increases by one. A sender maintains the

last counter value it used to send data to each receiver. Also, a receiver keeps track

of the last counter value used by each sender so that it can predict the next counter

value accurately. Thus, data packets do not have to carry counter values because

28

Requestor

Directory
(Memory)

PadGen_Cperblk PadGen_Cglobal

Decrypt_Cperblk

Compress

PadGen_Cglobal Decrypt_Cglobal

Encrypt_Cglobal

Decompress

Request Reply
Data

Complete if matching status bit is set

(Memory)

Owner

Encrypt_Cglobal
Data Fetch

Forward
PadGen_Cglobal

Compress

Encrypt_Cglobal

Data

Fig. 2.5.: Handling a cache miss with the hybrid counter management

perfect counter prediction is guaranteed. A detailed description will be made in the

next section.

2.5.2 Managing Counters with Perfect Prediction

Figure 2.5 depicts how a cache miss is handled with the proposed hybrid counter

management scheme. We assume that the directory is located along with memory

and its access time is shorter than memory access time. When a cache miss occurs

in a processor, the processor generates a request message and sends it to the di-

rectory. Once the directory gets the request message, it immediately replies to the

requestor with the cache block sender’s id and the matching status bit explained

in Section 2.4.3. Note that the information sent to the requestor can piggyback on

the reply message used in the data packet elimination technique explained in Sec-

tion 2.4.3. Thus, we do not inject an additional message into the network for this

step. Cache misses are handled in different ways according to the cache block states.

29

Invalid or Shared State. If a cache block is in the invalid or shared state, the

directory becomes the sender. In Figure 2.5, as soon as the directory receives a

request message from a processor, it replies to the requestor by sending the directory’s

id along with the matching status bit of the corresponding block. The reply message

does not contain a counter, since the requestor is able to predict a correct global

counter value, Cglobal, only with the sender’s id. Thus, we can decrease the reply

message size by the counter length. As explained before, if the matching status bit is

set, the miss handling finishes and the requestor only has to get the data from 64-byte

compression table entry. Otherwise, the directory has to provide the requestor with

data. The directory begins to generate two sets of pads from two counters: one set

from a per-block counter (Cperblk) used to decrypt the block stored in memory, and

the other from a global counter (Cglobal) assigned to the current communication pair

that is used to encrypt the data before transmission. Definitely, the global counter

value used here is the same as the one the requestor will predict. Concurrently the

directory accesses memory to fetch the data block. Since the memory access time

is long enough to cover the generation time of the above two sets of pads, the pad

generation time is not in the critical path. When the data fetch is complete, the data

block is decrypted with pregenerated pads from Cperblk
2. Then it is compressed by

VSC and encrypted with pads from Cglobal to be sent off to the requestor. Since pads

are already available when the data fetch completes, decryption and encryption can

2We encrypt data blocks stored in memory using a per-block counter scheme as in [4] when they
are written back to memory.

30

be done without delay. Note that a data message does not have to embed a counter

because the requestor is able to predict the value accurately.

Once the requestor gets a reply message from the directory, it first checks up the

matching status bit in the message. If the bit is clear, the requestor begins to generate

pads used for decrypting the incoming data block. The requestor is informed of the

sender, so it can predict the counter value, Cglobal, because it keeps track of the last

counter value from the sender; the directory in this case. When the data message

arrives, the requestor decrypts it using the pregenerated pads and decompresses it

to restore its original information.

Modified or Owned State. If a cache block is in the modified or owned state,

a different owner node provides the requestor with the data. In Figure 2.5, after

the directory receives a request message, it replies to the requestor with the owner’s

id and the matching status bit. If the matching status bit is clear, the directory

forwards the request message to the owner node. As soon as the requestor gets a

reply message from the directory, it can generate pads for decryption from a global

counter since it is notified of the owner’s id. Once the owner receives the forwarded

message from the directory, it generates pads from a global counter, Cglobal. Since

the cache block is located in the owner, not in the memory, a per-block counter

is not required. In order to reduce the pad generation delay from the owner, each

processor maintains pregenerated pads with next counter values for its destinations.

Since our global counter scheme is address-independent, pregenerated pads can be

31

used for any data blocks in a specific node. In our simulation, just one counter for

each destination turns out to be enough. Also the communication pattern shows

high temporal locality as mentioned in Section 2.4.2. Therefore, each node caches

a pregenerated pad for each of four recently communicated destination nodes. The

owner compresses and encrypts the data block with pregenerated pads using Cglobal

in a short time and sends it to the requestor without a counter value. When the

data block arrives at the requestor, it is decrypted using the pregenerated pads and

decompressed.

Providing Security for Non-Data Messages. Up to now, we have considered

only data messages as the target of encryption/decryption and authentication us-

ing our scheme. For non-data messages including request, forward or invalidation

messages, our scheme protects them in the same way. If we have to protect only

data messages, pads do not need to be maintained because they can be generated

on demand after a requestor is replied. However, to protect non-data messages, each

node has to keep pregenerated pads for its all communication counterparts since it

does not know from which node it will get a message. Thus, we can protect all kinds

of messages without delay, sacrificing some space for pregenerated pads. Note that

counter values are not transmitted through the network in either case. Data integrity

also can be guaranteed using MACs.

32

2.5.3 Implementation Issues

Even though our assumption in the previous section is that the directory is located

along with memory, the hybrid counter scheme can be used with a system where the

directory and memory are separated as well. In this case, the directory forwards the

request message to the memory as in the case of handling modified or owned cache

blocks.

The hybrid counter scheme has two kinds of storage overheads: one for per-

block and the other for global counters. Since per-block counters are small, they

do not incur big overheads. To use a global counter for communications, processors

and memories need to keep track of the last counter values used. Thus, each node

must have room to store counter values for each communication direction for all

destinations.

The hybrid counter management scheme assumes a system using a directory-

based cache coherence protocol and a point-to-point interconnection network. It

cannot be used along with snoop-based and token-based protocols, or multicast-based

networks. As the system size keeps growing, more systems use switch-based networks

with directory-based protocols. Bus interconnects using snoop-based protocol are not

suitable for large-scale systems because of the scalability issue.

In-order packet delivery must be guaranteed to make the hybrid counter man-

agement scheme work. When messages arrive out of order, they can be detected in

the data authentication stage. Out of order messages incur authentication failures

33

because their MACs are generated using different counter values from what a receiver

predicts. If the degree of out-of-order is not serious, it can be handled by placing a

small buffer in each communication node to store a few incoming messages so that

messages in the buffer can be reordered correctly.

2.6 Performance Evaluation

2.6.1 Simulation Framework

We measure the performance of the proposed schemes using Simics full-system

simulator [25]. In order to simulate a shared memory model for a multiprocessor

system, we also use General Execution-driven Multiprocessor Simulator (GEMS) [26]

which is implemented in the form of a module used by Simics simulator. We use

MOESI SMP directory as a cache coherence protocol, which has five cache block

states and provides directory-based cache coherency. Table 3.3 shows the system

parameters used in the simulation. Also we use AES as an encryption mechanism

and its latency is configured as 80 cycles, which is comparable to 80ns in a 1GHz

processor [27]. Since we assume that each processor has its own off-chip memory,

the total number of nodes in the system is double the number of processors.

Benchmarks used in this study are three SPLASH-2 [28] (radix, fft, lu), four

SPEC OMP2001 (equake, fma3d, swim, mgrid) and two PARSEC [29] (streamcluster,

swaptions) benchmarks for scientific workloads. We also use SPECjbb2000 server

benchmark for commercial workloads.

34

Table 2.1: System parameters

Parameters Values

CPU 1GHz UltraSPARCIII+, 8/16 processors
L1 I & D cache 4-way, 16KB, 3 cycles
L2 cache 4-way, 4MB, 12 cycles
Cache block size 64B
Memory 4GB, 480 cycle access time
Number of memory modules same as the number of processors
Directory access time 80 cycles
Network topology hierarchical switches (fanout degree of 4)
Network link bandwidth 3G bytes/sec.
AES latency 80 cycles pipelined with 5 cycle occupancy
OS Sun Solaris 9
Compression/

2 cycles
decompression latencies

2.6.2 Simulation Results

First, we clarify how much VSC is useful in data compression by measuring av-

erage compression ratios, which denotes the average of original block size divided

by compressed block size. The performance of VSC is compared to the most recent

two compression schemes [3], [2] for interconnects. Figure 2.6 shows the average

compression ratios for three different compression schemes: table-based adaptive

compression called Frequent Value Table (FVT) [3], significance-based static com-

pression called Frequent Pattern Compression (FPC) [2] and VSC. VSC performs as

good as the other two schemes in overall, while greatly surpassing them in mgrid-8p

benchmark.

In Figure 2.7, we show the overall system performance in terms of instructions

per cycle (IPC) of three different schemes: baseline, FVT and VSC. The baseline

35

0

2

4

6

8

10

12

14

16

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

8p 16p

FVT

FPC

VSC

66.0458425.2538

Fig. 2.6.: Compression ratios

0

0.5

1

1.5

2

2.5

3

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

8p 16p

baseline

FVT

VSC

Fig. 2.7.: Overall system performance

36

0

500

1000

1500

2000

2500

3000

3500

4000

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

8p 16p

baseline

FVT

VSC

Fig. 2.8.: Average cache miss latency

system does not use compression techniques for data packets, while FVT and VSC

try to compress data packets to reduce their sizes. VSC shows better performance

than the others, by 36% compared to the baseline and 23% to FVT on average. This

enhancement is achieved because of the significant reduction of cache miss latency

by the compression and packet elimination scheme in VSC. To support our analysis,

we measure average cache miss latency of the three schemes as shown in Figure 2.8.

Again, VSC outperforms the other two schemes, by 34% compared to the baseline

and 20% to FVT on average. By comparing the results of FVT and VSC, we can find

out that the amount of enhancement looks quite larger than that in Figure 2.6. This

is because the packet elimination in VSC greatly helps to simplify a miss handling

procedure in addition to packet size reduction, by cancelling request forwarding and

data packet transmission. FVT compresses a data packet through encoding the data

into the index of a table entry it matches, which reduces data packet latency but

37

cannot totally hide it. But in VSC, the most frequent 64-byte data pattern is known

to all nodes in the system, and data packet transmission is completely cancelled if

the requested data matches the pattern because the data is already available to the

requestor.

In order to analyze the results in more detail, we examine how much VSC affects

network latency compared to the other two schemes. Figure 2.9 shows average data

packet latency, which is a network delay of a data packet. Here we assume that the

latency of eliminated packets in VSC is zero. VSC achieves approximately 64% of

enhancement from the FVT scheme, even decreasing the latency by more than half

on average compared to the baseline. By eliminating and compressing data packets,

VSC makes a significant contribution to reducing network overheads, enhancing the

overall performance.

We measure the amount of eliminated data packets in VSC to clarify the effect

of packet elimination. As shown in Figure 2.10, up to 96% of data packets can be

eliminated depending on the workload and 41% of packets are removed on average.

Table 2.2 illustrates numbers of MSB updates by owner nodes. As explained in

Section 2.4.3, the processor must notify the directory if it needs to update MSB

when it becomes the owner after a store operation. Since it could incur considerable

network overheads if the notification occurs frequently, we measure the percentage

of notifications over the total number of store operations. Results show that the

average percentage is approximately 2.8%, which is marginal in overall.

38

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

8p 16p

Baseline

FVT

VSC

Fig. 2.9.: Average data packet latency

0%

20%

40%

60%

80%

100%

120%

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

8p 16p

Fig. 2.10.: Eliminated data packets

39

Table 2.2: The percentage of notifications from owner nodes

Processors Benchmark # of Stores Notifications Percentage

radix 128857 1536 1.192019%
fft 102629 1657 1.614553%
lu 33893 330 0.973652%

jbb2000 408706 13229 3.236801%
8p equake 848430 8015 0.944686%

fma3d 1546842 149257 9.649143%
swim 2401947 61208 2.548266%
mgrid 13677 483 3.531476%

streamcluster 9259 25 0.270008%
swaptions 24932 332 1.331622%

radix 98063 1193 1.216565%
fft 102629 1657 1.614553%
lu 312470 4752 1.520786%

jbb2000 114726 1207 1.052072%
16p equake 320219 5172 1.615145%

fma3d 675611 98320 14.552753%
swim 713277 1511 0.211839%
mgrid 21951 1354 6.168284%

streamcluster 6578 31 0.471268%
swaptions 9588 127 1.324572%

Table 2.3 shows how many data packets are injected during the time when two

pattern sets are mixedly used between two adjacent periods. As seen in the table,

the amount of those packets among total number of injected packets is less than

0.05% on average, which is an almost negligible result.

We measure the compression rates with various update periods from 1 to 16 mil-

lion cycles to figure out how much VSC is affected by the update period. Figure 2.11

shows the compression rates normalized to the result with 1 million cycle period.

It confirms that the compression rate decreases by approximately 15% on average

40

Table 2.3: Mixed packets in two adjacent periods

Processors Benchmark Total Mixed Pkts Percentage

radix 239156 115 0.048086%
fft 658918 274 0.041583%
lu 73898 53 0.07172%

jbb2000 492910 129 0.026171%
8p equake 4330889 1099 0.025376%

fma3d 2635812 930 0.035283%
swim 6430531 2307 0.035876%
mgrid 16424012 4172 0.025402%

streamcluster 2102753 1192 0.056688%
swaptions 4001181 1273 0.031816%

radix 234829 104 0.044288%
fft 124391 66 0.053059%
lu 568546 310 0.054525%

jbb2000 487468 75 0.015386%
16p equake 1054687 691 0.065517%

fma3d 997459 577 0.057847%
swim 1070339 615 0.057458%
mgrid 152313 38 0.024949%

streamcluster 503260 285 0.056631%
swaptions 3210054 1236 0.038504%

as the period increases up to 16 times. Both 8-processor and 16-processor systems

show the similar results, which proves that VSC is scalable with respect to the sys-

tem size. We also measure the compression ratios and the number of selected nodes

with different k values to clarify how the selective update is beneficial compared to

the non-selective one. Figure 2.12a shows the compression ratios normalized to the

result with a non-selective method. As shown in Figures 2.12a and 2.12b, we can

verify that the number of selected nodes reduces significantly by 70% on average

with the sacrifice of less than 1% in terms of a compression rate. It means that the

41

�

���

���

���

���

�

���

���

�
�
	

�
�

��

��

�
�

��
�
�
�
�
� �	

�
�
��
�

�

�
��

�
�
��

�
�
�

�
�
�	
�
�
�

�
�

�
�
�
�
�

�
�
	

�
�

��

��

�
�

��
�
�
�
�
� �	

�
�
��
�

�

�
��

�
�
��

�
�
�

�
�
�	
�
�
�

�
�

�
�
�
�
�

� ��

�!

�!

�!

�!

��!

Fig. 2.11.: Compression rates under various update periods

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

ra
d
ix

ff
t lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

8p 16p

non-selective

k=1

k=2

k=4

k=8

(a) Compression rates

0

5

10

15

20

25

30

35

ra
d
ix

ff
t

lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

ra
d
ix

ff
t

lu

jb
b
2
0
0
0

e
q
u
a
k
e

fm
a
3
d

sw
im

m
g
ri
d

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

8p 16p

non-selective

k=1

k=2

k=4

k=8

(b) Number of selected nodes

Fig. 2.12.: Effect of selective update

network overheads can be considerably reduced by 70% for gathering information

from nodes in VSC update, with almost no penalty in compression rates.

To verify the effectiveness in terms of security overheads, we examine how efficient

our scheme is in terms of hiding encryption and decryption latencies by looking at

the pad hit and miss rates. Here we compare our scheme with the most recent work

in secure multiprocessor architecture: the single-level scheme proposed in [8] where

42

(a) Requestor

(b) Sender

Fig. 2.13.: Pad hit and miss rates

each processor has a 32-entry owned-block pad buffer and a 32KB counter cache. In

the single-level scheme, the directory replies to the requestor with a counter value

as soon as it receives a request message. Our scheme is denoted by HCR, since

it consists of Hybrid counter management, data Compression and packet Removal.

Figure 2.13a shows the percentage of pad hits and misses in the requestor’s side for

43

each benchmark and compares the two schemes. A complete hit means that pads

are fully generated before a data message arrives. Likewise, a partial hit means that

pads are partially generated and a miss means pads are not generated. In both

schemes, the requestor gets a reply message from the directory so that it can begin

pad generation in advance. In our scheme, the directory is able to respond to the

requestor immediately, because it only has to notify the sender’s id. Whereas in the

single-level scheme, the directory must carry a counter value in the reply message. If

the counter value is not found in the counter cache, the directory has to access mem-

ory to fetch it, which postpones the transmission of the reply message. Figure 2.13b

shows pad hit and miss rates in the sender’s side. As in the receiver’s case, a sender

can reduce encryption latency if pregenerated pads are available. In our scheme, a

sender maintains pregenerated pads from the next counter value for each destination.

The pads may not be available when many requests arrive concurrently. If so, since

pregenerated pads are used up quickly, encryption latencies are added to the critical

path. In the single-level scheme, each processor maintains an owned block pad buffer

which stores pregenerated pads for modified data blocks. If a sender fails to get pads

from the buffer, it cannot hide the encryption latency. Again, our scheme shows

almost perfect pad hits, whereas the single-level scheme does not. A pregenerated

pad in our scheme can be used for any data packet to the same destination. However,

in the single-level scheme, each pad is only for its corresponding data block.

44

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-.
/
01
"

2
"

34
"

56
6
%
!
!
!
"

7
8
4
.
9
7
"

:;
.
&
/
"

<=
0;

"

;
>
-0
/
"

<?
-7
.
;
@3
4
<?
7
-"

<=
.
A
B
C
D
<"

-.
/
01
"

2
"

34
"

56
6
%
!
!
!
"

7
8
4
.
9
7
"

:;
.
&
/
"

<=
0;

"

;
>
-0
/
"

<?
-7
.
;
@3
4
<?
7
-"

<=
.
A
B
C
D
<"

+A" $)A"

EFG"

<0D>37H37I73"

Fig. 2.14.: Encryption overheads

Finally, we investigate how much our scheme reduces encryption overheads com-

pared to the single-level scheme. Figure 2.14 depicts encryption overheads, which

mean total number of pads needed to encrypt data messages. As we have shown in

this section, our scheme efficiently reduces the packet size or completely eliminates

packets, which leads to the reduction of total number of pads needed. It reduces

encryption overheads by 56% on average.

2.7 Conclusions

In this study, we have proposed VSC to alleviate network overheads by reducing

the number of packets as well as the packet size. The packet compression technique,

VSC, coupled with an underlying cache coherence mechanism, achieves significant

performance improvement by cancelling packet transmission for the most frequent

45

data known to all nodes. Eliminating data packet transmission tremendously reduces

cache miss latency, which enhances overall system performance. The hybrid counter

management achieves perfect counter prediction with low storage overhead by us-

ing global and per-block counters together, which allows data packets not to carry

counters for encryption. In simulation results, VSC outperforms the existing FVT

compression scheme [3] by 23% on average in terms of overall execution time, and by

20% in cache miss latency. Compared to the baseline system with no compression

techniques, the amount of performance improvement in VSC significantly increases

up to 36% in terms of overall execution time and 34% for cache miss latency.

Our work can be explored further by investigating the performance effect when

using different topologies for multiprocessor systems. Also, we plan to analyze the

performance of VSC under mixed workloads or different system domains such as chip

multiprocessor (CMP) systems.

46

3. EFFICIENT MEMORY PROTECTION SCHEME FOR CMP SYSTEMS

3.1 Introduction

The C/C++ programming languages have been widely used in various program-

ming environments since they were first introduced. However, the lack of support

for spatial safety of memory accesses in C/C++ has been constantly addressed as

one of the major drawbacks. Pointers and array indices must be properly managed

to access the memory within their bounds originally assigned to them. If they are

allowed to go out of bounds, they might be used as a means of software attacks by

accessing unpermitted memory areas, which worsens the vulnerability of a system.

The problem might become worse when we consider that C/C++ are dominant in

the system programming area, especially for operating systems and middlewares per-

forming mission-critical tasks. Not only the runtime memory attacks, but pointers

and arrays that are not properly checked by programmers cause lots of memory errors

in the software written in C/C++, which increases the debugging cost significantly.

Moreover, it is obvious that unsafe memory accesses can cause far more compli-

cated and dangerous situations as multi-core/multi-threaded programming environ-

ments become widely adopted in various application domains. In a program running

multiple threads, for instance, a pointer locally declared in a thread function may ex-

ist as multiple instances since each thread has its own stack. Or, a number of thread-

specific pointers may point to one globally accessible memory object by copying a

47

global pointer to multiple thread-specific pointers. It is common in multi-threaded

programs to make a global object shared by threads and synchronize the accesses

through mutexes or semaphores. The increased code complexity in multi-threaded

software makes it even more difficult and expensive to find out memory access errors

and to debug the program. Therefore, it is crucial for chip-multiprocessor (CMP)

systems running multiple threads to be equipped with the mechanisms that can

effectively protect all the memory accesses of multi-threaded workloads.

A number of schemes have been proposed in order to handle unsafe memory

accesses. However, most of the existing schemes solely rely on software-based ap-

proaches, which inevitably incurs significant runtime overheads [30], [31]. Some

hardware-based schemes that provide architectural supports have been suggested,

but many of them are specialized for some specific types of memory attacks, not

covering the whole [32], [33]. HardBound [34] is the first work to provide an archi-

tectural support for efficient bounds checking operations and gives a more general

solution to protect a system from a wide range of memory attacks. However, it is de-

signed for uniprocessor systems with single-threaded programs, which does not cover

the issues of multi-threaded workloads running on CMP systems. Not only does

it waste memory space by duplicating bounds information that can be shared by

multiple pointers, but also it increases overheads by performing unnecessary bounds

checking for pointers that are already verified to be safe. Moreover, HardBound does

not consider any hardware support for CMP systems. Even though HardBound can

48

be deployed in CMP systems as well, it incurs performance overheads due to the

inefficient management of bounds information.

In this study, we propose an efficient bounds checking mechanism that provides

an architectural support with marginal area and performance overheads in CMP

systems. We take advantage of the unique characteristics of cache coherence mecha-

nisms and multi-threaded workloads running on CMP architecture. First, to reduce

the space overheads of bounds checking, we present bounds information sharing.

When multiple pointers are referencing the same memory object, they can share the

bounds information of the object as well through an architectural support for sharing

bounds information using bounds data addresses.

Next, we introduce two schemes to reduce the performance overheads of bounds

checking: Smart Tagging and BCache. Smart Tagging avoids unnecessary bounds

checking that can increase extra overheads. It can be easily observed that a pointer

is kept safe most of the time, implying that its bounds do not need to be checked.

We make the best use of these characteristics of a pointer to eliminate unnecessary

bounds checking via Smart Tagging.

BCache is a new cache and interconnect architecture that facilitates fast access

of bounds information. BCache allows duplications of the same bounds information

in multiple L2 caches, which reduces the access latency. Performance overheads may

increase when bounds information located in multiple places is frequently updated or

invalidated. But we observe that the bounds information does not change frequently

49

even though its associated pointers keep changing, and the overheads can be effec-

tively managed. We also explore the BCache architecture design in large-scale CMP

systems under state-of-the-art and most frequently used design trend such as the

concentrated mesh (CMesh) topology, nanophotonics and 3D stacking. Moreover,

we show that BCache improves performance when it is used to store regular read-

only data as well as bounds information to prove the versatility of BCache, making

compensation for its hardware cost.

Simulation results show that the bounds information sharing reduces the space

overheads by 15% on average. Also, we observe that 98% of bounds checking can be

skipped through Smart Tagging and the average miss latency of bounds information

decreases by 49% on average using BCache. Eventually, these improvements enhance

the overall performance in terms of the number of clock cycles per micro-operation

(CPµ) by 11% on average when all the memory operations are executed. Total energy

consumed by BCache also decreases by 47% and 61% in caches and interconnects,

respectively.

The remainder of this study is organized as follows. We discuss related work

in Section 4.2. In Sections 3.3 and 3.4, we explain the bounds information sharing,

Smart Tagging and the BCache architecture in detail. Section 4.5 presents simulation

results and analysis, and finally Section 5 summarizes our work and conclusions.

50

3.2 Related Work

Several schemes have been proposed regarding the secure multiprocessor design to

protect systems from various kinds of attacks. A large portion of them deals with ar-

chitectural supports to prevent physical attacks during the data transmission through

vulnerable parts of the system, mostly off-chip memories and interconnects [6], [5],

[8]. Also, there have been studies to solve the security problems associated with

new computing technologies [35], [36].

The protection of spatial memory errors has been explored for a long time in order

to prevent memory access violations in programs written in programming languages

that do not support boundary checking. A number of schemes based on software

approaches were introduced to enforce spatial memory safety. In [37], [38], [39], fat

pointers were used to associate each pointer with its bounds information needed

for bounds checking. Nethercote [40] attempted to generate fat pointers using dy-

namic binary instrumentation. Also Heap Server [41] was introduced to protect the

heap metadata. Nethercote and Seward [31] supported shadow values to be used for

tracking and detecting dangerous memory accesses. Hastings and Joyce [30] used a

red-zone for each allocated memory to detect bounds errors. Berger and Zorn [42]

carried out probabilistic analysis to guarantee memory safety using approximated

infinite heaps. In [43], different software-based implementations of bounds check-

ing were analyzed, and some taint-based optimization techniques were introduced

to reduce runtime overheads. Some recent studies provided more efficient bounds

51

checking mechanisms with less overheads [44], [45], [46], [47], [48], [49]. In [47], [48],

algorithms that eliminate redundant bounds checkings were proposed, and Chuang

et al. [49] reduced the amount of memory space needed by metadata for bounds

checking. Although these studies contributed to preventing spatial memory errors,

most of them suffered from huge runtime performance overheads since they were

software-based approaches. Moreover, they provided insufficient analysis of overall

system performance with multi-threaded workloads.

To overcome the overhead issues of software-based schemes, making an architec-

tural support for memory safety began to be considered. Venkataramani et al. [33]

used hardware support to check up the validity of memory block data. Shao et

al. [32] provided an architectural support of bounds checking for arrays and point-

ers. However, none of the approaches mentioned above dealt with multiprocessor

systems and multi-threaded workloads. HardBound [34] is a hardware-based ap-

proach for bounds checking while maintaining the software overheads minimal. It

accesses pointers and their associated bounds information with hardware support

and propagates them through the system. Also it automatically performs bounds

checking before pointer dereferences. But, HardBound always maintains a separate

copy of bounds information per pointer, even when the bounds information can be

shared by multiple pointers. Furthermore, it performs bounds checking for all pointer

dereferences, no matter whether a pointer value is already proved to be safe or not.

The biggest limitation of HardBound in CMP systems is that HardBound does not

52

① ld $r1, [Addr1]

② add $r2, $r1, 0

③ ld $r3, 0($r2)

④ st $r2, [Addr2]

0x100
Addr1

Addr2
$r1.value

0x100

$r3.value

①①①①

③③③③

$r2.base <= $r2.value

<= ($r2.base + $r2.len) ?

③③③③

Addr1 BoundAddr(Addr1)

Addr2 BoundAddr(Addr2)

0x100
Addr2

$r2.value base/len BoundAddr(Addr1)

base/len BoundAddr(Addr2)

$r1.base/len

$r2.base/len

①①①①
②②②②

②②②②

④④④④

④④④④

Fig. 3.1.: Bounds checking in HardBound

consider memory hierarchies and interconnects of CMP systems, which may cause

significant performance overheads of data accesses for bounds checking.

3.3 Architectural Support for Efficient Bounds Checking

In this section, we propose two schemes (bounds information sharing and Smart

Tagging) for fast and efficient bounds checking with hardware support. First, we

explain the basic mechanism of an architectural support for bounds checking, which

was introduced in HardBound [34].

All registers that can contain memory address values are expanded to have extra

information for bounds checking. Table 3.1 describes the extra fields of a register to

handle bounds information when a pointer is stored in the register. Figure 3.1 illus-

53

Table 3.1: Expanding a register for bounds checking

Extension Description

$r1.value Actual value in $r1

$r1.base Starting address of a memory object pointed by $r1

$r1.len Size of a memory object pointed by $r1

trates a simple example of handling bounds information when loading, propagating

and storing a pointer. First, a pointer value 0x100 stored in Addr1 is loaded to a regis-

ter $r1. The associated bounds information located in BoundsAddr(Addr1) is loaded

to $r1.base and $r1.len. Now $r1.value has the address value 0x100. When $r1

is copied to $r2, the bounds information stored in $r1.base/len is also copied to

$r2.base/len, respectively. When the value in the memory address $r2.value

(0x100) is loaded to $r3, we must make sure that $r2.value lies within the bounds,

between $r2.base and $r2.base + $r2.len. Finally, the pointer value 0x100 in

$r2.value is stored to the memory address Addr2. Along with it, $r2.base/len

are also stored to the address BoundsAddr(Addr2). Note that we omit the bounds

checking for Addr1 and Addr2 to simplify the description of the example, even though

they must be done actually.

3.3.1 Bounds Information Sharing To Avoid Redundant Storing

The pointers in Addr1 and Addr2 in Figure 3.1 are associated with the bounds

information in BoundsAddr(Addr1) and BoundsAddr(Addr2), respectively. How-

ever, note that when a pointer is copied to another pointer, they both have the same

54

bounds information. This situation occurs frequently when a number of pointers

point to the same memory object or a pointer value keeps being passed as a parame-

ter in nested function calls. Therefore, memory overheads can be reduced if we allow

pointers to share the bounds information.

Figure 3.2 describes how the bounds information can be shared when a pointer

is copied to another. In order to keep track of the location of bounds information

when a pointer is propagated through registers, we expand registers to have another

extra bounds field containing the address of bounds information associated with a

pointer in the register. When a pointer in Addr1 is loaded to $r1.value, the ad-

dress BoundsAddr(Addr1) is loaded to $r1.bounds along with $r1.base/len. Also

when $r1 is copied to $r2, $r1.bounds is also copied to $r2.bounds together with

$r1.base/len. When $r2.value is stored to the address Addr2, $r2.base/len do

not have to be stored since they are the same as the ones in BoundsAddr(Addr1).

Instead, we associate Addr2 with the address in $r2.bounds that is equal to Bound-

sAddr(Addr1) through updating mapping information between a pointer address

and its bounds information address. Now the pointers in Addr1 and Addr2 share

the same bounds information in BoundsAddr(Addr1).

3.3.2 Reducing Overheads Using Smart Tagging

To avoid performing bounds checking every time when a pointer is dereferenced,

we can optimize the process further. First, we do not need to manage bounds in-

55

0x100
Addr1

0x100
Addr2

$r1.value

$r1.base/len

Addr1 BoundAddr(Addr1)

Addr2

0x100

$r2.value base/len BoundAddr(Addr1)

$r1.base/len

$r2.base/len

$r1.bounds

$r2.bounds

Fig. 3.2.: Sharing bounds information

0x100
Addr1

$r1.value

0x100

$r3.value

Skip the bounds checking!

1 1 Tag

$r1.bounds

$r2.value

$r3.value

base/len

$r1.tag = 11

$r2.tag = 11

$r1.bounds

$r2.bounds

BoundAddr(Addr1)

Fig. 3.3.: Skipping bounds checking with Smart Tagging

formation when handling non-pointer values in the system. And more importantly,

when a pointer is initialized, it is associated with a memory object for the first time.

56

The pointer is safe at this moment because it points to the object correctly. Also, a

pointer is guaranteed to be safe after passing the bounds checking until it is updated

later. To perform bounds checking more effectively based on these observations, we

use 2-bit tag information per 4-byte memory block in the address space, assuming 32-

bit ISA. We need a 2-bit tag for each 4-byte block, since the pointer size is 4 bytes in

32-bit machines. The first bit in the tag represents whether the corresponding block

has a pointer or a non-pointer; it is set if the value is a pointer and cleared otherwise.

The second bit indicates whether the pointer value stored in the corresponding block

is safe or not. It is set if the pointer is safe, when initialized or after passing the

bounds checking. It is cleared if the pointer is not guaranteed to be safe, such as after

a pointer update. Each register that can contain a pointer is also expanded to have

the tag information called $r1.tag. The space overhead of the tag information in a

4GB memory address space is 256MB, occupying around 6% of the total space. Note

that allocating at least one bit per 4-byte word is mandatory in 32-bit machines for

bounds checking with hardware support to indicate whether each word is a pointer

or not. Smart Tagging uses additional one bit per word to provide a more efficient

bounds checking mechanism, which is not a big overhead compared to HardBound

that uses up to four bits for each tag.

Figure 3.3 illustrates how the tag works in the previous example shown in Fig-

ure 3.1. When the value stored in Addr1 is loaded to $r1.value, the system first

checks up the tag for Addr1. Here we assume that both the two bits are set, meaning

57

that the value is a pointer and it is safe. Originally the bounds information should be

loaded to $r1.base/len if the first bit is set. With Smart Tagging, however, But it is

deferred until the pointer becomes stale, regardless of the second bit in the tag. The

tag is loaded to $r1.tag in order to keep track of the safety condition of the pointer.

BoundsAddr(Addr1) should be also loaded to $r1.bounds because the system must

be able to keep track of the location of bounds information in preparation for the

time when it needs to access the bounds information. When $r1.value is copied

to $r2.value, $r1.tag and $r1.bounds are also propagated along with the value.

Since the pointer value does not change between the source and the destination regis-

ters, $r2.tag remains the same as $r1.tag. When the value is loaded to $r3.value

through dereferencing the pointer in $r2.value, we can skip the bounds checking

as well as loading the bounds information because the pointer is already guaranteed

to be safe by looking at the tag in $r2.tag that is still 11. When $r2.value be-

comes different from $r1.value, $r2.tag must be updated to 10 to indicate that

the pointer is stale and needs bounds checking. Then, the bounds information in

$r2.bounds must be loaded when $r2.value is dereferenced.

3.3.3 Implementation Issues

Caching Frequently Accessed Addresses of Bounds Information. For faster

address translation between pointers and bounds information addresses, each core

can be equipped with a bounds TLB that caches frequently accessed mapping infor-

58

mation. Using a bounds TLB becomes greatly attractive as workloads show a higher

temporal locality of bounds information.

Storing Tag Information. Unlike the bounds information shared by a number

of pointers, the tag information is private to each pointer. Thus, even if multiple

pointers share the bounds information, the tags for those pointers cannot be shared.

Therefore, tags are to be stored in a normal L1 data cache instead of an L1 bounds

cache when accessing the bounds information using the BCache architecture that

will be explained in more detail in the next section.

Extracting Bounds Information from a Program. For globally declared vari-

ables or objects, bounds information can be extracted at runtime by looking up the

symbol tables of executable files or libraries [50]. Also, the bounds information of

dynamically allocated objects can be obtained by hacking up the system library,

e.g. glibc for Linux, that implements malloc()/calloc()/realloc() interfaces.

However, it is not possible to extract bounds information of local objects declared

in a process stack without the help of source-level analysis. Explaining how to make

analysis of local variables in a program source code is beyond the scope of our study.

But it can be done easily using a source code analyzer or a compiler such as [51].

The program source code can be annotated when a local object is newly assigned

to a pointer. Every time when new bounds information is obtained at runtime, the

system dynamically generates a special instruction that is decoded to a generic store

instruction for storing bounds information in an appropriate memory address. Note

59

Table 3.2: Overheads of special instructions

Benchmarks Total bounds accesses Special instructions Percentage

blackscholes 417898 20 0.005%
dedup 131897 14154 10.731%
fluidanimate 15090315 405908 2.689%
streamcluster 311918 46702 14.972%
swaptions 313891 20227 6.443%
bodytrack 4681902 22403 0.478%
canneal 1295954 593125 45.767%
ferret 3898688 5994 0.153%
freqmine 3689589 89278 2.419%
Average 9.296%

that the source code modification is inevitable to extract bounds information of local

objects.

3.3.4 System Overheads

Even if the bounds checking with an architectural support is fast and efficient,

we need to clarify the cost of implementation precisely due to the limited resource

budget of CMP systems. In this section, we measure the overheads of the proposed

schemes in terms of both hardware and software.

For hardware, we obtain delay and area overheads from CACTI 5.3 [52] and

HSPICE analysis in 32nm technology. A register file must be expanded to store

metadata for bounds checking. The access time of a regular 128-entry integer register

file is measured to be approximately 0.204ns. When the register file is expanded

to have extra information for bounds checking, the access time becomes 0.222ns,

60

showing around 9% of increase. Even this increased latency can be fit in 4GHz

clock cycle time. Area overheads of the register file increases from 0.008mm2 to

0.014mm2, which are quite marginal compared to those of caches or interconnects in

CMP systems. Also, an additional integer ALU exclusively used for bounds checking

should be adopted as well in order to prevent structural hazards. Access latency of

a 32-bit integer ALU is measured to be 0.048ns, and the area overheads correspond

to 8.203E-6mm2.

In the previous section, we state that newly extracted bounds information is con-

verted to a special instruction that is eventually decoded to a store instruction. Note

that this special instruction is generated only when bounds information appears in

the system for the first time, and already obtained bounds information is automati-

cally handled by hardware. Therefore, the number of special instructions generated

takes up only a small portion of the total number of accesses to the bounds informa-

tion in the system. Table 3.2 shows the ratio of special instructions to the bounds

information accesses in PARSEC benchmark suite. The ratio is approximately 9.3%

in average.

3.4 Managing Bounds Information in CMPs

In this section, we explain how to manage bounds information that may be shared

by multiple threads in CMP systems. We propose a new cache architecture, which

61

is called Bounds Cache (BCache). BCache allows duplicated copies of bounds infor-

mation in L2 cache for fast accesses from threads running on multiple cores.

3.4.1 Chip-Multiprocessor Architecture

A CMP integrates more than one processor core in a single chip. In a CMP, a num-

ber of communication nodes that can be cores or caches are connected through buses

or interconnects. As the system size grows, Network-on-Chip (NoC) is becoming

widely adopted to provide scalability, where a router is connected to a communica-

tion node or another router through wires and transmits data. Wormhole switching

is commonly adopted in CMP systems to reduce the buffer space overhead, and

multiple virtual channels are deployed per each physical channel to minimize Head-

of-line (HOL) blocking. A network topology determines how to connect processing

elements and routers, such as a mesh or a fat tree. The CMP architecture assumed

in this study is a tiled CMP in which tiles are connected via a mesh network. Each

tile consists of a core with private L1 caches and a shared L2 cache bank including

directory information. Figure 3.4 shows a tiled 16-core CMP architecture.

3.4.2 BCache Architecture in CMP

Figure 3.5 describes the overall BCache architecture for a 16-core CMP system.

As seen in Figure 3.5a, additional L1 bounds cache (L1B) is used along with the

existing L1 instruction/data caches (L1I/L1D) to manage and access bounds infor-

62

!"#$%

&#"'$(("#%!"#$%)%&#*+,-$%./(%

01,#$2%.3%

Fig. 3.4.: A tiled 16-core CMP architecture

Bounds Node

Core Core

L
1

I

L
1

D

L
1

B

L
1

I

L
1

D

L
1

B

N
o

r
m

a
l

L
2

B
o

u
n

d
s

L
2 Normal

L2

Non-Bounds Node

(a) Nodes

0 1 2 3

7654

8 9 10 11

15141312

Bounds Network Bounds Node

(b) Memory and interconnects

Fig. 3.5.: BCache architecture

mation fast and efficiently. When bounds information is located in the L2 cache of the

BCache architecture, only some specific nodes can have bounds information in their

L2 caches, not allowing other nodes to store it, which is different from the normal

shared L2 cache that allows bounds information to be placed in any node depending

63

on the address. Four out of sixteen nodes, 0, 2, 8 and 10 in Figure 3.5b are chosen

and they are called bounds nodes. Bounds nodes have a small part of their L2 caches

dedicated to store bounds information and use the other part of L2 for normal data.

Other non-bounds nodes have all their L2s only for regular data. Unlike the other L1

instruction/data caches, the L1 bounds cache is write-through, thus newly written

bounds data in the L1 bounds cache is immediately written to the L2 bounds cache

of a bounds node as well. It enables fast access to new bounds information from

other nodes. For fast transmission of bounds information between bounds nodes,

a separate interconnection network is adopted only for bounds data, and we call it

a bounds network hereafter. The bounds network connects all four bounds nodes

in a mesh style as depicted by gray lines in Figure 3.5b and allows communication

between bounds nodes within two hops. The normal mesh network is used for other

communication including normal data traffic as well as the communication between

bounds and non-bounds nodes.

The most important difference between BCache and normal shared L2 cache

architectures is that each bounds node can have its own duplicated copy of the same

bounds information in BCache, whereas normal shared L2 cache allows only one copy

in the system. To keep track of the duplication information, each cache block in L2

of BCache has extra 4-bit information indicating whether each of four bounds nodes

has the same information block in its L2. All bounds nodes having duplicated copies

of a bounds information block have the same duplication information for that block.

64

Whenever the bounds information block is duplicated or evicted in/from a bounds

node, all bounds nodes sharing the block updates the duplication information. In

order to make a fast access to the bounds nodes from non-bounds nodes, one bounds

node and three of its neighboring non-bounds nodes are grouped together and the

group is called a bounds cluster as shown in Figure 3.5b. When a miss occurs in L1

bounds cache of a node, a request message is first sent to the corresponding bounds

node in its bounds cluster. Note that the bounds node is located close to other nodes

in the cluster, which minimizes the latency of a first miss request message and that

of a data message from the bounds node to the requestor. In the normal shared

L2 architecture, the distance between the requestor and the owner that provides

the data block may be quite far. If the bounds node has the bounds information

when the bounds node receives the request message, it immediately replies to the

requestor. Otherwise, it communicates with other three bounds nodes to get the data

from them. All four bounds nodes efficiently share and transfer bounds information

among them, which will be explained in more detail in Section 3.4.3.

3.4.3 Handling Bounds Information in BCache

The BCache architecture enables duplicated copies of a bounds information block

in the last-level shared cache of a CMP system, which is different from a generic

shared cache in CMP systems. Therefore, BCache cannot be used in conjunction

with regular cache coherence protocols for CMPs. In this section, we introduce

65

0 2 3

④④④④
②②②②

③③③③ ①①①①

RAM

8 10

Data Duplication

Bounds1 0 1 0 0

⑤⑤⑤⑤

(a) Loading

0 2

③③③③

Data Duplication

Bounds1 0 1 0 1

⑤⑤⑤⑤

8 10 11

④④④④

②②②②

③③③③

①①①①

Data Duplication

Bounds1 0 1 0 1
⑤⑤⑤⑤

(b) Duplicating

0 2

②②②②

Data Duplication

Bounds1 0 1 1 1

Data Duplication

Bounds1 0 1 1 1

⑤⑤⑤⑤⑤⑤⑤⑤

8 10

12

Data Duplication

Bounds1 0 1 1 1

④④④④
③③③③

①①①① ⑤⑤⑤⑤

(c) Duplicating after migration

0 2

②②②②

①①①①

Data Duplication

evicted

8 10

Bounds1 0 0 1 1

Data Duplication

Bounds1 0 0 1 1②②②②

(d) Evicting

Fig. 3.6.: Managing bounds information in BCache

66

a new coherence mechanism for the BCache architecture that handles duplicated

bounds information effectively. Figure 3.6 illustrates how the bounds information

can be managed by the BCache architecture in various situations.

Loading Bounds Information. Suppose that a cache miss occurs in the L1 bounds

cache of node 3 as shown in Figure 3.6a. First, node 3 sends a request message to

the bounds node in the cluster, node 2 in this example. If node 2 has the requested

bounds information in its L2, it provides the information to the requestor. Otherwise,

it requests other three bounds nodes (nodes 0, 8 and 10) to figure out whether any of

them has the information through the bounds network 1. If the information is found

in one of the other three bounds nodes, it is transferred to node 2. Otherwise, it can

be fetched from an off-chip memory. Finally, node 2 has the requested information

and sends it to the requestor, node 3, using the normal mesh network. As explained in

the previous section, each cache block of L2 bounds caches in bounds nodes maintains

the 4-bit duplication information to keep track of the duplication status of bounds

data. Thus, node 2 updates the duplication information for the current data block.

If any other node in the cluster such as node 7 requests the same data later on, the

node 2 can immediately provides the data from its own L2.

Loading the Same Bounds Information in a Node of a Different Cluster.

Figure 3.6b shows how the bounds information previously requested by node 3 is

provided to node 11 in a different cluster. Node 11 first sends a request message to the

1If the L2 of a bounds node does not have the data, the corresponding duplication information is
not available in that node as well. So node 2 has no information of which bounds node has the
data.

67

bounds node in the cluster, node 10, as before. If node 10 does not have the bounds

information, it requests other three bounds nodes to search for the information.

Since the bounds node 2 has the bounds information, it sends the information block

to node 10 through the bounds network. After receiving the bounds information

block from node 2, node 10 sends the information to the requesting node 11. Now

the bounds nodes 2 and 10 have duplicated copies of the same bounds information

in their L2. Here both the nodes 2 and 10 have knowledge of the bounds data block

duplicated in those two nodes.

Loading the Bounds Information After Thread Migration. Threads running

in the system keep migrating to different processor cores based on the OS scheduler’s

policy. Then the same bounds information may be requested from a new node after

the migration. As shown in Figure 3.6c, if the thread running on node 3 is migrated

to node 12, node 12 can request the bounds information that was originally used by

node 3. Getting the bounds information and updating the duplication information

can be done as explained above. Note that node 12 can make a fast access to the

bounds information with the help of the BCache architecture, even though nodes 3

and 12 are located far from each other.

Evicting the Bounds Information from a Bounds Node. If new bounds

information is written to the bounds node’s L2 cache whose corresponding cache set

is already full, one bounds cache block must be chosen for eviction based on the LRU

replacement policy. In Figure 3.6d, when a bounds information block is duplicated

68

in the bounds nodes 2, 8 and 10 and the one in node 2 is evicted, node 2 sends the

update message to the other two bounds nodes 8 and 10 to update the duplication

information. Once nodes 8 and 10 receive the update message, they delete node 2

from the duplication information. If the evicted block is the only copy and it is not

stored in the off-chip memory yet, it is written back to the memory after eviction.

Modifying the Existing Bounds Information. The bounds information can

be modified at runtime by realloc() and so on. If it is modified, all the previous

copies of that bounds information must be invalidated. Assume that the realloc()

is called in node 3 to modify the bounds information. Right after new bounds

information is stored in the L1 bounds cache of node 3, it is immediately sent to the

bounds node 2 for update since the L1 bounds cache is write-through as explained

in Section 3.4.2. Then the bounds node 2 broadcasts the new bounds information to

all other three bounds nodes to invalidate the old information through the bounds

network. Once each bounds node receives the invalidation message, it updates the

duplication information and broadcasts the message again to its neighboring nodes in

the cluster through the normal mesh network for invalidation. After invalidation, the

new bounds information is located only in the bounds node 2, and getting the new

information from other nodes can be done in the same way as explained above. This

broadcast-based invalidation procedure may increase the overheads compared to the

normal cache coherence protocol, since an invalidation message must be broadcast

to all nodes every time a write occurs. But usually updating bounds information

69

is very rare in a program and the invalidation is off the critical path, so it will not

make a big impact on the performance degradation.

3.4.4 Scalable Design of BCache Architecture

When a CMP system scales up to have more processor cores in a chip, each

bounds node must be properly located in a cluster for optimal performance. Thus,

for each node, we calculate the average distance to reach all nodes in a cluster.

Suppose that an (a x b) bounds cluster is placed on an imaginary X-Y graph, where

each node corresponds to one of the coordinates on the graph between (0, 0) and

(a− 1, b− 1). Assuming that C is the set of all nodes in a cluster, average distance

from an arbitrary node p = (x, y) ∈ C to any other node (x1, y1) in C can be obtained

using the following equation 3.1.

AvgDistp =

∑
(x1,y1)∈C(|x− x1|+ |y − y1|)

a× b
(3.1)

We can generalize this formula to a mixed radix k0 × k1 × · · · × kn−1 n-mesh

network. Here the distance between p = (p0, p1, · · · , pn−1) and q = (q0, q1, · · · , qn−1),

where p, q ∈ C, is defined as the following equation 3.2.

Dist(p, q) =
n−1∑

i=0

|pi − qi| (3.2)

70

The average distance from an arbitrary node p = (p0, p1, · · · , pn−1) to all other

nodes in the cluster is defined as the following equation 3.3.

AvgDistp =

∑
q∈C(Dist(p, q))

∏n−1
i=0 ki

(3.3)

Using this formula, we choose the proper location of a bounds node that minimizes

average distance. Figure 3.7 illustrates the BCache architectures deployed in 4x4,

8x4, 8x8 and 16x8 2-D mesh CMP systems.

In the case of the concentrated mesh (CMesh) topology [53] in which routers are

connected in a mesh style and each router services four nodes, we can treat those

nodes sharing a router as a group. Then, the topology becomes a normal mesh

connecting those groups. Here we can select the group with the shortest average

distance using the equation 3.3. Then we can choose any node in that group as a

bounds node since all nodes have the same distance from the router.

3.4.5 Design Alternatives for Large-Scale BCache Architecture

As the system size increases in a large scale, a distance between a bounds node and

other nodes in a bounds cluster also increases in 2D mesh-style topologies. To over-

come network overheads, a three-dimensional (3D) die-stacked architecture might

be adopted to shorten the latency in a more efficient way. In the 3D architecture,

multiple silicon dies are stacked together and they communicate each other through

71

16 cores 32 cores

64 cores 128 cores

Fig. 3.7.: Scalable BCache design in CMP systems

Metal

Si

Metal

Si

La
y

e
r

1
La

y
e

r
2

(a) Face-to-Back (F2B)
bonding

!"#$%&'&

!"#$%&(&

)*+$&

,-.%$/!(0/1.%2"+&!'03&

4.5678&!'0&

(b) 3D design of BCache architecture

Fig. 3.8.: Design alternative using 3D stacking

vertical interconnects. Figure 3.8a describes a 3D architecture with two layers con-

nected with Face-to-Back (F2B) bonding using Through Silicon Vias (TSVs) .

The BCache architecture can be designed using two different silicon layers as

shown in Figure 3.8b. The first layer contains nodes with cores, L1 caches and normal

72

L2 caches connected through a normal mesh network. Bounds nodes connected

through the bounds network are located in the second layer. Then, the access delay

from the non-bounds nodes to the bounds node reduces dramatically. The amount of

performance enhancement is proportional to the number of TSVs used, but too many

vertical interconnects might take up much space and compete with other devices for

the area budget. Here we assume that each bounds cluster has four TSVs, each of

which is 128 bits wide. Each TSV handles the communication between the upper-

level bounds node and one quadrant of cluster nodes in the lower layer. Among

the nodes in each quadrant, the one with the shortest average distance to others

is connected to the TSV. The location of that node can be determined using the

method in Section 3.4.4. Each bounds node in the upper layer is connected to a

5x5 NoC router equipped with four channels connected to four TSVs and another

channel for injection and ejection.

As the number of TSVs per bounds cluster increases in a large-scale CMP system,

the router connected to the bounds node in the upper layer might become signifi-

cantly complicated. One solution is that we can make all vertical connection points

in the upper layer connected to a high-speed media such as an optical shared bus

in the manner of a Hamiltonian path [54]. The high-speed shared bus also helps to

communicate between bounds nodes when transmitting bounds data or updating the

sharing information through broadcasting.

73

3.4.6 Using BCache for General Purposes

One may consider BCache is too expensive to be used exclusively for bounds

checking. Here we prove that BCache can be used more generally by showing how

to use BCache for regular data or make BCache operate as a generic coherent cache.

In addition to bounds information, BCache can be used to store regular data

accessed by normal load and store instructions. Since BCache is not efficient to

handle heavily overwritten data due to the invalidation overheads, read-only data

would be a good candidate for BCache. Storing read-only data in BCache can be

done in the same way as the bounds information that is explained in Section 3.3.3.

Also, BCache can be reconfigured as a part of the normal cache hierarchy when

the bounds checking is not necessary. Bounds caches in L1 and L2 can work as a

part of normal L1 data or L2 caches by reconfiguring the L1 bounds cache from

write-through to write-back and assigning a portion of physical memory address

space to BCache exclusively. If the memory address belonging to that address range

is accessed by a load or store instruction, L1 bounds cache is looked up instead of

normal L1 data cache. A cache miss in an L1 bounds cache is handled by one of

L2 bounds cache banks depending on the address. Note that L2 bounds caches do

not allow data duplication in this case, so each cache block is stored in only one

L2 bounds cache bank. To maintain cache coherence, each cache line in L2 bounds

caches has directory information in addition to the existing 4-bit sharing information.

As in the bounds checking, packet traversal between bounds nodes is done via the

74

Table 3.3: System parameters

Simulators Parameters Values

CPU 16 Intel x86 processors
Simics/ Cache block size 64B
FeS2 Memory 1GB, 300 cycle access time

Directory access time 80 cycles
OS/Kernel Fedora Core 5 (x86) / Linux 2.6.15

4-way, 1KB(L1B/L1D), 2 cycles
L1 cache HardBound: Write-back L1B

BCache: Write-through L1B
4-way, 16MB, 6 cycles

CMP HardBound: 1MB x 16
CacheSim L2 cache BCache: 1MB x 12 (non-bounds nodes)

512KB x 4 (bounds nodes/bounds data)
512KB x 4 (bounds nodes/regular data)

Cache block size 64B
Memory 1GB, 300 cycle access time
Router Fixed 5-cycle pipelined router
Flit size 16B
Network topology 4x4/8x4/8x8/16x8/16x16 mesh

bounds network. Also, the traversal between bounds and non-bounds nodes is done

via a normal mesh network. The configuration of L1 bounds caches and the memory

address range can be supported by system BIOS.

3.5 Performance Evaluation

3.5.1 Simulation Framework

We measure the performance of the proposed schemes using Simics full-system

simulator [25]. In order to simulate the bounds checking mechanism explained in the

previous section, we also use a Full-system Execution-driven Simulator for x86 (FeS2)

75

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)
)
*
+
,
-.
"

/
01
-2
3-
.
4
0+
3"

5
+
5
6
7
"

8
6
95
1
,
9:

1
;+
"

3;
<+
1
:
-0
6
3;
+
<"

3=
1
7
>
4
,
3"

/
4
5
?
;<
1
-2
"

-1
,
,
+
1
0"

@+
<<
+
;"

A4B.1<9,C"

B.1<9,C"

Fig. 3.9.: Effect of sharing bounds information

Table 3.4: Number of bounds checking

Benchmarks Total Skipped Percentage

PPBench 296907 295954 99.679024%
blackscholes 3247416 3247395 99.996921%
dedup 53458 46598 87.167496%
fluidanimate 812156 809873 99.718896%
streamcluster 522627 519172 99.338917%
swaptions 11840543 11834754 99.951109%
bodytrack 4659151 4596920 98.664327%
canneal 806383 802427 99.509414%
ferret 3884803 3766475 96.954080%
freqmine 3616691 3441109 95.145231%
Average 97.612785%

76

that models out-of-order x86 processor cores including a decoder used to convert an

x86 instruction to RISC-style micro-ops. FeS2 integrates PTLsim [55] decoder and

Ruby memory model in GEMS [26]. To measure the BCache architecture perfor-

mance, we capture all memory reference traces including bounds information using

Simics and FeS2. Then those traces are fed to a cycle-accurate CMP cache simulator

that models three different cache architectures: HardBound, BCache, and BCache

with 3D stacking. Note that HardBound is designed for uniprocessor systems, so

it does not assume a specific cache coherence protocol. Hence we assume a general

directory-based MSI coherence protocol for HardBound, while BCache uses its own

protocol explained in Section 3.4.3. CACTI 5.3 [52] and ORION 2.0 [56] are used to

measure energy consumption for caches and interconnects, respectively. All energy

results are obtained on the assumption of 32nm technology.

Table 3.3 shows system parameters used in the simulation. To make a fair com-

parison, the total size of L2 bounds caches in BCache is set to the same as that of L2

cache in HardBound. Also, we assume that HardBound stores the bounds informa-

tion in L1 data caches and the tag information in L1 bounds caches. BCache stores

the tag information in L1 data caches, as explained in Section 3.3.3.

We use PARSEC [29] benchmarks with simsmall input sets for parallel work-

loads. Also we make our own parallel benchmark called ParallelPointerBench to

measure the performance with more pointer-intensive workloads. ParallelPointer-

Bench spawns threads as many as the number of cores and generates total 2,000

77

global and thread-specific pointers. Each thread accesses pointers 2,000 times at

random. All benchmark source codes have been modified to extract read-only data

and bounds information for pointers by adding a simple notation. Note that we

evaluate only the benchmark code, not libraries and OS kernel.

In order to measure the BCache architecture scalability, we need memory refer-

ence traces for systems with more than 16 processor cores. However, we could not

use Simics to generate traces for large-scale systems because of prohibitive simulation

time. Instead, we make a trace generator that is able to create traces for an arbitrary

number of cores. The generator creates traces simulating workloads generating and

accessing pointers randomly for 16, 32, 64, 128 and 256-core systems. Based on the

behavior of real parallel benchmarks, we set the ratio of writes to read operations to

be 3% in each trace.

3.5.2 Simulation Results

First, we clarify how much the space overhead can be reduced through the sharing

of bounds information among multiple pointers. Figure 3.9 shows the amount of an

address space allocated to the bounds information. The first bar in each column

represents the result when bounds information is not shared. The second bar depicts

the result of shared bounds information normalized to the first one. Figure 3.9 shows

that 15% of space overheads can be reduced on average when pointers to the same

object share the bounds information.

78

Also, we show the amount of skipped bounds checking through Smart Tagging

in detail. Table 3.4 shows the ratio of skipped bounds checking with Smart Tagging

out of the total bounds checking. It shows approximately 98% of bounds checking

can be skipped on average.

We clarify how much the BCache architecture is beneficial to fast access to the

bounds information in CMP systems. Figure 3.10 shows average miss latencies of

loading and storing bounds information for HardBound, BCache and BCache-3D

designs. In each graph, the first column PPBench represents ParallelPointerBench

and the next columns shows PARSEC benchmark results. To compare the results

in more detail, we break down the latency values into four parts for each design. In

HardBound shown in Figure 3.10a, the miss latency consists of the request latency

from a requestor to the corresponding directory node (Req → Dir), the lookup

latency needed to reach the owner (Owner Search), the off-chip memory access

latency in the case of L2 miss (Mem Access), and the transfer latency from the

owner to the requestor (Owner → Req). Similarly, the miss latency of BCache

in Figure 3.10b consists of the request latency from a requestor to its bounds node

(Req → BNode), the lookup latency for fetching data among four bounds nodes

and placing it in the requested bounds node (BCache Search), the off-chip memory

latency (Mem Access), and the data transfer latency from the requested bounds

node to the requestor (BNode → Req). In Figure 3.10a and 3.10b, BCache improves

the miss latency by 28% on average compared to HardBound. Note that BCache

79

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

(
)*
*"
+,
-.
/
01
"2
01
03
.
*4

56/.7"89":.;"

(.<"=00.**"

56/.7">.,70?"

:.;"89"@)7"

(a) HardBound

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

(
)*
*"
+,
-.
/
01
"2
01
03
.
*4

5678."9:";.<"

(.=">00.**"

5?,0@."A.,B0@"

;.<"9:"5678."

(b) BCache

Fig. 3.10.: Average miss latencies of accessing bounds information

80

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'%(")#(" %$(" '#&(" #*%("

+
,-
-"
./
01
2
34
"5
34
36
1
-7
"

8/9:;<=2:"

;>/3?1"

;>/3?1@)A"

Fig. 3.11.: Scalability of BCache architecture

achieves significant performance improvement in terms of the first request and the

final data transfer latencies since the bounds node providing the data is located close

to the requestor. BCache reduces off-chip memory access latency because it places

duplicated copies of the bounds cache block in multiple bounds nodes in a smart

way, resulting in reducing the number of L2 misses in bounds nodes.

To measure the scalability of BCache in large-scale systems, we evaluate miss

latencies in 16, 32, 64, 128 and 256-core CMP systems using synthetic traces obtained

from the trace generator. In Figure 3.11, the performance improvement increases

significantly as the system size grows, and it goes up to 156% in the case of a

256-core CMP system using BCache with 3D stacking. 3D stacking contributes to

this improvement by allowing all nodes in the lower layer to reach its bounds node

81

with shorter delays through the TSVs. Moreover, it is found that even the results

of BCache without 3D stacking shows quite a good scalability. Here we fix total

number of accesses to the bounds information for all different system sizes. Thus,

the injection rate per node decreases as the system size grows. Therefore, the results

in this experiment do not include any delay caused by contention as the network size

grows. If the injection rate per node is kept constant as the system scales up, we

may observe some congestion delay in communication using bounds network. For

this study, we focus on the delay caused by topologies.

We also measure the average miss latencies for regular read-only data. We do

not show the results from BCache with 3D stacking since BCache with 3D stacking

has similar results with BCache under a 16-core system in terms of the average miss

latency as shown in Figure 3.10. In Figure 3.12, BCache outperforms HardBound

again by 49% on average. BCache is designed to handle read-only data efficiently as

well as bounds information, while HardBound assumes general memory and cache

coherence models with no optimization. Therefore, HardBound does not show per-

formance improvement for read-only data.

Now, we investigate how BCache and Smart Tagging affect the overall system

performance together. We use Simics and FeS2 to get the baseline performance,

and apply miss latency results obtained from our cache simulator and traces that

record all accesses to read-only data and bounds information as well as tag lookup

operations. Figure 3.13 shows the performance of three different schemes in terms

82

of the number of cycles per micro-op (CPµ); HardBound, BCache and BCache with

Smart Tagging. We use CPµ instead of CPI as a performance metric since each x86

instruction is decoded to a number of micro-ops as explained before. Figure 3.13

shows CPµ of all memory operations executed, including results of a system that

does not perform bounds checking (Unchecked in the graph). Using BCache with

Smart Tagging improves performance by 11% on average compared to HardBound,

which corresponds to 24% of the gap between HardBound and no bounds checking

systems, the maximum amount of improvement possible. Note that we handle only

applications, not libraries and OS kernel. Therefore, the amount of improvement will

increase significantly if we perform the bounds checking for all those codes. The per-

formance improvement of skipping bounds checking looks marginal. Since PARSEC

benchmark suite is not pointer-intensive, the cache traffic of bounds information is

sparse compared to that of all memory operations. A noticeable performance im-

provement in the pointer-intensive ParallelPointerBench supports our analysis.

Figure 3.14 describes how much energy consumption can be reduced through the

BCache architecture, in both benchmarks and synthetic workloads. It shows the

amount of energy consumed by caches and interconnects in HardBound and BCache

accessing bounds information, and the results are normalized to those of HardBound.

BCache reduces the energy consumption by 47% for caches and 61% for intercon-

nects on average. This proves that the efficient management of bounds information

in BCache significantly contributes to improving energy efficiency. Especially, the

83

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"
,
-.
."
/0
12
3
45
"6
45
47
2
.8
" 90:;<=>3;"

<?04@2"

Fig. 3.12.: Average miss latencies for read-only data

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

("

(#$"

$"

)
*
+
,
-
."
/
0"
1
2
34
-
5"
6
-
."
*
78
6
"

9:.;</*=;"

<1:3>-"

<3:3>-7?+:.@A:B"

C=3>-3D-;"

Fig. 3.13.: Performance improvement of memory accesses

84

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./0123.4567895"

-./0126-./01"

:9;14/7991/;23.4567895"

:9;14/7991/;26-./01"

Fig. 3.14.: Energy consumption in caches and interconnects

Table 3.5: Storage overheads

Level HardBound BCache

L1 2KB/8KB per node (tag cache) 1KB per node (L1 bounds cache)
L2 use normal L2 cache 512KB x 4, a part of total L2 cache

(L2 bounds cache)

reduced number of hops in the BCache interconnect helps to save the dynamic energy

in links and NoC routers.

Finally, we compare the extra overheads of HardBound and BCache for storing

bounds information in Table 3.5. The overheads of BCache are only 25% to 50% of

the HarBound overheads. Therefore, BCache does not increase the overheads much,

compared to HardBound.

85

3.6 Conclusions

In this study, we have proposed an architectural support for fast and efficient

bounds checking for multi-threaded workloads in CMP systems. We reduce the

space overheads through bounds information sharing and adopt Smart Tagging that

enables the skipping of bounds checking for pointers already guaranteed to be safe.

The BCache architecture allows fast delivery of bounds information as well as regular

read-only data to a requestor node by duplicating the same data block that might be

shared by threads in multiple locations. Simulation results show that the proposed

schemes reduce the memory space allocated for bounds information by 15% as well as

the number of bounds checking by 98% on average. Overall performance is improved

by 11% on average in terms of CPµ of memory operations compared to HardBound.

Also, energy efficiency also increases by 47% and 61% on average in caches and

interconnects, respectively.

Our work can be explored further by investigating the address mapping mech-

anism of bounds information in more detail. Also we plan to examine the BCache

design for other topologies such as fat tree or flattened butterfly.

86

4. PERFORMANCE AND POWER-EFFICIENT INPUT BUFFER DESIGN

FOR ON-CHIP INTERCONNECTS

4.1 Introduction

With the continued advance of CMOS technology, the number of cores on a single

chip keeps increasing at a rapid pace. And it is highly expected that many-core ar-

chitectures with more than hundreds of processor cores will be commercialized in the

near future. In a large-scale chip multiprocessor (CMP) system, network overheads

are more dominant than computation power in determining overall system perfor-

mance. While shared buses provide networking performance enough for a small

number of CMP nodes, they cannot be good solutions for many-core systems due

to the limitation on scalability. Accordingly, switch-based networks-on-chip (NoCs)

are being adopted as an emerging design trend in many-core CMP environments.

Since all components in a chip including processors, caches and interconnects must

compete for limited area and power budgets, resources available for NoCs are tightly

constrained compared to off-chip interconnects. Moreover, network performance be-

comes more significant with the increasing scale of CMP systems. Therefore, a new

and innovative NoC design that can guarantee better performance with limited re-

sources is necessary for many-core systems.

The advance of memory technology has ushered in new non-volatile memory

(NVM) designs that overcome the drawbacks of existing memories such as SRAM or

87

DRAM. Among them, Spin-Torque Transfer Magnetic RAM (STT-MRAM) is being

regarded as a promising technology for a number of advantages over the conventional

RAMs. STT-MRAM is a next-generation memory that uses magnetic materials as

the main information carrier. It achieves lower leakage power and higher density

compared to the existing SRAM. Also, STT-MRAM shows higher endurance com-

pared to other NVM techniques such as Phase Change Memory (PCM) or Flash,

which makes STT-MRAM more attractive for on-chip memories that must tolerate

much more frequent write accesses compared to off-chip memories. However, one of

the biggest weaknesses of STT-MRAM is long write latency compared to SRAM.

Since the fast access time of memories on a chip must be guaranteed and cannot

be negotiable, the slow write operations of STT-MRAM limit its popularity, even

though it shows competitive read performance. Another serious drawback of STT-

MRAM is high power consumption in write operations. This issue of high power

consumption in STT-MRAM must be resolved in NoCs due to the limited power

budgets.

Despite these weaknesses, using STT-MRAM in the NoC design has significant

merits since an on-chip router can incorporate larger input buffers compared to

SRAM with the same area budget because of the higher density of STT-MRAM.

Larger input buffers contribute to improving the throughput of NoC, which results

in the enhancement of overall system performance. However, the aforementioned

challenges must be addressed first to exploit the benefit of STT-MRAM in NoC.

88

Since the input buffer of an on-chip router must handle arriving flits on time, it is

impossible in reality to use STT-MRAM without additional technique to hide the

long write latency. Moreover, addressing the high write power issue of STT-MRAM

is mandated in NoC environments.

In this study, we explore the design issues of adopting STT-MRAM in on-chip

interconnects. First, by relaxing the non-volatility of STT-MRAM, the latency as

well as the power consumption in write operations can be reduced at the sacrifice

of the retention time [57], [58]. Based on the observation of intra-router latency

of flits, we find out that the retention time needed for input buffers in NoC can

be significantly shortened. We exploit the write latency reducing technique [57] in

the input buffers of on-chip routers, and decrease the latency to less than 2ns that

corresponds to 6 cycles in 3GHz clock frequency. Then we propose a hybrid design of

input buffers combining both SRAM and STT-MRAM. By allowing each arriving flit

to be stored in the SRAM buffer first and then migrated to STT-MRAM, the write

latency of STT-MRAM is effectively hidden, thus increasing network throughput.

Simply migrating each flit from SRAM to STT-MRAM buffer causes significant

power consumption due to the high write power of STT-MRAM, compared to existing

SRAM-based input buffers. So we design a lazy migration scheme that allows the flit

migration only when the network load exceeds a certain threshold, which helps to

reduce the power consumption significantly. Simulation results show that the hybrid

input buffers improve the network throughput by 21% in synthetic workloads and

89

14% in SPLASH-2 parallel benchmarks on average compared to pure SRAM-based

buffers with the same area overheads. Also, the lazy migration scheme contributes to

power reduction by 61% on average compared to the simple migration scheme that

always migrates flits from SRAM to STT-MRAM.

The remainder of this study is organized as follows. We discuss related work

in Section 4.2, followed by the performance and power model of STT-MRAM in

Section 4.3. In Section 4.4, we explain the hybrid buffer design using STT-MRAM

in detail. Section 4.5 presents simulation results and analysis, and finally Section 5

summarizes our work and makes conclusions.

4.2 Related Work

Since there has been no prior work using STT-MRAM in NoC design, we only

summarize the relevant studies of STT-MRAM technologies as well as the application

of NVM to diverse system domains such as processors and memories.

4.2.1 STT-MRAM

STT-MRAM is a next generation memory technology that takes advantage of

magnetoresistance for storing data. It uses a Magnetic Tunnel Junction (MTJ), the

fundamental building block, as a binary storage. An MTJ comprises a three-layered

stack: two ferromagnetic layers and an MgO tunnel barrier in the middle. Among

them, the fixed layer located at the bottom has a static magnetic spin, the spin of

90

!"##$%&'#"$!"##$%&'#"$

!()#*$%&'#"$!()#*$%&'#"$

+,--#.$/&""(#"$ +,--#.$/&""(#"$

%0123#4(45&-6#$ 7(8923#4(45&-6#$

Fig. 4.1.: The two states of an MTJ module

the electrons in the free layer at the top is influenced by applying adequate current

through the fixed layer to polarize the current, and the current is passed to the free

layer. Depending on the current, the spin polarity of the free layer changes either

parallel or anti-parallel to that of the fixed layer. The parallel indicates a zero state,

and the anti-parallel a one state. Figure 4.1 depicts the two parallel and anti-parallel

states of an MTJ module. A single MTJ module is coupled with a transistor to form

a basic memory cell of STT-MRAM called a 1T-1MTJ cell.

4.2.2 Utilizing NVMs in Processors and Memories

Several schemes have been proposed to provide architectural support for apply-

ing NVMs to system components. Jog et al. [57] proposed to achieve better write

performance and energy consumption of STT-MRAM-based L2 cache through ad-

justing data retention time of STT-MRAM. Similarly, Smullen et al. [58] reduced the

write latencies as well as dynamic energy of STT-MRAM by lowering the retention

time for designing on-chip caches. In [59], they integrated STT-MRAM into on-chip

91

caches in a 3D CMP environment and proposed a mechanism of delaying cache ac-

cesses to busy STT-MRAM banks to hide long write latency. Prior to that, Sun

et al. [60] stacked MRAM-based L2 caches on top of CMPs and reduced overheads

through read-preemptive write buffer and hybrid cache design using both SRAM

and MRAM. Guo et al. [61] resolved the design issues of microprocessors using STT-

MRAM in detail for more power-efficient CMP systems.

PCM also has been constantly explored to replace existing SRAM or DRAM-

based memory systems. Due to its lower endurance compared to SRAM or STT-

MRAM, PCM is mainly adopted for off-chip memories rather than on-chip caches.

Several designs of PCM-based main memory were discussed in [62], [63], [64]. In [65],

adaptive write cancellation and write pausing policies were proposed to reduce energy

and improve performance. Zhou et al. [66] suggested a new memory scheduling

scheme that allows Quality-of-Service (QoS) tuning through request preemption and

row buffer utilization.

4.3 Performance and Power Model of STT-MRAM

As an area model of STT-MRAM, we use ITRS 2009 projections [67] as well as

the model used in [61], where a 1T-1MTJ cell size is 30F2 in the 32nm technology.

When we assume that an SRAM cell size is approximately 146F2 with the same

technology, one SRAM cell can be substituted by at least four STT-MRAM cells

under the same area budget. Also, about 3.2ns of write latency can be achieved

92

with 30F2 STT-MRAM cell size [61]. It corresponds to 10 cycles in 3GHz clock

frequency, which is quite long for on-chip routers compared to SRAM that completes

both read and write accesses in a single cycle. Reducing retention time from 10 years

to 10ms guarantees the same write latency with one third of original write current

needed [57]. Using lower current is beneficial in terms of area overheads because it

facilitates to implement STT-MRAM cells with smaller transistors, which reduces

actual cell area.

In this study, we slightly increase write current to reduce this write latency of

STT-MRAM further. The write latency reduces from 3.2ns to 1.8ns through increas-

ing the write current from 50µA to 75µA under 125 ◦C of a temperature. Note that

even this increased current is far less than the original current needed for 10 years

of retention time, while maintaining the same STT-MRAM cell size, 30F2. Also, the

increased current does not hurt write energy consumption since the MTJ switching

time decreases accordingly [61]. As a result, the write latency decreases from 10 to

6 cycles in 3GHz clock frequency. The increased write current may hurt the per-

formance in terms of read latency. However, we verify that the reduction of write

latency from 3 to 1.8ns affects the read latency to only a small extent [58]. Therefore,

we can assume that the increased read latency can still be covered by a single cycle,

considering the original read delay of 122ps [61], which is far shorter than 333ps, a

cycle time in 3GHz clock frequency.

93

The relaxed retention time of 10ms may hurt the reliability of data stored in an

STT-MRAM buffer, if the retention time is shorter than the intra-router delay of a

flit, defined by the time difference between arrival time at the buffer and departure

time in a router. Figure 4.2 depicts maximum intra-router latency for different

injection rates ranging from 0.1 to 0.7 with various SRAM buffer sizes per VC, under

uniform random synthetic workloads. We observe that the latency does not go up

beyond 16 cycles, and it is almost negligible compared to 10ms, which corresponds

to more than 30 million cycles in 3GHz clock frequency 1. Hence, it is confirmed

that even the reduced retention time is completely enough to hold a flit in STT-

MRAM buffers safely. For the read and write energy model of STT-MRAM, we

conservatively adopt the same parameters from [61], 0.01pJ and 0.31pJ per bit for

read and write, respectively. Note that these are based on 3.2ns of write latency, so

actual write energy becomes smaller after decreasing the latency to 1.8ns.

4.4 An On-Chip Router Architecture with Hybrid Buffer Design

In this section, we describe a generic router architecture and a buffer structure

in NoC and present our hybrid buffer design that maximizes the mutually comple-

mentary features of the two different memory technologies, SRAM and STT-MRAM,

while minimizing the drawbacks of STT-MRAM, the long latency and high power

consumption in write operations.

1Note that in deadlock situations, packets can stay in the network forever. In this study, we adopt
deadlock-free routing algorithms, thus avoiding such situations.

94

!"

#"

$!"

$#"

%!"

!&$" !&%" !&'" !&'%"!&'("!&')"!&'*" !&(" !&#" !&)" !&+"

,-
./
0
12
"3
12
14
/
56
"

708/19:0";-./"3<=.5>0:?/>1214/6"

@;AB%" @;AB'" @;AB(" @;AB#" @;AB)"

Fig. 4.2.: Maximum intra-router latency of an on-chip router (SRAM#: SRAM
buffer size per VC)

Routing Computation
(RC)

VC Allocator (VA)

Switch Arbiter (SA)

VC Identifier
Input Port (East)

Crossbar Switch

Processing Element

Input Port (North)

Input Port (South)

Input Port (West)

Injection Port

Output Link

Fig. 4.3.: Generic router architecture

4.4.1 Generic Baseline Router Architecture

The generic NoC router architecture is depicted in Figure 4.3. It is based on the

state-of-the-art speculative router architecture [68]. Each arriving flit goes through

95

VC Identifier

Input Port

VC

CrossbarInput
Channel

Flit K

✆

Flit 1

Hybrid Parallel
FIFO Buffer

Flit 1-1
✆

Write
Pointer

Read
Pointer

SRAM

STT-MRAM

Migration Link

Flit 2
Flit 1

Generic SRAM
Parallel FIFO Buffer

Flit K-1

Read
Pointer

Flit K

✆

Write
Pointer

(a)

(b)

SRAM

Control Logic
(SRAM Write/

SRAM&STT-MRAM
Read Pointers)

Control Logic
(Write/Read

Pointers)

Migration
Controller

✆

✆

✆

✆

Flit K-1

Flit K-m

✆

Flit 1-m

✆

Fig. 4.4.: A generic SRAM input buffer (a) and a hybrid input buffer (b)

2 pipeline stages in the router: routing computation (RC), VC allocation (VA) and

switch arbitration (SA) at the first cycle, and switch traversal (ST) at the second cy-

cle. A lookahead routing scheme [69] is adopted, which generates routing information

of the downstream router for an incoming flit prior to the buffer write, thus removing

the RC stage from the critical path. Each router has multiple VCs per input port

and uses flit-based wormhole switching [70]. Credit-based VC flow control [71] is

adopted to provide the back-pressure from downstream to upstream routers, thus

controlling flit transmission rate to prevent packet loss due to buffer overflow.

Due to the limited area and power resources and ultra-low latency requirements,

on-chip routers rely on very simple buffer structure. VC-based NoC routers consist

of a number of FIFO buffers per input port where each FIFO corresponds to a VC as

illustrated in Figure 4.4a. Each input port has v VCs, each of which has a k -flit FIFO

buffer. Current on-chip routers have small buffers to minimize area overheads, thus v

96

and k are much smaller than in macro networks. The necessity for ultra-low latency

leads to a parallel FIFO buffer design as shown in Figure 4.4. Contrary to a serial

FIFO implementation, the parallel structure eliminates unnecessary intermediate

processes for a flit to traverse all buffer entries until it leaves the buffer [72]. This fine-

grained control requires more complex logic, which manages read and write pointers

to keep the FIFO order. The read and write pointers in the parallel FIFO registers

control an input demultiplexer and an output multiplexer. The write pointer points

to the tail of the queue, and the read pointer points to the head of the queue. For a

read operation, the flit pointed by the head is selected and transmitted to a crossbar

input port. Similarly, write operation leads the incoming flit to be written to the

location pointed by the tail pointer. The pointers are promptly updated after each

read or write operation. After a read operation, once the head is overlapped with the

tail, the buffer becomes empty. After a write operation, likewise, if the tail moves to

the same position pointed by the head, the buffer is full.

4.4.2 An On-Chip Router Architecture with Hybrid Buffer Design

In this section, we show an on-chip router architecture with hybrid buffer de-

sign that combines SRAM and STT-MRAM. The hybrid design aims to maximize

advantages inherent in different memory technologies in a synergistic fashion for per-

formance improvement while consuming power economically. The key idea is inspired

by the nature of STT-MRAM that provides 4 times more buffer space than SRAM

97

under the same area constraint due to its higher density characteristics [61], [73].

The increased buffer size contributes to making on-chip routers have spacious rooms

for buffering, thus boosting the overall network throughput with no additional area

overheads compared to a pure SRAM-based input buffer.

Figure 4.4b depicts the proposed hybrid input buffer of a VC. Compared to the

pure SRAM buffer shown in Figure 4.4a, the STT-MRAM is attached to each VC

in parallel with the SRAM buffer. Each SRAM buffer entry is connected to m

dedicated STT-MRAM buffer entries through separate migration links. The hybrid

parallel FIFO buffer maintains read/write pointers. An incoming flit is first written

to the SRAM buffer, thus the write pointer points to SRAM buffer entries only. But

an outgoing flit may leave from either SRAM or STT-MRAM and the read pointer

covers the entire buffer, both SRAM and STT-MRAM buffer entries.

A migration controller triggers the flit migration and determines if a certain flit

is ready to be migrated to STT-MRAM. VC flow control is performed based on the

availability of SRAM in downstream routers, meaning that the availability of STT-

MRAM is not considered, because a write operation to STT-MRAM cannot finish

in a single cycle.

Simple Flit Migration Scheme. The key design goal of the hybrid input buffer

is to guarantee seamless read and write operations in every cycle to achieve higher

throughput with an increased buffer size. To serve this purpose, we devise a flit

migration scheme, which seamlessly migrates buffered flits from SRAM to STT-

98

SRAM STT-MRAM

VC Identifier

Input Port

VC

Input
Channel

1

12

124 36 5

23 15 4A 6

34 2 16 5B A

Crossbar

Incoming Flit
Write direction

Buffered Flit
Migration Direction

Time
Flow

Hybrid Input Buffer

✆

✆

✆

✆

Fig. 4.5.: Simple flit migration scheme in hybrid buffer design

MRAM to secure more SRAM buffer space for incoming flits, while hiding the long

write latency of STT-MRAM.

Figure 4.5 depicts an example of the migration scheme, where each VC consists of

6 SRAM and 12 STT-MRAM buffer entries. The STT-MRAM buffer write latency

is assumed to be 6 cycles. When an incoming flit arrives, it is written to the SRAM

buffer first, and the migration from SRAM to STT-MRAM begins immediately. Sup-

posing that a new flit arrives every cycle, the SRAM buffer becomes full eventually

in the 6th cycle. At the same time, the first flit is migrated to STT-MRAM success-

fully and one SRAM buffer entry becomes available. Then a subsequent incoming flit

occupies the released SRAM buffer entry with no additional timing delay. Note that

Figure 4.5 illustrates the concept in a logical way, and no physical shift occurs except

the migration from SRAM to STT-MRAM. The placement of flits in STT-MRAM

is logical and is not the physical placement described in Figure 4.4b.

99

Power-Efficient Lazy Migration. In the simple migration scheme explained in

the previous section, the migration begins immediately as soon as an incoming flit

arrives at the SRAM buffer. The simple migration wastes lots of power in a low

network load because most of the flits initially written to SRAM leave the buffer in

the middle of migration to STT-MRAM.

Based on this observation, we propose a lazy migration scheme, which selec-

tively triggers the migration of a flit based on the estimated network load per VC in

the on-chip router. The network load is indirectly estimated by tracking the number

of flits in the SRAM buffer. If the ratio of the number of flits in the SRAM buffer

to the total SRAM buffer size exceeds a certain predefined threshold level, the flit

migration is performed for every subsequent incoming flit as long as the the ratio

exceeds the threshold. In this way, we can save total write power associated with

the migration operation. To implement the lazy migration scheme, the migration

controller is augmented to keep track of the flits in the SRAM buffer and triggers the

migration adaptively. The write power is reduced by up to 79% in a low network load

compared to the simple migration, which will be discussed in detail in Secton 4.5.

4.5 Performance Evaluation

In this section, we evaluate the proposed hybrid on-chip router to examine how

much it improves the overall network performance while reducing the power con-

sumption in NoC, using several benchmarks and synthetic workloads.

100

!"

#"

!" !"!" !" !" !" !"

#" #"#" #" #" #" #"

!"

#"

!" !"!" !" !" !" !"

#" #"#" #" #" #" #"

!"

#"

!" !"!" !" !" !" !"

#" #"#" #" #" #" #"

!"

#"

!" !"!" !" !" !" !"

#" #"#" #" #" #" #"

Fig. 4.6.: CMP layout

Table 4.1: CMP system configuration

System Parameters Details

Clock frequency 3GHz
of processors 32

L1 I and D caches direct-mapped 32KB (L1I)
4-way 32KB (L1D), 1 cycle

L2 cache 16-way 16MB, 20 cycles
32 banks, 512 KB/bank

Cache block size 64B
Coherence protocol Directory-based MSI
Memory latency 300 cycles

Flit size 16B
1 flit (Benchmark-control)

Packet size 5 flits (Benchmark-data)
4 flits (Synthetic)

Table 4.2: SRAM and STT-MRAM parameters

Parameter SRAM STT-MRAM

Read Energy (pJ/flit) 5.25 3.826
Write Energy (pJ/flit) 5.25 40.0
Leakage Power (mW) 0.028 0.005

101

4.5.1 System Configuration

A cycle-accurate NoC simulator is used to conduct the detailed evaluation of

the proposed scheme. It implements the pipelined router architecture with VCs, a

VC arbiter, a switch arbiter and a crossbar. Under the 32nm process technology,

all simulations are performed in an 8x8 network having 32 out-of-order processors

and 32 L2 cache banks on a single chip as shown in Figure 4.6. The network is

equipped with 2-stage speculative routers with lookahead routing [69]. The router

has a set of v VCs per input port. Each VC contains a k -flit buffer with 16B flit

size. In our evaluation, we assume that v is 4, and k may vary with different buffer

configurations. A dimension order routing algorithm, XY, and O1TURN [74] are

used with wormhole switching flow control.

A variety of synthetic workloads are used to measure the effectiveness of the

hybrid on-chip router: uniform random (UR), bit complement (BC) and nearest

neighbor (NN). To evaluate the proposed schemes under realistic environments, we

also use SPLASH-2 [28] parallel benchmark traces. The traces are obtained using

Simics [25], a full system simulation platform. Table 4.1 specifies the detailed CMP

configuration we use to run benchmarks.

We use Orion 2.0 [56] to estimate router power consumption. In addition, param-

eters shown in Table 4.2 are cited from [67], [61], for both SRAM and STT-MRAM.

The unit of parameter for the leakage power is mW per 1-flit buffer. Throughout

this study, the size of SRAM and STT-MRAM buffers are denoted by SRAM# and

102

STT#, respectively. As stated in Section 4.4.2, STT-MRAM provides 4 times more

buffer space compared to SRAM under the same area budget, thus SRAM1 is equal

to STT4. Unless otherwise stated, the write latency of STT-MRAM is 6 cycles based

on the analysis in Section 4.3.

4.5.2 Performance Analysis with Synthetic Workloads and Benchmarks

Figure 4.7 shows performance improvement for various hybrid input buffer config-

urations compared to the pure SRAM buffer, under UR, BC and NN traffic patterns.

All results are measured under the same area budget, SRAM6 per VC, for input

buffers. In all cases, the hybrid design shows throughput improvement by 18% for

UR, 28% for BC, and 17% for NN on average. These results indicate that although

the STT-MRAM write latency is longer than that of SRAM, the performance loss

is offset by the increased buffer size due to the high density of STT-MRAM, thus

resulting in performance improvement.

We also evaluate the hybrid design using O1TURN [74] routing algorithm as

well as various topologies: 2D-torus and flattened butterfly [75]. Figure 4.8 shows

the performance with O1TURN in the 8x8 2D-mesh topology, where the overall

throughput increases by 15% on average, while Figure 4.9 shows that the throughput

is increased in 2D-torus and flattened butterfly by 13% and 15%, respectively.

To examine the impact of different write latencies of STT-MRAM on network

performance, we conduct experiments under 2D-mesh and XY routing algorithm.

103

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($"

*+
,-
.
/0
"1
/0
/2
-
34
"

5.6-/78."9+,-"1:;,3<.8=-</0/2-4

>9?@%" >9?@#A>BB'%" >9?@)A>BB'#" >9?@$A>BB&" >9?@CA>BB$"

(a) UR

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()"

*+
,-
.
/0
"1
/0
/2
-
34

5.6-/78."9+,-"1:;,3<.8=-</0/2-4

>9?@%" >9?@#A>BB'%" >9?@)A>BB'#" >9?@$A>BB&" >9?@CA>BB$"

(b) BC

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($" !(*" !(%" !(+" !(&" !(,"

-.
/0
1
23
"4
23
25
0
67

81902:;1"<./0"4=>/6?1;@0?232507

A<BC%" A<BC#DAEE'%" A<BC)DAEE'#" A<BC$DAEE&" A<BC*DAEE$"

(c) NN

Fig. 4.7.: Performance comparison with synthetic workloads

104

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($"

*+
,-
.
/0
"1
/0
/2
-
34

5.6-/78."9+,-"1:;,3<.8=-</0/2-4

Fig. 4.8.: Performance comparison with O1TURN routing algorithm

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($" !(*" !(%"

+,
-.
/
01
"2
01
03
.
45

6/7.089/":,-."2;<-4=/9>.=0103.5

(a) 2D-Torus

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()"

*+
,-
.
/0
"1
/0
/2
-
34

5.6-/78."9+,-"1:;,3<.8=-</0/2-4

(b) Flattened Butterfly

Fig. 4.9.: Performance comparison with different topologies

105

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($"

*+
,-
.
/0
"1
/0
/2
-
34

5.6-/78."9+,-"1:;,3<.8=-</0/2-4
(a) 30 cycles

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($"

*+
,-
.
/0
"1
/0
/2
-
34

5.6-/78."9+,-"1:;,3<.8=-</0/2-4
(b) 10 cycles

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

!" !('" !(#" !()" !($"

*+
,-
.
/0
"1
/0
/2
-
34

5.6-/78."9+,-"1:;,3<.8=-</0/2-4
(c) 6 cycles

Fig. 4.10.: Performance comparsion with various STT-MRAM write latencies

106

Figure 4.10 shows the performance in terms of packet latency with 3 different write

latencies of STT-MRAM: 30, 10, and 6 cycles. It clearly indicates that the overall

network performance is affected by the duration of STT-MRAM write operation.

Among the different hybrid configurations, SRAM2 STT16 shows the worst perfor-

mance. This is because the SRAM buffer space is too small to retain the incoming

flits for sufficient period of time for migration, 6 cycles, which makes the simple flit

migration scheme less efficient. Thus, the long write latency of STT-MRAM is not

effectively hidden, resulting in the early saturation of the network. As shown in

Figure 4.2, every flit stays in the buffer for at least 3 cycles. So the SRAM buffer

size should be greater than or equal to 3 to run the migration scheme seamlessly.

If the write latency is long, 30 cycles, the performance is mostly determined by

the SRAM size. This is because the long write latency lowers the possibility for

flits to be migrated to the STT-MRAM buffer before network saturation. Therefore,

SRAM5 STT4 shows the best throughput improvement. On the contrary, if the write

latency is sufficiently short, 6 cycles, the performance is greatly impacted by the total

buffer size including both SRAM and STT-MRAM except the SRAM2 STT16 case.

Thus, SRAM3 STT12 shows the highest throughput compared to other configura-

tions.

To make a clear quantitative comparison of relative performance of the 3 dif-

ferent write latencies, we show network throughput normalized to the SRAM6 in

Figure 4.11, based on the results in Figure 4.10. Figure 4.11 confirms the afore-

107

!"#!$

!"%!$

&"!!$

&"&!$

&"'!$

&"(!$

$(!$)*)+,-$ $&!$)*)+,-$./$)*)+,-$

0
1
23

4
+5
6,
7
$$
8
9
21
:
;
9
<
:
=$

>25=,$?4=,@)*$1A$B88CDEFD$

BEFD/$ BEFD'GB88&/$ BEFD(GB88&'$ BEFDHGB88#$ BEFDIGB88H$

Fig. 4.11.: Throughput with different STT-MRAM write latencies

!"

#!"

$!"

%!"

&!"

'(
)*
+
,-
".
,-
,/
*
01
"

2345&" 2345%6277&"

Fig. 4.12.: SPLASH-2 benchmark results

mentioned analysis. In case of a relatively long write latency, 30 cycles, the hybrid

input buffer having the largest SRAM buffer outperforms the others by up to 11%

compared to the pure SRAM6 buffer. Likewise, in case of a low write latency, 6

cycles, except the SRAM2 STT16 case, the one having the largest total buffer size,

108

SRAM3 STT12 beats the other configurations by up to 18% in terms of network

throughput.

Figure 4.12 shows the average network latency with SPLASH-2 benchmark traces.

We assume SRAM4 per VC as an area budget, the same as a cache block size. In

general, the hybrid input buffer outperforms the pure SRAM-based one, by approxi-

mately 14% on average. Specifically, water-nsquared shows the best improvement by

34.5% while ocean shows the least improvement by 3.2%. The amount of improve-

ment varies depending on the traffic patterns. We observe that in the benchmarks

showing higher improvement, hot spots exist in their communication, whereas in the

benchmarks with slight performance improvement, communication is evenly spread

across the whole network.

Finally, we make a sensitivity analysis of the number of buffer entries in NoC

routers. Under two different area budgets, SRAM4 and SRAM6, we compare the

throughput of the pure SRAM-based buffer and the hybrid buffer that shows the

best performance. As the budget decreases from SRAM6 to SRAM4, the amount of

improvement coming from the hybrid buffer increases by approximately 5.5%. This

trend indicates that the hybrid buffer is more beneficial as the area budget in CMP

environments becomes tighter.

109

!"

!#$"

%"

%#$"

&"

&#$"

'"

!#%" !#%$" !#&" !#&$" !#'" !#'$" !#("

)
*
+,

-
./
01
2
"3
*
4
1
+"

5
*
6
78
,
9
:
*
6
"

;6<1=:*6">-?1"@A/?7B6*21B=C=.1D"

E>FG" E;G3HI" HFJK"@!#&$D" HFJK"@!#$D" HFJK"@!#L$D"

(a) Dynamic power consumption of input buffers

!"

!#$"

%"

%#$"

!#%" !#%$" !#&" !#&$" !#'" !#'$" !#("

)
*
+,

-
./
01
2
"3
*
4
1
+"

5
*
6
78
,
9
:
*
6

;6<1=:*6">-?1"@A/?7B6*21B=C=.1D"

E>FG" E;G3HI" HFJK"@!#&$D" HFJK"@!#$D" HFJK"@!#L$D"

(b) Total power consumption of routers

Fig. 4.13.: Comparison of power efficiency

4.5.3 Power Analysis

Since power is one of the main issues in the NoC router design, we evaluate power

consumption of the hybrid input buffer and compare the effect of the two migration

schemes explained in Section 4.4. Figure 4.13a compares the dynamic buffer power

consumption of 4 different migration schemes in SRAM3 STT12 : simple and lazy

110

!"
#!"
$!"
%!"
&!"

'!!"
'#!"
'$!"
'%!"

!" !(!)" !('" !(')" !(#" !(#)" !(*" !(*)" !($"

+,
-.
/
01
"2
01
03
.
45
"

6/7.089/":,-."2;<-=/9>.=0103.5"

?:@A%" ?<BC3." +,D12!(#)5" +,D12!()5" +,D12!(E)5"

Fig. 4.14.: Performance comparison with different threshold in lazy migration

with 3 different thresholds (0.25/0.5/0.75). All results are normalized to that of the

pure SRAM-based buffer, SRAM6. The lazy migration scheme with the threshold

0.75 consumes significantly less amount of power, by 53% on average, compared to

the simple migration scheme. In a low network load (0.1), the power consumption of

the lazy migration scheme with the threshold 0.75 is almost equivalent to that of the

baseline SRAM. In a high network load (0.4), however, the flit migration occurs more

frequently in the hybrid buffer due to the highly congested network. Accordingly,

the migration lowers the possibility of reducing the dynamic power, thus increasing

the power consumption of the lazy migration by up to 1.7x more than the baseline

SRAM.

Figure 4.13b compares the total router power consumption of the 4 migration

schemes that includes both leakage and dynamic power consumption of all routers

across the network. In a low network load (0.1), the total power consumption of

111

routers with the hybrid buffer is less than that of routers with the pure SRAM

buffer by 16%. This is due to much less leakage power consumption of STT-MRAM

compared to SRAM as shown in Table 4.2. As the network gets more congested,

however, the hybrid buffer consumes more power compared to the baseline SRAM

buffer. In a high network load (0.4), for instance, the lazy migration scheme with the

threshold 0.75 consumes more power by up to 4% compared to the baseline SRAM

buffer.

In order to show the effect on the performance in detail, we compare the per-

formance of simple and lazy migration schemes with pure SRAM under the same

area budget, SRAM6, in Figure 4.14. Both the simple and lazy schemes outperform

the pure SRAM. Also, as we increase the threshold value from 0.25 to 0.75 in the

lazy migration scheme, the overall network throughput is slightly degraded but the

amount of degradation is around 0.5% on average, which is negligible.

4.6 Conclusions

In this study, we have proposed a hybrid input buffer design using STT-MRAM

with SRAM to achieve better network throughput with marginal power overheads

in on-chip interconnection networks. The high density of STT-MRAM facilitates

to accommodate larger buffer compared to the conventional SRAM under the same

area budgets. Through the flit migration schemes, the long write latency of STT-

MRAM is effectively hidden while minimizing the power overheads. Simulation re-

112

sults indicate performance improvement of around 21% and 14% on average under

the synthetic workloads and benchmarks, respectively, compared to the conventional

on-chip router with the SRAM input buffer.

For future work, we intend to devise an STT-MRAM-aware routing algorithm

and provide an architectural support to reduce the overall power consumption and

latency further.

113

5. CONCLUSIONS

Even though the HPC systems using CMP-based multiprocessors are beneficial to

meet the high performance requirements, there are a number of issues to be resolved,

such as networking performance of both off-chip and on-chip interconnects, power

efficiency and security. To address these issues, three schemes have been proposed

to design high-performance, power-efficient and secure HPC systems.

First, we have proposed VSC to reduce the overheads of off-chip interconnects by

decreasing the number of packets as well as the packet size. The packet compression

technique, VSC, works in harmony with an underlying cache coherence mechanism

and achieves significant performance improvement by cancelling packet transmission

for the most frequent data known to all nodes. Eliminating data packets tremen-

dously reduces cache miss latency, which enhances overall system performance. The

hybrid counter management achieves perfect counter prediction with low storage

overhead by using global and per-block counters together, which allows data packets

not to carry counters for encryption.

Second, we have proposed a fast and efficient bounds checking mechanism for

multi-threaded workloads in CMP systems. The bounds information sharing reduces

the space overheads for storing bounds information and the smart tagging enables

the skipping of bounds checking for pointers already guaranteed to be safe. The

BCache architecture allows fast delivery of bounds information as well as regular

114

data to a requestor node by duplicating the same data block that might be shared

by threads in multiple locations.

Third, we have proposed a hybrid input buffer design using STT-MRAM with

SRAM to achieve better network throughput with marginal power overheads in on-

chip interconnection networks. The high density of STT-MRAM facilitates to ac-

commodate larger buffer compared to the conventional SRAM under the same area

budgets. Through the flit migration schemes, the long write latency of STT-MRAM

is effectively hidden while minimizing the power overheads.

115

REFERENCES

[1] “Infiniband Architecture Specification, Volume 1, Release 1.1,” InfiniBand
Trade Association, 2002.

[2] R.Das, A.K.Mishra, C.Nicopoulos, D.Park, V.Narayanan, R.Iyer, M.S.Yousif,
and C.R.Das, “Performance and Power Optimization through Data Compres-
sion in Network-on-Chip Architectures,” Proceedings of HPCA, 2008.

[3] Y.Jin, K.H.Yum, and E.J.Kim, “Adaptive Data Compression for High-
Performance Low-Power On-Chip Networks,” Proceedings of MICRO, 2008.

[4] C.Yan, B.Rogers, D.Englender, Y.Solihin, and M.Prvulovic, “Improving Cost,
Performance, and Security of Memory Encryption and Authentication,” Pro-
ceedings of ISCA, 2006.

[5] M.Lee, M.Ahn, and E.J.Kim, “I2SEMS: Interconnects-Independent Security En-
hanced Shared Memory Multiprocessor Systems,” Proceedings of PACT, 2007.

[6] B.Rogers, M.Prvulovic, and Y.Solihin, “Efficient Data Protection for Dis-
tributed Shared Memory Multiprocessors,” Proceedings of PACT, 2006.

[7] B.Rogers, S.Chhabra, Y.Solihin, and M.Prvulovic, “Using Address Independent
Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and
Performance-Friendly,” Proceedings of MICRO, 2007.

[8] B.Rogers, C.Yan, S.Chhabra, M.Prvulovic, and Y.Solihin, “Single-Level In-
tegrity and Confidentiality Protection for Distributed Shared Memory Multi-
processors,” Proceedings of HPCA, 2008.

[9] J.Yang, Y.Zhang, and L.Gao, “Fast Secure Processor for Inhibiting Software
Piracy and Tampering,” Proceedings of MICRO, 2003.

[10] Y.Zhang, L.Gao, J.Yang, X.Zhang, and R.Gupta, “SENSS: Security Enhance-
ment to Symmetric Shared Memory Multiprocessors,” Proceedings of HPCA,
2005.

[11] A.R.Alameldeen and D.A.Wood, “Adaptive Cache Compression for High-
Performance Processors,” Proceedings of ISCA, 2004.

[12] D. Citron and L. Rudolph, “Creating A Wider Bus Using Caching Techniques,”
Proceedings of HPCA, 1995.

[13] M.Farrens and A.Park, “Dynamic Base Register Caching: A Technique for Re-
ducing Address Bus Width,” Proceedings of ISCA, 1991.

[14] J.-S.Lee, W.-K.Hong, and S.-D.Kim, “Design and Evaluation of A Selective
Compressed Memory System,” Proceedings of ICCD, 1999.

[15] M.H.Lipasti, C.B.Wilkerson, and J.P.Shen, “Value Locality and Load Value
Prediction,” Proceedings of ASPLOS, 2007.

116

[16] R.B.Tremaine, T.B.Smith, M.Wazlowski, D.Har, K.-K.Mak, and S.Arramreddy,
“Pinnacle: IBM MXT in A Memory Controller Chip,” IEEE Micro, vol. 21, pp.
56–68, 2001.

[17] Y.Zhang, J.Yang, and R.Gupta, “Frequent Value Locality and Value-Centric
Data Cache Design,” Proceedings of ASPLOS, 2000.

[18] D.Lie, C.Thekkath, M.Mitchell, P.Lincoln, D.Boneh, J.Mitchell, and
M.Horowitz, “Architectural Support for Copy and Tamper Resistant Software,”
Proceedings of ASPLOS, 2000.

[19] G.E.Suh, D.Clarke, B.Gassend, M. Dijk, and S.Devadas, “AEGIS: Architecture
for Tamper-Evident and Tamper-Resistant Processing,” Proceedings of ICS,
2003.

[20] W.Shi, H.S.Lee, M.Ghosh, C.Lu, and A.Boldyreva, “High Efficiency Counter
Mode Security Architecture via Prediction and Precomputation,” Proceedings
of ISCA, 2005.

[21] G.E.Suh, D.Clarke, B.Gassend, M. Dijk, and S.Devadas, “Efficient Memory
Integrity Verification and Encryption for Secure Processors,” Proceedings of
MICRO, 2003.

[22] G.E.Suh, C.W.O’Donnell, I.Sachdev, and S.Devadas, “Design and Implemen-
tation of The AEGIS Single-Chip Secure Processor Using Physical Random
Functions,” Proceedings of ISCA, 2005.

[23] B.Gassend, G.E.Suh, D.Clarke, M. Dijk, and S.Devadas, “Caches and Hash
Trees for Efficient Memory Integrity Verification,” Proceedings of HPCA, 2003.

[24] W.Shi, H.-H.S.Lee, M.Ghosh, and C.Lu, “Architectural Support for High Speed
Protection of Memory Integrity and Confidentiality in Multiprocessor Systems,”
Proceedings of PACT, 2004.

[25] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-
berg, F. Larsson, A. Moestedt, B. Werner, and B. Werner, “Simics: A Full
System Simulation Platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[26] M.M.Martin, D.J.Sorin, B.M.Beckmann, M.R.Marty, M.Xu, A.R.Alameldeen,
K.E.Moore, M.D.Hill, and D.A.Wood, “Multifacet’s General Execution-
driven Multiprocessor Simulator (GEMS) Toolset,” Computer Architecture
News(CAN), 2005.

[27] T.Kgil, L.Falk, and T.Mudge, “Chiplock: Support for Secure Microarchitec-
tures,” Proceedings of the Workshop on Architectural Support for Security and
Anti-Virus (WASSA), Oct 2004.

[28] S.C.Woo, M.Ohara, E.Torrie, J.P.Singh, and A.Gupta, “The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations,” Proceedings of
ISCA, 1995.

[29] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite:
Characterization and Architectural Implications,” Proceedings of PACT, 2008.

117

[30] R. Hastings and B. Joyce, “Purify: Fast Detection of Memory Leaks and Access
Errors,” Proceedings of the Winter 1992 USENIX Conference, 1991.

[31] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight Dy-
namic Binary Instrumentation,” Proceedings of PLDI, 2007.

[32] Z. Shao, J. Cao, K. C. C. Chan, C. Xue, and E. H.-M. Sha, “Hardware/Software
Optimization for Array & Pointer Boundary Checking Against Buffer Overflow
Attacks,” Journal of Parallel and Distributed Computing - Special issue: Secu-
rity in grid and distributed systems, vol. 66, pp. 1129–1136, September 2006.

[33] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “MemTracker:
Efficient and Programmable Support for Memory Access Monitoring and De-
bugging,” Proceedings of HPCA, 2007.

[34] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hardbound:
Architectural Support for Spatial Safety of the C Programming Language,”
Proceedings of ASPLOS, 2008.

[35] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf, R. Kastner,
F. T. Chong, and T. Sherwood, “Crafting a Usable Microkernel, Processor, and
I/O System with Strict and Provable Information Flow Security,” Proceeding of
ISCA, 2011.

[36] S. Chhabra and Y. Solihin, “i-NVMM: A Secure Non-Volatile Main Memory
System with Incremental Encryption,” Proceeding of ISCA, 2011.

[37] T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient Detection of All Pointer
and Array Access Errors,” Proceedings of PLDI, 1994.

[38] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly
Compatible and Complete Spatial Memory Safety for C,” Proceedings of PLDI,
2009.

[39] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-Safe Retrofitting of
Legacy Code,” Proceedings of POPL, 2002.

[40] N. Nethercote, “Bounds-Checking Entire Programs Without Recompiling,” Pro-
ceedings of SPACE, 2004.

[41] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and M. Prvulovic, “Com-
prehensively and Efficiently Protecting the Heap,” Proceedings of ASPLOS,
2006.

[42] E. D. Berger and B. G. Zorn, “Diehard: Probabilistic Memory Safety for Unsafe
Languages,” Proceedings of PLDI, 2006.

[43] W. Chuang, S. Narayanasamy, B. Calder, and R. Jhala, “Bounds Checking with
Taint-Based Analysis,” Proceedings of HiPEAC, 2007.

[44] T.-c. Chiueh, “Fast Bounds Checking Using Debug Register,” Proceedings of
HiPEAC, 2008.

118

[45] D. Dhurjati and V. Adve, “Backwards-Compatible Array Bounds Checking for
C with Very Low Overhead,” Proceedings of ICSE, 2006.

[46] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy Bounds Checking: An
Efficient and Backwards-Compatible Defense against Out-of-Bounds Errors,”
Proceedings of USENIX Security Symposium, 2009.

[47] R. Bod́ık, R. Gupta, and V. Sarkar, “ABCD: Eliminating Array Bounds Checks
on Demand,” Proceedings of PLDI, 2000.

[48] M. Joyner, Z. Budimlić, and V. Sarkar, “Subregion Analysis and Bounds Check
Elimination for High Level Arrays,” Proceedings of CC, 2011.

[49] W. Chuang, S. Narayanasamy, and B. Calder, “Accelerating Meta Data Checks
for Software Correctness and Security,” Journal of Instruction-Level Parallelism,
vol. 9, 2007.

[50] “System V Application Binary Interface, Edition 4.1, Chap. 4,”
http://www.sco.com/developers/devspecs/gabi41.pdf.

[51] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: Intermediate Lan-
guage and Tools for Analysis and Transformation of C Programs,” Proceedings
of the CC, 2002.

[52] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI 5.1,”
HP Laboratories, Tech. Rep. HPL-2008-20, 2008.

[53] J. Balfour and W. J. Dally, “Design Tradeoffs for Tiled CMP On-Chip Net-
works,” Proceedings of ICS, 2006.

[54] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi,
M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona:
System Implications of Emerging Nanophotonic Technology,” Proceedings of
ISCA, 2008.

[55] M. T. Yourst, “PTLsim: A Cycle Accurate Full System x86-64 Microarchitec-
tural Simulator,” Proceedings of ISPASS, 2007.

[56] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A Fast and Ac-
curate NoC Power and Area Model for Early-Stage Design Space Exploration,”
Proceedings of DATE, 2009.

[57] A. Jog, A. K. Mishra, C. Xu, Y. Xie, N. Vijaykrishnan, R. Iyer, and C. R.
Das, “Cache Revive: Architecting Volatile STT-RAM Caches for Enhanced
Performance in CMPs,” The Pennsylvania State University CSE Dept., Tech.
Rep. CSE-11-010, June 2011.

[58] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan, “Relaxing
Non-Volatility for Fast and Energy-Efficient STT-RAM Caches,” Proceedings of
HPCA, 2011.

[59] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. R. Das, “Ar-
chitecting On-Chip Interconnects for Stacked 3D STT-RAM Caches in CMPs,”
Proceedings of ISCA, 2011.

119

[60] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A Novel Architecture of the 3D
Stacked MRAM L2 Cache for CMPs,” Proceedings of HPCA, 2009.

[61] X. Guo, E. Ipek, and T. Soyata, “Resistive Computation: Avoiding the Power
Wall with Low-Leakage, STT-MRAM Based Computing,” Proceedings of ISCA,
2010.

[62] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy Efficient
Main Memory Using Phase Change Memory Technology,” Proceedings of ISCA,
2009.

[63] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance
Main Memory System Using Phase-Change Memory Technology,” Proceedings
of ISCA, 2009.

[64] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” Proceedings of ISCA, 2009.

[65] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-montaño, “Improving
Read Performance of Phase Change Memories via Write Cancellation and Write
Pausing,” Proceedings of HPCA, 2010.

[66] P. Zhou, Y. Du, Y. Zhang, and J. Yang, “Fine-Grained QoS Scheduling for
PCM-based Main Memory Systems,” Proceedings of IPDPS, 2010.

[67] ITRS, “International Technology Roadmap for Semiconductors: 2009 Executive
Summary,” http://www.itrs.net/Links/2009ITRS/Home2009.htm.

[68] L.-S. Peh and W. J. Dally, “A Delay Model and Speculative Architecture for
Pipelined Routers,” Proceedings of HPCA, 2001.

[69] M. Galles, “Scalable Pipelined Interconnect for Distributed Endpoint Routing:
The SGI SPIDER Chip,” Proceedings of Hot Interconnect 4, 2009.

[70] W. J. Dally and C. L. Seitz, “Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks,” IEEE Trans. Comput., vol. 36, pp. 547–553, May
1987.

[71] W. J. Dally, “Virtual-Channel Flow Control,” IEEE Trans. Parallel Distrib.
Syst., vol. 3, pp. 194–205, March 1992.

[72] A. V. Yakovlev, A. M. Koelmans, and L. Lavagno, “High-Level Modeling and
Design of Asynchronous Interface Logic,” IEEE Design and Test of Computers,
vol. 12, pp. 32–40, 1995.

[73] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy Reduction for STT-RAM
Using Early Write Termination,” Proceedings of ICCAD, 2009.

[74] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi, “Near-Optimal
Worst-Case Throughput Routing for Two-Dimensional Mesh Networks,” Pro-
ceedings of ISCA, 2005.

[75] J. Kim, J. Balfour, and W. Dally, “Flattened Butterfly Topology for On-Chip
Networks,” Proceedings of MICRO, 2007.

120

VITA

Baik Song An received his Bachelor of Science degree in Computer Science and

Master of Science degree in Electrical Engineering and Computer Science from Seoul

National University in 1999 and 2001, respectively. Before he was admitted to Texas

A&M University in August 2006, he had work experiences as a research staff at

Electronics and Telecommunications Research Institute (ETRI) in South Korea. His

research interests consist of computer architecture and system software including

operating systems. Mr. An may be reached at 3112 TAMU, College Station, TX

77843-3112. His email is baiksong@cse.tamu.edu.

