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Multicast loops are bad since the same multicast packet will

go around and around, inevitably creating a black hole that
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Abstract

In the pursuit for ever-increasing compute power, and with Moore’s law slowly coming to an end, high-
performance computing started to scale-out to larger systems. Alongside the increasing system size, the
interconnection network is growing to accommodate and connect tens of thousands of compute nodes.
These networks have a large influence on total cost, application performance, energy consumption, and
overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which
define the packet paths through the network, do not utilize this important resource efficiently. Topology-
aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are
irregular by design, or most often a result of hardware failures. Exchanging faulty network components
potentially requires whole system downtime further increasing the cost of the failure. This management
approach becomes more and more impractical due to the scale of today’s networks and the accompanying
steady decrease of the mean time between failures. Alternative methods of operating and maintaining these
high-performance interconnects, both in terms of hardware- and software-management, are necessary to
mitigate negative effects experienced by scientific applications executed on the supercomputer. However,
existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded
in the number of virtual channels needed to resolve deadlocks in the routing tables.
Using the fail-in-place strategy, a well-established method for storage systems to repair only critical
component failures, is a feasible solution for current and future HPC interconnects as well as other
large-scale installations such as data center networks. Although, an appropriate combination of topology
and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis
contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either
during system design or while it is in operation. On top of this foundation, a key contribution is a novel
scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall
network utilization. The scheduling-aware routing performs frequent property preserving routing updates
to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless
interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic,
scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem.
Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the
channel dependency graph, which allows the design of an universally applicable destination-based routing
capable of optimizing the path balancing without exceeding a given number of virtual channels, which are
a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during
path calculation, instead of solving both problems separately as all previous solutions.
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1 Introduction

Ensuring efficient communication within a supercomputer is an important task to enable progress of
other scientific fields. High-speed lossless interconnection networks, such as InfiniBand, are the de facto
standard for the fastest computers in the world, see Section 1.1. This thesis advances the state-of-the-art,
as listed in Section 1.2, by introducing new concepts for operating these networks, both in terms of
hardware and software. Section 1.3 provides the list of preceding articles published by the author of this
thesis, and outlines the high-level structure and content of the following chapters.

1.1 Motivation

With Moore’s law slowly coming to an end, many information technology domains started to scale-out.
A global trend visible from small many-core systems-on-chip, such as the 256-core Kalray MPPA-256
chip [Din+13] or the 1024-core Epiphany-V developed by Adapteva [Olo16], over large-scale data centers
or data wearhouses [Mic15], to the world’s most powerful supercomputers, such as the 40,960-node
Sunway TaihuLight system hosting more than 10 million compute cores [Don16]. All these systems, and
many more (e.g., wireless sensor networks, the Internet with the emerging Internet-of-Things, etc.), have
one common property: the requirement for a network connecting the individual devices. The network,
connecting these compute nodes, machines, or appliances, plays a crucial role for successful operation.

For high-performance computing (HPC) systems, it can be expected that the number of network
endpoints will grow significantly [KBB08; Luc+14] which emphasizes the role of the interconnection
network as one of the most critical components in a supercomputer even more. These HPC networks, as
well as other previously mentioned networks, are largely controlled by routing algorithms which determine
how to forward packets. Routing algorithms have to balance multiple, partially conflicting, requirements.
For example, they shall provide the best forwarding strategy to guarantee a certain quality of service
(throughput, latency, etc.), which is an NP-hard problem in general, while minimizing the runtime of the
routing in order to quickly react to failures of network components.

Most supercomputers listed in the TOP500 list of November 2016 [Str+16], 84.6% to be precise, rely
on standardized and off-the-shelf interconnection network components. The deployed interconnection
technologies are either different high-speed versions of Ethernet [IEE16] (207 systems), different speeds
of InfiniBand [Inf15] (188 systems), or Intel’s 100 Gbit/s Omni-Path technology [Bir+15] (28 systems),
see Figure 1.1a. Both, the system share and performance share shown in Figure 1.1 are adjusted to include
the current No. 1 system, the Chinese 93 Pflop/s Sunway TaihuLight supercomputer, in the InfiniBand (IB)
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Proprietary
Intel Omni-Path

Custom
InfiniBand

Gigabit Ethernet

7 (1.4%)
28 (5.6%)

70 (14.0%)
188 (37.6%)

207 (41.4%)

(a) Interconnect family system share

13.8 (2.0%)
43.7 (6.5%)

227.8 (33.9%)

276.5 (41.1%)
110.4 (16.4%)

(b) Performance share [in Pflop/s]

Figure 1.1: Interconnect technology statistics of the TOP500 list of November 2016; Ethernet
distribution: 1x 100G, 178x 10G, 28x 1G; InfiniBand distribution: 15x EDR,
149x FDR, 24x QDR; Shares adjusted for IB-based Sunway TaihuLight (No. 1)

shares, since it utilizes Mellanox’s EDR InfiniBand switch chips and host channel adapters [Don16].
Otherwise, these numbers would unfairly belittle the significance of the InfiniBand for the performance
of the top-tier supercomputers. Besides Ethernet or InfiniBand interconnects, a subset of HPC systems
make use of either custom or proprietary interconnects, such as Cray’s Gemini interconnect used in
Titan [ARK10] (No. 3) or the Tofu interconnect of the K computer [Aji+12a] (No. 7).

To meet the vast data transfer demands of supercomputers in terms of low latency and high bandwidth,
these network architectures increasingly embrace functions that enable a tighter interaction between
networking hardware and programming models. The best examples are Remote Direct Memory Ac-
cess (RDMA) in combination with a kernel bypass, and lossless Layer 2 networking, all tailored for these
demands. The former enables the programmer to directly instruct the network interface to read and write
remote memory without having to issue a kernel call to the operating system. While the latter enables
the reliable transport within the network which is needed for RDMA. Such advanced features have been
prevalent in the high-speed networking area, such as InfiniBand [SWM03] or Cray’s Cascade [Faa+12],
but also find their way into Ethernet, which was recently extended with Priority Flow Control at Layer 2
to support RDMA [Inf10; Zhu+15].

Unfortunately, as network topologies grow, failures of switches and connectors or cables become
common. As opposed to network endpoints, the wiring complexity and infrastructural demands of cabling,
e.g., arrangement of cable trays, make maintaining complex networks challenging and expensive. Thus,
network structures are often kept in place over years and multiple generations of machines while other
components such as CPU or main memory are upgraded. Today, many networks are based on the concept
of over-provisioning the hardware, such as installing spare cables in the cable trays or having an inventory
of spare parts. Alternatively, they are operated in a deferred repair mode, in which a failed component
will not be replaced instantaneously but within a reasonable time frame, such as a business day.

Fail-in-place strategies are common in storage systems when maintenance costs exceed maintenance
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benefits, such as in large-scale data centers with millions of hard drives. For example, Microsoft owned
more than one million servers in 2015 [Mic15], i.e., even an optimistic failure rate of 1% per year and two
hypothetically hard drives per server would result in a mean time between failure of 26 minutes. Instead
of replacing the hard drives of a server, the storage system, such as IBM’s Flipstone [Ban+08], uses RAID
arrays for reliability and a software approach to disable failed hard drives and to migrate the data, until a
critical component failure disables the entire server. Hence, a fail-in-place approach for interconnection
networks could be similarly beneficial, if supported by the correct combination of network topology and
applied routing algorithm.

Routing algorithms for HPC systems have been the topic of many studies ranging from topology-
specific routing algorithms [Rod+09; Zah12] through general deadlock-free algorithms [DS87; Sch+91],
more advanced deadlock-free algorithms balancing the routes [DHN11], to advanced path-caching for
quick failover [VSR15]. A good overview is provided by Flich et al. [Fli+12]. Many advanced approaches
for application-specific [Pal+06; Kin+09] or topology-specific [Sub+12; Pri+13b; Jok+15] routing and
mapping assume idealized conditions such as a regular topology without faulty components, isolated
bulk-synchronous applications communicating in synchronized phases, and the absence of system noise.
Unfortunately, these assumptions are rarely true in practice. Presumably, integrating additional information
about the current state of the supercomputer, such as state of the batch system (i.e., the current job mix) or
application demands, can help guiding the network manager in assigning optimized routes on-demand
which potentially increases utilization and achievable throughput.

Due to the previously addressed hardware failures and these on-demand software adjustments, topology-
aware routing algorithms become increasingly inapplicable in modern supercomputers. Hence, avoiding
deadlock situations [CES71; DT03], a requirement for lossless Layer 2 networking, becomes much
harder to achieve. A network deadlock arises when a group of packets cannot be forwarded because
of unavailable resources, such as buffers or channels, and the group is circularly depended on each
other, which disables parts or the entire network. Topology-aware routings usually avoid deadlocks
algorithmically for many regular topologies, e.g., by restricting the routing to use only a subset of all
available channel dependencies, as it is implemented by dimension-order routing (DOR) [RR10]. In
contrast, many topology-agnostic routing technique for HPC and on-chip networks (NoC) use virtual
channels to break deadlocks [SLT02; BM06; Shi+09; DHN11]. Yet, all these concepts have limitations:

(1) Topology-aware routing algorithms usually assume perfect topologies and often do not support
switch or link failures, see Chapter 4 of this thesis,

(2) Cycle-avoiding routing algorithms often cannot balance routes across the available links and thus
limit global achievable throughput [SRD00a], and

(3) Routing algorithms based on virtual channel isolation fail when the required number of virtual
channels is not available [Fli+12].
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1.2 Contributions

This thesis contributes to multiple frontiers of the design and operation of interconnection networks of
modern and future HPC systems, as well as proposes a novel approach to solve the deadlock-free routing
problem of these networks, which will greatly influence the next generation of routing algorithms.

Historical failure data of three production HPC systems allows this thesis an analysis that subsequently
enables a realistic performance model for a wide range of HPC networks. Initial connectivity simulations
reveal that it is insufficient to consider fault properties of the topology or to consider the resiliency of
the routing algorithm in isolation. For fail-in-place networks, both these properties and the combination
of topology and routing must meet requirements. The developed flit-level simulation toolchain for
InfiniBand networks determines the achievable throughput accurately. An exhaustive study, using the
simulator for several real-world topologies and two real HPC systems, shows that the choice of the routing
algorithm influences the number of disconnected paths in case of a failure and the quality of service after a
reinitialization of the network with missing links or switches. Depending on the underlying topology and
routing method, a low number of failing links already reduces the overall throughput by up to 30% (e.g.,
for small-scale fat-trees), or an HPC system can be operated in fail-in-place mode with almost zero
performance degradation, respectively. Overall, the study reveals that fail-in-place network designs can be
accomplished with an appropriate combination of topology and routing algorithm, while assuming that a
performance degradation up to a predefined threshold is tolerable. Changing the used routing method of
the two investigated HPC systems would not only increase their network throughput by up to 2.1x or 3.1x
for the fault-free network, respectively, but also increase their fail-in-place characteristics.

The influence of the degrading fail-in-place interconnect on the achievable application throughput can
be further reduced by optimizing the routing algorithm to exploit the knowledge about the momentary
resource allocation in the supercomputer. The developed scheduling-aware routing (SAR), an enhancement
of one of the most appropriate routings for fail-in-place networks, frequently reconfigures the switches’
routing tables for intra-job communication of concurrently running applications. This low-overhead
routing algorithm is already deployed on a production petascale supercomputer for over one year and
improves the system’s utilization and its amount of scientific output. Two newly introduced metrics,
the effective edge forwarding index and the dark fiber percentage, show the effectiveness of SAR in
comparison to the state-of the-art oblivious routing mechanisms for HPC systems, using simulations with
historical resource allocations of two InfiniBand-based supercomputers. The former metric measures the
well-established edge forwarding index with respect to the running applications, both within and between
allocations, to estimate a theoretical upper bound for the worst-case network congestion. The latter
metric, the dark fiber percentage, quantifies the utilization of the network. Unfortunately, some network
architectures, such as InfiniBand, rely on in-order packet delivery, i.e., a prerequisite for unobstructed
operation, which can be compromised by frequent reconfigurations. Hence, the formalism of per-packet
consistent updates is extended for in-order delivery and deadlock-freedom, and a new network update
protocol is introduced to achieve the required consistency for InfiniBand hardware.
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Even more important than preventing deadlocks during the reconfiguration of the network is the
deadlock-avoidance while a single network configuration is active. A thought experiment visualizes the
limitations of state-of-the-art multi-step routing approaches, i.e., the impossibility to achieve deadlock-
freedom for shortest-path routing with limited amount of supported virtual channels on arbitrary or faulty
topologies. Consequently, a novel routing approach is developed based on the concept of routing within
the complete channel dependency graph that overcomes all limitations (1) – (3) mentioned in Section 1.1.
Hence, this routing, called Nue, is capable of distributing the paths across the network to increase the
throughput, while reliably avoiding deadlocks. Flit-level simulations with the developed toolchain show
that the destination-based Nue routing works on any arbitrary topology, especially fail-in-place networks,
with all possible numbers of available virtual channels, including network technologies without support
for virtual channels. The conducted complexity analysis, as well as runtime measurements with an
implementation of Nue in the InfiniBand subnet manager, demonstrate Nue’s competitiveness and broad
applicability for InfiniBand and other network architectures.

1.3 Thesis Organization

This thesis, especially Chapters 4 – 6, focuses on flow-oblivious, static, destination-based, unicast routing
for supercomputers, and is based on the following three peer-reviewed publications which have been
reformatted and/or partially rewritten, and the author’s contributions are as follows:

• J. Domke, T. Hoefler, and S. Matsuoka. „Fail-in-Place Network Design: Interaction between
Topology, Routing Algorithm and Failures“. In: Proceedings of the IEEE/ACM International

Conference for High Performance Computing, Networking, Storage and Analysis (SC14). SC ’14.
New Orleans, LA, USA: IEEE Press, Nov. 2014, pp. 597–608. ISBN: 978-1-4799-5500-8. DOI:
10.1109/SC.2014.54

The author of this thesis is the main contributor to this publication. In particular, he performed
the analysis of failure data, and designed and implemented the simulation framework. Subsequent
simulations, analysis of the results, and preparation of the manuscript were done by the author.

• J. Domke and T. Hoefler. „Scheduling-Aware Routing for Supercomputers“. In: Proceedings of

the International Conference for High Performance Computing, Networking, Storage and Analysis.
SC ’16. Piscataway, NJ, USA: IEEE Press, 2016, 13:1–13:12. ISBN: 978-1-4673-8815-3. URL:
http://dl.acm.org/citation.cfm?id=3014904.3014922

The author is the main contributor to this publication. Besides identifying the disadvantages of the
current state-of-the-art HPC routing methods, he was responsible for algorithm and protocol design
(including their implementations) to overcome the challenges. The tasks of benchmarking existing
systems and conducting wide-ranging simulations with subsequent data analysis, as well as drafting
the publication, were carried out by the author.
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• J. Domke, T. Hoefler, and S. Matsuoka. „Routing on the Dependency Graph: A New Approach
to Deadlock-Free High-Performance Routing“. In: Proceedings of the 25th ACM International

Symposium on High-Performance Parallel and Distributed Computing. HPDC ’16. New York, NY,
USA: ACM, 2016, pp. 3–14. ISBN: 978-1-4503-4314-5. DOI: 10.1145/2907294.2907313

The author is the main contributor to this published work. Both, the new conceptual approach
for solving the deadlock problem and its model implementation, were contributed by the author.
Additionally, he analyzed the results of the executed simulations, proved mathematical correctness
and characteristics of the routing function, and prepared the manuscript for publication.

The remaining chapters comprise the following: Chapter 2 reviews the state-of-the-art with respect to
network simulation frameworks and routing algorithms. Especially, fault-tolerant and deadlock-free
routing algorithms are of interest. Chapter 3 lays the groundwork for the following chapters by providing
network-related and routing-related definitions, by introducing numerous network topologies, and by
illustrating the inner workings of various routing algorithms, which will be used for later comparisons.
Thereafter, the three Chapters 4, 5, and 6, outline the main contributions in the field of high-speed
interconnects by: (1) showing that fail-in-place network operation is feasible and the corresponding
throughput degradation manageable, (2) improving the utilization and communication efficiency through
scheduling-aware routing, and (3) developing an invariably working deadlock-free routing algorithm. In
conclusion, Chapter 7 summarizes the thesis and provides the prospects for future work.
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2 Related Work

The following two sections review the related work, relevant to this thesis, in the research domain
of high-performance interconnection networks. Section 2.1 outlines state-of-the-art interconnection
architectures, topologies commonly used in HPC systems, management and resiliency considerations, as
well as simulation frameworks to analyze the effectiveness of the interconnect. Subsequently, Section 2.2
gives a summary of the state-of-the-art deterministic routing algorithms tailored for the application in
supercomputers or for the usage in related network architectures, such as Network-on-Chip. Especially,
the algorithm’s characteristics with respect to achievable latency, throughput, and deadlock-freedom, as
well as applicability to current real-world architectures, are of interest. The Table 2.1, provided at the
end of Section 2.2, summarizes the attributes of a subset of these algorithms. Readers unfamiliar with
the basics of HPC interconnects and routing algorithms are encouraged to review Section 3.1 prior to
continuing with this section.

2.1 State-of-the-Art for High-Performance Interconnect Designs

The interconnection networks of the supercomputers in the TOP500 list of November 2016 are essentially
dominated by seven different network architectures, e.g., InfiniBand, Gigabit Ethernet, and Intel’s
Omni-Path, comprising a total of 423 systems. The remaining systems are connected by either IBM’s
interconnect for the Blue Gene systems [Adi+05; Che+12], Cray’s 3-dimensional tori-based Gemini
networks and more recent Aries networks [ARK10; Alv+12], the TH Express interconnect used in
MilkyWay 2 systems [Pan+14], or Fujitsu’s Tofu interconnect [Aji+12a]. Hence, the prevalent topologies
used by these supercomputers are fat-trees [PV97] (occasionally deployed as dual-rail fat-tree [Hat11]
or tapered fat-tree [Leó+16]), 5-dimensional or 6-dimensional tori in case of Blue Gene systems or
Tofu-based systems, respectively, and dragonfly topologies in case of Aries-based HPC systems. Due to
the scale of these production systems, in terms of compute node count, fault-free and regular topologies are
an exception rather than the norm [SG10], because both network and compute hardware fails frequently.

2.1.1 Resiliency of Networks, Topologies, and Routings

Resiliency of network topologies has been studied extensively in the past. Xu et al. [Xu10] analyzed
numerous interconnection topologies, such as De Bruijn graphs, Kautz graphs, meshes, and butterfly
networks. However, an analysis of routing algorithms has been done based on edge forwarding index, but
not based on actual performance delivered for a traffic pattern. Another comprehensive survey of network
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fault tolerance was performed by Adams et al. [AAS87]. The authors describe methods to increase fault
tolerance through hardware modification of existing topologies, such as adding additional links, ports, or
switches. Other attempts to enhance the fault tolerance properties of the network have been performed
analytically. One example is the multi-switch fault-tolerant modified four tree network which aims to
improve the single-switch fault-tolerant four tree network [SB02]. Another example is the attempt to
solve the problem heuristically with genetic algorithms [Szl06].

Co-design strategies have been proposed, such as the F10 network [Liu+13], where the interconnection
topology is optimized for the routing algorithm and vice versa. This includes an increase in alternative
paths using an AB Fat-Tree instead of an ordinary fat-tree and includes enhanced fault recovery properties
through local rerouting. The routing algorithm for F10, besides optimizing for global load balancing,
manages the failure detection and propagates this information to a subset of the nearest neighbors of the
failure. This subset is smaller for F10 than in an ordinary fat-tree allowing for fast recovery and therefore
decreases the potential for the packet loss.

Okorafor et al. [OL05] proposed a fault-tolerant routing algorithm for an optical interconnect, which
assumes a fail-in-place 3-dimensional mesh topology and enhances the throughput. The IBM Intelligent
Bricks project [Fle+06] investigates the feasibility of building fail-in-place storage systems and includes
considerations about the performance loss in the network due to failed bricks. The throughput degradation
in the 6x6x6 3-dimensional torus is simulated up to 60% failed bricks. However, no other routing
algorithm besides the IceCube mesh routing has been tested.

Fault-tolerant topology-aware routing algorithms have been developed and studied in the past, es-
pecially for meshes and tori topologies and in the field of Network-on-Chip, e.g., [Suh+95; DYL02;
RFR09; Man+11; AA13], but the usability of these algorithms for other topologies has not been tested.
Flich et al. [Fli+12] performed a survey of topology-agnostic routing algorithms and compared them
not only analytically, but also evaluated their performance with a flit-level simulator, which realizes its
message forwarding based on the smallest logical unit of network information, called flit, required for
flow control [DT03, 12.1]. The simulations have been conducted on small 2-dimensional mesh and tori
networks, up to a size of 16x8. Additionally to these regular topologies, faulty meshes and tori with an
injected number of link failures of 1%, 3%, and 5% were investigated.

2.1.2 HPC Routing Strategies and Network Management

The state-of-the-art routing method for supercomputers is static and flow-oblivious routing, where the
packet route is uniquely defined by the source-destination pair, e.g., [Aji+12b; Inf15], but a few alternatives,
such as adaptive routing strategies [Ari+10; Alv+12; Bir+15], exist. Switches of adaptive routed networks
are capable of adjusting the path towards a destination dynamically in response to changing local or
global conditions, such as link load [DT03, p. 189]. Research has shown that oblivious routing can
result in local congestion, which increases application runtime, when the routes and communication
pattern does not match properly [HSL08]. Yet, its simplicity and practicality makes it the most-used
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routing mechanism, for example, in all InfiniBand and Ethernet networks, which combined provide ≈58%
performance of all systems in the TOP500 list. The objective of these flow-oblivious routings, such as
Up*/Down* [Sch+91] and fat-tree routing [Zah+10], or the deadlock-free single-source shortest-path
routing algorithm (DFSSSP) [DHN11], is to distribute the routes evenly across the interconnection
network. However, this static and global balancing approach is only effective when the system is used by
a single parallel application.

Optimizing communication performance for multi-user HPC system has been studied in the past
resulting in many different approaches. Mellanox’s proprietary traffic-aware routing, short TARA [Mel16],
monitors active applications and the network port counters, and attempts path adjustments when congestion
is identified. However, TARA is a reactive optimization and depends on the time to collect and analyze
all port counters. Furthermore, TARA’s ability to enforce property preserving network updates of the
forwarding rules is unknown, hence out-of-order packet delivery might be possible.

Application-aware routings, e.g., [ZL92; Kin+09], have been developed, but require detailed knowledge
about traffic patterns and injection rates of each application. Additionally, this optimization approach has
no notion of a timely behavior of the applications, and might assign too few links to each applications
assuming they communicate simultaneously.

Optimizing the job-to-node assignment via the batch system, while considering the network topol-
ogy [YCM06; HS11; BDM15], is feasible for regular networks, but assumes an idealized routing or
ignores it completely. Performing a routing-aware job-to-node mapping [ATB14] by the batch job sched-
uler has been proposed as alternative. However, the computational complexity to solve the mapping
problem is usually infeasible for an online scheduling of batch jobs, or fast and imprecise heuristics need
to be used. In addition, this job-to-node mapping might increase the system’s fragmentation, or it is
hindered by the logical separation of the system through batch queues.

Changing the forwarding rules of the entire supercomputer, either in reaction to a hardware failure or
due to desired optimizations, can violate certain network properties, such as in-order delivery. Multiple
network update protocols, tackling these problems, have been developed in the past, but the solutions
are usually specific to certain technologies and their properties, such as for the broader gateway proto-
col (BGP) [Fra+07; RZC11] or for software-defined networking (SDN) [Rei+12; McC+15], to name but
a few. Yet, no property preserving network update protocol tailored to the conditions and requirements
found in lossless InfiniBand fabrics exists, which is the focus network architecture of this thesis.

2.1.3 Simulation Frameworks for Network Analyses

Academia developed various discrete event simulation frameworks to model network protocols or to design
and gauge network architectures, such as ns-3 [YHZ09], OMNeT++ [VH08], and ROSS [CBP00], to name
but a few. Subsequently, researchers utilize these frameworks to construct modules for individual architec-
tures or degrees of accuracy. For example, a flit-level accurate simulation model for InfiniBand [Ope07],
developed by Mellanox and based on OMNeT++, is used to analyze and improve congestion control in IB
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networks [Rei+11]. Similarly, Yebenes et al. [Yeb+13] tried to implement an efficient packet-level IB
simulator for very large topologies used in exascale supercomputers based on OMNeT++, but only showed
results for 28x28 meshes and tori. Alternatively, less accurate, but highly efficient packet-level simulations
are enabled by the CODES network and storage simulator (based on ROSS) [Cop+11]. Multiple regular
topologies, such as (multi-rail) fat-trees using adaptive and deterministic routings [Liu+15; Wol+17], Slim
Flies [BH14; Wol+16], or tori [Mub+14] with millions of compute nodes, have been studied using the
CODES simulator. Furthermore, many scientists implemented their own simulator, e.g., cycle-accurate
interconnection simulator for Network-on-Chip, called BookSim [Jia+13], or the IB simulator used by
Sancho et al. [San+02].

The OMNEST framework, a non-commercial version of OMNeT++, is used by Denzel et al. [Den+08;
BRM12] to design a parallel network simulator, interfacing with Dimemas and Paraver, which is able to
read and replay communication traces of MPI applications. Despite being a flit-level simulator, their Venus
toolchain is not tailored to a specific interconnection technology, such as InfiniBand. Both, the simulated
regular topologies with up to ≈4,000 compute nodes, i.e., 2/3-dimensional mesh/torus, hierarchical full
mesh, and a fat-tree, and the used forwarding rules for these networks are generated by tools comprised in
the Venus toolchain. Multiple routing strategies, such as random routing, source routing, and distributed
routing, have been implemented.

Chen et al. [Che+16] compares state-of-the-art and emerging topologies, e.g., single-rail 3-level
fat-trees, Mellanox’s Dragonfly+, and Hewlett Packard’s HyperX topology [Ahn+09], etc. These network
topologies are validated by means of synthetic workloads, such as nearest neighbor and all-to-all traffic
patterns, and realistic application communication patterns collected for selected mini-apps. Despite
assuming different routing strategies (deterministic shortest-path routing, random routing, and adaptive
and Valiant-like [DT03], the authors ignored the influence of network component failures.

Jain et al. [Jai+16] evaluates the achievable performance of multi-application workloads simultaneously
running on a 5-dimensional torus, dragonfly, and fa-tree topology, respectively. The authors combined the
CODES framework with BigSim [Zhe+05], which allows the simulations to relay the exact communication
pattern of the individual applications, as well as to model their time spend in computation phases. The
implemented adaptive routing algorithms have been tailored for the specific topologies, which prevents
comparisons. Furthermore, limiting the analysis to certain applications only, and limiting the switch radix
to 13 ports for the torus, while allowing the fat-tree to utilize a radix of 72, might not result in generally
valid conclusions with respect to the available design space for interconnection networks.

2.2 State-of-the-Art for Deadlock-free Routing Approaches

As outlined in Chapter 1, avoiding deadlocks in the interconnection network, induced by the routing
algorithm, is one of the most crucial property of these algorithms or the underlying topology, respectively.
However, not all routing algorithms, such as MinHop [Mel13] or the single-source shortest-path rout-
ing [HSL09], take deadlocks into consideration. Therefore, methods for deadlock prevention, avoidance,
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and recovery for networks have been studied extensively in the past, classifiable into four categories:

1. Solving deadlocks through architecture features,

2. Analytical deadlock-prevention, either through appropriate topology design or routing,

3. Deadlock-preventing routings using virtual channels, and

4. Alternative solutions, usually inapplicable to existing architectures.

For example, for routing algorithms which basically ignore the problem, the interconnection architecture
defines a packet lifetime, e.g., InfiniBand [Inf15, 12.9.8.4], as a fall back for categories 1. Clearly, the
disadvantage of this approach is that it only resolves a single deadlock, which might form again and again,
and decreases the achievable throughput. Furthermore, it complicates the design of networking hardware,
such as switches and routes, which have to monitor and enforce packet lifetimes.

Representative routings of category 2 are essentially derivatives of Up*/Down* routing [Sch+91],
which prohibit certain turns within the topology to avoid the creation of a routing deadlock. Alternatively,
the correct combination of chosen topology and (usually) deadlock-prone routing, such as any loop-free
routing on binary trees or dimension order routing on n-dimensional meshes [RR10], ensures deadlock-
free transmission in the network. However, prohibiting turns, and therefore restricting the number
of possible routes, increases path lengths, hence latency, and overloads nodes resulting in diminished
throughput [SRD04]. The algorithms of the third category are relying on virtual channels [DS87] or virtual
layers [Lys+06], respectively, and are assigning paths (partially or fully) to different virtual channels
to create an acyclic and routing-induced channel dependency graph. While overcoming the path length
and throughput constraints of the previous category, this approach requires more complex switch and
router designs [San+02], and is potentially unbound in the number of required virtual channels [DHN11;
Fli+12] to achieve deadlock-freedom. However, current interconnection hardware only supports a limited
number of virtual channels (VCs). For instance, obtainable InfiniBand network components maximally
support eight VCs for data traffic, called virtual lanes, while the InfiniBand standard caps the theoretically
supported number to 15 data VCs and one VC for subnet management traffic [Inf15, 7.6]. The following
Sections 2.2.1 and 2.2.2, as well as Table 2.1, review and summarize a subset of the wide variety of
(deadlock-free) deterministic topology-aware and topology-agnostic routing algorithms, respectively.

Category 4 comprises multiple different approaches to enforce deadlock-freedom within the intercon-
nection network. Examples are the “controller principle” [Tou80], where a global entity oversees all
network components, and controls packet injection/consumption rates and the forwarding of individual
packets to avoid forming a deadlock. Obviously, this approach is unsuitable for modern large-scale
interconnects, as well as the latency requirements in high-performance computing. Other approaches for
deadlock-freedom are usually inapplicable due to missing features of state-of-the-art network architectures,
such as “destination renaming” [LFD01] which easily exceeds the available memory to store forwarding
tables in the switches, or “bubble flow control” [Pue+99; WCP13] which aims at controlling the filling
level of port buffers to ensure that at least on packet can be forwarded at any given time.
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2 Related Work

2.2.1 Topology-aware Routing Algorithms

Many of the proposed topologies for supercomputers and other interconnected systems come with a
fitting (deadlock-free) topology-aware deterministic routing. For example, Zahavi et al. [Zah10] proposed
D-Mod-K routing for parallel port fat-trees. Kim et al. [KBD07] suggested dimension-order routing
as a possibility for flattened butterfly NoC topologies. The randomized partially-minimal routing has
been tailored for 3-dimensional meshes [RL08] to improve the worst-case throughput, but requires 2
virtual channels for deadlock-freedom. The three topology-aware routings investigated in this thesis,
i.e., dimension-order routing (DOR) [RR10] for meshes, Torus-2QoS routing [Mel13], and fat-tree
routing [Zah+10], will be explained further in Section 3.3. Generally, the disadvantage of topology-aware
routings is their limited fault-tolerance, and therefore limited applicability to large-scale networks, where
a number of faults impedes the algorithm’s ability to identify the remaining graph as supported topology.
However, most these algorithms calculate the deadlock-free forwarding rules for the network faster in
comparison to topology-agnostic algorithms, while providing highly optimized routing for low latency
and high message throughput.

2.2.2 Topology-agnostic Routing Algorithms

A well-known example for algorithms avoiding to create cycles in the channel dependency graph (CDG)
is the Up*/Down* routing [Sch+91]. Up*/Down* prohibits a route to use an “up” direction after a “down”
directions. This approach does not necessarily use shortest paths or load-balances routes efficiently.
Indeed, the root often becomes a bottleneck in practice. The algorithms UD_DFS routing [SRD00a],
L-turn routing [Koi+01] and segment-based routing (SR) [Mej+06] are based on Up*/Down* and try
to reduce or balance the routing restrictions to increase the path balancing across the network. For
network technologies where the next channel in each routing step is chosen based on the source and
destination node the Multiple Up*/Down* routing (MUD) [LS01; Fli+02] can increase the path balancing.
For similar network technologies without virtual channel support the Tree-turn routing [ZC12] or FX
routing [SRD00b] can be used. For example, Tree-turn adds two more directions to the four directions
used by L-turn routing, which reduces the number of prohibited turns further to increase the balancing.

Another set of algorithms breaks cycles in the channel dependency graph with virtual channels. The
destination-based routing algorithms DFSSSP [DHN11] and LASH [SLT02] operate similarly in terms of
breaking the cycles, i.e., searching for cycles in the CDG and moving individual paths to other virtual
layers. Unfortunately, both algorithms might suffer from a limited number of available virtual channels,
therefore LASH-TOR [Ske+04] enhanced LASH routing to use Up*/Down* in the last virtual layer if the
routes in this layer form a cycle which cannot be resolved. This can result in multiple outgoing ports at a
switch for a single destination, hence LASH-TOR is not a destination-based routing in the general case,
and therefore inapplicable to most network architectures, especially InfiniBand.

Kinsy et al. [Kin+09] proposed two application-aware routings, called bandwidth-sensitive oblivious
routing (with minimal routes) or BSOR(M). BSOR operates within the CDG to calculate the routes, while
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2.2 State-of-the-Art for Deadlock-free Routing Approaches

randomly deleting edges from the CDG to form an acyclic channel dependency graph. The algorithm
solves a multi-commodity flow problem, based on the demands of the application, with a mixed-integer
linear programming algorithm for small networks. For large networks, BSOR uses Dijkstra’s algorithm
as a heuristic on a weighted and acyclic channel dependency graph for each source/destination pair to
balance the application traffic. In contrast, BSORM routing calculates the routes within the network
and breaks cycles afterwards, resembling the method of DFSSSP and LASH. BSOR(M) is designed for
network technologies with forwarding based on source and destination, and therefore are inapplicable to
InfiniBand for example. The same holds for smart routing [CKR96]. The approach of smart routing is
to calculate the shortest paths and investigate the routing-induced channel dependency graph for cycles,
while storing which path induced which edge in the CDG. A cycle search in the CDG subsequently cuts
the edges of a cycle which minimizes the average path length after recalculating the paths inducing this
edge. While smart routing can be used for technologies without virtual channels, the computational cost,
which is O

(
(#switch)9), is to high for a practical use in large-scale networks.
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3 Background, Assumptions, and Definitions

This chapter formalizes network-related terms, which will be used throughout the thesis to accurately
design, enhance, and compare network topologies and routing algorithms. Section 3.1 defines the terms
interconnection network, path, and routing function and introduces common metrics. Subsequently,
Section 3.2 gives an overview of a subset of network topologies, which have been proposed for the usage
in HPC systems. Furthermore, a number of modern real-world installations and their topologies will be
presented. The basis operating principles of a selection of routing algorithms will be given in Section 3.3.
These algorithms are used throughout the world in production supercomputers and therefore serve as
reliable baselines for later comparisons.

3.1 Interconnection Networks and Routing Algorithms

First, and foremost, an exact characterization of the network is needed when working on network topology
design, as described in Section 3.1.1. This graph-based specification, see Definition 3.1, builds the basis
for subsequent terms, such as path or route and derived routing functions.

3.1.1 Network-related Definitions

Within the scope of interconnection networks for high-performance computers [DYL02], the assumption is
that a network is a multigraph where each pair of network devices is connected by one or more full-duplex
channels (or links). These full-duplex links can be simultaneously used in opposing directions without
interference or throughput degradation. Furthermore, the link capacity, i.e., the maximum achievable
throughput, in the network is assumed to be uniform and constant over time.

Definition 3.1 (Interconnection Network). An interconnection network I := G(N,C) is a connected

multigraph with the node set N and multiset C of directed (multi-)channels. Nodes nx ∈ N are called

a terminal, if and only if there exists exactly one ny with (ny,nx) ∈C, otherwise nx is called a switch.

Furthermore, let C∗ ⊆ C be the largest possible subset, with ∀cnx,ny ∈ C∗ : nx,ny being switches ∈ N,

denoting the set of inter-switch links of network I.

If exact device information is required, e.g., for figures, then ordered pairs (nx,ny), or cnx,ny for short,
are used, otherwise a simpler ci notation denotes channels. In the following, S is used to denote the set of
switches and the set T is used for terminals, hence N = S∪T with S∩T = /0. Figure 3.1 shows an example
network consisting of five switches and no terminal nodes. For a more precise delimitation, terminals
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3 Background, Assumptions, and Definitions

n1

n2

n3n4

n5 duplex channel

cn1,n2

cn2,n1

Figure 3.1: 5-node interconnection network I = G(N,C); N = S∪T with |S|= 5, |T |= 0; Full-
duplex channels C allow bi-directional, simultaneous, non-interfering transmission

can be further subdivided into compute nodes, executing scientific applications in the supercomputer, and
supplementary nodes, responsible for storage, administration, etc. Nodes in the network communicate via
messages of arbitrary length, which are transferred as a payload of one or more network packets from a
sending node to a receiving node. The packet routes, see Definition 3.2, for all nodes to all other nodes are
defined by a routing function, see Definition 3.4, within the multigraph representing the network. While
the mathematical concept of cyclic paths is valid, for the remainder of the thesis the absence of cycles,
or so called routing loops [SKC14, pp. 230-231], is required, see Definitions 3.2 and 3.4. Otherwise,
since network switches or routers commonly cannot distinguish between the first or additional passes of a
packet, a packet might be trapped in an infinite forwarding cycle through the network.

Definition 3.2 (Cycle-free Route). A route (or path) Pnx,ny of length h ≥ 1 from node nx to ny in the

network I = G(N,C) is defined as a sequence of channels (c1, . . . ,ch) =: Pnx,ny under the condition that

{c1, . . . ,ch} ⊆C, c1 := (nx, ·), ch := (·,ny), and if cq = (·,nz) then cq+1 = (nz, ·) for all 1 < q < h. The

path Pnx,ny is considered to be cycle-free, if for all 1≤ p,q≤ h, with p ̸= q and cp = (·,nu), cq = (·,nv),

it holds that nu ̸= nv. Let sPnx,ny denote a shortest path from nx to ny.

Depending on the routing functions, a categorization in shortest-path routing algorithms, i.e., the
algorithm calculates sPnx,ny for all pairs of nodes, and non-shortest-path routings is possible, as outlined
in Chapter 2. Many of the proposed and state-of-the-art routing algorithms optimize for shortest paths to
minimize the latency observed by packets. However, the shortest-path criteria enforces limitations with
respect to deadlock-freedom, which will be further analyzed in Chapter 6.

For a fair comparability of the different topologies in the following chapters, especially Chapter 4, it
is frequently essential to add redundant links in the network to utilize all available switch ports. Hence,
the regular graph-based topology is augmented to an undirected multigraph. As a result, the number
of hosts, switches, and links can be balanced across the different investigated topologies. The link
redundancy rC′ , see Definition 3.3, which increases the edge-connectivity, but not the vertex-connectivity,
is defined as the smallest number of parallel links between two adjacent switches. The two network
metrics vertex-connectivity and edge-connectivity will be further explained in Section 3.1.3.
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3.1 Interconnection Networks and Routing Algorithms

Definition 3.3 (Network Link Redundancy). Assuming an interconnection network I = G(N,C), then

the augmented interconnection network with redundant channels or links is given by I′ := G(N,C′), with

|{c′nx,ny
∈C′}| ≥ |{cnx,ny ∈C}| for all nx,ny ∈ S, and the (minimal) link redundancy rC′ for the topology

is defined by

rC′ := min
nx,ny∈S

⌊ |{c′nx,ny
∈C′}|

|{cnx,ny ∈C}|
⌋

Unless otherwise stated in later chapters, the interconnection networks and topologies defined in
Section 3.2 have not been altered from their original specification. Hence, the default value for all these
topologies is a node/link redundancy of r = 1.

3.1.2 Routing-related Definitions

Generally speaking, the routing configuration is part of the switching rules for a network, which define
a set of valid forwarding rules and packet modifications along the path to the destination. The routing
function R, as defined hereafter, specifies the paths from all nodes to all other nodes in the network I.

Definition 3.4 (Destination-based and Cycle-free Routing). A routing function R : C×N → C for a

network I := G(N,C) assigns the next channel cq+1 of the route depending on the current channel cq

and the destination node ny. The ports of the switch, connecting these two channels, are categorized in

ingress port for cq and egress port for cq+1, respectively. For multigraphs, the assumption is that the

next channel cq+1 is unique among the existing parallel channels of a multi-channel. Furthermore, a

routing R is considered to be destination-based if the channel cq+1 is unique (denoted by the ∃! sign) at

each node, i.e., ∀nx ∈ N ∃!c ∈C : R
(
(·,nx),ny

)
= c. The routing R is cycle-free if all paths induced by R

are cycle-free.

The forgoing definition of the routing function R is required to express channel dependencies later on,
although theoretically it is equivalent to R′ : N×N→C.

Modern high-performance interconnect technologies, such as InfiniBand or Intel’s Omni-Path, encapsu-
late these forwarding rules for each network switch in so-called linear forwarding tables (LFTs):

Definition 3.5 (Linear Forwarding Tables). The linear forwarding table of a network switch s ∈ S is a

per-packet lookup table derived from the routing function R. The destination of a packet is the index for

the array and the switch’s egress port is stored in it, i.e., egress port = LFT[ny] defined by R
(
(·,s),ny

)
.

These lookup tables are usually programmed by a routing algorithm, either executed by a centralized
entity, such as InfiniBand’s subnet manager [Mel13], or executed on each switch individually, resulting
in a distributed routing, such as the Border Gateway Protocol (BGP) [Fra+07]. The complete set of all
forwarding tables, regardless of being calculated centrally or in a distributed fashion, is called a (global)
network state from here on.

Definition 3.6 (Network State). The network state is the set of all forwarding tables of network switches

given by a valid routing function R for an interconnection network I.
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n1

n2

n3n4

n5 duplex channel

cn1,n2

cn2,n1

(a) Ring with shortcut

cn3,n4

cn2,n3

cn1,n2

cn4,n5

cn5,n3

cn3,n2

cn2,n1

cn1,n5

cn4,n3

cn3,n5

cn5,n4cn5,n1

(b) Corresponding (cyclic) CDG

Figure 3.2: Using a shortest-path, counter-clockwise routing for network I (3.2a) induces the
channel dependency graph D (3.2b); Dashed channel dependencies in D form a
potential deadlock, induced by paths of length h = 2 (compare to Definition 3.2)
which use dashed channels of network I

A routing function R for a given network I is considered to be valid, if and only if the routing has these
three properties: cycle-free, destination-based, and deadlock-free, so that the routing is applicable to Infini-
Band, Ethernet, and many Network-on-Chip designs. While the cycle-free and destination-based properties
follow from Definition 3.4, deadlock-freedom cannot be accomplished so easily. Especially, the InfiniBand
standard [Inf15, C14-62.1.2] demands the use of deadlock-free routing algorithms. Dally et al. [DS87]
postulate Theorem 3.1, which sets the necessary and sufficient condition for the deadlock-freedom of a
destination-based routing function.

Theorem 3.1. A routing function R for an interconnection network I is deadlock-free if and only if there

are no cycles in its corresponding channel dependency graph.

The corresponding channel dependency graph (CDG) is induced by the routing function R, or the
network state, respectively, for a given network I as follows:

Definition 3.7 (Channel Dependency Graph). The channel dependency graph for a given network I and

routing function R is defined as a directed graph D := G(C,E) whose node set consists of the channel set

of I. The edge set of D, denoted by ordered channel pairs (·, ·), is induced by the routing function, i.e.,

(cp,cq) ∈ E if and only if ∃ny ∈ N : R(cp,ny) = cq.

Figure 3.2b shows the channel dependency graph for the network shown in Figure 3.2a assuming
that a shortest-path, counter-clockwise routing function is used. For instance, the path n2→ n5 via n1

induces the rightmost channel dependency, i.e., the edge between cn2,n1 and cn1,n5 in Figure 3.2b. The
“shortest-path” property is considered the primary path selection criterion in this example.

Dally et al. [DS87] also introduced the concept of virtual channels (VCs) to solve the deadlock problem
for a limited set of network topologies. Actual switching hardware implements these virtual channels c̃

with separated sets of buffers within the same port or channel c∈C, respectively. One method for breaking
a cyclic channel dependency graph is to conditionally switch between virtual channels along a route, so
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3.1 Interconnection Networks and Routing Algorithms

called virtual channel transition, to obtain a deadlock-free routing. However, not every interconnection
technology supports VC transition, despite supporting virtual channels, as mentioned in Section 1.1. An
alternative way of achieving deadlock-freedom on these interconnects, such as InfiniBand, is to combine
the VCs into virtual layers [LS01]. Routes are then assigned to individual layers, see Definition 3.8, so
that all routes within one layer induce an acyclic CDG. Hence, all layers are acyclic and therefore the
routing is deadlock-free.

Definition 3.8 (Virtual Layer). Assume each network channel c ∈ C of I can be split into k virtual

channels {c̃1, . . . , c̃k}, with k ∈N, then the i-th virtual layer Li := G(N,Ci) of the interconnection network

I = G(N,C) is determined with Ci :=
{

c̃ i | c̃ i ∼= c for c ∈ C
}

. The network I and virtual layer Li are

identical for k = 1.

In a simplified manner, the concept of virtual channels is comparable to the link redundancy introduced
in Definition 3.3, assuming k = rC′ , without the benefit of an increased bandwidth in the network.
However, arbitrarily increasing the link redundancy is unfeasible due to the costs required to build high-
radix switches (with radix > 128) [Kim+08]. A vast number of virtual channels is not cost-efficient either,
hence high-radix switches are combined with virtual channel support. The technique of assigning routes
to individual layers is used by DFSSSP [DHN11] and LASH [SLT02] routing (among others). A key
challenge with virtual channels is that algorithms that rely on computing shortest-paths can require more
virtual channels than available, see Section 6.3.3 for further details, and an optimal assignment of routes to
layers is an NP-complete problem [DHN11]. Thus, potentially rendering these algorithms inapplicable for
the given hardware and topology. At the same time fall-back algorithms, such as Up*/Down* or L-turn
routing, can adhere to the available hardware, but will compute drastically worse routings. This challenge
motivates the design of alternative or novel routing approaches, such as routing on the channel dependency
graph presented in Chapter 6.

3.1.3 Topology and Routing Metrics

A wide range of metrics for network topologies exist that are mostly derived from graph-based metrics,
such as switch radix, network diameter, or path length. Moreover, the set of metrics derived from the
interconnection technology includes link bandwidth, port-to-port latency, bisection bandwidth, etc. These
metrics make a statement about idealized conditions while ignoring the used routing algorithm. However,
more accurate routing-based metrics, such as the edge forwarding index, see Definition 3.12 or the
effective bisection bandwidth [HSL08], usually require extensive simulations or measurements on real
systems. This section provides a selection of metrics which are relevant for the analyses conducted in
subsequent chapters.

Building resilient and fail-in-place networks requires not only a fault-resilient routing algorithm, see
Chapter 4, but also highly connected topologies. One resilience measurement for topologies is the
connectivity of the graph G(N,C) representing the network I [Xu10]. The connectivity determines the
minimum number of network components which have to be removed in order to disconnect the network,
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i.e., to arrive at the worst case scenario, but neither does it estimate the average case nor can throughput
degradation be derived from it. Let a path Pnx,ny from nx to ny be a sequence of channels ci ∈ C, see
Definition 3.2, connecting a sequence of nodes (nx,v1, . . . ,vh−1,ny), with vi ∈ N and h≥ 1. The (nx,ny)-
vertex cut κ(G;nx,ny) for any non-adjacent pair (nx,ny) of nodes in N is equal to the maximum number
of pairwise internally vertex-disjoint paths from nx to ny. For example, the (n1,n4)-vertex cut of the
graph shown in Figure 3.2a is two, since only two vertex-disjoint paths exist, i.e., via n5 or via n2 and n3,
respectively. Similarly, the (nx,ny)-edge cut λ (G;nx,ny) is equal to the maximum number of pairwise
edge-disjoint paths from nx to ny, however without the non-adjacency requirement. Hence, κ(G;nx,ny)

or λ (G;nx,ny) count the minimum number of nodes or channels, respectively, which have to be removed
to disconnect both nodes. The vertex-connectivity and edge-connectivity of I can be derived from the
vertex/edge cuts by determining the minimum among all cuts:

Definition 3.9 (Connectivity and Edge-Connectivity). The (vertex-)connectivity κ(G) of an interconnec-

tion network I = G(N,C) is defined by the smallest number of (nx,ny)-vertex cuts

κ(G) = min{κ(G;nx,ny) | ∀nx,ny ∈ N∧ (nx,ny) ̸∈C}

and its edge-connectivity λ (G) is defined by

λ (G) = min{λ (G;nx,ny) | ∀nx,ny ∈ N}

Whitney’s inequality states that κ(G)≤ λ (G) for any graph [Xu10, Theorem 1.5.2]. Unless mentioned
otherwise, for this metric the interconnection network I is extended to terminal graphs G(N,C,T ),
where N \T = S represents the set of switches in I and T represents the set of terminal nodes in I. The
connectivity analysis is performed on the subgraph G(S,C∗), or otherwise κ(G) and λ (G) would always
be equal to one for these types of connected graphs.

Another important network metric is the observed end-to-end latency. However, this latency varies not
only depending on the used routing function, but also depending on the current network load [San+02].
To reduce the degrees of freedom, routing functions are compared by the ideal latency while ignoring
any background traffic. This ideal latency can be derived directly from the hop count, or path length
respectively, for each routing.

Definition 3.10 (Hop Count). Assuming a given interconnection network I and routing function R, then

the routing-based hop count hR for a path between nx and ny is the cardinality of the path sequence

induced by the routing function:

hR(Pnx,ny) :=
⏐⏐{(nx, ·)  

=:c1

,R(c1,ny)  
=:c2

, . . . ,R(ci,ny)  
=:ci+1

, . . . ,(·,ny)  
=:ch

}
⏐⏐

which is therefore always hR(Pnx,ny)≥ h(sPnx,ny) for any pair of nodes.
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While hop count accurately quantifies the peak observable latency for communication peers, it cannot
be used for more complex communication patterns, such as all-to-all, bit-reversal, or hot-spot traffic
patterns [Fli+12]. Both, the network topology and used routing algorithm, heavily influence the processing
time of message bursts, e.g., the send-deterministic communication patterns found in HPC applica-
tions [CGS10]. Hence, analyzing the network throughput, see Definition 3.11, provides an instrument for
qualitative and quantitative assertions of topology and routing combinations in later chapters.

Definition 3.11 (Network Throughput). Let ts and te be the times of injection of the first packet into

the network and consumption the last packet belonging to a message burst M, respectively, then the

routing-depended network throughput is

throughput :=
∑

m∈M
sizeof(m)

te− ts

the sum of messages sizes in the burst divided by the runtime.

When the exact communication pattern is unknown, then another, more abstract method for routing
comparisons relies on counting the number of paths passing through a network node, or channel, respec-
tively. The edge forwarding index of individual ports, see Definition 3.12, or the network itself, estimates a
theoretical upper bound for the worst-case congestion observable for any communication pattern [Chu+87;
HMS89]. Therefore, the objective of all traffic-oblivious routing functions should be to minimize the
network’s forwarding index and balance the edge forwarding indices of all ports.

Definition 3.12 (Edge Forwarding Index). Let I = G(N,C) be the interconnection network and let

R : C×N→C be the routing function that configures the forwarding tables, then the edge forwarding
index γ of a channel c ∈C is the sum of the routes being forwarded via this channel, i.e.,

γR(c) :=
⏐⏐{Pnx,ny | nx,ny ∈ N∧R(·,ny) = c ∈ Pnx,ny}

⏐⏐
and accordingly, the edge forwarding index of the network is defined by γ(I,R) := max

c ∈C
γR(c).

The above introduced metrics, and derivates thereof, will be used for meaningful comparisons in
Chapters 4 – 6. Other metrics might provide similar insight with respect to the quality of routing functions,
but are beyond the scope of this thesis.

3.2 Common Network Topologies and Production HPC Systems

The most common topologies used to connect the compute nodes in modern large-scale supercomputers are
based on fat-trees (Section 3.2.2), or higher-dimensional tori (Section 3.2.1). A few examples are the fat-
tree used by the No. 1 supercomputer of the TOP500 list [Str+16] of November 2016. This 40,960-node
system, called Sunway TaihuLight, is located at the National Research Center of Parallel Computer
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Figure 3.3: Example visualization of a 3-dimensional mesh (3.3a) and torus (3.3b) topology
without terminals

Engineering & Technology (NRCPC), China [Don16]. Furthermore, the Oak Ridge National Labora-
tory (ORNL), USA, is planing the dual-rail fat-tree based Summit HPC system [Oak14]. Last but not
least, the K computer at the RIKEN research institution in Kobe, Japan, utilizes a 6-dimensional torus
connecting 82,944 compute nodes [Ino10]. However, the TOP500 list also includes other emerging
topologies, such as dragonfly-based networks deployed by Cray [Faa+12]. This section provides an
overview of common HPC interconnection topologies which will be used in later chapters to compare
existing and new routing algorithms.

3.2.1 Meshes and Tori

Meshes are primarily utilized to build Network-on-Chip architectures (NoC) [Pal+06; Man+11; Sod+16],
while tori have been used to connect IBM Blue Gene systems [Adi+05; Che+12] over the last years.
A mesh network mesh(d1, . . . ,dn), with di ≥ di+1 for i = 1, . . . ,n, of dimension n is defined as an
n-dimensional matrix, with each switch having at most 2 ·n adjacent switches, i.e., two switches in each
dimension [WC04]. Figure 3.3a illustrates a 3-dimensional mesh with d1 = 3 and d2 = d3 = 2. The set of
adjacent switches NM

i for switch si with dimension indices i = (i1, . . . , in) is given by

NM
i (si) =

{
s j− ∈ S | j− = (i1, . . . , ik−1, . . . , in) with ik−1≥ 1 ∀k = 1, . . . ,n

}
∪{

s j+ ∈ S | j+ = (i1, . . . , ik +1, . . . , in) with ik +1≤ dk ∀k = 1, . . . ,n
}

(3.1)

Similarly, an n-dimensional torus(d1, . . . ,dn), as shown in Figure 3.3b, is defined as an n-dimensional
matrix, where each switch has exactly 2 ·n neighbors. For tori the boundary constraints are removed and
switches are connected in a circular manner and the set of adjacent switches NT

i is defined as

NT
i (si) =

{
s j− ,s j+ ∈ S | j− = (i1, . . . , ik−1 mod dk, . . . , in)

and j+ = (i1, . . . , ik +1 mod dk, . . . , in) ∀k = 1, . . . ,n
}

(3.2)
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(b) XGFT(2;2,2;1,2) with 12 terminal nodes

Figure 3.4: Example visualization of a k-ary n-tree topology (3.4a) and an extended generalized
fat-tree topology (3.4b)

The set of terminals T is equally distributed over the switch set S. Therefore, each switch has either
⌊ |T |
|S|
⌋

or
⌈ |T |
|S|
⌉

attached terminals. Unless mentioned otherwise, the terminal distribution of T is performed
similarly for all topologies explained in Sections 3.2.1 – 3.2.4.

3.2.2 Fat-Trees and eXtended Generalized Fat-Trees

The k-ary n-trees [PV97] are a special form of the fat-tree networks. The parameters k and n define
the number of child nodes and the height of the tree, respectively. One characteristic of k-ary n-trees
is the number of switches per level, which is equal to kn−1, and therefore constant and independent
of the specific level of the tree. Assuming, each switch s ∈ S is associated with a unique identifier
(ω1, . . . ,ωn−1, l), with ωi ∈ {1, . . . ,k} ∀i and level l ∈ {0, . . . ,n− 1}, then there exists a connection
between switch si = (ω1, . . . ,ωn−1, l) and s∗i = (ω∗1 , . . . ,ω

∗
n−1, l +1) if and only if

∀i,1≤ i≤ n−2, i ̸= l : ωi = ω
∗
i (3.3)

The switches with level = 0 are root switches of the k-ary n-tree. One advantage of the k-ary n-trees is the
theoretical full-bisection bandwidth between all nodes in the network.

The most generic and variable form of fat-trees are the extended generalized fat-trees (XGFT) [Öhr+95].
The advantage of an XGFT network is the ability to scale the network size depending on the needs, either
with focus on high bisection bandwidth or with focus on reducing the costs for switches and links in the
higher levels of the tree. The informal and recursive definition of XGFT(h+1,m1, . . . ,mh+1,ω1, . . . ,ωh+1)

with height h+ 1 is the composition of mh copies of the subtree XGFT(h,m1, . . . ,mh,ω1, . . . ,ωh) and
ω1 · . . . ·ωh+1 new root nodes. The original root nodes of these subtrees are then connected to the new
root nodes in level h+1 to form the full XGFT. Refer to Öhring et al. [Öhr+95] for the formal definition
of the extended generalized fat-trees. Figure 3.4 shows the layout of a k-ary n-tree and XGFT topology.

The terminal set T of the network I is evenly distributed among the switches of the lowest level of the
tree, i.e., l = n−1 for k-ary n-trees and h = 0 for XGFTs, respectively.
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Figure 3.5: Example visualization of a Kautz graph (3.5a) and a dragonfly topology (3.5b)

3.2.3 Kautz Graph

A Kautz(d,k) graph [LLS04] is a directed graph, where each node has d outgoing edges. Non-terminal
nodes s ∈ S of Kautz(d,k) are associated with a Kautz string α as follows

α ∈
{

a1a2 . . .ak | ai ∈ {0, . . . ,d} for 1≤ i≤ k∧ai ̸= ai+1 for 1≤ i < k
}

(3.4)

A switch sα has an outgoing edge to an adjacent switch sβ if and only if

β = a2 . . .akb with b ∈ {0, . . . ,d}∧b ̸= ak (3.5)

The advantages of a Kautz graph are the small diameter and high fault tolerance derived from the degree
of d, i.e., two desired properties for HPC interconnects. In case of an undirected Kautz graph, i.e., while
using full-duplex links in an interconnection network (see Figure 3.5a for an example), the connectivity
is 2 ·d as shown in Table 3.1. For the remainder of this thesis, the assumption is that full-duplex links are
connecting the switches in a Kautz graph. Terminals are connected in the same manner as explained for
meshes in Section 3.2.1.

3.2.4 Dragonfly Topologies

Kim et al. [Kim+08] introduced the dragonfly network topology. The design goals are scalability, low
diameter for low latency, and reduced cost for the network, which can be accomplished by a hierarchical
topology design. A set of switches is combined into a group to build a virtual high-radix switch. The
groups are then connected among each other to create the entire network. For scalability and variability
reasons both the intra-group network topology and the inter-group network topology are not predefined.
The dragonfly(a, p,h,g) network is defined by the number of switches a in each group, the number
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Table 3.1: Vertex-connectivity for the investigated network topologies of Sections 3.2.1 – 3.2.4
(except for random and Cascade)

Interconnect Topology Vertex-Connectivity Reference

Mesh(d1, . . . ,dn) n [RR10]
Torus(d1, . . . ,dn) 2 ·n [Öhr+95]
k-ary n-tree k [Öhr+95]
XGFT(h,m1, . . . ,ω1, . . .) ω1 [Öhr+95]
Kautz(d,k) as undirected graph 2 ·d [HL08, p. 118]
Dragonfly(a, p,h,g) with 1D flattened butterfly a+h−1 [Kim+08]

of inter-group links h per switch, and the number of groups g. The parameter p specifies the number
of terminals that are connected to each switch. In the following, 1-dimensional flattened butterfly
topologies (i.e., a complete graph) are assumed for the intra-group connectivity as well as for the inter-
group connectivity [AK11, pp. 34-37]. Therefore, the number of groups is limited to a ·h+1 and the
network diameter is five when terminal-to-switch connections are included, otherwise three. For instance,
Figure 3.5b illustrates a switch-only dragonfly topology with five groups, a = 4 switches, and h = 2
inter-group links per switch.

Another form of dragonfly topologies, which refrain from using 1-dimensional flattened butterflies, are
the Aries-based Cascade networks designed by Cray, Inc. [Faa+12]. Instead of using a complete graph to
connect the switches within each group, Cascade arranges these Aries switches in a 16×6 mesh, i.e., the
parameter a = 96 is preset for Cascade networks. Switches in this mesh have an all-to-all connectivity
along the x-axis, as well as the y-axis, resulting in 20 intra-group links per switch. Furthermore, each
switch hosts p = 4 terminals. The maximum number of inter-group links per switch is 10, allowing a
parameter h of up to 960. Since groups are connected by bundles of four links in an all-to-all manner, the
Cascade topology can theoretically scale to a total of 241 groups or 92,544 compute nodes, respectively.

Dragonfly networks are intended to be used with adaptive routing, but a load-balanced and deadlock-free
shortest-path routing helps to avoid unnecessary non-minimal adaptive routing decisions. Hence, the
investigation and comparison of different static routings for dragonflies is valuable.

With respect to the previously defined connectivity metric for interconnection networks, see Sec-
tion 3.1.3, Table 3.1 summarizes the vertex-connectivity of the previous outlined topologies. Jellyfish
topologies (cf. Section 3.2.5) and Cascade topologies are omitted in consequence of their complex
topology structures. However, both the (vertex-)connectivity and edge-connectivity can be computed
using Menger’s Theorem [Xu10, pp. 30-31], if required. Increasing the vertex-connectivity of an HPC
interconnection network for supercomputers is rather costly, e.g., by applying the dual-rail approach and
connecting the terminals to both network planes [Wol+17]. The TSUBAME2.0 supercomputer follows
this approach, see next Section 3.2.6. However, assuming high-radix switches with empty ports, then
increasing the edge-connectivity of the network via the usage of a link redundancy rC′ > 1 is less expensive.
Hence, network resiliency as well as available network bandwidth improves.
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3.2.5 Random Topologies

Random and pseudo-random topologies [Koi+03; Koi+12], also called Jellyfish topologies [Sin+12],
have been proposed for data centers as well as for HPC interconnects. The construction rule used in this
thesis for a random topology is to equally distribute the terminals over the switch set S and create a cyclic
graph for S, to ensure initial connectivity. Afterwards, additional links, up to a specified maximum, are
distributed by randomly selecting two switches and connecting them. If either of both switches does not
have a free port available, then the pair is discarded and a new pair is selected.

3.2.6 Real-world HPC Systems

Alongside the theoretical network topologies depicted in the previous section, this thesis focuses on a
number of real-world supercomputers and their interconnects:

• Deimos, formerly operated by the Technische Universität Dresden (TU Dresden), Germany,

• A successor of the Deimos HPC system, called Taurus, and

• The TSUBAME2.0/2.5 supercomputer operated by the Tokyo Institute of Technology, Japan.

These HPC systems will be analyzed with respect to their failure statistics, network/routing resiliency, and
utilization during production. Subsequent network/routing suggestions and enhancement developed in the
following two chapters are demonstrated on these systems.

The first HPC system, called Deimos [Juc08], was in operation from March 2007 to April 2012 at
the Centre for Information Services and High Performance Computing, TU Dresden. The 726 compute
nodes of Deimos hosted up to four AMD Opteron X85 dual-core CPUs and up to 32 GiByte of main
memory, depending on the configuration. These compute nodes were connected to the InfiniBand fabric
through a host channel adapter (HCA; i.e., InfiniBand’s version of a network interface card) operating
with single data rate (SDR) [Inf12]. The SDR IB fabric consisted of three 288-port director-class switches
which have been connected in series, via 30 links per pair of director switches to be precise. Hence,
the two outer director switches had 258 links to attach compute nodes, while the middle director switch
only hosted 228 nodes. These switches themselves are internally constructed as 24-ary 2-trees using
24-port switch building blocks, resulting in a total of 108 IB switches and 1,653 IB links in Deimos. This
three-island topology, see Figure 3.6a, was originally routed by the MinHop algorithm and towards the
end of its lifetime routed by (DF-)SSSP, see Section 3.3.1 and Section 3.3.8, respectively.

In September 2010, the Tokyo Institute of Technology deployed the TSUBAME2.0 system [GSI12].
Its compute nodes are partitioned into three types, i.e., thin nodes, medium nodes, and fat nodes. Thin
nodes host two hexa-core CPUs, as well as three GPUs, while the medium and fat nodes are designed
as quad-socket plus single GPU with a main memory capacity of up to half a terabyte. All 1,408 thin
nodes are connected to two separate InfiniBand fabrics through two QDR HCAs to facilitate the increased
communication demand of the dense compute nodes. The first rail, or network plane, additionally
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(a) Three-island SDR fabric of the
Deimos HPC system

(b) Full-bisection QDR fat-tree of
TSUBAME2 (1st rail)

(c) Multi-island QDR/FDR fabric of
the Taurus supercomputer

Figure 3.6: Topology configurations of three real-world supercomputers; Colors indicate the
utilized IB link speed: blue = SDR, green = QDR, yellow = FDR

includes connections to the medium and fat nodes, as well as supplementary I/O and administration
nodes. Therefore, the total node count attached to the 1st rail is 1,555, as visualized in Figure 3.6b. Both
fabrics, together consist of 501 36-port switches and 7,005 links, utilize QDR IB network components
and assemble each a full-bisection bandwidth fat-tree topology. Originally, Up*/Down* routing has been
used on both rail of TSUBAME2.0, which has been changed to fat-tree routing later, see Sections 3.3.4
and 3.3.5. In 2013, the petascale TSUBAME2.0 HPC system was upgraded to the newest GPU architecture
and renamed to TSUBAME2.5, however the InfiniBand fabrics have not been changed. Therefore, the
following chapters refer to this system as TSUBAME2.

The last multi-purpose petascale supercomputer listed above is a successor of Deimos at the TU Dresden,
called Taurus [ZIH13]. Taurus’ InfiniBand interconnection network is designed as a multi-island topology.
The initial configuration, deployed in July 2013, consisted of three islands and a total of 494 compute
nodes, and has been successively upgraded to the current size of six islands with 2,014 compute nodes
plus 51 additional supplementary nodes. One 180-node island, depicted by the green color in Figure 3.6c,
utilizes QDR IB technology, while the other islands use the FDR technology. Multiple smaller 2-level full-
bisection fat-trees are connected by a 216-port director-class switch, as shown in Figure 3.6c, resulting
in a total of 211 36-port switches and 4,580 links. The node configuration varies depending on the
purpose of the island, e.g., HPC nodes are equipped with two 12-core Intel Haswell CPUs, single HCA,
and up to 256 GiByte main memory. Throughput nodes utilize either Intel’s Westmere or Sandybridge
microarchitecture, and nodes with additional GPUs or I/O nodes are connected with two uplinks to the
fabric, respectively. The entire Taurus fabric was routed with the fat-tree algorithm before switching to
scheduling-aware routing, see Chapter 5, in August 2015.

Furthermore, additional failure analysis will be conducted in Chapter 4 for a cluster previously hosted
by the Los Alamos National Laboratory. The supercomputer is referred to by “Cluster 2” [SG10] in the
following. Unfortunately, very little configuration information has been published about this NUMA-based
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Algorithm 3.1: SSSP: Global balancing of routes with single-source shortest-path routing
Input: Network I = G(N,C), with node/switch set N = S∪T and C as the set of links
Result: Linear forwarding table (LFT) for each switch

1 foreach switch si ∈ S do
2 foreach compute node nd ∈ T , with (nd ,si) ∈C do
3 Execute Dijkstra’s algorithm with source node nd to calculate a spanning tree
4 Update channel weights (add number of new paths to each used channel)
5 Configure LFTs for all switches with si.LFT(nd )=port in reverse direction of the spanning tree

system, besides the system’s failure data. While the deployed topology used to connect the 49 nodes is
unknown, these 128-processor NUMA-nodes are attached to the network via 12 network interface cards
each. The Cluster 2 at Los Alamos National Laboratory was in operation from April 1997 to August 2005.

3.3 Selection of Routing Algorithms for HPC

The following state-of-the-art routing algorithms will be used throughout the thesis for comparisons or
will serve as the basis for further enhancements, as it is the case for the deadlock-free single-source
shortest-path routing in Section 5.2. All these routing algorithms are implemented in the open-source
subnet manager of InfiniBand (OpenSM) [Mel13]. The same holds for algorithms developed in this thesis,
see Chapter 5 and 6.

3.3.1 MinHop Routing

MinHop routing [HSL09; Mel13] simply calculates the shortest path for each source/destination pair and
assigns the liner forwarding tables (LFT) of the switches accordingly. Path balancing, for an optimized
network throughput, is only performed on a local level, i.e., multiple links between two switches are
balanced out. As long as the network is not bisected, MinHop will be able to find a shortest path for all
source/destination pairs, and therefore is able to route arbitrary topologies. However, MinHop ignores the
deadlock problem completely easily resulting in deadlocks on some topologies, which will be shown in
Section 4.4.2.

3.3.2 Single-Source Shortest-Path Routing (SSSP)

SSSP routing, developed by Hoefler et al. [HSL09], is based on Dijkstra’s algorithm which builds a
spanning tree rooted at one node in the network. Dijkstra’s algorithm is performed once for each node in
the network to generate a path for each node pair. To balance the paths globally, the SSSP Algorithm 3.1
changes the edge weights of the graph, which represents the network, after the spanning tree for a node
has been calculated. Compared to the MinHop and DOR routing algorithms (Section 3.3.3), SSSP is able
to utilize higher network throughput due to the local and global path balancing. However, just as MinHop,
SSSP routing neglects the routing-deadlock problem, and therefore has limited applicability for lossless
interconnection networks.
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3.3.3 Dimension Order Routing (DOR)

The dimension order routing [RR10, pp. 47-48], or XYZ-routing, is designed for mesh and hypercube
topologies and is able to create a deadlock-free forwarding tables in the absence of failures. DOR, as it is
implemented in the subnet manager, does not check the association of ports to dimensions and assumes a
correct cabling, meaning that ports of the x-dimension must have a smaller port number then ports of the
y-dimension. Therefore, it support every type of topology, but it can not guarantee deadlock-freedom for
topologies other than meshes and hypercubes. Multiple links between two switches are balanced similar
to MinHop.

3.3.4 Up*/Down* and Down*/Up* Routing

In the first step, Up*/Down* routing [Sch+91] tries to identify the root switches within the network. This
is done via a statistical method, i.e., for each switch the algorithm calculates a distance to the HCAs, i.e.,
the network interface cards of InfiniBand, and correlates this to the number of shortest paths which would
pass through this switch. An initial breadth-first search from the root switches is used to rank non-root
switches depending on their distance to the root. Up*/Down* routing starts afterwards a breadth-first
search (BFS) from each node in the system and updates the LFTs for all switches. While performing
the BFS, the algorithm must not change the direction from “down” to “up” in order to avoid potential
deadlocks. Limiting the number of links and directions potentially increases the congestion in the network.
The Down*/Up* implementation of the OpenSM is similar to its counterpart, but it supports tree networks
with HCAs connected to multiple levels of the tree.

3.3.5 Fat-Tree Routing

Zahavi et al. [Zah+10] introduced a routing algorithm, called fat-tree routing, which is designed for
symmetrical or almost symmetrical k-ary n-trees and optimizes the LFTs for shift all-to-all communication
patterns, see Section 4.3.3.2. Similar to Up*/Down*, deadlocks are prevented by placing restriction on
links. The optimization for the shift pattern is a result of the algorithms ability to monitor the port usage
for all downward ports at each switch. This static routing algorithm primarily consists of a main loop and
two recursive functions, which are summarized in Algorithm 3.2 – 3.4, to evenly distribute the paths onto
the available network links. Each switch is identified by a pair (h, i) depending on the level 0≤ h < n in
the tree and the index i within this level. Root switches are located at level 0. Algorithm 3.2 iterates over
all leaf switches or attached compute nodes, respectively. The compute node in each iteration represents
the destination for which the LFTs are updated. The tree-shaped network is then recursively traversed
along the least loaded links by ascending one step towards the root level, and then descending down
to all leaf switches which are part of the (sub-)tree, similar to a depth-first search, see Algorithm 3.3
and 3.4. Subsequently, the next step towards the root is performed. As well as Down*/Up*, fat-tree
routing supports HCAs in each level of the tree. Providing a list of the root switches in the network is
not necessary for Up*/Down*, Down*/Up*, and fat-tree. However, simulations conducted for Chapter 4
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Algorithm 3.2: Fat-Tree: Setting LFTs towards all compute nodes
Input: Network I = G(N,C), with node/switch set N = S∪T and links set C
Result: Linear forwarding table (LFT) for each switch

1 foreach leaf switch sh
i ∈ S do

2 foreach compute node n ∈ T , with (n,sh
i ) ∈C do

3 Obtain the LID of the compute node n
4 Set sh

i .LFT(LID)=port for the port connecting the compute node
5 Call assign-down-going-port-by-ascending() for switch sh

i

Algorithm 3.3: Fat-Tree: Assign-down-going-port-by-ascending
Input: Network I = G(N,C), current switch sh

i , destination LID
Result: Next switch sh−1

j towards root and modified LFT for sh−1
j

/* Traverse down to leafs of (sub-)tree below sh
i */

1 Call assign-up-going-port-by-descending() for sh
i

2 if h = 0 then return
/* Traverse least loaded path towards a root switch */

3 Find the least loaded port (sh−1
j ,sh

i ) ∈C for all switches at level h−1

4 Assign sh−1
j .LFT(LID) of the remote switch to that port

5 Increase port usage counter by one
6 Call assign-down-going-port-by-ascending() for sh−1

j

Algorithm 3.4: Fat-Tree: Assign-up-going-port-by-descending
Input: Network I = G(N,C), current switch sh

i , destination LID
Result: Modified LFTs for all sh+1

· attached to sh
i

/* Recursively decent the (sub-)tree towards leafs */
1 foreach switch sh+1

j ∈ S, with(sh+1
j ,sh

i ) ∈C do
2 Find the least loaded port between sh+1

j and sh
i

3 Assign sh+1
j .LFT(LID) to this port

4 Increase port usage counter by one
5 Call assign-up-going-port-by-descending() for sh+1

j
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Algorithm 3.5: LASH: Deadlock-free path calculation by layered shortest path routing
Input: Network I = G(N,C), number of supported virtual layers k
Result: Linear forwarding table (LFT) for each switch and deadlock-free path-to-virtual layer assignment

1 Uses generalized version of DOR routing, see Section 3.3.3, to calculate shortest-paths for networks I
2 Combine virtual channels into virtual layers
3 Distribute all node pairs into multiple groups, each deadlock-free (e.g., all paths towards one nd in a group)

/* Assign groups to virtual layers without closing a cycle in the CDG */
4 while unassigned group exists do
5 foreach i = 1, . . . ,k+1 do
6 Assign new group to CDG of virtual layer Li
7 if CDG of layer Li is cycle-free then
8 break
9 else

10 Remove group from CDG and virtual layer Li, respectively

11 if i == k+1 then
12 return false // no deadlock-free assignment possible

13 return true // all potential deadlocks removed

showed that it improves the resulting network throughput and especially the resilience of the routing
algorithms.

3.3.6 Layered Shortest Path Routing (LASH)

LASH and the following two routing algorithms are based on the method of splitting the physical link
into multiple virtual channels. As described by Dally et al. [DS87], virtual channels can be used to avoid
deadlocks by breaking the circular dependencies in the channel dependency graph. LASH was designed
to generate a deadlock-free routing for arbitrary topologies [Lys+06]. The idea is to combine virtual
channels into virtual layers and assign routes to the layers without closing a cycle in the corresponding
channel dependency graph, as described in Section 3.1.2. LASH calculates the shortest paths between
all switches, and tries to assign each path to the first virtual layer, as represented by Algorithm 3.5. If
this would close a cycle in the CDG, then LASH checks the next virtual layer until it finds a suitable one.
Since routes are calculated for switch pairs, all traffic between two switches can only utilize one single
path in the network.

3.3.7 Torus-2QoS Routing

Torus-2QoS [Mel13] enhances the concept of DOR routing while being resilient to network faults and
allowing deadlock-free routing on 2/3-dimensional meshes and tori networks. The dateline concept is
used to assign paths to different virtual channels based on whether the route crosses a dateline in the torus
or not. Torus-2QoS is able to reroute around a single link failure in each 1-dimensional ring of the torus by
using the opposite direction, but not able to reroute around multiple link failures in the same ring. Switch
failures are avoided by taking illegal dimension changes with regards to the DOR algorithm. Those illegal
turns are routed via a different virtual channel to avoid deadlocks. An advantage of Torus-2QoS compared
to LASH and DFSSSP is that a rerouting, due to link or switch failure, does not change the virtual lane
assignment for a given HCA pair and therefore decreases the overhead for connection management in the
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Algorithm 3.6: DFSSSP: Search cycles in the CDGs and remove potential deadlocks
Input: Network I = G(N,C), linear forwarding tables, number of supported virtual layers k
Result: Deadlock-free path-to-virtual layer assignment
/* Initialize first channel dependency graph */

1 foreach Path Pnx ,ny calculated by Algorithm 3.1 do
2 Update the CDG of virtual layer L1 with path Pnx ,ny

/* Search for cycles in the channel dependency graphs */
3 foreach i = 1, . . . ,k−1 do
4 repeat
5 Search for a cycle in the channel dependency graph of Li
6 if no cycle then
7 break
8 Identify weakest edge of the cycle
9 foreach Path Pnx ,ny inducing this weakest edge do

10 Remove path Pnx ,ny from the current virtual layer Li

11 Update CDG of virtual layer Li+1 with path Pnx ,ny

12 until no cycle found in the CDG of Li

13 Search for a cycle in the CDG of the last virtual layer Lk
14 if cycle found then
15 return false // no deadlock-free assignment possible
16 Balance paths on empty CDGs without additional cycle search
17 return true // all potential deadlocks removed

upper layers, e.g., in the Message Passing Interface (MPI) which is widely used across HPC applications.

3.3.8 Deadlock-Free SSSP Routing (DFSSSP)

Domke et al. [DHN11] combine the property of a globally balanced traffic of the SSSP routing with the
deadlock-freedom using virtual layers, see Definition 3.8. The core of the SSSP algorithm, i.e., using
Dijkstra’s algorithm and updating edge weights, stays the same as described in Section 3.3.2. Since
DFSSSP operates on HCA pairs instead of switch pairs, the amount of different paths is larger than for
LASH, which makes the iterative approach of LASH impossible. Therefore, DFSSSP assigns all paths to
the first layer and checks for cycles in the corresponding CDG afterwards. If a cycle is found, one edge in
the cycle will be chosen and all paths, which induced this edge, are moved into the next virtual layer. The
cycle search is repeated until the first layer is acyclic and the algorithm moves to the next layer. DFSSSP,
as shown in Algorithm 3.6, iterates over all virtual layers until each layer is represented by an acyclic
channel dependency graph.
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Similarly to other high-performance computing hardware, networks are not immune to failures. In this
chapter the failure rates of three supercomputers will be analyzed, see Section 4.1. The subsequent
Section 4.2 introduces the building blocks and metrics to construct and evaluate fail-in-place networks.
Based on these analyses and based on a designed InfiniBand network simulation framework, see Sec-
tion 4.3, a wide range of network simulations are performed. These simulations in Section 4.4 not only
compare the throughput of different topologies, but also analyze the failure resiliency of different routing
algorithms with their resulting throughput degradation. The results will be used to justify the consideration
of cost-efficient fail-in-place HPC networks, assuming the right combination of topology and routing
algorithm is deployed, instead of the state-of-the-art (deferred) maintenance model.

4.1 Failures Analysis for Real HPC Systems

The probability of network failures varies based on interconnect hardware and software, system size,
usage of the system, and age. According to available fault statistics, network failures constitute be-
tween 2% – 10% for the HPC systems at Los Alamos National Laboratory [SG10], over 20% for local area
networks (LANs) of Windows NT based computers [KKI99] and up to 40% for internet services [OGP03]
of the total number of failures. Wilson et al. [Wil10] showed a fairly constant failure rate of ≈7 unstable
links between switches per month and a total of ≈30 disabled network interface controllers (NIC) over
the operation period of 18 month for a Blue Gene/P system.

The distribution of network component failures for three production systems, analyzed in this section,
shows that network-related software errors are less common compared to other hardware errors, but the
actual distribution of switch failures, NIC/HCA failures and link failures varies heavily, see Table 4.1.
The first investigated HPC system, Deimos, in operation between March 2007 and April 2012 at TU
Dresden, is a 728-node cluster, introduced in Section 3.2.6, with 108 IB switches and 1,653 links. The
system’s failure data is not publicly available, but was made accessible by the administrators of Deimos.
The 49-node LANL Cluster 2 at Los Alamos National Laboratory was in operation from April 1997
to August 2005, and its failure statistics are available [Los14]. The same holds for the TSUBAME2
HPC system [Glo14]. Installed in September 2010, TSUBAME2 at Tokyo Institute of Technology uses a
dual-rail QDR IB network with 501 switches and 7,005 links to connect its 1,408 compute nodes via two
full-bisection bandwidth fat-trees. Further details about these systems are provided in Section 3.2.6.

Figure 4.1a shows the cumulative distribution function of hardware faults over the life span of all three
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Figure 4.1: Network-related hardware failures of three HPC systems

Table 4.1: Comparison of network-related hardware and software failures, MTBF/MTTR, and
annual failure rates for three production supercomputers

Fault Type Deimos LANL Cluster 2 TSUBAME2‡

Percentages of network-related failures

Software 13% 8% 1%
Hardware 87% 46% 99%
Unspecified 46%

Percentages for hardware only

NIC/HCA 59% 78% 1%
Link 27% 7% 93%
Switch 14% 15% 6%

Mean time between failure / mean time to repair

NIC/HCA X† / 10 min 10.2 d / 36 min X / 5 – 72 h
Link X / 24 – 48 h 97.2 d / 57.6 min X / 5 – 72 h
Switch X / 24 – 48 h 41.8 d / 77.2 min X / 5 – 72 h

Annual failure rate

NIC/HCA 1% X ≪ 1%
Link 0.2% X 0.9%*

Switch 1.5% X 1%

†Not enough data for accurate calculation.
‡Analysis limited to lifetime of TSUBAME2.0
*Excludes first month, i.e., failures sorted out during acceptance testing.
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systems. Fitting the Weibull distribution to the data results in the following shape parameters for the
different systems. For Deimos the shape parameter k is 0.76 and therefore the failure rate decreased over
time [Nel04, pp. 36-39,143]. The shape parameters for TSUBAME2, which is k = 1.07, and for the LANL
Cluster 2, k = 0.95, indicate a constant failure rate. While the constant failure rate applies to the LANL
cluster, it does not hold for TSUBAME2. The hardware faults of TSUBAME2, see Figure 4.1b, show the
expected bathtub curve for hardware reliability [VAK10, pp. 188-189].

Common practice in high-performance computing is to deactivate faulty hardware components and
replace them during the next maintenance, unless the fault would threaten the integrity of the whole
system, which may cause routing algorithms specifically designed for regular network topologies to fail.
A failing switch can degrade the regular topology into an irregular topology which cannot be routed by
a routing algorithm specifically designed for regular networks, even so the network is still physically
connected. As shown in Table 4.1 the percentage of switch failures, among hardware-related failures of
the network, ranges from 6% to 15% for the three systems. This covers issues of a faulty switch as well as
faulty ports. One deactivated port of a switch will degrade a regular network topology, but replacing a
whole switch for one broken port can be cost and time intensive.

For all network-related failures of the LANL Cluster 2 the calculated mean time between failure (MTBF)
is 100.3 h and a mean time to repair (MTTR) is 56.2 min. If broken down into MTBF and MTTR for each
network component, i.e., switch, link and network interface controller (NIC), then the numbers show that
the MTTR is the smallest for NICs (36 min), followed by links (57.6 min) and switches (77.2 min). The
MTBF for these components varies significantly. While, on average, every ten days one NIC experienced
a failure, switches were four times as stable, i.e., their MTBF is equal to 41.8 d. The most reliable network
components of LANL Cluster 2 were the links. Only 23 link failures within eight years of operation were
recorded, which results in a mean time between failure of more than three months.

The system administrators of Deimos and TSUBAME2 followed a different approach of repairing
faulty network components, so called partially deferred maintenance. While broken NICs (aka. HCAs
in InfiniBand) of Deimos were replaced within an average of 10 min by spare nodes, repairing links or
switches took between 24 h and 48 h. Faulty components of TSUBAME2 were disabled within minutes,
but for a switch port failure only the port and not the entire switch was disabled. Those disabled parts
were replaced within the range of 5 h to one business day, i.e., up to 72 h time to repair. An exception
were links and ports between root switches. Those are replaced in the next maintenance period, which is
scheduled twice a year.

Table 4.1 summarizes failure percentages, MTBF, MTTR, and annual failure rates of all systems. The
failure data of TSUBAME2 indicates an annual failure rate of ≈1% for InfiniBand links as well as 1% for
the used switches. Despite the previously mentioned varying failure rate for TSUBAME2’s InfiniBand
components, an assumed constant annual failure rate of 1% is a fair representative failure rate to simplify
further analysis. In the later sections, extrapolations of the fail-in-place behavior of the network will be
conducted. These extrapolations are based on an assumed system lifetime of eight years as well as based
on the previously described annual failure rates.
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4.2 Building Blocks for Fail-in-Place Networks

The fail-in-place property, in the context of interconnection networks, can be defined based on the
differentiation between “critical” and “non-critical” network component failures. A critical component
failure disconnects all paths between two hosts, whereas a non-critical failure only disconnects a subset
of the paths between two hosts. The network fail-in-place strategy, as introduced in Chapter 1, is to
repair critical failures only, but continue operation by bypassing non-critical failures. Hence, fail-in-place
networks are only viable if the number of critical failures and resulting unavailability of the HPC system
can be minimized, and additionally, the routing algorithm is able to circumvent non-critical failures.
Therefore, the following section will identify the needed hardware and software characteristics for such a
network.

4.2.1 Resilient Topologies

Theoretically, from the topology point of view, failures can be tolerated up to the point where a set of
critical failures disconnects the network physically. Whether non-critical failures can disconnect the
network through incomplete routing or not and their influence on the overall network throughput will
be subject of the following sections. A high path redundancy in the topology enhances the fail-in-place
characteristic of an interconnection network, as outlined in Section 3.1.3.

From the connectivity metric in Definition 3.9 it follows, that at least κ(G) switches or λ (G) links have
to fail at the same time to create a critical, topology-disconnecting failure for I = G(N,C). Depending
on the failures rates of these components, see Table 4.1, the likelihood of this event is slim assuming a
high base connectivity of the topology. Hence, some regular topologies are more suited than others with
respect to their usage for fail-in-place networks, compare to Table 3.1. If switching between topologies
is impossible or undesired, such as the renunciation of meshes for NoCs, then using redundancy rC′ is
an option to improve resiliency, essentially multiplying κ or λ by rC′ , respectively. The former can be
achieved by duplicating the network and connecting the terminal nodes to each network plane, similar to
the dual-rail approach followed by TSUBAME2, see Section 3.2.6. A less costly approach is the pure
increase of the edge-connectivity by using a link redundancy larger than one, see Definition 3.3. However,
this is only possible within the limits of the switch radix, e.g., current InfiniBand switches scale up to 36
ports, while Intel’s Omni-Path switches are available with a maximum radix of 48.

4.2.2 Resilient Routing Algorithms

Improving the topology resiliency alone does not necessarily affect the fail-in-place characteristics of the
network, i.e., when the routing algorithm cannot exploit the redundancy. Two classes of deterministic
routing algorithms are suitable to build fail-in-place interconnects:

• Fault-tolerant topology-aware routings, and

• Topology-agnostic routing algorithms.
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Theoretically, fault-tolerant topology-aware routings are able to compensate for minor faults within a reg-
ular topology, while the latter category is fault-tolerant by design due to their support for arbitrary/random
topologies.

In terms of resiliency, topology-agnostic algorithms are superior to topology-aware routing algorithms
when the network suffers from a high percentage of failures, as will be shown in Section 4.4.2. However,
techniques to avoid deadlocks in topology-agnostic algorithms can limit their applicability for large
networks, such as the 3-dimensional torus(7,7,7) studied in Section 4.4.3. Chapter 6 will take up this
deadlock problem again and present a potential solution. The InfiniBand subnet manger, called OpenSM,
currently implements nine deterministic routing algorithms, as listed in Section 3.3. Five of them, more
precisely DOR routing, Up*/Down* and Down*/Up* routing, fat-tree routing, and Torus-2QoS routing,
are representatives of the topology-aware algorithms. The remainder, namely MinHop routing, SSSP and
DFSSSP routing, and LASH routing, are topology-agnostic routing algorithms. While DOR theoretically
falls into the category of topology-aware routing algorithms, its implementation in OpenSM can be
considered topology-agnostic but it may not be deadlock-free for arbitrary topologies [RR10].

Deadlock-freedom of the routing algorithm is, besides latency, throughput and fault-tolerance, an
essential property to design fail-in-place networks. The simulations described in Section 4.4 reveal
that even simple communication patterns such as all-to-all can cause deadlocks in the network. Once a
deadlock is triggered the network either stalls globally or delays the execution if the interconnect possesses
mechanisms for deadlock resolution.

Two other critical aspects of routing algorithms for fail-in-place networks are the runtime of the routing
algorithm after a failure was discovered and the number of paths temporarily disconnected until the
rerouting completed. Both problems depend on the routing algorithms and will be investigated hereafter.

4.2.3 Resiliency Metrics

To evaluate a fail-in-place network with its combination of topology and routing, common metrics such as
bisection bandwidth cannot be applied directly, or analytical metrics such as the edge forwarding index
might be too imprecise. Other factors, such as zero-load latency [DT03, p. 20], are less likely to be
influenced by a non-critical failure since the high path redundancy of HPC networks usually prevents a
fault-induced increase of the path length, and are therefore beyond the scope of this thesis. Important
metrics are availability and throughput in view of the fact that non-critical failures occur, and these two
factors will be analyzed in the following sections.

4.2.3.1 Disconnected Paths before Rerouting

The runtime of the routing algorithm to compute a new network state depends on various factors, such as
topology, algorithm characteristics (e.g., topology-agnostic vs. topology-aware), and desired properties of
the result, e.g., balanced, deadlock-free, shortest-path, etc. Often these properties may prevent an effective
parallelization of the algorithm, as in case of deadlock-freedom for topology-agnostic routings which have

37



4 Fail-in-Place High-Performance Networks

to perform many acyclicity checks on large graphs [Bad99; Trä13]. The runtimes of state-of-the-art HPC
routing algorithms ranges from milliseconds for small networks to minutes for larger systems with more
than 4,096 terminals or HCAs, respectively [HSL09; DHN11; VSR15]. Until new LFTs are calculated
a subset of the network might be disconnected. One important question is the number of disconnected
paths after a link or switch has failed. Obviously, this number is constant and equal to |N| − 1 for
terminal-to-switch links. Each disconnected path potentially causes application crashes in an HPC system,
if upper layer protocols fail to configure appropriate timeouts and/or retry counts.

First, the problem is analyzed analytically using the edge-forwarding indices γR(c), introduced in
Definition 3.12, for the links in I, i.e., the number of routes passing through link c ∈ C. To simplify
matters, assume the routing function R : C×T →C for a terminal graph G(N,C,T ), representing the
interconnection network I, maps the current channel cq of a path towards nd ∈ T to the next channel cq+1

for all switches s ∈ S. Let R∗ be perfectly balanced, then the edge-forwarding index of I using this routing
function is assumed to be minimal:

γ(I) := γ(I,R∗) = min
R

γ(I,R) = min
R

max
c∈C

γR(c) (4.1)

see [Chu+87; HS97] for further reference. Further, let γ(c) be defined as γ(c) := γR∗(c) for a fixed
but arbitrary network I and perfectly balanced routing R∗. Removing a (faulty) channel c f from I will
disconnect a path Pnx,ny , predetermined by R∗, if and only if c f ∈ Pnx,ny . A disconnected path will not
contribute to any edge- or vertex-forwarding index in I. Obviously, the worst case scenario is loosing the
link carrying the most paths, i.e., the link with γ(I,R) for a given routing, and the best case is loosing c f

with γR(c f ) = 0. However, the latter case also denotes an imbalanced, and therefore inadequate, routing
algorithm. Assuming the set of lost or disconnected links, before a new network state is calculated, is
given by CL := {c f | c f ∈C ∧ c fi ̸= c f j for i ̸= j}, then the average expected number of disconnected
routes for a single failure CL = {c f } can be calculated analytically:

Proposition 4.1 (Disconnected Paths by One Fault). The expected number of disconnected routes E (CL)

due to one channel failure, given by the set CL = {c f }, is

E ({c f }) =
1
|C|
·∑

c∈C
γ(c)

with 0 < E (CL)≤ γ(I)≤ γ(I,R) for any routing function R.

Unfortunately, for |CL|> 1 the number of disconnected paths E (CL) has to be calculated as a conditional
expected value, since some routes through c fi might have already been disconnected by removing another
channel c f j . Hence, E (CL) cannot be calculated exactly without knowing the exact graph, routing
algorithm and set CL. Thus, the following empirical analysis for a 10-ary 3-tree topology will show that
this number can easily be approximated. For each number of link and switch faults, 100 topologies
are created with randomly injected faults (seed ∈ {1, . . . ,100}), and statistics of the number of lost
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Figure 4.2: Whisker plot for lost connections while removing links (4.2a) or switches (4.2b)
from a 10-ary 3-tree without performing a rerouting; Topology contains 1,024
terminals and 2,000 links connecting the switches

connections are collected. To simplify matters, a simulated link failure consists of both directed channels
within the link. The result, visualized by the whisker plots in Figure 4.2, shows that the measured extremes
depend on the used routing algorithm, i.e., DFSSSP, fat-tree, and Up*/Down* routing. The whiskers
indicate the lower and upper extremes, while each box shows the first/third quartiles and median across
all 100 simulations for one specific number of faults. Figure 4.2b on the right demonstrate the percentage
of disconnected paths when switches are removed, while the left Figure 4.2a show the same value for
faulty switch-to-switch links. The two extrapolation curves in Figure 4.2 are based on the equation given
in Proposition 4.2 showing the possibility to approximate E (CL).

Proposition 4.2 (Disconnected Paths by Multiple Faults). For a small number of faults and assuming

a large and arbitrary (but connected) network topology I, then the expected number of disconnected

routes E (CL) for |CL|=: n > 1 can be modeled by the following approximation

E (CL = {c f1 , . . . ,c fn})≈
n
|C|
·∑

c∈C
γ(c)

Moreover, assuming a large number |CL| ≫ 1 of simultaneous failures, all arising before a new network
state is calculated, indicates a more severe problem with the supercomputer requiring administrative
actions, which is beyond the scope of fail-in-place network operation policies. Knowing the runtime of
the routing algorithm and the estimated temporary disconnected paths due to a network failure allows
to optimize predictions for system availability. Additionally, upper layer protocols can be tuned to set
appropriate timeouts and retry counters, in order to mask the temporary disconnect.

4.2.3.2 Throughput Degradation Measurement for Reliability Analysis

Evaluating a network can be accomplished with multiple techniques and metrics. System designers often
use analytical metrics, such as bisection bandwidth, which is simple to analyze for some regular topologies,

39



4 Fail-in-Place High-Performance Networks

but NP-complete in the general case, e.g., when failures deform the network. During system operation,
metrics based on actual benchmarks are accurate in terms of reflection of the real world, but require
exclusive system access to remove the background traffic in the network. Hence, the system’s availability
is reduced while performing these measurements. Therefore, a modeling technique is preferred, because it
can be performed during the design phase of an HPC system and in parallel to the normal operation of the
system, and parameters, such as topology, failure, routing, and communication pattern, can be modified.

Additionally, for the fail-in-place network design, one option is to rely on degradation modeling and
the definition of a throughput threshold as a critical value. Modeling degradation over time in conjunction
with a critical value, which defines the point of an unacceptable system state, are common in reliability
analysis [Cro+14]. This thesis contributes a simulator to measure degradation and to highlight how
communication throughput behaves for increasing numbers of failed network components. The simulator
determines the throughput according to Definition 3.11 for two distinct network configuration, and the
delta between the network throughputs quantifies the degradation. Section 4.4.2 introduces a statistical
method based on the throughput degradation and linear regression to accurately compare the fail-in-place
characteristics of different routing algorithms.

4.3 Interconnect Simulation Framework

Testing the hypothesis, whether or not fail-in-place networks could be a viable solution for current and
future data centers and supercomputers, requires further analysis. Unfortunately, neither an analytical
solution, nor the measurement approach are practical. The former fails due to the highly complex
interaction between (faulty) topology, network technology, routing algorithm, and communication pattern,
while the latter is too costly to construct a variety of large-scale networks, benchmarks these, and
derive generally valid statements. Therefore, this thesis conducts wide-ranging network simulations as a
more practical solution. The following sections illustrate how to construct this interconnect simulation
framework.

4.3.1 Toolchain Overview

The first step in the simulation toolchain for network reliability modeling is the generation of the network,
including network faults, see Figure 4.3. Either a regular topology, compare to Section 4.2.1, is created
or an existing topology file is loaded, such as one of the production HPC systems from Section 3.2.6.
The topology generator injects a number of user-defined and non-bisecting, i.e., non-critical, network
component failures into the topology. These faulty components are uniform randomly selected using a
seeded pseudo-random number generator to ensure repeatability. The user can also specify a fixed failure
pattern reflecting an actual system state, e.g., a certain switch-to-link failure ratio or failures within a
specific topology hierarchy level. Besides the actual network, the generator exports configuration files for
the routing algorithms, such as the list of root switches for Up*/Down* routing.
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Figure 4.3: Toolchain to evaluate the network throughput of a fail-in-place network

The InfiniBand network simulator, called ibsim [Mel13], in conjunction with OpenSM is used to
configure the linear forwarding tables (LFTs) of all switches with the selected routing algorithm. In an
intermediate step, the LFTs can be replaced to simulate a routing algorithm not included in OpenSM, such
as the routing algorithm for the 6-dimensional Tofu network of the K computer [Aji+12a]. The converter
engine transforms the network and routing information into an OMNeT++ readable format.

A connectivity check is performed based on the calculated linear forwarding tables. Incomplete LFTs
are considered a failed routing, even if the routing within OpenSM did not report any problems while
generating the LFTs. The last step is the network throughput simulation with OMNeT++ [VH08] and the
InfiniBand model [GR11].

OMNeT++ is one of the widely used discrete event simulation environments in the academic field. The
InfiniBand model provides flit-level simulations of high detail and accuracy. The details of this existing
IB model and configured parameters for subsequent simulations are briefly explained in Section 4.3.2.
Furthermore, this thesis contributes additional extensions to the model, see Sections 4.3.3 and 4.3.4, which
are required to execute the throughput degradation measurements for fail-in-place networks.

4.3.2 InfiniBand Model in OMNeT++

The simulated network itself consists of InfiniBand HCAs and switches and operates on the physical
layer with an 8 bit/10 bit symbol encoding. Hence, this model theoretically supports SDR, DDR, QDR,
as well as FDR-10 data rates [Inf12]. For later simulations, the network components are configured for
4X QDR (32 Gbit/s data transfer rate), while the HCAs are plugged into 8X PCIe 2.0 slots, offering a
theoretical peak transfer rates of 5 GT/s and a throughput of 32 Gbit/s. The PCI bus has a simulated
“hiccup” every 0.1 µs which lasts for 0.01 µs, both of which are configurable parameters of the IB
model and which have been tuned to mirror the observed real world behavior on a small testbed, i.e., a
slightly reduced consumption bandwidth at the destination nodes. This simulation environment further
assumes that all links in the network are 7 m copper cables, which is the longest passive copper cable
for 40 Gbit/s QDR offered by Mellanox. Therefore, the links cause a propagation delay of 43 ns for each
flit, which is derived from the 6.1 ns/m delay mentioned in [BG07]. Switches are defined as a group
of 36 ports connected via a crossbar which applies cut-through switching. Each switch input buffer
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can hold 128 flits per virtual lane, i.e., a total of 1,024 flits or 65,536 bytes, respectively. In contrast,
switch output buffers can only store 78 flits. Messages are divided into chunks of message transfer units
with a configured MTU size of 2,048 byte. Additionally, message header and footer, i.e., the local route
header (8 byte), base transport header (12 byte), and in/-variant CRC (4 byte and 2 byte), are added which
adds up to 2,074 byte for packets. The virtual lane arbitration unit within switches is configured for
fair-share among all virtual lanes. All these parameters have been verified with a small network testbed,
where it is possible to calculate the expected network throughput and consumption rate at the sinks.
Furthermore, this testbed, consisting of 18 HCAs and one IB switch, is used to benchmark the InfiniBand
fabric and PCI subsystem, and tune the simulation parameters accordingly.

4.3.3 Traffic Injection

The IB model uses unreliable connection (UC) for the transport mechanism to allow arbitrary message
sizes and to omit the setup of queue pairs in the simulation. Hence, while using UC, the destination
will not send an acknowledge message back to the source. However, since the model does not drop
packets due to timeout or congestion, its throughput characteristics essentially reflects the more common
reliable connection (RC) communication used in HPC interconnects. Two different traffic injection
patterns, i.e., uniform random injection and an all-to-all exchange pattern, will be applied to estimate
the throughput degradation of the networks, as introduced in Section 4.2.3. These patterns should show
an application-agnostic approximation of the maximal achievable throughput for each combination of
topology and routing.

4.3.3.1 Uniform Random Injection

The uniform random injection pattern is distinguished by the fact that all terminal nodes perform the
following steps: (1) the terminal randomly selects the (next) destination, according to a uniform random
distribution, (2) the terminal sends a message to this destination, and then goes back to step (1). This
injection pattern should show the maximum throughput of the network which is measured at the sinks,
i.e., the consumption bandwidth is extracted at each sink after the simulation reaches the steady state, see
Section 4.3.4.1 for further details, or reaches a predefined wall-time limit. A seeded Mersenne twister
algorithm [MN98], supplied by the OMNeT++ framework, provides the randomness of destinations and
repeatability across similar network simulations where the only difference is the used routing algorithm.
The message size for this type of traffic injection is 1 MTU for the simulations conducted in Section 4.4.2.

4.3.3.2 Exchange Pattern of varying Shift Distances

The all-to-all communication pattern used in various MPI-parallelized applications [Leó+16] is another
pattern which strains the interconnect and required high network throughput. This pattern is distinguished
by the fact that each terminal node sends a fixed amount of bytes to every other node in the network. One
option to implement the all-to-all communication is an algorithm which uses the exchange pattern of
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varying shift distances. This algorithm determines the distances between all terminals for the network.
Based on this distance matrix each terminal sends first to the closest neighbors with a shift of s⃗ = 1
and s⃗ = −1 and then in-/decrements the shift distance s⃗ up to ± |T |2 for the even case [Zah+10]. For
an odd number of terminals attached to the topology, each terminal increments s⃗ up to ± |T |−1

2 and
subsequently performs the last shift of s⃗ = |T |+1

2 . This exchange pattern is similar to the commonly used
linear exchange pattern [Pri+13a], except for the fact that it tries to optimize the traffic for full-duplex
links. The assumption is that the reverse path uses the same links, and therefore incoming and outgoing
messages between node pairs will not influence each others transfer rate. For the smaller simulation
with approximately 256 terminals the message size is set to 10 MTUs and for larger networks reduced
to 1 MTU to limit the simulation time. The network throughput for the exchange pattern is calculated
based on a simplified version of Definition 3.11. Therefore, with the number of terminals, constant
message size, and runtime, the throughput for the exchange pattern is given by the equation:

throughput :=
#terminals · (#terminals−1) ·message size

runtime of exchange pattern
(4.2)

4.3.4 Simulator Improvements

Simulations with the default IB model run either for a configured time or until the user terminates it, even
so only flow control messages are send between ports. Therefore, neither does the simulator detect the
completion of the simulated traffic pattern nor does it detect deadlocks if the routing algorithm is not able
to create deadlock-free routing tables for the topology.

4.3.4.1 Steady State Simulation

In order to limit simulation time, the flit-level simulator detects the steady state of a simulation via a
bandwidth controller module, which is used for traffic patterns with an infinite number of flits, such as
explained in Section 4.3.3.1. If the average bandwidth (of all messages up to the “current” point in time)
is within a 99% confidence interval, then the sink will send an event to the global bandwidth controller
and report that the attached HCA is in a steady state. The global controller waits until at least 99% of all
HCAs reported their steady state and then stops the simulation, assuming the network is in a steady state.

4.3.4.2 Send/Receive Controller

For InfiniBand simulations with finite traffic, such as the exchange pattern, the bandwidth controller is not
applicable. Therefore, direct messages between the HCA generator/sink modules and a global send/receive
controller are used. Each time the HCA creates a new message, it will determine the destination node,
and send an event to the global controller. Sinks act similar and send an event each time the last flit
of an IB message is received. The generators send a second type of event when they have created the
last message. The global send/receive controller keeps track of all scheduled messages and stops the
simulation when the last flit of a traffic pattern arrives at its destination.
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4.3.4.3 Deadlock Controller

Deadlock detection is a complicated field and an accurate algorithm would require the tracking of actual
flits and the available buffer spaces. Hence, to ensure relatively fast executions, the IB simulator uses
a low-overhead distributed deadlock detection which is similar to the hierarchical deadlock detection
protocol proposed by Ho and Ramamoorthy [HR82]. A local deadlock controller will observe the state
of each port within a switch and reports periodically the state to a global deadlock controller. The three
states of the switch are: idle, sending, and blocked (i.e., flits are waiting in the input buffers, but there is
no free buffer space in the designated output port). The global deadlock controller will stop the simulation
if and only if the state for each switch in the network is either blocked or idle.

4.4 Simulation Results

The previously introduced framework is used in this section to analyze and compare the fail-in-place
properties of different topology and routing combinations for the InfiniBand architecture. The initial study
determines whether or not a routing algorithm is applicable to a certain type of topologies. Thereafter,
multiple smaller and large-scale topologies are investigated with respect to their throughput degradation
given an injected amount of network link failures, see Sections 4.4.2 and 4.4.3. Finally, two of the HPC
systems introduced in Section 3.2.6 are examined regarding their fault resiliency for link or switch failures,
or a combination of both.

4.4.1 Initial Usability Study

Not all routing algorithms work for all topologies. The first part of this study characterizes each routing
algorithm for each topology regarding the following two questions:

• Is the algorithm able to generate valid routes for the topology?

• Are these routes deadlock-free?

Table 4.2 lists all used topologies, i.e., the failure-free configuration, for this test.
The topology generator of the simulation framework constructs the input graph for ibsim. Afterwards,

OpenSM routes the network. If the routing algorithm creates a valid set of routes, then the network and
forwarding tables are transformed into the input format for OMNeT++. Otherwise, the combination of
topology and routing is marked with a red box in Table 4.3. OMNeT++ simulates the uniform random
injection workload on the interconnect and checks for deadlock situations. The result can be seen in
Table 4.3. Furthermore, results for Down*/Up* routing are omitted in the following since all executed
simulations have not shown any difference in performance compared to Up*/Down* routing.

As expected, all topology-aware routing algorithms are able to route their specific topologies, but
usually not other types. Note that dimension order routing (DOR) did not produce a deadlock on the
3-dimensional torus(3,3,3) while the 5x5 2D torus configuration deadlocked. This is due to the one-hop
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Table 4.2: Topology configurations for a balanced (and unbalanced) number of HCAs with link
redundancy rC′ to allow a fair comparison between topology types

Topology Switches HCAs Links rC′

2D mesh(5,5) 25 275 (256) 240 6
3D mesh(3,3,3) 27 270 (256) 216 4
2D torus(5,5) 25 275 (256) 300 6
3D torus(3,3,3) 27 270 (256) 324 4
Kautz(2,4) 24 264 (256) 288 6
16-ary 2-tree 32 256 (270) 256 1
XGFT(1,22,11) 33 264 (256) 242 1
Dragonfly(10,5,5,4) 40 280 (256) 276 1
Random 32 256 (270) 256 1

Table 4.3: Usability of topology and routing combinations for networks listed in Table 4.2;
Colors indicates: o = deadlock-free; r = routing failed; d = deadlock detected

Fa
t-

tr
ee

U
p*

/D
ow

n*

D
O

R

To
ru

s-
2Q

oS

M
in

H
op

SS
SP

D
FS

SS
P

L
A

SH

artificial topologies

2D mesh r r o o d d o o
3D mesh r r o o d d o o
2D torus r r d o d d o o
3D torus r r o o d d o o

Kautz r r d r d d o o
k-ary n-tree o o o r o o o o

XGFT o o o r o o o o
Dragonfly r r d r d d o o

Random r r o r d d o o
real-world HPC systems

Deimos r o o r o o o o
TSUBAME2 o o o r o o o o

topology-aware topology-agnostic

45



4 Fail-in-Place High-Performance Networks

paths on the 3x3x3 torus. However, DOR will produce deadlocks for larger 3-dimensional tori because it
is generally only deadlock-free on meshes.

In contrast, all topology-agnostic algorithms were able to route all topologies. However, MinHop and
SSSP do not prevent deadlocks and thus create deadlocking routes in some configurations. Hereafter, only
topology/routing pairs are analyzed which are marked as deadlock-free in Table 4.3, with the exception of
the DOR routing algorithm on 3-dimensional tori.

4.4.2 Influence of Link Faults on Small Topologies

In this section, OMNeT++ and the IB model simulate uniform random injection and exchange com-
munication patterns for all correct and deadlock-free routing algorithms. The determined consumption
bandwidths at the HCAs compose the simulation results while using the uniform random injection pattern.
The maximum injection and consumption bandwidth is 4 Gbyte/s, because 4X QDR is simulated. In
contrast, for the exchange pattern, the time to complete the full communication is determined by measuring
the elapsed time until the last flit arrives at its destination. The resulting overall network throughput for
this pattern is calculated according to Equation 4.2.

The simulated failure scenarios are: 1%, 3%, and 5% injected random link failures, with three different
seeds for uniform random injection and ten seeds for the exchange pattern. Flich et al. [Fli+12] performed
similar studies with these failure percentages. In addition, more severe failure scenarios are simulated
with 10%, 20%, and 40% random link failures, as outlined in Section 4.1, to unveil long-term effects of a
fail-in-place environment and to unveil deficiencies of individual routing algorithms beyond the results
obtained in the Section 4.4.1. Whisker plots are used to show the results for uniform random injection
to illustrate the consumption bandwidth distribution among all HCAs in the network. Furthermore, the
presented values are averaged across three topology configurations, given by the same failure percentage
but using different seeds for the fault injection. In contrast to this, histograms with error bars are used to
show the network throughput of exchange communication patterns, where ten different seeds are utilized
to obtain varying topologies for the same failure percentage. The mismatch in applied seeds is due to a
higher required runtime for the simulator to reach a steady state for the uniform random injection pattern.

Two configurations, a balanced and an unbalanced, in terms of the number of HCAs per switch are
simulated to see whether this has an influence on the maximal network throughput and resiliency or
not, see Table 4.2. The number of HCAs for the unbalanced configuration is listed in brackets in the
third column of Table 4.2. Figure 4.4a and Figure 4.4b show the balanced vs. unbalanced comparison
while omitting results of DOR and LASH routing, because their resulting consumption bandwidth is less
than 10% of DFSSSP’s.

Analyzing the edge forwarding index for each simulation revealed that LASH heavily oversubscribes
certain links in the network while other links are not used at all. Therefore, heavy congestion leads
to the aforementioned consumption bandwidth decrease, regardless of the link failure rate. A possible
explanation is that the implementation of LASH in OpenSM optimizes for switch-to-switch traffic, see
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Figure 4.4: Whisker plots of consumption bandwidth for uniform random injection (box repre-
sents the three quartiles of the data; end of the whisker shows the minimum and
maximum of the data; x-axis is not equidistant); Shown are the average values for
three seeds (seed ∈ {1, . . . ,3}); Discussion in Section 4.4.2
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Section 3.3.6, rather than terminal-to-terminal traffic. This leads to poor path balancing, and therefore
poor load balancing, on many of the investigated topologies.

A comparison of Figure 4.4a and Figure 4.4b reveals three general trends: First, only 1% link failures,
i.e., two faulty links for the 16-ary 2-tree topology, may result in a throughput degradation of 30% for
uniform random injection on a fat-tree with full bisection bandwidth if the specialized fat-tree routing is
used. With DFSSSP, for example, the degradation is only 8% for the median. Thus, the conclusion is that
the choice of the routing method is important to maintain high bandwidths in the presence of network
failures. Second, an imbalance in the number of HCAs per switch can have a similar influence on the
throughput, even without faults in the network (≈40% degradation compared to the balanced fault-free
case). Hence, while the resiliency of all routing algorithms is not affected by an unequal number of HCAs,
which can be caused by compute node failures or caused by initial network design decisions, the network
throughput will be affected. Third, a curious case can be observed where the bandwidth increases with
link failures, especially for DF-/SSSP in Figure 4.4b. This indicates a suboptimal routing algorithm and
the effect will be explained in detail later.

Figure 4.4c and Figure 4.5a show the two communication patterns uniform random injection (Fig-
ure 4.4c) and exchange (Figure 4.5a) for the same random topology. A finding is that random topologies
are barely affected by link failures of less than 10%. For the following analyses in Sections 4.4.3 – 4.4.5,
the results for the uniform random injection are omitted. The reason is that an observed low consumption
bandwidth at the sinks perfectly correlates with a runtime increase of the exchange pattern, and therefore
decrease in overall network throughput, and vice versa.

Torus performance is shown in Figure 4.5b. The exchange pattern finishes 29% faster, i.e., 29% higher
throughput, for Torus-2QoS routing compared to DFSSSP. However, DFSSSP is more resilient, because
Torus-2QoS was unable to create LFTs for some of the ten cases of 20% and 40% link failures. Similarly
problematic, the simulated traffic pattern caused a deadlock using DOR routing for the mesh with 20%
and 40% link failures. Again, LASH is omitted due to very low throughput for this topology.

Dragonfly topologies are usually routed with the Universal Globally-Adaptive Load-balanced routing
scheme [Kim+08], which chooses between minimal path routing and Valiant’s randomized non-minimal
routing depending on the network load. The current architecture specification of InfiniBand mandates
deterministic routing [Inf15, p. 234], but for completeness this study includes simulations for the emerging
dragonfly topology as well. The reason behind this is that a decreased congestion on the minimal path
through a well-balanced routing, such as DFSSSP, potentially reduces the number of adaptive routing
decision via non-minimal paths in a dragonfly network. Figure 4.5c shows that both DFSSSP and LASH
only degrade slowly with random network failures.

Simulating multiple failure scenarios with different seeds allows to derive conclusions through statistical
methods, as outlined hereafter. Hence, one option is the analysis of the coefficient of determination (R2),
assuming a linear model, for every combination of topology and routing algorithm. This statistical analysis
of the data points for the exchange pattern for all investigated topologies shows a high correlation between
the number of failed links in the topology and the network throughput of the exchange pattern.
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Table 4.4: Intercept [in Gbyte/s], slope, and R2 for balanced topologies of Table 4.2 for best
performing routing algorithm

Topology Routing Intercept Slope R2

2D mesh Torus-2QoS 263.63 -1.83 0.94
3D mesh Torus-2QoS 276.18 -2.37 0.87
2D torus Torus-2QoS 341.11 -1.68 0.95
3D torus DFSSSP 508.97 -2.12 0.90
Kautz DFSSSP 299.48 -1.45 0.88
16-ary 2-tree DFSSSP 629.76 -3.59 0.69
XGFT DFSSSP 527.31 -3.03 0.88
Dragonfly DFSSSP 479.03 -2.39 0.94
Random DFSSSP 417.53 -2.17 0.76

Thus, this thesis contributes an approach for determining the fail-in-place characteristics, as part of the
design process for a new fail-in-place network, based on the following methodology: The best routing
algorithm, among the investigated algorithms, for a fail-in-place network will be chosen based on the
intercept and slope of the linear regression. The intercept approximates the overall network throughput of
the exchange pattern for the fault-free network configuration whereas the slope predicts the throughput
decrease (in Gbyte/s) for each non-critical hardware failure which is kept in-place. Therefore, even hybrid
approaches are possible where the system administrator switches between routing algorithms after a
certain number of failures, if the regression line of the two routing algorithms intercept at this point.

Intercept and slope are the main indicators for the quality of the routing whereas the coefficient of
determination is an important metric how well the throughput can be explained by the number of failures.
The results for the coefficient of determination calculation for previously investigated topology/routing
combinations are summarized in Table 4.4. This shows that the performance of the exchange pattern on
small topologies can be explained almost entirely by one variable, namely link failures. Table 4.4 also
lists the best performing routing algorithm based on intercept and slope for each topology.

4.4.3 Influence of Link Faults on Large Topologies

For the larger network sizes, the percentage of link failures is reduced to more realistic values found in
modern HPC systems. A constant annual failure rate of 1%, derived from the analyzed failure rates of
TSUBAME2 in Section 4.1, is a reasonable assumption. Hence, simulating 1%, . . . ,8% links failures will
give an estimate of the performance degradation of the network for the system’s lifetime.

Investigating larger topologies reveals three key points: First, the investigated fault-tolerant topology-
aware routing algorithms are resilient for realistic link failure percentages, but their fail-in-place charac-
teristic in terms of network throughput is worse than topology-agnostic algorithms. The comparison of
DFSSSP routing and fat-tree routing in Figure 4.6b illustrates the issue.

The second fact is that not all topology-agnostic routing algorithms are applicable to every topology
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Table 4.5: Intercept [in Gbyte/s], slope, and R2 for the large topology/routing combination
shown in Figure 4.6c

Topology #HCAs Routing Intercept Slope R2

3D torus(7,7,7) 2,058 Torus-2QoS 2,794.89 -2.06 0.66
Dragonfly(14,7,7,23) 2,254 DFSSSP 2,166.54 -1.50 0.34
Kautz(7,3) 2,352 LASH 1,541.58 0.09 0.02
14-ary 3-tree 2,156 DFSSSP 5,015.53 -1.85 0.76

above a certain size. Figure 4.6c shows the comparison of throughput degradation between four balanced
large-scale topologies with≈2,200 InfiniBand HCAs for the best performing (or solely applicable) routing.
DFSSSP outperforms the rest for the dragonfly topology and the 14-ary 3-tree, but fails to create LFTs for
the torus and the Kautz graph due to limitations of available virtual lanes. The same issue causes LASH
routing to be unusable on the 7x7x7 torus, rendering Torus-2QoS the only applicable algorithm.

And third, the low coefficient of determination R2, see Table 4.5, indicates that the number of link
failures is not the dominating influence on the runtime of the exchange pattern on larger topologies.
Hence, a low R2 for the best of the investigated routing algorithms means that the throughput does not
decline heavily during the system’s lifetime which is a desired characteristic for a fail-in-place network.
Presumably, the match or mismatch between the configured static routes and the communication pattern
is a second explanatory variable, which will be explained further based on Figure 4.6a.

Studying Figure 4.6a exposes an anomaly: A major increase in network throughput using Up*/Down*
routing is possible while the number of failed links in the network increases. This contradictory effect
has two reasons. First, a comparison with DFSSSP and fat-tree routing, which enable higher throughput,
indicates a serious mismatch between communication pattern and static routing algorithm in the fault-free
case, which has been shown by Hoefler et al. [HSL08]. The second reason is that each failure in the
fabric will change the deterministic routing, which can lead to an improvement in runtime for the same
communication pattern. This change in the routing can remove congestion, because simultaneously
executed point-to-point communications share less links/switches in the fabric.

4.4.4 Case Study of the TSUBAME2 Supercomuter

Randomized link failures are combined with switch failures for the TSUBAME2 case studies in this
section. These simulations with additional switch failures, i.e., a form of localized simultaneous failures
of many links, mirror the behavior of a real-world HPC system more accurately.

Based on the fault data presented in Section 4.1, the calculated annual link failure rate is 0.9% and the
annual switch failure rate is 1% for TSUBAME2. The same data indicates a failure ratio of 1 : 13, i.e.,
thirteen switch-to-switch links will fail for each failing switch on average per year. In the following, a
constant annual failure rate of 1% is assumed for the links and switches. Furthermore, the simulations
will be conducted based on the 1st rail, i.e., including all 1,555 nodes which are connected by 258 QDR
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Figure 4.7: Histograms for exchange patterns for different failure types using DFSSSP, fat-tree
and Up*/Down* routing on TSUBAME2 (LASH excluded because the throughput
is only 2% of DFSSSP’s throughput); Shown: mean value and 95% confidence
interval for ten runs per failure percentage (seeds ∈ {1, . . . ,10}); Discussion in
Section 4.4.4
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InfiniBand switches and 3,621 links. Three different failure cases, all shown in Figure 4.7, are simulated
by the developed toolchain with ten different seeds per failure percentage. Figure 4.7a shows the simulated
performance degradation for the case when only links fail within the supercomputer. Furthermore, the
second case of solely failing switches is visualized in Figure 4.7b. In addition, the failure ratio of 1 : 13 is
investigated in Figure 4.7c to mirror the real-world behavior and to analyze the network performance and
resiliency of the routing algorithms for TSUBAME2. Going up to a 8% failure percentage results in the
simulation of eight years of TSUBAME2’s lifetime. Currently, the anticipated lifetime of the network
used in TSUBAME2 is seven years, hence these simulations cover the entire lifespan of the system. The
results for Down*/Up* routing are excluded in all figures, since they are equal to Up*/Down* routing.
Similarly, results for LASH routing are omitted, because LASH only allowed for a two orders of magnitude
lower throughput, see Table 4.6. The default routing algorithm on TSUBAME2 was Up*/Down* before
switching to fat-tree routing. A reasonable modification to the operation policies of TSUBAME2, since
fat-tree routing performs better for an exchange pattern, as can be seen in Figure 4.7a. Nonetheless,
the simulated performance degradation also suggests that DFSSSP routing outperforms the other two
algorithms.

Statistical analysis of the data presented in Figure 4.7c shows that the intercept for fat-tree routing
is 15% lower compared to DFSSSP routing while the slope of the linear regression line is 10% steeper
compared to DFSSSP, see Table 4.6. In conclusion, the change of the routing algorithm to DFSSSP
on TSUBAME2 would not only lead to a higher performance of the exchange pattern on the fault-free
network, but will also increase the fail-in-place characteristic of the network. The DFSSSP routing
algorithm will provide a basis for the novel routing approaches outlined in Chapter 5 and Chapter 6 of this
thesis.

4.4.5 Case Study of the Deimos HPC System

Similarly to the previous section, link failures and switch failures are used individually and in a combined
configuration to simulate the fail-in-place characteristics of the Deimos HPC System. The annual failure
rate is 0.2% for links and 1.5% for switches, as listed in Table 4.1. Hence, the switch-to-link fault ratio can
be approximated with 1 : 2. For each number of link and/or switch failures, ten different faulty network
configuration are simulated, while injecting randomized failures with seeds ∈ {1, . . . ,10}.

The conclusion derived from the results in Figure 4.8 and Table 4.6 is that a change from the default
routing algorithm, which was MinHop, to the deadlock-free SSSP routing increased the throughput for
exchange patterns by a factor of three. Furthermore, the change from MinHop to DFSSSP routing also
removed the possibility of deadlocks in the InfiniBand fabric, which the simulations have experimentally
verified for MinHop, see missing bars in the figure. Remarkable is the fact that a fail-in-place approach
for the Deimos HPC system would have had almost no effect on the achievable performance of the
communication layer, as shown by the almost unchanged throughput despite injected failure. Hence,
maintenance costs for Deimos’ network could have been saved completely, except for repairing node-to-
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Figure 4.8: Histograms for exchange patterns for different failure types using MinHop, DFSSSP
and Up*/Down* routing on Deimos (LASH excluded because throughput is only 9%
of DFSSSP’s); Shown: mean value and 95% confidence interval for ten runs per
failure percentage (seeds ∈ {1, . . . ,10}); Deadlocks observed using MinHop routing
for at least one out of ten seeds; Discussion in Section 4.4.5
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4 Fail-in-Place High-Performance Networks

Table 4.6: Intercept, slope, and R2 for TSUBAME2 and Deimos shown in Figure 4.7c and
Figure 4.8c (default routing: italic; best fail-in-place routing: bold)

HPC system Routing Intercept [in Gbyte/s] Slope R2

TSUBAME2 DFSSSP 1,393.40 -1.33 0.62
Fat-Tree 1,187.19 -1.48 0.66
Up*/Down* 717.76 -0.08 0.01
LASH 22.92 -0.01 0.10

Deimos MinHop 29.94 - -
DFSSSP 93.40 -0.15 0.09
Up*/Down* 30.10 0.06 0.11
LASH 8.37 0.00 0.04

switch failures or critical failures which would bisect the topology.
Overall, Section 4.4 has shown that HPC networks, and not only hard drives, can be operated in fail-

in-place mode to reduce maintenance costs and to utilize the remaining resources. Even so the resulting
irregular topologies pose a challenge to the used routing algorithms, a low failure rate of the network
components supports a fail-in-place network design strategy, which bypasses non-critical failures during
the supercomputer’s lifetime.
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5 Utilization Improvement through SAR

Idealized conditions, e.g., regular topology without faulty network components, single application running
on the whole system, or no system noise which is altering the message injection pattern, etc., usually
do not apply to production supercomputers. This chapter is analyzing the disadvantages of application-
agnostic static routing policies in Section 5.1. Based on this analysis, a novel scheduling-aware routing
approach (SAR) is presented in Section 5.2 which aims at optimizing the utilization of the interconnection
network as well as the communication performance of applications. Section 5.3 shows the practicality
and effectiveness of this scheduling-aware routing with simulations of real-world workloads and through
the usage on a production supercomputer.

5.1 Conceptual Design of SAR for shared HPC Environments

Many advanced approaches for application-specific [Pal+06; Kin+09] or topology-specific [Sub+12;
Pri+13b; Jok+15] routing and mapping assume idealized conditions such as a regular topology without
faulty components, isolated bulk-synchronous applications communicating in synchronized phases, and
the absence of system noise. Unfortunately, these assumptions are rarely true in practice (Chapter 4).

An analysis of the job mix on two production supercomputers emphasizes the complexity of real-world
installations. Figure 5.1 shows all batch jobs that are using at least two network switches (which are
referred to as multi-switch jobs hereafter) on two InfiniBand-based petascale supercomputers introduced
in Section 3.2.6, i.e., Taurus and TSUBAME2, in the time frame of one month. These plots emphasize
the fact that multiple parallel applications are spread throughout the system at any time and are thus
contending for bandwidth on the shared network resources. In fact more than 66% and 50% of the compute
jobs on Taurus and TSUBAME2, respectively, are using multiple switches. Thus, the jobs potentially
share the same network resources, meaning switches and inter-switch links, and therefore can influence
each others communication performance. But at the same time, communications do generally not cross
from one parallel applications to another, with the exception of management and I/O traffic targeted
at special endpoints in the system. Furthermore, the fact that these systems are used by multiple users
simultaneously, submitting a broad set of scientific applications, results inevitably in a fragmentation,
where the application processes are scheduled on compute nodes distributed all over the whole system.
However, the batch systems usually prioritize system utilization over job locality. Other researchers, e.g.,
Jokanovic et al. [Jok+15], identified similar system fragmentations on their supercomputers, when the
system is running continuously over a longer time period.
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(a) Taurus supercomputer (multi-island design with 2014 compute nodes connected by FDR/QDR InfiniBand)

0

15

30

45

60

75

90

105

01. 08. 15. 22. 28.
0

20

40

60

80

100

N
um

be
ro

fj
ob

s
[a

bs
ol

ut
e;

ro
w

st
ac

ke
d]

N
od

es
us

ed
fo

rm
ul

ti-
sw

itc
h

jo
bs

[i
n

%
]

Day of the month (Feb. ’15)

Nodes per job

1-18
19-54

55-108
109-180

181-270
271-396

(b) TSUBAME2 petascale HPC system (utilizing 1408 compute nodes connected by two full-bisection fat-tree
QDR InfiniBand networks)

Figure 5.1: Batch job history (sampled every 10 min) of two petascale HPC systems for one
month of operation; Only multi-switch jobs shown; Total system utilization (inclu-
sive single-node and single-switch jobs) is usually higher
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5.1 Conceptual Design of SAR for shared HPC Environments

When computing oblivious routes for an interconnection network, as all Algorithms of Section 3.3
do, the algorithm tries to balance the number of routes across all links so that each physical network
cable has a similar number of routes crossing it. This number is called the edge forwarding index (EFI),
see Definition 3.12, a theoretical upper bound for the worst-case congestion of a set of routes [HMS89].
The following experiment illustrates this concept: Route a two-level fat-tree network with an optimal
oblivious strategy, i.e., with ideally balanced EFI, and schedule three different scientific applications (or
batch jobs) to the system. The allocation of application processes to nodes logically partitions the network
into three pieces which are not crossed by communications. Subsequently, the effective EFI for each
link is computed by only counting routes connecting endpoints that belong to the same job. This metric
extends the established edge forwarding index to differentiate between “useful” intra-job paths and paths
connecting compute nodes which do not work on the same scientific problem, see Definition 5.1. In
this regard, a batch job, or short job j ∈ J, is a (parallel) application scheduled onto a subset of compute
nodes, N j ⊆ N, which collectively work on a given task during a finite time frame.

Definition 5.1 (Effective Edge Forwarding Index). The effective edge forwarding index γe
R,J of a switch

port or outgoing link cq ∈C∗ is the sum of intra-job routes being forwarded via this port as induced by a

given routing function R, i.e.,

γ
e
R,J(cq) := ∑

j∈J

⏐⏐{Pnx,ny | nx,ny ∈ N j ∧ cq ∈ Pnx,ny}
⏐⏐

for all jobs j ∈ J running simultaneously on the system.

Figure 5.2a shows a heat map of the effective EFIs for each link in the network. Each full-duplex link
has two colors assigned, one color for the number of “useful” path forwarded via the respective egress
port on the switch. Similarly, Figure 5.2c shows the corresponding histogram of the edge forwarding
indices. Two conclusions can be directly derived from the figure:

• There are hotspots of high route counts per link which can decrease communication performance of
one or more jobs, and

• Some links are underutilized or not used at all which reduces the system’s efficiency.

A less obvious observation is that the total number of switches and links available for intra-job communi-
cation is suboptimal.

The same example can be used to illustrate the contributed (and subsequently introduced) novel approach
of scheduling-aware routing (SAR) which aims at maximizing the allocation of network resources per
batch job. The underlying assumption is that the allocated, and potentially shared, network resources per
individual batch job should be maximized on a production system, which is contrary to other researcher’s
premise to isolate jobs to achieve performance predictability [Jok+15]. Hence, using SAR, intra-job
communication throughput increases due to the increased available network hardware and this directly
increases the utilization of the overall supercomputer. In other words, SAR exploits the knowledge of
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Figure 5.2: Comparison of effective EFI for inter-switch links (heat map in 5.2a and 5.2b);
Oblivious routing vs. scheduling-aware routing for three equal-sized batch jobs
on a 2-level fat-tree with 18 nodes attached to each of the ten switches of level 1;
Jobs allocated using interleaving mapping (i.e., j1 uses nodes 1 – 30 and 91 – 120,
j2 uses 31 – 60 and 151 – 180, and j3 uses 61 – 90 and 121 – 150); Two colors of
individual full-duplex links in 5.2a and 5.2b indicate different EFIs for the two
opposite directions; Topology is equivalent to the full-bisection 180-node QDR
island of Taurus (see Figure 3.6)
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Figure 5.3: Qualitative comparison (with respect to runtime complexity of the approach and
resulting communication efficiency) of different routing and network optimizations
for supercomputers

the batch system, i.e., the current job mix, to determine the application locality and guides the fabric
manager in assigning routing paths in the network. Furthermore, SAR should have a similarly low
runtime complexity as other oblivious routing algorithms, and broad applicability to current and future
interconnection technologies and supercomputers. Figures 5.2b and 5.2d show the same three-job example
as before but using the scheduling-aware routing approach that this chapter introduces. The maximum
EFI, i.e., upper bound for congestion, reduced from more than 160 to a mere 60 and the overall path
balance is greatly improved.

A second metric, derived from the previously defined effective edge forwarding index, describes the
amount of superfluous links in the network, metaphorically speaking: the proportion of “dark fiber” to
links usable for intra-job communication, see Definition 5.2. Please note, that this latter metric does not
differentiate between copper or fiber cables, and fiber is used as a synonym for link. Furthermore, this
metric is only based on intra-job paths, and ignores any other traffic related to supplementary nodes, such
as I/O traffic to and from a remote filesystem or administrative data paths.

Definition 5.2 (Dark Fiber Percentage). The dark fiber percentage is the percentage of links in the system,

which are not used for intra-job routes, and can therefore be derived from γe
R,J in the following way:

θR,J :=

⏐⏐{cq ∈C∗ | γe
R,J(cq) = 0}

⏐⏐
|C∗|

The analyses in Section 5.3 utilize the dark fiber percentage, among with the effective edge forwarding
index, to evaluate the effectiveness of the SAR approach compared to other state-of-the-art oblivious
routing strategies. A general overview and qualitative comparison of the different network/communication
optimization strategies is shown in Figure 5.3.
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5 Utilization Improvement through SAR

5.2 Example Implementation of the Scheduling-Aware Routing

The previous section sketched the idea and potential advantages of a scheduling-aware routing for
supercomputers which is simultaneously used by multiple users. The realization of this approach will be
demonstrated in the following sections. Section 5.2.1 outlines the basic components, including relevant
features and limitations, available on the petascale Taurus HPC system, which was available as a testbed
for SAR. Section 5.2.2 provides details on how these building blocks are extended and combined to
implement the scheduling-aware routing (SAR). Finally, Section 5.2.3 introduces a novel protocol to
prevent out-of-order packet delivery, potentially caused by SAR’s frequent network reconfigurations.

5.2.1 Hardware and Software Building Blocks

The main building blocks, which are needed to implement the SAR approach, are subject of this section.
Firstly, the essential details of the inner workings of InfiniBand and its subnet manager at presented
in Section 5.2.1.1. Furthermore, the Sections 5.2.1.2 and 5.2.1.3 provide a brief introduction into the
SLURM batch system and Open MPI communication library, respectively.

5.2.1.1 InfiniBand and OpenSM

The InfiniBand technology [Pfi02], as defined by the architecture specification (IBTAspec) [Inf15], is
widely used in current HPC systems to network compute and storage nodes. Each network device in
the fabric is identified by one or more local identifiers (LIDs), configured via a lid mask control (LMC)
parameter, such that the total number of LIDs per device is 2LMC, with 0≤ LMC≤ 7.

The IBTAspec defines a layer, called verbs, between the software/operating system and the InfiniBand
hardware, see Figure 29 of [Inf15, p. 130]. Communication between two IB devices is implemented via
queue pairs (QPs) that establish a send and receive channel between one source LID and one destination
LID for unicast traffic. Multicast traffic is beyond the scope of this thesis, because it is performed
unreliably in InfiniBand [Inf15, 7.10.2], i.e., by using the unacknowledged Unreliable Datagram transport
service, and therefore generally not used by parallel applications of the HPC community. However, the
verbs layer also allows modifications of QPs, e.g., performing path migrations (APM) or draining all
outstanding work requests (SQD). These two features will be used in Section 5.2.3 to enforce property
preserving network updates while changing the routing configuration.

Applications or communication libraries, such as Open MPI, post work requests (WRs) to a queue
pair to initiate data transport to a remote node. InfiniBand’s hardware offloading and kernel-bypass
characteristics allow the processing of these WRs asynchronously to the application. The channel adapter,
i.e., network interface card of InfiniBand, splits a scheduled message into packets, configures packet
headers, and dispatches them. Achieving per-flow consistency is made more complicated because of
this asynchronicity. Section 5.2.3 will elucidate this issue further. InfiniBand ensures lossless processing
of WRs for reliable channels through credit-based flow control, both on a per-link basis and end-to-end
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Figure 5.4: SLURM architecture; Highlighted: squeue and configuration files which will be
used by the filtering tool in Section 5.2.2.1

between send/receive queues. However, reliable channels require in-order delivery of all packets of one
WR, otherwise the receiving IB port drops messages and requests retransmissions.

Moreover, IB supports virtual lanes (VLs), which are basically different sets of buffers within one port.
Hence, InfiniBand’s VLs are similar virtual channels, and therefore can be used to construct virtual layers,
see Definition 3.8. InfiniBand network ports must support up to 15 VLs for data traffic, indexed starting
from 0, and one virtual lane for management traffic, i.e., VL15. However, current hardware usually
supports only four or at most eight data VLs. Data virtual lanes can be used for quality of service or to
avoid potential deadlock configurations in the forwarding tables of switches, as described in Section 3.1.2.
Various routing approaches use this feature to combine the ith VL of each port into virtual layers and
assign paths to different layers to create a deadlock-free routing configuration [SLT02; Shi+09; DHN11].

The InfiniBand fabric is controlled by a subnet manager, which is responsible for assigning LIDs
and LMCs to nodes, reacts to topological changes and failures in the fabric, and calculates the routing
configuration for the fabric, among other things. An open-source version of this subnet manager is called
OpenSM [Mel13], which currently implements nine flow-oblivious routing algorithms, see Sections 3.3.1
to 3.3.7, for a variety of supported network topologies. Chapter 4 unveils feasible combinations of these
routing algorithms and (faulty) topologies. Once a new routing configuration is calculated, OpenSM
updates the linear forwarding tables of all IB switches, and packets are forwarded according to these new
switching rules. An LFT update usually only happens in response to a topological change in the fabric,
e.g., when network components fail or new nodes are being added. Definition 3.5 details forwarding
tables formally.

5.2.1.2 Simple Linux Utility for Resource Management

Many supercomputers utilize SLURM [YJG03] as a cluster resource manager and batch system. SLURM
is open-source and offers a plugin interface, which makes it a preferred solution for many HPC sites, since
it offers the extensibility for individual needs and it offers the option to test research ideas. The SLURM
architecture, see Figure 5.4, primarily consists of three parts: (1) user commands, (2) controller daemon,
and (3) compute node daemons. The controller daemon manages most of the system’s compute resources,

63



5 Utilization Improvement through SAR

MPI-parallelized Application

OMPI Abstraction Layer

ORTE Abstraction layer

OPAL Abstraction Layer

Operating System

Network Hardware (e.g., InfiniBand)

(a) Abstraction layer

Core of Open MPI

B
as

e

B
as

e

C
om

po
ne

nt
1

C
om

po
ne

nt
n

B
as

e

Framework

T
C

P

op
en

ib

tu
ne

d

hi
er

ac
h

Layer (BTL)
Byte Transfer

Operations
Collective

(b) Frameworks and components

Figure 5.5: Open MPI’s modular component architecture establishes a message passing in-
terface between application and hardware to enable inter-process communication;
Highlighted: openib BTL for InfiniBand

and schedules batch jobs onto free compute nodes. However, the controller is partially or fully unaware of
other resources, such as remote storage or interconnection network. For example, while SLURM is aware
of the physical topology of the supercomputer, i.e., node-to-switch mapping and inter-switch connectivity,
it is unaware of the deployed routing configuration by the subnet manager. The SLURM controller can be
attached to a database, see Figure 5.4, which stores the historical and current state of job allocations for a
system. In Section 5.2.2, this information is used to obtain a snapshot of simultaneously running jobs and
their locality.

5.2.1.3 Open MPI

The message passing interface (MPI) specification [Mes15] standardizes an API for parallel applications to
perform inter-process communication, either locally on a compute node or via the interconnection network.
One widely used open-source implementation of the MPI standard is Open MPI [Gab+04]. The Open MPI
library assigns one rank, with rank ∈ {0, . . . ,n−1}, to each processes within a single MPI-parallelized
application, and therefore provides an abstract interface to the application to perform point-to-point
or collective operations between ranks. Open MPI uses a modular component architecture (MCA) to
support a variety of interconnection technologies and transport services, see Figure 5.5. The OMPI layer
provides the MPI API to the applications and implements communication algorithms for point-to-point
and collective operations, monitoring and profiling interfaces, etc. One framework within the MCA is the
byte transfer layer (BTL), responsible for point-to-point communication between MPI processes. The
BTL for IB networks is called “openib”, see Figure 5.5b. This openib component interfaces with the verbs
layer, see Section 5.2.1.1, to set up QPs, schedule send or receive WRs, and handle events raised by the
InfiniBand hardware, among other things. When Open MPI is configured with threading support, i.e.,
for POSIX threads, then the openib component spawns one asynchronous event thread per MPI process.
In Section 5.2.3, this asynchronous event thread is used to establish communication channels between
OpenSM and MPI programs to achieve per-flow consistent network updates.
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5.2.2 Scheduling-Aware Routing Optimization

This section introduces the novel scheduling-aware routing that this thesis contributes. SAR optimizes the
forwarding tables for production supercomputers by filtering relevant information from the batch system
and passing this information to a modified version of the DFSSSP routing engine.

5.2.2.1 Filter between Batch System and Subnet Manager

Performing a scheduling-aware routing optimization for a supercomputer is only beneficial for parallel
applications when their compute nodes are attached to multiple switches. Therefore, a filtering tool
optimizes the workflow, see Figure 5.6, whereby it periodically polls SLURM for the current state of
the system. To be exact, information about batch jobs, including job state (pending, running, etc.), job
identifier, and allocated compute nodes, are collected. This information is obtainable through SLURM’s
squeue command. Furthermore, the topology information is required, i.e., terminal-to-switch mapping,
which is stored among SLURM’s configuration files, or alternatively can be obtained by ibnetdiscover,
an IB tool [Mel13]. The filtering tool uses this topology information to assemble a list of multi-switch
jobs containing all currently running applications which have their compute nodes attached to at least two
switches. The list of multi-switch jobs is compared to the list of the previous iteration while ignoring the
actual job identifiers. Hence, the filtering tool can avoid unnecessary calculations of LFTs, since replacing
one job with another job on the same compute nodes will not result in a different routing configuration
while using SAR, see subsequent Algorithm 5.1. If the two lists of multi-switch jobs differ, then the
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filtering tool writes a job-to-terminal mapping file for OpenSM, informs OpenSM about the configuration
change, and replaces the previous list with the new list for the next iteration. Additionally, an extension to
OpenSM’s signal handler is a requisite to process the SIGUSR2 signal to inform the OpenSM about an
updated job-to-terminal mapping.

A direct interface between SLURM and OpenSM would have been possible to, but is less desired since:
First off, portability, to easily support other batch systems or subnet managers, such as the Portable Batch
System (PBS) [Hen95] and derivatives, or the fabric manager for Intel Omni-Path [Bir+15]. Further-
more, the SLURM controller and OpenSM can run on different management nodes of an HPC system.
Lastly, integrating the filtering functionality into the SLURM controller potentially increases the latency
experienced by users when submitting many jobs due to an additional computational overhead.

5.2.2.2 Routing Optimization with DFSSSP

The basis of SAR is the deadlock-free single-source shortest-path routing (DFSSSP) for three reasons:
(1) DFSSSP is deadlock-free and topology-agnostic, and therefore supports a wide variety of network
topologies [DHN11], (2) DFSSSP offers high global throughput for the complete HPC system and offers a
well-balanced EFI across the system, see Chapter 4, and (3) DFSSSP already distinguishes three terminal
types, i.e., compute, storage, and others nodes, and optimizes their routing separately. Hence, SAR inherits
the characteristics listed in (1) and (3) and improves upon (2).

DFSSSP routing computes the destination-based paths for the nodes of the interconnection network
by applying a modified version of Dijkstra’s shortest-path algorithm, optimized for multigraphs, see
Sections 3.3.2 and 3.3.8. The routes from all nodes to one destination in the network are derived by
reversing the paths calculated from Dijkstra’s source to all vertices in the graph. DFSSSP iterates over
all nodes of the network, and firstly applies Dijkstra’s algorithm, followed by an update of the edge
weights in the graph. This edge weight update, increasing the weight by +1 for every new path on a link,
ensures the well-balanced EFI, which is mentioned above in reason (2). After calculating a path for every
node-to-node combination, DFSSSP assigns these paths into virtual layers to achieve a deadlock-free
routing configuration, similar to other routings, such as LASH [SLT02].

The extensions for DFSSSP routing to include knowledge about batch job locations, and enable the
algorithm to optimize the path calculation for intra-job paths, is shown as pseudo code in Algorithm 5.1.
The main modifications are outlined in lines 1 – 10, while subsequent lines are shown for sake of
completeness and sketch the remainder of the already existing DFSSSP implementation in OpenSM. In
the first part of Algorithm 5.1, the job-to-terminal mapping given by the filtering tool is analyzed, see
Section 5.2.2.1. Each node in the multigraph, representing the interconnection network, gets extended by
a job array which stores all jobIDs currently running on this node. These nodes are sorted descending
by the size of largest job (in terms of node count) executed on the node, i.e., compute nodes belonging
to the largest job running on the HPC system will be processed first in the following loop, see line 6.
Hence, this sorting ensures that intra-job path balancing is increased and the number of overlapping
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Algorithm 5.1: Scheduling-aware DFSSSP routing
Input: Network I = G(N,C)

Job-to-terminal mapping B := [(nodeName, jobID), . . .]
Result: Scheduling-aware and deadlock-free routing configuration

(Pnx ,ny for all nx,ny ∈ N)
/* Process job-to-terminal mapping */

1 foreach node n ∈ N do
2 n.jobList← empty list []
3 foreach pair (nodeName,jobID) ∈ B do
4 if n.nodeName = nodeName then n.jobList.append(jobID)

/* Compute optimized routing for compute nodes */
5 Nsorted← Sort N descending by the job size executed on n ∈ N
6 foreach node nd ∈ Nsorted do
7 Calculate one path Pnx ,nd for every pair (nx,nd), with nx ∈ N, with the modified Dijkstra algorithm (details in [DHN11])
8 foreach node nx ∈ N do
9 if nx.jobList

⋂
nd .jobList ̸= /0 then

10 Increase edge weight by +1 for each link in path Pnx ,nd

/* Reset edge weights and compute optimized routing for storage nodes */
11 foreach storage node nd ∈ N do
12 Calculate one path Pnx ,nd for every pair (nx,nd), with nx ∈ N, with the modified Dijkstra algorithm
13 Update edge weights for all links used by P(·,nd)

/* Reset edge weights and compute optimized routing for all other nodes */
14 foreach node nd ∈ N∧nd not processed before do
15 Calculate one path Pnx ,nd for every pair (nx,nd), with nx ∈ N, with the modified Dijkstra algorithm
16 Update edge weights for all links used by P(·,nd)

/* Create deadlock-free routing configuration */
17 foreach route Pnx ,ny calculated above do
18 Assign Pnx ,ny to one virtual layer without creating a cycle in the corresponding channel dependency graph (see [DHN11] for details)

paths is minimized. Since edge weights are only updated when actually used by an intra-job path, see
lines 9 and 10 of Algorithm 5.1, the resulting paths should improve the network metrics compared to
other state-of-the-art oblivious routings, which will be demonstrated in Section 5.3. The rest of the base
DFSSSP algorithm is kept in place to ensure deadlock-freedom and a well-balanced routing configuration
towards the remote filesystem.

5.2.3 Property Preserving Network Update for InfiniBand

One problem while performing network updates, i.e., the transition between two network states, is to
preserve per-packet or per-flow consistency [Rei+12; McC+15], and therefore preserve certain properties
satisfied by each network state. Usually, “atomic” state transitions for the whole network are impossible,
hence without consistency, these network updates can lead to security vulnerability, loss of packets, etc. A
summary of the comprehensive theoretical groundwork given by Reitblatt et al. [Rei+12] is outlined in
the following two Definitions 5.3 and 5.4.

Definition 5.3 (Per-packet and Per-flow Consistency). Per-packet consistency of the network operation

is achieved if and only if each packet injected into the network is processed by exactly one network state,

see Definition 3.6. If all packets of each injected message or flow are processed by the same network state,

then this is referred to as per-flow consistency.
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Definition 5.4 (Per-packet Consistent Network Update). Let us be a sequence of atomic updates u applied

to a set of network switches. Then, for two (distinguishable) network states χ and χ ′, the transition

χ→us χ ′ is called a per-packet consistent update if and only if each packet is processed by either χ or χ ′,

but not any inconsistent state in-between. Per-flow consistent updates are defined analogously.

The property preservation of network updates, as stated by Theorem 1 of Reitblatt et al. [Rei+12], is a
direct result when per-packet consistent updates are performed. However, this only holds for properties
related to single packets, e.g., connectivity or loop-freedom. Other network properties, such as in-order
delivery or deadlock-freedom, which are based on the correlation of multiple packets are harder to achieve.
Hence, for the purpose of scheduling-aware rerouting of HPC systems, Reitblatt’s property preservation
needs to be extended to be applicable to lossless and deadlock-free interconnects, see Definition 5.5.

Definition 5.5 (Property Preserving Network Update). The transition χ →us χ ′ between two network

states χ and χ ′ is called a property preserving network update for a lossless interconnection network if

the following conditions hold:

1. Both network states, χ and χ ′, are based on deadlock-free routing configurations,

2. χ →us χ ′ is a per-flow consistent update for reliable channels of communication, and per-packet

consistent update for unreliable connections, and

3. A temporally simultaneous processing of packets, either by χ or χ ′, during a transition cannot

cause a deadlock.

Attribute 2 of Definition 5.5 can be weakened to per-packet consistent updates when in-order delivery is
not required for reliable connections. Assuming the scheduling-aware (re-)routing is a property preserving
network update, then a fault-free execution of parallel applications, with respect to network-related
problems, is guaranteed, and therefore an uninterruptible operation of the HPC system. Further network
properties based on multiple packets, such as congestion control or quality of service, are beyond the
scope of this thesis.

Changing the routing configuration of an InfiniBand network cannot be done atomically. OpenSM, the
subnet manager of InfiniBand, splits the LFT of each switch into multiple management datagram (MAD)
packets, each carrying a payload of 64 bytes, to distribute new LFTs to all switches. Hence, at most 64
forwarding rules per switch can be changed at once, because 8 bit are used to encode an egress port.
This non-atomicity can cause out-of-order packet delivery for a flow, and therefore preventing per-flow
consistency and disrupting InfiniBand’s reliable connection service, see Section 5.2.1.1, resulting in
application crashes in the worst case.

Multiple network update protocols for software defined networks (SDN) have been proposed [Rei+12;
McC+15]. For example, the proposed two-phase updated installs passive routing configurations which
are activated when the switch identifies a certain packet, so that subsequent packets follow the same
path. Unfortunately, none of these protocols are applicable to InfiniBand due to missing features, i.e.,
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the ability to deploy two routing configurations simultaneously, to distinguish between flows, or to tag
packets. Hence, updating the forwarding rules of a path in InfiniBand is only safe when the used method
can guarantee that no packet or flow uses the entire path during the update process.

A feasible and novel solution to the above outlined problem is the five-phase update protocol, introduced
hereafter, which is able to guarantee property preserving network updates for reliable connections, see
Definition 5.5, within the limitations of the InfiniBand architecture specifications (IBTAspec) [Inf15].
Open MPI in version 1.8.4 and OpenSM in version 3.3.18 are used for the prototype implementation of
this update protocol. However, this protocol can be applied to other services in a supercomputer, e.g., for
reliable communication with a remote filesystem. The sequence diagram in Figure 5.7 exemplifies the
interaction between an MPI-parallel application and OpenSM, which performs the routing reconfiguration.

The initial assumptions for this update protocol to be applicable are the following, which will ensure
deadlock-freedom prior to the network update:

• OpenSM assigns two LIDs, while distinguishing between baseLID and highLID (the latter equals
to baseLID+1), for each node in the network via LMC = 1,

• The routing configuration for baseLIDs is calculated by Algorithm 5.1 (using VLs 0, . . . ,n−2),

• The routing configuration for highLIDs is calculated by Up*/Down* and uses VL = n−1, and

• Packets are only sent from baseLIDs to baseLIDs or among highLIDs, but not a mixture of both.

During phase 1 of the five-phase update protocol shown in Figure 5.7 an MPI-parallelized application,
or the asynchronous event thread (AsyncThread; see Section 5.2.1.3) of rank 0 to be precise, uses
InformInfo MAD packets to subscribe for event forwarding, as outlined in IBTAspec [Inf15, 13.4.8.3,
13.4.11]. All packets for inter-process communication within the MPI application are using baseLIDs
for destination addressing. The MPI library uses a library of the IB software stack to send userspace
management datagram (uMAD) packets to communicate with the OpenSM. The uMAD library also allows
the AsyncThread of rank 0 to periodically poll for MAD packets send by the OpenSM. The AsyncThread
subscribes only for unpath and repath traps, see IBTAspec Section 14.4.12, which are part of the general
concept of asynchronous notifications or alerts between IB components. Theoretically, subscriptions and
forwarded traps contain individual paths records, however the subscriptions used here apply for the whole
subnet’s LID range, and traps contain empty path records. This increases scalability by reducing the
number of MADs handled by both sides, i.e., only one MAD, with either unpath or repath trap, has to be
sent out to each subscriber. These traps are intended to inform terminals about usability changes of certain
routes. Once the OpenSM calculates a new routing configuration for the baseLIDs, in consequence of the
approach outlined in Section 5.2.2, it raises an unpath trap and forwards the trap to all subscribers, but it
withholds to reconfigure any LFT. The AsyncThread of rank 0 forwards the unpath trap to all other ranks
of the same application by the use of MPI calls, i.e., primarily MPI_Isend, MPI_Irecv, and MPI_Test.
This tree-like approach, where the OpenSM informs each rank 0 of all running MPI applications which
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then forward the traps internally, is required, because the uMAD library cannot be used simultaneously by
multiple asynchronous event threads on one compute node.

In phase 2, all processes of all subscribed parallel applications modify their queue pairs, which belong to
reliable connections, to enter the draining state by triggering the SQD event, see IBTAspec Section 10.3.1.5.
All send work request posted prior to the draining, and all receive work requests are processed normally.
While in draining state, MPI processes can still post new WRs to the verbs layer, however these will not
be send out before the QP reenters the “ready-to-send” state. Once the draining of an QP is complete, the
IB HCA sends an event notification to the AsyncThread. After receiving this “QP is drained”-notification,
the AsyncThread triggers a path migration (APM) to the highLIDs, see IBTAspec Section 10.4, changes
the QP back into the “ready-to-send” state, and then loads a new alternate path. The new alternate path
is always the opposite of the current path, i.e., if the current path is baseLID→baseLID, then the new
alternate path will be highLID→highLID. When all local QPs have been migrated to the highLID, then
each process informs rank 0, and acknowledges the successful migration. The AsyncThread of rank 0
uses a “local changes” trap, see IBTAspec Section 14.3.13, informing the OpenSM about the successful
draining of baseLID-related traffic, after it received acknowledgments by all ranks.

When the OpenSM receives confirmation by all subscribers, indicating that no reliable connections are
using baseLIDs in the entire network, the protocol switches to phase 3. OpenSM reconfigures all switches
with new LFTs for the baseLIDs, which were calculated during phase 1. The routing configuration for
the highLIDs is never changed, since it relies on the oblivious Up*/Down* routing. Theses routes for
highLIDs are kept in place until a failure in the network requires fault-recovery and rerouting for baseLIDs
and highLIDs. Property preserving network updates during fault-recovery in an InfiniBand network is
beyond the scope of this thesis.

Phase 4 starts after all InfiniBand switches have been reconfigured, and it is essentially a copy of phase 2
with the exception that the OpenSM requests the subscribers to migrate all their reliable connections
from the highLIDs back to the baseLIDs. During phase 5, the subnet manager listens for applications
canceling their forwarding subscriptions and waits for new scheduling-aware rerouting requests. Upon
completion of the MPI-based application the asynchronous event thread of rank 0 sends out unsubscribe
InformInfo MADs to the OpenSM.

The whole draining and path migration process is transparent to the overlying application. At most,
the application could experience a minor latency increase for a particular QP while it is draining, and
experience reduced throughput while the highLIDs are used.

5.3 Evaluation

This evaluation is split into three separate parts. To begin with, Section 5.3.1 provides a list of shortcomings
of the prototype implementation of the five-phase update protocol due to current circumstances. The
subsequent Sections 5.3.2 and 5.3.3 assess the advantages of the scheduling-aware routing approach in
comparison to other flow-oblivious routing approaches.
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5.3.1 Current Limitations and Problems

When this research was conducted, minor problems have been experienced while implementing the
five-phase network update protocol, shown in Figure 5.7. For the sake of completeness, the following list
mentions these limitations without going into much detail about possible solutions.

First off, the communication between the asynchronous event thread of rank 0 and the OpenSM is
potentially subject to packet loss. The reason are the (u)MAD packets to subscribe and forward traps
which must use QP0 and QP1. These special QPs are configured for unreliable transport service, see
IBTAspec Sections 3.9.4 and 3.9.5. However, both the uMAD library and OpenSM usually send MADs
multiple times if they are not acknowledged in time. Whenever the OpenSM reaches the maximum number
of retries without receiving an acknowledgment, it assumes an erroneous termination of application and
unsubscribes it from the internally stored list of subscribers.

Second, Open MPI combined with the openib component does not support simultaneous calls to
the MPI API from multiple threads of one process. Manually serializing MPI calls between the main
application and the AsyncThread via a pthread mutex lock is the currently chosen workaround.

And lastly, any attempts to modify QPs into the draining state was prevented by the tested firmwares
for the IB devices of the testbed. Depending on firmware version, either the verbs call was possible but
had no effect, or the firmware rejected the verbs call.

Therefore, the following sections omit showing practical results of the property preserving network
update protocol on the petascale Taurus HPC system. However, the entire rerouting and update protocol,
as outlined in Sections 5.2.2 and 5.2.3, has been tested successfully (apart from the QP draining) on a
smaller testbed, which will be demonstrated in Section 5.3.3.5.

5.3.2 Theoretical Evaluation of Network Metrics

The evaluation and comparison of the effective edge forwarding index and dark fiber percentage, see
Definitions 5.1 and 5.2, is based on the same batch job history which is presented in Figure 5.1 for the
two HPC systems, Taurus and TSUBAME2. Hence, the toolchain of Chapter 4 is used to “exactly replay”
the same job composition of each system, sampled every 10 min, and investigate the effects of different
routing algorithms. These algorithms are Up*/Down*, fat-tree, and DFSSSP, all implemented in OpenSM,
which are compared against the SAR implementation. The contestants are chosen based on the results of
Section 4.4.4. As mentioned in Section 3.2.6, the vendor of the Taurus HPC system originally suggested
the usage of fat-tree routing, before SAR got deployed in the course of this research, see Section 5.3.3.
Furthermore, fat-tree routing is the current default on the TSUBAME2 supercomputer.

5.3.2.1 Effective Edge Forwarding Index

This section analyzes two metrics with respect to the EFI. The first metric is γe(I,R,J) := max
cq∈C∗

γe
R,J(cq),

i.e., the maximum γe
R,J of all links, which implies hotspots of links shared by multiple jobs. This metric is

72



5.3 Evaluation

similar to the EFI of the interconnection network, see Definition 3.12, however constrained to “useful”
routes for jobs. Equivalently, the second metric is the maximal edge forwarding index γe(I,R, j) per job j,
which should also be as low as possible, because it bounds the worst-case congestion within a job, i.e., the
link with the most intra-job routes crossing it.

The results for γe(I,R,J) are shown in the top plot of Figures 5.8a and 5.8b. As one can see, the
scheduling-aware routing (blue line) outperforms DFSSSP for the Taurus system and outperforms the
other three routing algorithms on the TSUBAME2 supercomputer. A summary of the results is also
provided in Table 5.1 for Taurus and in Table 5.2 for TSUBAME2 to ease a quantitative comparisons.
The results in the two tables show the improvement by SAR for each metric (given as maximum and as
average across all sample points within the investigated month, as well as the improvement in percent). For
example, the 279.0 and 57.3 for DFSSSP mean that the scheduling-aware routing reduced γe(I,SAR,J)
by 279.0 (or 50.8%), at least once compared to DFSSSP routing, and reduced γe(I,SAR,J) by 57.3
(or 23.3%), on average during the full month.

The figures show a reduction of γe(I,R,J) when SAR is used for both HPC systems, especially for
TSUBAME2. This indicates that the worst-case link congestion is lowered. The tremendous differences
between fat-tree and the scheduling-aware routing on TSUBAME2, around day 16 and day 28, indicate
very unfortunate job-to-node placements, which does not match the default fat-tree routing of TSUBAME2.
The day 16 outlier will be analyzed in more detail in Section 5.3.2.3. SAR slightly increases γe(I,R,J)

on Taurus in comparison to fat-tree and Up*/Down* routing. However, on average SAR assigns only
one more path onto the link with the highest load. This disadvantage in the worst-case bound of SAR is
negligibly small, especially in the context of the other two metrics, link utilization and link availability.
Please note that Taurus had a fault-free and regular topology during the investigated month and a valid
assumption is that SAR will outperform fat-tree and Up*/Down* if the system’s network topology
becomes more irregular over time due to network faults, see Chapter 4.

For the second metric, the maximal edge forwarding index per job (2nd plot of Figure 5.8) follows a
similar behavior. The SAR approach lowers the maximum number of inter-job routes compared to the
other routings, which should accelerate the achievable throughput within the job, which will be showcased
in Section 5.3.3.4.

5.3.2.2 Available Links per Job and Dark Fiber Percentage

The edge forwarding index provides upper bounds for worst-case congestion, however a more direct metric
for utilization should be evaluated as well. One possibility is to analyze the number of switch-to-switch
links that are available to each job and to the overall set of jobs. Similarly, the dark fiber percentage of
Definition 5.2 specifies the inverse of this link utilization, and reports how much of the interconnection
hardware of the supercomputer is theoretically dispensable.

The dark fiber percentage θR,J is shown in the third plot of Figure 5.8a and 5.8b for both supercomputers,
and is summarized in the third row of Table 5.1 or Table 5.2, respectively. Especially for TSUBAME2,
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Table 5.1: Improvements by the scheduling-aware routing compared to DFSSSP, fat-tree, and
Up*/Down* routing for the Taurus HPC system

Metric DFSSSP fat-tree Up*/Down*
max. / in % avg. / in % max. / % avg. / % max. / % avg. / %

max
cq∈C∗

γe
R,J(cq) 279.0 / 50.8 57.3 / 23.3 18.0 / 21.2 -1.1 / -0.6 18.0 / 21.2 -1.1 / -0.6

avg
j∈J

γe(I,R, j) 16.0 / 39.0 4.3 / 23.4 1.6 / 11.4 -0.3 / -2.1 1.6 / 11.4 -0.3 / -2.1

θR,J [in %] 9.38 6.03 7.64 3.62 7.64 3.62

avg
j∈J

#links( j) 16.5 / 15.0 7.7 / 11.1 14.1 / 13.8 6.6 / 9.4 14.1 / 13.8 6.6 / 9.4

Table 5.2: Improvements by the scheduling-aware routing compared to DFSSSP, fat-tree, and
Up*/Down* routing for the TSUBAME2 HPC system

Metric DFSSSP fat-tree Up*/Down*
max. / in % avg. / in % max. / % avg. / % max. / % avg. / %

max
cq∈C∗

γe
R,J(cq) 321.0 / 61.2 119.4 / 38.5 1186.0 / 71.2 80.5 / 29.7 354.0 / 48.7 69.9 / 26.8

avg
j∈J

γe(I,R, j) 18.9 / 46.0 6.7 / 30.1 38.0 / 49.8 2.7 / 14.8 10.6 / 29.9 2.4 / 13.2

θR,J [in %] 12.06 7.63 17.74 9.99 9.24 5.51

avg
j∈J

#links( j) 49.2 / 26.7 18.3 / 17.4 75.1 / 43.9 26.5 / 27.3 22.3 / 14.9 7.4 / 6.4

the improvements to θR,J by the scheduling-aware routing is clearly visible in the plot. SAR increases
the number of links available to running batch jobs by up to 17.74% for TSUBAME2 in comparison to
the default routing on this system. For both systems, SAR consistently increases θSAR,J and thus enables
a more efficient resource utilization. Furthermore, the scheduling-aware routing utilizes between 3.6%
and 9.9% more links on the month-long average than the other oblivious routing mechanisms.

Lastly, the bottom plots of Figure 5.8 show that SAR increases the number of intra-job links as well.
The principle “higher is better” applies to these two plots. Theoretically, this leads to a higher effectively
available bandwidth for the applications. Depending on the routing algorithm and HPC system, the SAR
approach allows the average multi-switch job to use between 6 and 26 more links.

5.3.2.3 Comprehensive Outlier Analysis of Day 16

The most noticeable difference, visible in Figure 5.8b and Table 5.2, between the scheduling-aware
routing and the fat-tree routing are the two outliers on day 16 and day 28. The improvement by SAR,
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Figure 5.9: Heat map of the EFIs for inter-switch links of TSUBAME2 for the 200-node
batch job on day 16 of Feb. ’15; Used routing algorithm: fat-tree (Section 3.3.5);
Corresponding histogram shown in Figure 5.11a; Link coloring similar to Figure 5.2
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Figure 5.10: Heat map of the effective EFIs γe
R, j for inter-switch links of TSUBAME2 for the

200-node batch job j on day 16 of Feb. ’15; Used routing algorithm: scheduling-
aware routing (Algorithm 5.1); Corresponding histogram shown in Figure 5.11b
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Figure 5.11: Histograms of effective EFI γe
R, j for inter-switch links; Fat-tree routing (left)

vs. scheduling-aware routing (right) for the 200-node batch job on TSUBAME2;
Limited to γe

R, j ≥ 200

considering all simultaneously executed batch jobs, is up to 72%, which is worth investigating. Analysis
of the jobs and effective edge forwarding indices on day 16 of February 2015 shows that one 200-node job
is the main reason for the spike. This 200-node scientific application ran for ≈24 h on the TSUBAME2
supercomputer. The nodes belonging to this job were spread across 15 leaf switches of the fabric. The
node allocation in combination with the oblivious fat-tree routing yields particularly unfavorable intra-job
EFIs, e.g., one port of one level 1 switch forwards a total of 1,272 paths towards the leaf switch, see the
red link in Figure 5.9. Gray links indicate network hardware which is unavailable to the batch job. The
histogram of links per EFI, for effective edge forwarding indices larger than 200 in Figure 5.11a, reveals
two additional ports overloaded with ≈600 intra-job routes. The Figures 5.10 and 5.11b show that SAR is
able to reduce γe(I,SAR, j) for this 200-node job j down to 376. Furthermore, the number of fabric ports
available to the 200-node job increases from 1,274 to 1,555 while using SAR, which is not directly visible
in Figure 5.11.

5.3.3 Practical Evaluation on a Production System

The scheduling-aware routing, as presented in Section 5.2.2.2, is now deployed for more than one year on
the petascale Taurus production system [ZIH13] at the TU Dresden. To recapitulate Section 3.2.6, the
system’s InfiniBand fabric is designed as a multi-island network. Multiple smaller 2-level full-bisection
fat-trees are connected by a 216-port director switch. The following four subsections show numbers
collected while the supercomputer was open to regular users. However, although the usual runtime of the
SAR implementation in OpenSM is fluctuating around 5 s for the 2,065-node system, detailed runtime
comparisons to calculate the linear forwarding tables with SAR are omitted for the following reasons:

• SAR and DFSSSP have the same runtime complexity of O
(
|N|2 · log |N|

)
, for the node set N,

• Measurements revealed a negligible runtime overhead introduced by the SAR extensions, which are
shown in Algorithm 5.1, and
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5 Utilization Improvement through SAR

• The competitive runtime of DFSSSP routing has been shown before.

For example, refer to related work [DHN11; SBH16] or Section 6.3.3, respectively, for detailed compar-
isons of the runtime of the deadlock-free SSSP routing.

5.3.3.1 Runtime of the Filtering Tool

The current filtering and reconfiguration tool runs with a 5 min interval, see Figure 5.6, to minimize the
chance that SAR reroutes for batch jobs that only run for a very short time. The runtime of the tool
including polling the SLURM controller and analyzing currently running jobs has been measured for each
run. The average time spent by the filtering tool is 16 s, with a low of 0.02 s. In 99.1% of the cases the
runtime was below 2 min. Only three occasions in over a year have been experienced, where the runtime
was above 10 min. The vast majority of the runtime of the filtering tool results from the latency to obtain
the list of scheduled jobs via the squeue command, which depends on the load of the SLURM controller.

5.3.3.2 New Routing Configurations per Day

The number of reconfigurations of the network per day, due to a substantive change in the job mix and
job locations, ranges between 0 and 57, with an average of 14 reconfigurations per day. Therefore,
approximately every two hours the system’s forwarding tables are adjusted to increase the performance of
the running parallel applications. Only for four days in over a year of operation no reconfigurations were
needed, and three out of these four days were on weekends, and one time on Monday. Hence, these days
match the typical days of lower load on a production system in a university environment.

5.3.3.3 Runtime for Configuring LFTs of all IB Switches

The time it takes to reconfigure all switches in the IB network is of importance. Either because it defines
the time window, where out-of-order packet delivery can happen if property preserving network updates
are not enforced, or because it defines the time frame during which the network throughput might be
decreased due to the use of the highLIDs, which are routed by the less efficient Up*/Down*.

An average of 4.6 µs have been measured to send an LFT block, which contains only 64 egress ports,
to a switch and receive an acknowledgment. Hence, the number of blocks per switch is ⌈max(LID)

64 ⌉, taking
into account that the maximum LID assigned in the system by the subnet manager can be considerably
larger than |N|. Instead of reconfiguring all LFT blocks of a switch at once, OpenSM iterates over the
block numbers and sends out the first LFT block of each switch, before processing the second block,
and so on. So, theoretically OpenSM could reconfigure one block number for all 210 switches in the
Taurus system in under 1 ms. However, measurement revealed a runtime between 25 ms and 50 ms for this
process. Despite this OpenSM-internal overhead, the whole LFT reconfiguration for the supercomputer is
completed in ≈0.8 s on average. Hence, the likelihood for an out-of-order packet delivery, which cannot
be compensated by InfiniBand’s packet timeout/retry mechanism (usually configured by Open MPI to be
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Figure 5.12: Runtime measurement for MPI_Alltoall (with 1 MiByte in each send buffer) on 28
compute nodes using three different routing approaches

larger than 30 s) and which therefore causes an application crash, is close to zero. In fact, no application
crashes caused by SAR on the HPC system have been observed, even though the system cannot use the
full network update protocol discussed in Section 5.2.3 due to limitations in the HCA firmware.

5.3.3.4 Effects on MPI Traffic

The optimal zero-load latency between any two nodes in the system is not affected by the SAR approach,
due to the fact that the underlying algorithm always calculates shortest paths. Therefore, any reconfigura-
tion of the fabric with Algorithm 5.1 will not increase the number of hops between nodes. Changes in the
observable latency for small messages are possible, i.e., worse than the optimal latency for individual mes-
sages, which depends on the congestion in the system. However, from the two network metrics evaluated
in Section 5.3.2, it can deduced that the likelihood of congestion is reduced and therefore the observable
latency for small messages improves on average while using SAR. Hence, latency measurements or
simulations are not subject of this thesis, since the optimal latency does not change.

Instead, an MPI runtime measurement is conducted on the production HPC system to showcase the
impact of the scheduling-aware routing compared to other routing approaches while trying to fully
utilizing the available throughput and stress the network. The benchmark emulates a bulk-synchronous
application using an MPI_Alltoall collective operation followed by an MPI_Barrier to synchronize the
time measurement. Every MPI process sends 1 MiByte to every other process, and the runtime of the
slowest process is written into a log file. This benchmark is scheduled to 28 nodes of one full-bisection
fat-tree island of Taurus. While the benchmark was running simultaneously with jobs of other users, the
routing has been switched between three different routing engines. Due to natural fragmentation of the
production system, the 28 nodes ended up connected to ten different switches in the Taurus island.

Figure 5.12 summarizes the results: First, the default fat-tree routing configures the LFTs for the first
three minutes. Then, the subnet manager switches to standard DFSSSP routing, approximately between
iteration 1,600 and 2,600. The observed runtime increases by 7.1% due to the change from fat-tree routing
to DFSSSP routing. For the last time segment, the filtering tool triggers the SAR approach, which initiates
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Figure 5.13: Visualization of the network update protocol (without QP draining) and path
migration between two inter-switch links on a testbed during high MPI load

the scheduling-aware routing for the whole system. The path optimizations by the scheduling-aware
routing decreases the runtime for the benchmark by 17.6% compared to DFSSSP routing and 11.7%
compared to fat-tree routing. The plot also includes the theoretical peak performance, assuming all data
can be transferred without congestion and MPI library overhead. This shows that SAR essentially halves
the congestion overhead caused by the highly optimized fat-tree routing, even on a regular fat-tree.

5.3.3.5 Property Preserving Network Updates on Testbed

Even so draining of the queue pairs currently does not work, i.e., triggering the SQD event as outlined
in Section 5.3.1, the OpenSM is able to successfully perform path migrations and update the routing
configuration. A small test system is used to showcase that the network updates are safe in practice. This
testbed consists of two IB QDR switches and four nodes with IB FDR host channel adapters, with two
nodes connected to each switch. Additionally, the two IB switches are connected by two links.

The modified OpenSM, which supports the network update protocol, is running on an administration
node. An MPI benchmark, which repeatedly performs MPI_Bcast with a 1 MiByte send buffer, is executed
on two compute nodes to emulate a contiguous flow of data from one to the other. Meanwhile, the OpenSM
performs a scheduling-aware rerouting, see Figure 5.13. Performance counters of the inter-switch links
are queried approximately every 0.07 s while running the benchmark. These counters, in particular
PortXmitData [Inf15, 16.1.3.5], are used to calculate the shown throughput. Additionally, OpenSM adds
an artificial delay of 10 s between sending unpath and repath traps to highlight the path migration. The
area between sample 400 and 560 shows this delay, i.e., phase 2 and 3 of the update protocol, where traffic
is routed via the highLID or inter-switch link 2, respectively. The PortXmitData counter of the utilized
link is indicating an increment of ≈215 Mbyte per sample interval, which adds up to ≈3.1 Gbyte/s, due
to the 0.07 s sample rate. These values correlate with the maximal throughput of QDR links, i.e., the
bottleneck between the two switches. The path/flow migration between the two links is clearly visible in
Figure 5.13 and the update protocol has no negative impact on the throughput of the broadcast operation.
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6 Routing on the Channel Dependency Graph

Despite the advances in recent years, to develop new deadlock-free routings for a variety of interconnection
technologies and topologies or to improve their efficiency, as introduced in Chapter 5, a major problem
persists. No algorithmic approach is known to perform deadlock-free destination-based routing which is
generally applicable to all technologies and topologies, and delivers better performance than Up*/Down*,
compare to Table 2.1. Such a routing function would be usable on at least 85% of the supercomputers of
the current TOP500 list, only counting the systems based on IB, Ethernet, and Omni-Path in Figure 1.1a.
This Chapter introduces a novel approach of routing on the channel dependency graph to overcome these
issues. Section 6.1 elaborates further on the shortcomings when path finding and deadlock-freedom of the
routing algorithm is considered separately. The following Section 6.2 outlines the new routing approach,
called Nue, combining the applicability of Up*/Down* with the path balancing of DFSSSP. Nue will be
evaluated in Section 6.3 in terms of multiple network metrics, such as path length, path balancing, and
achievable throughput, and will be compared to other state-of-the-art routings. Furthermore, the general
applicability of Nue and its runtime to calculate a new network state are demonstrated.

6.1 Limitations of Multi-Step Routing Approaches

Two general concepts exist for creating deadlock-free routing functions, both consisting out of two phases,
as described hereafter. The first concept is an analytical solution, also referred to as turn model, which
basically restricts the usage of possible turns within the network as a first phase, either by knowledge
of the underlying topology or similarly to the Up*/Down* routing, before calculating the routes in the
second phase. Examples are the topology-aware DOR routing, see Section 3.3.3, L-turn, or multiple
Up*/Down* (MUD), listed in Table 2.1. Unfortunately, this approach generally results in non-shortest
paths and poor path balancing, and therefore high latency and low throughput, respectively.

In contrast, the current best practice of the second concept, e.g., as implemented by DFSSSP and
LASH, see Section 3.3, is to decouple the two problems of path creation into phase 1 and deadlock-free
assignment to virtual channels into phase 2. The reason is that both problems require a different graph
representation of the network and routes. The deadlock-free assignment needs the channel dependency
graph, recall Definition 3.7, an abstract graph induced by the routes, while the route calculation has to take
place beforehand and is usually performed on a graph identical to the network. Generally, this approach
cannot be bound with respect to the number of virtual channels required to solve the deadlock problem,
which is illustrated by the following Proposition 6.1 and network example.
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(b) Corresponding cyclic CDG

Figure 6.1: Using a shortest-path routing for 5-node ring network I (6.1a) induces a cyclic
channel dependency graph D (6.1b) with two cycles

Lemma 6.1. Let R : C×N → C be a given routing function (or more generally R′ : N×N → C), see

Definition 3.4, requiring a minimum of k(I,R) ∈ N virtual channels for deadlock-freedom on an arbitrary

network I = G(N,C). Furthermore, let k ∈ N be an arbitrary but limited number of virtual channels,

with k ≥ 1, provided by the interconnection technology. Assuming, R defines solely shortest paths sPnx,ny

for any pair of nodes nx,ny ∈ N, then a network topology I′ = G(N,C) exists such that k(I′,R) > k, hence

rendering the routing R inapplicable to I′.

Proof. Let’s assume the opposite of the lemma is true, i.e., for any network I and given number of virtual
channels k ∈ N there exists a deadlock-free and shortest-path routing R with k(I,R) ≤ k. For example,
assuming the absence of virtual channels (equivalent to k = 1) for a five-node ring topology, as shown in
Figure 6.1a, then a deadlock-free and shortest-path routing should still exist. Any shortest-path routing
for this network would route sPn1,n3 via n3 connecting cn1,n2 with cn2,n3 , route sPn2,n4 via n3 connecting
cn2,n3 with cn3,n4 , etc. Therefore, the resulting channel dependency graph depicted in Figure 6.1b is the
same for any shortest-path routing. Applying Theorem 3.1 reveals that all these routing functions are not
deadlock-free, since no virtual channels are available to break the cyclic channel dependency graph.

Furthermore, determining the minimal number of required virtual channels to provide a deadlock-free
path-to-virtual layer assignment is NP-complete [DHN11]. This proposition and the trivial counter
example in Figure 6.1 show that a two-phase approach, which first calculates shortest paths through the
network for all node pairs, is impractical for designing an universally applicable routing, which allows
low latency and high throughput.

Assuming, it is possible to combine the information required to solve both problems within one graph,
then this might allow to impose routing restrictions to the path creation on-demand, because the effects of
a partial or full path on the CDG can be checked simultaneously. Hence, it would be possible to avoid
closing cycles in the CDG, while calculating the paths, instead of breaking the cycles later. Assume,
this new graph represents one virtual layer, see Definition 3.8, then a graph search algorithm, such as
Dijkstra’s algorithm, can traverse the graph and construct routes from all nodes to all other network nodes
and the routes are deadlock-free within this layer. The type of graph search and the information assigned
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Figure 6.2: Simulated throughput for an all-to-all operation and required VCs for deadlock-
freedom for different routing algorithms (hatched bars indicate that only 1 VC is
used); Simulated network: 4x4x3 3D torus, 4 terminals per switch, 1 faulty switch,
QDR InfiniBand, maximum of 4 VCs available

to this graph influence the resulting routes, e.g., source-routing or destination-based routing could be
possible. Furthermore, assuming the used network technology supports an arbitrary, but fixed, number of
virtual channels, k > 1, then individual destination nodes can be assigned to different virtual layers. As a
consequence, the graph search algorithm within one layer is able to calculate deadlock-free routes for all
source nodes to the subset of destination nodes assigned to this virtual layer. Therefore, all routes in all
virtual layers are deadlock-free without exceeding the virtual channel constraint.

To sketch this idea, a 3-dimensional InfiniBand torus(4,4,3) network with four terminals per switch and
one failed switch, i.e., 47 switches in total, is given as an example topology. This IB network shall have
network support for four virtual channels, or IB virtual lanes, respectively. The throughput for various
deadlock-free routing algorithms, as implemented in InfiniBand’s subnet manager, is shown in Figure 6.2a.
The shift exchange pattern of Section 4.3.3.2 with 2 KiByte messages yields the given simulation results.
Additionally, Figure 6.2b shows the needed number of VCs for these deadlock-free routing algorithms.

The topology-aware Torus-2QoS routing, see Section 3.3.7, enables a high throughput within the virtual
channel limit, but will fail if a second switch failure occurs in the same torus ring. Up*/Down* routing and
LASH, details in Sections 3.3.4 and 3.3.6, are inefficient in comparison to Torus-2QoS. The throughput of
the topology-agnostic routing DFSSSP [DHN11] is in-between, however the deadlock-free single-source
shortest-path routing exceeds the given VC limit and is therefore inapplicable. The achievable throughput
while using the novel routing approach, which Section 6.2 will elaborate in detail, for the 4x4x3 torus is
included in Figure 6.2a for every number of virtual channels within the 4 VC limit. Hence, Nue shows
resiliency to network faults and the ability to offer competitive throughput. Surprisingly, Up*/Down*
routing slightly outperforms Nue routing in the absence of virtual channels. However, it is noteworthy
that the induced CDG of the Up*/Down* implementation in OpenSM actually contains a cycle for this
topology and is therefore not deadlock-free, even so the simulated communication pattern did not deadlock.
A corrected Up*/Down* implementation probably decreases the achievable throughput even further.
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Figure 6.3: Complete CDG D for the 5-ring network with shortcut, see Figure 6.3a, assuming
k = 1; All channels are in the unused state (⇒ no routing applied, yet)

6.2 Nue Routing

The graph capable of combining the information required to solve the path calculation as well as the virtual
channel assignment is called the complete channel dependency graph. The following Section 6.2.1 will
outline how to construct the complete channel dependency graph. Based on this graph, a deadlock-free,
oblivious, and destination-based Nue routing is developed in Sections 6.2.2 – 6.2.5, which serves as one
example for the general idea of routing within the dependency graph. Section 6.2.6 introduces potential
improvements for Nue to speedup the path calculation and to increase the achievable throughput on the
network. Moreover, Section 6.2.7 proves the correctness and completeness of Nue routing, and analyzes
the algorithm’s time and memory complexity.

6.2.1 Complete Channel Dependency Graph

To create paths within the CDG, a complete representation of all possible channel dependencies is needed,
instead of a graph solely induced by a specific routing algorithm. Therefore, the complete channel
dependency graph, using the adjacency of channels, is defined as follows:

Definition 6.1 (Complete Channel Dependency Graph). Let I = G(N,C) be a network according to

Definition 3.1, then the complete channel dependency graph D := G(C,E), with E ⊆C×C, is defined

by ∀(nx,ny),(ny,nz) ∈C,nx ̸= nz :
(
(nx,ny),(ny,nz)

)
∈ E. Further, the graph D is defined to be cycle-free,

if D⊆ D is acyclic for any CDG D induced by a routing function according to Definition 3.7. Assuming,

the network technology supports k > 1 virtual channels, then the definition of the i-th complete channel

dependency graph Di := G(Ci,E i), with E i ⊆Ci×Ci, is equivalent to the definition of D.

The conventional channel dependency graph D induced by a routing function does not have to be stored
separately, and can be saved indirectly by assigning states to the vertices, i.e., channels of I and edges of
the complete CDG D. These states are unused, used, or blocked, whereby the blocked state is only used
for edges. An edge e ∈ E is considered to be used if and only if e ∈ E, i.e., e is induced by a routing R.
Furthermore, an edge e ∈ E is marked as blocked if and only if G(C,E ∪{e}) forms a cyclic graph for an
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Figure 6.4: Sketching the process of finding paths between network nodes within the complete
CDG D while avoiding to close any cycles in the induced CDG D

acyclic CDG D = G(C,E). Figure 6.3 shows the complete channel dependency graph D for the 5-node
ring network with shortcut, shown in Figure 6.3a, for k = 1. Each vertex/edge of D is in the unused

state, i.e., no routing has been applied. This ring network is the same as used earlier in Figure 3.1 and
subsequent exemplification, and which will be used throughout the remainder of this section.

Finding paths within the complete channel dependency graph D is almost as trivial as finding the routes
within the original network I, as sketched hereafter. Without going into great detail how the routing
algorithm maps paths into the complete CDG and where the routing starts the search, let us assume the
algorithm first of all searches a route from network node n3 to n4 and finds the possible path Pn3,n4 via n5,
as depicted in Figure 6.4a. Hence, both, the vertices cn3,n5 and cn5,n4 , and the edge in between the two, are
changed into the used state. In step 2, see Figure 6.4b, the routing algorithms tries to determine a route
from node n5 to n3. A solution is start at cn5,n4 to traverse the path Pn5,n3 = (cn5,n4 ,cn4,n3) in the directed
graph D, changing the involved vertices and the edge into the used state. In the next iteration of the
algorithm, step 3, the route from node n4 to n5 should be calculated. If the routing starts at vertex cn4,n3 ,
as shown on the right side of Figure 6.4c, then the only possible path to reach n5 within D requires the
usage of the edge (cn4,n3 ,cn3,n5). However, changing this edge into the used state is prohibited, since it
would close a cycle in the induced CDG D or the used marked subgraph of D, respectively. Hence, the
algorithm must assign the blocked state to the edge (cn4,n3 ,cn3,n5), and must search an alternative path by
starting at vertex cn4,n5 , which directly yields a valid path Pn4,n5 = (cn4,n5).

6.2.2 Escape Paths for the Static Nue Routing

Cherkasova et al. [CKR96] made an important observation during the development of their smart routing
algorithm: An incremental algorithm calculating paths and adding routing restrictions at the same time,
i.e., prohibiting the assignment R(cq, ·) = cq+1 for any destination node, can lead to a routing impasse.
Basically, an iteratively working graph algorithm which does not allow backtracking and does not have
all-embracing knowledge about the graph might not traverse all nodes of the graph. Hence, further
progress in the algorithm, completing the node search, is impossible due to previously added routing
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6 Routing on the Channel Dependency Graph

restrictions. While Cherkasova et al. [CKR96] report that this state was observed only rarely for their
investigated networks, the experiments conducted for this thesis showed that it is a permanent problem for
larger networks.

For adaptive routing algorithms it is common to avoid deadlocks by utilizing a separate set of buffers,
similar to a virtual layer, which acts as “escape paths” [DT03; Gar+13]. Within this layer a fixed deadlock-
free routing, such as Up*/Down*, is employed, and switches transfer a blocked packet into the escape
paths for the remainder of the route to its destination.

It is necessary to adapt the concept of escape paths for the oblivious Nue routing to ensure that at least
one valid path between every given node pair exists, which does not induce a cycle in the corresponding
channel dependency graph. However, these escape paths are not implemented similarly to adaptive
routings with a separate set of buffers, but as available fall back paths within a virtual network layer Li,
see Definition 3.8. This fall back path is not necessarily the shortest path available through the graph. The
disadvantages of fixed and predefined escape paths are the imposed channel dependencies which cannot
act as routing restrictions. Meaning, Nue assigns the used state to a subset of vertices and edges of D, even
so these are not necessarily induced by R. The same holds for Up*/Down* routing, which predefines a
much larger (and usually unnecessary) number of routing restrictions, i.e., forbidden “down”→“up” turns,
which generally results on poor path balancing. Escape paths for Nue routing inevitably serve as potential
imaginary paths which also influence the generation and balancing of real paths by the routing function.
Therefore, the escape paths should induce as few channel dependencies as possible while minimizing the
average path length across the escape paths. The former requirement theoretically increases the degree of
freedom the routing function has in placing routing restrictions on-demand, while the latter ensures that
the latency, or path length, respectively, is minimized in case an escape path is the only available routing
option.

The preferable approach of defining the escape paths in D is to use a spanning tree in I, since a spanning
tree does not induce a cyclic CDG while minimizing the number of channels required to connect all nodes
in I. The following Definition 6.2 details the construction of the escape paths.

Definition 6.2 (Escape Paths). Let Nd ⊆ N be a set of destination nodes for Nue within the network

I = G(N,C) and let τ(I) = G(N,Cτ), with Cτ ⊆C, be a spanning tree of network I with root node nr ∈ N.

Then, the escape paths Dτ := G(Cτ ,Eτ) are a subgraph of D induced by a routing Rτ : N×Nd →Cτ .

Assuming k > 1, then Dτ
i for virtual layer Li and root nr,i is defined equivalently, with the substitution of

Cτ by Cτ
i ⊆Ci.

In this context, the term “spanning tree” refers to the originally undirected duplex channels of I,
and therefore for any (nx,ny) ∈ Cτ it holds that (ny,nx) ∈ Cτ , as well. Obviously, there exists always
exactly one cycle-free path between any pair of nodes within a spanning tree. Hence, all cycle-free,
destination-based routings Rτ induce the same escape paths Dτ or Dτ

i , respectively, for a given spanning
tree. Figure 6.5 shows the escape paths marked in the complete channel dependency graph for Nd = N

when n5 is used as the root node for τ(I).
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Figure 6.5: Acyclic escape paths Dτ for the 5-node ring network with shortcut, see Fig-
ure 6.3a, are marked as solid boxes/lines within the complete channel dependency
graph D (6.5b), assuming k = 1, destination set Nd = N, root node nr = n5, and
spanning tree τ(I) = G(N,C \{(n1,n2),(n2,n1),(n3,n4),(n4,n3)}), see 6.5a

The escape paths for Nue routing have two functions: The first, as mentioned above, is to define an
initial set of channel dependencies, which once added to the complete CDG cannot be removed to resolve
cyclic states in the routing-induced CDG. Therefore, the escape paths ensure a deadlock-free path from
all nodes in N to all nodes in Nd

i within a given virtual layer Li. Hence, escape paths for each layer are
needed, so that at least one valid path exists, which could be found by Nue. Unfortunately, despite of
having escape paths Dτ

i , Nue can still end up in an impasse due to the iterative nature of the path creation,
which will be shown in Sections 6.2.6.2 and 6.2.6.3. Therefore, secondly and more importantly, the escape
paths are to be actively used by Nue after reaching an unsolvable impasse for a destination node, later
introduced as the fall back scenario in Section 6.2.6.2.

6.2.3 Choosing Root Node for the Spanning Tree

Nue routing is using escape paths when encountering an impasse, further illustrated in Section 6.2.6.2.
Therefore, Nue should ensure that the paths in τ(I) are as short as possible. This will reduce latency and
oversubscription of individual channels with paths in case of a required fall back.

Assuming Nd
i ⊂N is a true subset, then an observation is that the number of initial channel dependencies

derived from the escape paths depends on the location of the root node as well. The previously investigated
5-node ring topology with shortcut, recall Figure 6.3a, can be examined again to illustrate this property.
A first choice for the root node of the spanning tree τ(I) could be n5, since it allows for the shortest
average path length in the spanning tree. However, if n5 is chosen as root node, then the escape paths
for subset Nd

i = {n1,n2,n3}, as specified in Definition 6.2, induce five initial channel dependencies, see
the five arrows in Figure 6.6a. Alternatively, if nr = n2 is chosen instead, then only four initial channel
dependencies are predetermined, as shown in Figure 6.6b.

As a consequence, a possible approach is to use a root node which is the most central with respect to the
subset Nd

i ⊂ N to reduce the initial channel dependencies within virtual layer Li. Freeman et al. [Fre77]
introduced the metric of betweenness centrality, which is ideal for this purpose to determine the root
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Figure 6.6: Arrows show the initial channel dependencies of the escape paths for the node set
Nd

i = {n1,n2,n3} and root node n5 (left) or root node n2 (right) of the spanning tree
marked in black

node for the spanning tree. For a given graph G(N,C), the betweenness centrality CB(n) for a node n ∈ N

is defined through the ratio of all shortest paths to shortest paths crossing n, see Equation 6.1 hereafter.
Let σuv :=

⏐⏐{sPu,v | u,v ∈ N}
⏐⏐ be the absolute number of distinguishable shortest paths between any two

nodes u and v, and let σuv(n) :=
⏐⏐{sPu,v | u,v ∈ N∧ (·,n) ∈ sPu,v}

⏐⏐ be the number of shortest paths which
include node n, then the betweenness centrality is equal to:

CB(n) := ∑
n̸=u ̸=v∈N

σuv(n)
σuv

(6.1)

Brandes et al. [Bra01] developed an algorithm to compute the betweenness centrality CB(n) of every
node n ∈ N in the graph, to determine the most central node with respect to N. The algorithm for
unweighted graphs has an O(|N| · |C|) time complexity. Unfortunately, the algorithm is not directly
applicable to the previously stated problem (except for the trivial case of Nd = N), because the most
central node with respect to the subset Nd

i ⊂ N is required to reduce the initial channel dependencies of
the escape paths towards nodes of Nd

i . The proposed alternative for Nue is to solve a related problem,
i.e., to calculate the convex subgraph for the node set Nd

i , and apply Brandes’ algorithm on the convex
subgraph. The following Definition 6.3 specifies the construction of the convex subgraph for Nd

i :

Definition 6.3 (Convex Subgraph). The convex subgraph Hi := G(NH
i ,CH

i ) for a set Nd
i ⊆ N includes

all nodes of Nd
i , as well as some nodes of N \Nd

i which are intermediate nodes of the shortest paths sP·,·
between nodes of Nd

i . Therefore, the node set of Hi is defined as

NH
i := {n ∈ N | n = nx∨∃nx,ny ∈ Nd

i : (·,n) ∈ sPnx,ny}

and the edge set CH
i of the convex subgraph is defined analogously.

In this thesis, interconnection networks are represented by an unweighted graph, see Definition 3.1,
which allows the computation of the convex subgraph with a time complexity of O

(
|Nd

i | ·(|N|+ |C|)
)

with
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Algorithm 6.1: Convex subgraph for node set Nd of an unweighted graph G(N,C)
Input: I = G(N,C), node subset Nd ⊆ N
Result: Node set NH of the convex subgraph H for Nd

1 NH ← Nd

2 foreach node nx ∈ Nd do
3 foreach node n ∈ N do
4 n.distance← ∞

5 n.processed← false
/* forward step */

6 FIFO queue Q←{nx}
7 while Q ̸= /0 do
8 u← Q.dequeue()
9 foreach (u,v) ∈C do

10 if v.distance = ∞ then
11 v.distance← u.distance+1
12 Q.enqueue(v)

/* backward step */
13 foreach node ny ∈ Nd do
14 ny.processed← true
15 FIFO queue Q←{ny}
16 while Q ̸= /0 do
17 u← Q.dequeue()
18 foreach (u,v) ∈C with v.processed = false do
19 if v.distance = u.distance−1 then
20 if v ̸∈ NH then NH ←{v}∪NH

21 v.processed← true
22 Q.enqueue(v)

a breadth-first search (forward step) and an inverse traversal of the graph to find all shortest paths (backward
step), as shown in Algorithm 6.1. This algorithm is derived from Dijkstra’s algorithm to compute the
shortest paths from one node to all other nodes. In the forward step, the distances from nx ∈ Nd

i to all
nodes in N are computed. The subsequent backward step then traverses from all ny ∈ Nd

i towards nx and
adds all nodes to the node set of Hi, which have not been processed before. The break at already processed
nodes, see loop condition at line 18, is possible, because it means that all shortest paths from this node
towards nx have been identified earlier. The depicted pseudocode omits the layer index i, because the
algorithm is identical for each virtual layer and the only difference between layers is the node set Nd

i .
Section 6.2.5 elaborates the creation of these subsets of N in Algorithm 6.3.

After computing the convex subgraph Hi, Brandes’ algorithm is executed on Hi instead of I to
find nr,i ∈ NH

i which maximizes the betweenness centrality CB(n) with respect to Nd
i . This node is

used as the root node of the spanning tree for the escape paths from all nodes towards the destination
nodes in Nd

i , to define the initial (non-removable) dependencies, see Section 6.2.2. Note that, for k = 1,
Nue assigns all destination nodes Nd

i to one virtual layer. Hence, H1 is equivalent to the network I and
Brandes’ algorithm can be executed directly on I.

6.2.4 Dijkstra’s Algorithm for the complete CDG

Previous research [HSL09; DHN11], as well as the introduced scheduling-aware routing optimization in
Chapter 5, shows the effectiveness of a routing algorithm based on Dijkstra’s single-source shortest-path
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6 Routing on the Channel Dependency Graph

Algorithm 6.2: Modified Dijkstra’s algorithm within the complete CDG D
Input: I = G(N,C), D = G(C,E), source n0 ∈ Nd

Result: Pny ,n0 for all ny ∈ N (and D is cycle-free)
1 foreach node n ∈ N do
2 n.distance← ∞

3 n.usedChannel← /0
4 foreach channel c ∈C do
5 c.distance← ∞

/* Need a source channel c0 to start the Dijkstra’s algorithm: if n0 is terminal then use unique (n0, ·);
if n0 is switch then D has multiple (n0, ·) => use fake channel ( /0,n0) to connect to all */

6 if n0 is switch then c0← ( /0,n0) else c0← (n0, ·)
7 n0.distance← 0
8 c0.distance← 0
9 FibonacciHeap Q←{c0}

10 while Q ̸= /0 do
11 cp← Q.findMin()
12 foreach (cp,cq) ∈ E with (cp,cq).state ̸= blocked do

// Let ncq ∈ N be the tail of directed channel cq

13 if cp.distance+ cq.weight < ncq .distance then
14 (cp,cq).state← used // modifies D
15 if D is cycle-free then // cycle check is outlined in Section 6.2.6.1
16 if ncq .usedChannel ̸= /0 then
17 Q.remove(ncq .usedChannel)
18 Q.add(cq)
19 cq.distance← cp.distance+ cq.weight
20 ncq .distance← cp.distance+ cq.weight
21 ncq .usedChannel← cq

22 else
23 (cp,cq).state← blocked

· · ·
// Optimizations are explained in Sections 6.2.6.2 and 6.2.6.3

· · ·
70 if n0 is switch then
71 remove fake channel c0 from D and (c0,(n0, ·)) from E

algorithm. The effectiveness is quantified by the algorithm’s ability of balancing the paths across the
available channels. The modified Dijkstra algorithm of SSSP, extended to work on multigraphs, see
Section 3.3.2, has a low time complexity of O

(
|N|2 · log |N|

)
when used with a Fibonacci heap. The

destination-based (DF-)SSSP routing initializes the network channels with positive weights of |N|2 to
ensure the calculation of shortest paths. Subsequent path calculations from each network node to all other
nodes by Dijkstra’s algorithm, executed on the network graph I = G(N,C), define the routes in inverse
direction, and therefore the entire network state. The balancing is achieved by updating the channel
weights of the used channels after all paths towards one destination node, i.e., the source node for the
modified Dijkstra algorithm, are computed.

Nue routing follows a similar approach, but within the complete channel dependency graph D or Di,
respectively, instead of the actual graph representing the network I = G(N,C). Hence, Dijkstra’s algorithm
needs to be modified to be applicable to Di and enhanced to satisfy additional constraints. The pseudocode
shown in Algorithm 6.2 outlines the modified version for the complete CDG D only, but it can easily be
extended for Di due to their similarity to D, see Definition 6.1. Algorithm 6.2 computes shortest paths
from one source node n0 ∈ Nd to all other nodes in the complete CDG while complying to the cycle-free
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6.2 Nue Routing

Algorithm 6.3: Nue routing calculates all paths within a network I = G(N,C) for a given number of
virtual channels k ≥ 1

Input: I = G(N,C),k ∈ N
Result: Path Pnx ,ny for all nx,ny ∈ N

1 Partition N into k disjoint subsets Nd
1 , . . . ,N

d
k of destinations

2 foreach virtual layer Li with i ∈ {1, . . . ,k} do
// Check attached comments for details about each step

3 Create a convex subgraph Hi for Nd
i // Section 6.2.3

4 Identify central nr,i ∈ NH
i of Hi via Brandes’ algorithm // Section 6.2.3

5 Create a new complete channel dependency graph Di // Section 6.2.1
6 Define escape paths Dτ

i for spanning tree root nr,i // Section 6.2.2
7 foreach node n ∈ Nd

i do
8 Identify deadlock-free paths P·,n // Section 6.2.4
9 Store these paths, e.g., in forwarding tables

10 Update channel weights in Di for these paths

constraint. However, due to this cycle-free constraint, these paths are not necessarily shortest paths with
respect to the actual network I. Following these paths in opposite direction along the used channels,
i.e., nodes of D, results in the paths for the destination-based routing. Nue routing initializes, with |N|2,
and updates the channel weights similar to DFSSSP [DHN11]. However, the fact that channels are the
vertices of D changes the computation, see line 13, and weights are stored at the adjacent channel instead
of the edge between two channels. The advantage of the approach of routing on the dependency graph is
that channel dependencies are directly considered, see line 15, and routing restrictions can be identified
instantaneously, as outlined in Section 6.1. Therefore, paths do not have to be recomputed to avoid the
routing restriction afterwards, as it is the case with smart routing [CKR96], for example.

6.2.5 Nue Routing Function

Combining the knowledge of Section 6.2.1 – 6.2.4 into one routing function, see Algorithm 6.3, allows Nue
to achieve its objectives, i.e., to be able to balance the paths globally while not exceeding a given number
of virtual channels, k ≥ 1, used for deadlock-freedom. In the first step, Nue routing partitions the nodes
of the network I into k disjoint subsets, i.e., Nd

1 , . . . ,N
d
k with Nd

i ∩Nd
j = /0 for all 1≤ i, j ≤ k, i ̸= j. Each

subset Nd
i will denote a set of destinations for calculated paths, i.e., P·,n for n ∈ Nd

i , within virtual layer Li.
While the exact partitioning of N will not influence whether Nue can calculate deadlock-free routes
for I or not, the partitioning affects the path balancing. Nue routing uses a multilevel k-way partitioning
algorithm [KK98] with O(|C|) time complexity to partition the network I. Moreover, random partitioning
and partial clustering, i.e., all terminals connected to a switch are assigned to the same partition, have been
tested for this thesis. However, Nue with the multilevel k-way partitioning outperformed the other two
partitioning algorithms with respect to the evaluations carried out in Section 6.3. An optimal partitioning
algorithm, i.e., a partitioning which results in a maximized path balancing and which minimizes the edge
forwarding indices for the switches, is beyond the scope of the thesis and requires further research.

The node set Nd
i is used to calculate a convex subgraph Hi. Brandes’ algorithm is then executed on Hi

to determine the betweenness centrality for each node of Hi ensuring the selection of an appropriate root

91



6 Routing on the Channel Dependency Graph

node nr,i for the escape paths, see Section 6.2.3. After creating a complete CDG Di for virtual layer Li,
which complies to Definition 6.1, Nue routing determines the escape paths Dτ

i . The acyclic escape paths
are derived from a spanning tree rooted at nr,i according to Definition 6.2, i.e., the channels Cτ

i and
edges Eτ

i are changed into the used state. This completes the initialization phase of the complete CDG Di

to perform the graph search algorithm within Di with the modified Dijkstra algorithm, see Algorithm 6.2.
Each node of Nd

i is used as a source for Algorithm 6.2. The subsequent weight update for the used
channels aims for an improved global balancing of the paths.

6.2.6 Optimizations for Nue Routing

The modified version of Dijkstra’s algorithm, applicable to the complete channel dependency graph,
includes a cyclicality check for the graph D, which has not been looked at so far. Usually, verifying
whether or not a graph contains a cycle requires a rather time consuming depth-first search. The time
complexity of a depth-first search executed on a graph G(V,E) is O(|V |+ |E|) for the cycle search [Cor+01,
Section 22.3]. Therefore, the following Section 6.2.6.1 outlines a possible approach to minimize the
time needed to determine the cyclicality of D. Furthermore, as discussed in Section 6.2.2, Nue routing
encounters routing impasses regularly for larger networks. Solving each impass by falling back to the
escape paths would yield a path balancing similarly poor as Up*/Down* routing. Hence, Sections 6.2.6.2
and 6.2.6.3 introduce methods to reduce the number of fall backs.

6.2.6.1 Numbering of Subgraphs and Cycle Search

Algorithm 6.2 has an O(|Ci| · log |Ci|+ |E i|) time complexity, if applied on virtual layer Li, and if the
search for cycles in Di is omitted. This time complexity is derived from Dijkstra’s original shortest-path
algorithm when used in combination with a Fibonacci heap [FT87]. However, Algorithm 6.2 potentially
needs to check the graph Di for cycles every time the state of an edge (cp,cq) = e ∈ E i changes, see
line 15. The time complexity of each full cycle search in Di = G(Ci,E i) is O(|Ci|+ |E i|), according to
the previous section.

A trivial proposition for directed graphs is that connecting two acyclic digraphs by one directed edge
does not create a cyclic digraph. Hence, assuming, it is possible to distinguish between vertex-disjoint,
used subgraphs of Di, induced by a routing R as explained in Section 6.2.1, then cycle searches can be
avoided by applying memorization, since connecting two disjoint, acyclic, and used subgraphs with an
used edge creates a new acyclic subgraph. Therefore, Nue routing incorporates an identification number ω

for used and cycle-free subgraphs of Di, which is an extension of the three states which have been utilized
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Figure 6.7: State change of D after five steps with Algorithm 6.2, starting from cn1,n2 ; Fig-
ure 6.7a: initial state (line 9) before the while loop is executed; Figure 6.7b: state
of D after five iterations of the loop

before, see Section 6.2.1. The function ω : Ci∪E i→ Z+
0 ∪{−1}, with

ω(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if Di∪ x forms cycle in Di, i.e., x is blocked,

0 if x ̸∈ Di∧ x ̸∈ Dτ
i , i.e., x is unused,

≥ 1 if x is in the used state

(6.2)

is used to identify the vertex-disjoint, cycle-free subgraphs and blocked edges, i.e., ω(e) = −1. An
example is shown in Figure 6.7a with ω = 1 pointing to the escape paths of the complete channel
dependency graph D, i.e., ω(Cτ ∪Eτ) = 1 for Dτ = G(Cτ ,Eτ) assuming k = 1.

The advantage of this is to identify conditions during the routing with the modified version of Dijkstra’s
algorithm where a cycle search is needed or can be omitted. Hence, at node cp ∈ C of the complete
CDG with assigned ω(cp)≥ 1 and adjacent node cq ∈C, with (cp,cq) =: e ∈ E, there are four possible
conditions. Fortunately, three of these conditions do not require a cycle search:

(i) ω(e) =−1 =⇒ no cycle search is needed, because the result is known already, i.e., these edges
are ignored by the conditional loop in line 12 of Algorithm 6.2;

(ii) ω(e)≥ 1 =⇒ ω(cp) = ω(cq) = ω(e) =⇒ no cycle search is needed, because e was used before
and is therefore part of an acyclic subgraph;

(iii) ω(e) = 0∧ω(cp) ̸= ω(cq) =⇒ no cycle search is needed, because the directed edge e connects
two disjoint acyclic subgraphs and therefore cannot close a cycle;

(iv) ω(e) = 0∧ω(cp) = ω(cq) =⇒ a cycle search is required, because e adds an used edge connecting
two nodes of a single acyclic subgraph and might induce a cycle.

Algorithm 6.4 shows the handling of these conditions, inclusive the performed cycle search with
a depth-first search (DFS). For simplicity, the algorithm shows the procedure for D, i.e., k = 1. The
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6 Routing on the Channel Dependency Graph

Algorithm 6.4: Search for cyclic used subgraphs in the complete CDG D
Input: D = G(C,E), channels cp,cq ∈C
Result: true if a cycle was found; false otherwise

1 if ω(cp,cq) =−1 then
2 return true // State described in condition (i)
3 else if ω(cp,cq)≥ 1 then
4 return false // State described in condition (ii)
5 else if ω(cp) ̸= ω(cq) then

/* Merge two disjoint subgraphs */
6 if ω(cq) = 0 then ω(cq)← ω(cp) and return false
7 foreach x ∈C∪E, with ω(x) = ω(cq) do
8 ω(x)← ω(cp)

9 return false // State described in condition (iii)
10 else

/* Perform a DFS for cp in subgraph G with ω(G) = ω(cp) starting from cq, see condition (iv) */
11 if the D.DFS(cq,ω(cp)) does not find cp then
12 ω(cp,cq)← ω(cp)

13 foreach x ∈C∪E, with ω(x) = ω(cq) ̸= 0 do
14 ω(x)← ω(cp)

15 ω(cq)← ω(cp)
16 return false
17 else
18 ω(cp,cq)←−1
19 return true

depth-first search is only performed within a selected subgraph of D identified by ω(cp). Since this
subgraph is acyclic without (cp,cq), this edge must be part of a new cycle if one exists. Therefore, one
depth-first search starting from cq and searching for cp is sufficient. Hence, Nue potentially omits to
traverse parts of the subgraph, which leads to a more efficient algorithm.

Let us illustrate the conditions (ii) to (iv) with the previously investigated example of the ring topology
with shortcut for k = 1. Initially, the first cycle-free subgraph is identified by assigning ω = 1 to the escape
paths, see light gray vertices and edges of D in Figure 6.7a. For the sake of simplicity, the assumption is
that the first routing step of Algorithm 6.2 starts at vertex cn1,n2 (instead of c /0,n1 for source node n1) and
assigns ω(cn1,n2) = 2 to it. This will identify the second used and cycle-free subgraph of D, as shown in
Figure 6.7a with the dark gray vertex. At this stage, the algorithm has found two nodes of I, the source n1

and network node n2. Vertex cn1,n2 has only one adjacent vertex cn2,n3 available via an unused directed
edge. Due to that fact that ω(cn1,n2) ̸= ω(cn2,n3) holds, a cycle search can be omitted, see condition (iii).
According to lines 5 – 9 of Algorithm 6.4, both subgraphs, with ω = 1 and ω = 2, are merged into
one acyclic subgraph with ω = 2. Now, the adjacent vertices of cn2,n3 are cn3,n5 and cn3,n4 whereby the
conditions (ii) and (iii) apply, respectively. Meaning, no cycle search is required for the second routing
step, i.e., for both iteration of the loop in line 12 of Algorithm 6.2. Assuming, this algorithm considers
vertex cn3,n4 next, then the only available adjacent vertex is cn4,n5 , which results in condition (iv), where a
depth-first search is needed. A depth-first search, starting from cn4,n5 and searching for node cn3,n4 within
the subgraph, checks a total of three nodes, i.e., cn5,n1 , cn5,n3 , and cn3,n2 . Since the starting node is not
found, it is possible to use (cn3,n4 ,cn4,n5) without closing a cycle, which concludes the third iteration of
the while loop. Two more vertices of Q need to be processed, and the intermediate state of D during
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Figure 6.8: Impasse of Algorithm 6.2 to reach n4 based on previously placed routing restrictions
for channels dependencies (cn1,n3 ,cn3,n4) and (cn7,n5 ,cn5,n4), which are shown as
crossed out edges in I∗ and D

Algorithm 6.2, after these steps have been performed, is shown in Figure 6.7b. All subsequent executions
of Algorithm 6.2 for other network nodes will increase ω of the source vertex by +1, hence the next
source c0 gets ω(c0) = 3 assigned to it, and so forth.

6.2.6.2 Solving Impasses for Isolated Nodes and Node Clusters

The approach of randomly removing channel dependencies, as explained in Section 6.2.2 and mentioned
by Cherkasova et al. [CKR96], can lead to impasses during an iterative routing algorithm. Incrementally
calculating routes and placing routing restrictions on-demand, as done by Nue routing, can lead to similar
impasses. Meaning, creating isolated parts of the network, called islands from here on, where no path
can be assigned to without creating a cycle in the CDG, based on previously calculated routes for other
destinations. Even the escape paths, as introduced in Section 6.2.2, for the iterative, destination-based
Nue routing function cannot prevent impasses, but the escape paths offer an expedient for Nue routing.

To illustrate the problem, the previously used example network needs to be substituted with a larger
network I, with a small subnetwork I∗ connected as a binary tree, as shown in Figure 6.8a, supporting no
VCs (i.e., k = 1). The subgraph of the complete channel dependency graph D for the relevant parts of
the network, i.e., for I∗, is shown in Figure 6.8b. Assuming, the iterative Algorithm 6.3 has calculated
all routes for j− 1 destinations, and is at an intermediate step to calculate the routes towards the jth

destination in the for loop (line 7). Therefore, parts of D will have ω = j assigned to it, i.e., ω = 1 for the
escape paths plus j−1 previously processed destinations. Now, Algorithm 6.2 reaches n3 and n5 on the
shortest path via the channels cn1,n3 and cn7,n5 , respectively. Due to previous routing decisions, the channel
dependencies (cn1,n3 ,cn3,n4) and (cn7,n5 ,cn5,n4) are in the blocked state, as illustrated by the crossed out
edges. Hence, the routing algorithm reached an impasse and cannot calculate valid routes for node n4.

There are multiple options to solve this impasse, and three of them are listed hereafter. The easiest
among the possible solutions for the impasse is to simply fall back to the escape paths for the entire
routing step, i.e., all routes to one specific destination node will use the escape paths instead of the paths
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Algorithm 6.5: Local backtracking finds paths into islands
Input: I = G(N,C),D = G(C,E)
Result: Adds one c ∈C to FibonacciHeap Q or resets routing to escape paths
// This is the expansion of Algorithm 6.2 (while loop in line 10)

24 if Q is empty ∧∃nx ∈ N : nx.usedChannel = /0 then
25 foreach nx ∈ N with nx.usedChannel = /0 do
26 List Alternatives← /0
27 foreach ny ∈ N with (ny,nx) ∈C do
28 foreach cp ∈ usedChannelStack(ny) do

/* Check, if all existing dependencies on ny are valid if cp is used */
29 if (cp, ·).state is not blocked then
30 AlternativeChannels.add(cp)

31 AlternativeChannels.sortAscendingDistance()
32 foreach cp ∈ AlternativeChannels do
33 cq← (ncp ,nx) // i.e., ncq = nx

34 (cp,cq).state← used
35 if D is cycle-free then
36 Q.add(cq)
37 cq.distance← cp.distance+ cq.weight
38 nx.distance← cp.distance+ cq.weight
39 nx.usedChannel← cq
40 Island.remove(nx)
41 break // break outer loop, line 25
42 else
43 Reset (cp,cq).state

44 if Q is empty then
45 Fall back to escape paths, i.e., all paths towards the input node n0 of Algorithm 6.2 use the escape paths
46 Terminate Algorithm 6.2

calculated by Algorithm 6.2. The design of the escape paths, recall Definition 6.2, enables this for all
destinations Nd

i for the currently considered virtual layer Li. Unfortunately, falling back to the escape path
for only a subset of the paths to one destination can violate the destination-based property of Nue. Hence,
this first option is the least preferred, because impasses happen regularly, and the escape paths would be
overloaded with routes.

Another option is a backtracking algorithm starting from the current intermediate state of Nue routing
and revert previous decisions about chosen paths. However, this means that potentially all previous
chosen (partial) paths to the current destination have to be changed, due to the channel dependencies. This
results in a brute-force algorithm, because the algorithm has no knowledge which “wrong decision” in the
beginning leads to the impasse. The method would guarantee a solution, since at least one valid solution,
i.e., the escape paths, exists, but it greatly increases the runtime, rendering the algorithm impractical.

The proposed approach for Nue routing is to use a local backtracking algorithm, whereby only the
surrounding nodes in a distance of two hops are checked for alternative routes to the island. This can
be accomplished both time- and memory-efficient, see Algorithm 6.5. If no alternative path can be
found, which happens less frequent, then Nue falls back to the escape paths as described in the first
option, see lines 44 – 46 of Algorithm 6.5. So, instead of having Algorithm 6.2 to overwrite the used
channel, see line 21, the used channels are stored in a stack. Hence, this stack of valid alternatives,
potentially using a longer path to reach a certain node, is stored and is accessible in a backtracking step.
For simplicity, the handling of the stack in Algorithm 6.2 is omitted. Continuing the example from
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Figure 6.8: If Algorithm 6.2 reaches the impasse at node n4, then it checks the stack of alternative routes
to the nodes n3 and n5, and determines whether or not these can be used to reach n4, see lines 26 – 43
of Algorithm 6.5. For example, an alternative path to n3, stored in the stack, is to use channel cn2,n3 .
As Figure 6.8b illustrates in the upper right corner, the channels cn2,n3 and cn3,n4 , and the edge between
them, already belong to the same acyclic subgraph identified by ω = j. Therefore, using the channel
dependency (cn2,n3 ,cn3,n4) is a valid alternative for the modified version of Dijkstra’s algorithm to reach n4.
If multiple valid alternatives exist, then Nue routing selects the shortest among them, i.e., with respect
to the weight/distance parameters of the channels. After a valid alternative is found for one island node,
Algorithm 6.2 continues to operate as before to ensure that paths into clusters of island nodes, see the
highlighted nodes below n4 in Figure 6.8a, are calculated as well.

6.2.6.3 Using Formerly Isolated Nodes as Shortcut

The previous section explained how to use a local backtracking to solve routing impasses and how to find
paths to an island node. Furthermore, these island nodes can be used to shorten the distance to previously
discovered nodes. For instance, Algorithm 6.2 reaches an impasse for the network presented in Figure 6.8a
and the local backtracking algorithm can find a path to node n4, as described in Section 6.2.6.2. However,
the nodes n3 and n5 have already been discovered and have a certain distance from the source node of
the current routing step performed with Algorithm 6.2. Assume, the distance of node n3 from the current
source node is six hops and the distance of n5 is nine hops when Algorithm 6.2 reaches the impasse. The
local backtracking Algorithm 6.5 enables a valid path to n4 via network node n3. This former island
node n4 can now be used as a potential “shortcut” to reach node n5, which shortens the distance of n5 to
eight hops.

However, existing channel dependencies have to be considered to make use of shortcuts during the
routing within the complete channel dependency graph. While, in theory, it would be possible to invalidate
decisions and dependencies for paths which use n5 as an intermediate node, it would increase the runtime
of the routing algorithm. Since the channel dependencies are built incrementally by Algorithm 6.2,
changing an intermediate dependency (cp,cq) potentially invalidates all existing dependencies (cq, ·),
as well as subsequent dependencies. To avoid the recalculation of paths, an approach is to incorporate
the following optimization into Nue routing: Using islands as shortcuts is only allowed if existing local
channel dependencies can be kept in place, which prevents the routing from reconsidering subsequent
dependencies. Algorithm 6.6 shows how to verify whether a shortcut is possible or not.

Again, Figure 6.8a is used to exemplify the workings of Algorithm 6.6 to shorten previously calculated
paths through former island nodes. Assume, after the impasse of Algorithm 6.2 and the solution for a
path to the island node n4 = ncq , the current state of D is shown in Figure 6.9. So, the first step is to check
whether n4 can be used as a shortcut to reach n5 or not, i.e., nu = n5 in line 48. Hence, the algorithm
must verify that changing the channel dependency (cn3,n4 ,cn4,n5) into the used state does not induce a
cycle in D. Assume further, that n7 and n5 were used as intermediate nodes to reach network node n6 and
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Figure 6.9: The states of the channel dependency graph D, of the subnetwork I∗ of Figure 6.8a
are shown; Figure 6.9a shows the state after solving the island problem for n4;
Figure 6.9b highlights the change to D when n4 is used as a shortcut to reach n5

Algorithm 6.6: Finding shortcuts through island nodes
Input: I = G(N,C),D = G(C,E),(·,ncq ) =: cq ∈C
Result: A shortcut through ncq to adjacent nodes
// This is the expansion of Algorithm 6.5

47 if ncq was an island then
48 foreach (ncq ,nu) ∈C with /0 ̸= nu.usedChannel∧ cq.distance+(ncq ,nu).weight < nu.distance do
49 cu← (ncq ,nu) // possible shortcut
50 (cq,cu).state← used
51 if D is not cycle-free then
52 Reset (cq,cu).state
53 continue
54 List DependentChannels← /0
55 foreach nv ∈ N with (nu,nv) ∈C do
56 if nv.usedChannel = (nu,nv) then
57 DependentChannels.add(nv.usedChannel)

58 isShortcut← true
59 foreach cv ∈ DependentChannels do
60 (cu,cv).state← used
61 if D is not cycle-free then
62 isShortcut← false
63 break
64 if isShortcut then
65 Reset ω/state for previous nu.usedChannel
66 nu.usedChannel← cu

67 else
68 foreach cv ∈ DependentChannels do
69 Reset (cu,cv).state
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subsequent nodes, not shown in Figure 6.8a. Therefore, the usedChannel variable of n6 is set to (n5,n6)

and the channel dependency (cn7,n5 ,cn5,n6) is in the used state. The shortcut Algorithm 6.6 determines all
dependent channels of n5, i.e., all channels dependencies (c·,n5 ,cn5,·) calculated in the current routing step,
see lines 54 – 57. Afterwards, the algorithm checks for all dependent channels (n5, ·) whether changing the
dependency (cn4,n5 ,cn5,·) via the previous island induces a cycle or not. If no cycle is induced in D, then
node n4 is a valid shortcut to reach node n5 and shorten any subsequent path decisions. The usedChannel
variable for n5 can be changed to cn4,n5 , and previous changes to ω of cn7,n5 and (cn7,n5 ,cn5,n6) can be
reversed.

6.2.7 Correctness, Completeness & Complexity

In the following, Nue routing is analyzed with respect to its destination-based and cycle-free characteristics,
see Definition 3.4. The deadlock-freedom of Nue routing will be proven, as well. Meaning, the channel
dependency graph D induced by the calculated paths is acyclic, and Nue calculates paths for each pair of
nodes independently of the underlying network or the predefined number of available virtual channels.
Hence, Nue can be applied to any arbitrary interconnection network, and many of the HPC network
technologies listed in Section 1.1, i.e., even for the trivial 5-node ring visualized in Figure 6.1, which
was not deadlock-free routable by any shortest-path routing algorithms. Subsequently, Proposition 6.1
summarizes Nue’s time and memory complexity.

Lemma 6.2. Nue routing is destination-based and cycle-free.

Proof. Assume, Nue is not destination-based, and therefore the next channel cq+1 at a certain node is not
unique for one destination and the following holds:

∃nx,ny ∈ N ∃cp,cq ∈C,cp ̸= cq : R
(
(·,nx),ny

)
=

⎧⎨⎩cp

cq

Algorithm 6.2 calculates the paths Pny,nx for a source node nx and all other nodes in the network in the
opposite direction of the spanning tree created by the modified Dijkstra algorithm, i.e., that the paths
follow the usedChannel variable towards the source node. The fact that the algorithm either assigns /0
to usedChannel, see line 3, or one specific channel for each node, see line 21, contradicts the initial
assumption. Hence, Nue routing is destination-based.

The fact that Nue is cycle-free follows directly from the fact that Nue is destination-based and the
use of positive channel weights: Let Pnu,nv be a cyclic path, then either the node nv is part of the cycle
or not. The former case implies that nv has a usedChannel ̸= /0 assigned to it by Algorithm 6.2, i.e.,
∃cp,cq ∈C : cp.distance+ cq.weight < 0 = nv.distance. This is only possible when weights are negative,
which contradicts the fact that initial weights are positive and weight updates of channels are positive as
well. In the later case, that this node nv is not part of the cycle, then at least one channel (·,nw) of the path
has to contradict the destination-based property of Nue routing. Hence, Nue routing is cycle-free.
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6 Routing on the Channel Dependency Graph

The deadlock-freedom of Nue routing follows directly from its constant verification that using a channel
for a path towards a destination does not induce a cycle in the channel dependency graph, as shown by
Lemma 6.3.

Lemma 6.3. Nue routing is deadlock-free.

Proof. According to Theorem 3.1, the routing function is deadlock-free if and only if the corresponding
channel dependency graph is acyclic. For each virtual layer, Nue creates a new complete CDG Di and
changes the states of the channels and channel dependencies of the escape paths to the used state. Since
the escape paths are derived from a spanning tree, no cycle is induced in Di after adding the escape
paths. The performed cycle checks, see line 15 of Algorithm 6.2 (Section 6.2.4), line 35 of Algorithm 6.5
(Section 6.2.6.2), and lines 51 and 61 of Algorithm 6.6 (Sections 6.2.6.3), before any of the usedChannel
variables are changed, are preventing Nue routing from creating a cycle in the acyclic Di. As a result,
the complete CDG Di for virtual layer Li, for all 1≤ i≤ k, is cycle-free (Definition 6.1), and therefore
Theorem 3.1 is applicable ensuring the deadlock-freedom.

However, only ensuring deadlock-freedom for the calculated paths does not imply that Nue is actually
able to calculate all required routes in the network, meaning the entire network state for the interconnect.
Hence, Lemma 6.4 is required to show Nue’s ability to ensures connectivity between any pair of network
nodes, regardless of the given network topology or the provided number of virtual channels.

Lemma 6.4. The Nue routing function ensures connectivity between any pair of two nodes in the

interconnection network I = G(N,C), i.e., Pnu,nv ̸= /0 ∀nu,nv ∈ N, after the execution of Algorithm 6.3.

Proof. Assume, there exists a pair of nodes, nu,nv ∈N, for which the path Pnu,nv = /0, i.e., Nue is incapable
of calculating the path under the given virtual channel constraint. Therefore, either the network I is
disconnected, which contradicts Definition 3.1, or the variable nu.usedChannel = /0 and the modified
version of Dijkstra’s algorithm, see line 24 of Algorithm 6.5, reaches an impasse. Due to the fact
that Pnu,nv = /0, the local backtracking algorithm falls back to the escape paths, see line 45 of Algorithm 6.5
(Section 6.2.6.2). Meaning, if nv ∈ Nd

i , then from Definition 6.2 it follows that for every nw ∈ N there
exists a (nw, ·) ∈Cτ

i with Rτ
(
(nw, ·),nv

)
∈Cτ , i.e., a path Pnu,nv =

{
(nu, ·), . . . ,(·,nv)

}
exists using only

channels in Cτ
i . This contradicts the initial assumption that Pnu,nv = /0 holds, hence Nue routing ensures

full connectivity.

For the following complexity analysis, let ∆ denote the maximum degree of the interconnection
network I = G(N,C), then it follows that |C| ≤ ∆ · |N| and |E| ≤ ∆ · |C| ≤ ∆2 · |N|. Most terms of the below
shown Proposition 6.1 follow directly from the explanations provided in previous Sections 6.2.1 – 6.2.6.

After the partitioning of the destination nodes, which is calculated in time complexity O
(
|C|

)
with the

multilevel k-way partitioning algorithm, see Section 6.2.5, Nue routing initializes the current complete
channel dependency graph Di for the path calculation within virtual layer Li. The generation of Di can be
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performed in O
(
∆ · |Ci|

)
and the complete CDG requires O

(
|N|+ |Ci|+ |E i|

)
memory, because it includes

some information of the nodes of I as well.

The convex subgraph for the subset Nd
i ⊆ N of destinations, see Section 6.2.3, can be calculated with

a time complexity O
(
|Nd

i | · (|N|+ |C|)
)
, because each network node of I is visited only once during

the forward step and once during the backward step. Assuming the worst case, i.e., Nd
i ≈ N, yields a

time complexity of O
(
∆ · |N|2)

)
for each virtual layer. The memory complexity to calculate the convex

subgraph, with Algorithm 6.1, is O
(
|N|+ |C|

)
.

As mentioned in Section 6.2.3, Brandes’ algorithm computes the betweenness centrality values for each
node of Hi in O

(
|NH

i | · |CH
i |
)

and requires O
(
|NH

i |+ |CH
i |
)

memory [Bra01, Theorem 8]. The convex
subgraph Hi for Nd

i is bound by I, i.e., the network itself. Hence, the time complexity for Nue routing to
identify the most central node nr,i ∈ N, with respect to Nd

i , can be approximated with O
(
|N| · |C|

)
and the

memory complexity can be approximated with O
(
|N|+ |C|

)
.

The computation of the spanning tree rooted at nr,i for the escape paths can be accomplished with the
original version of Dijkstra’s algorithm for the network I. Meaning, the time complexity of this step
is O

(
|N| · log |N|+ |C|

)
when a heap with O(1) time complexity for the “decrease-key” operation is used,

e.g., a Fibonacci heap. The corresponding memory complexity is O
(
|N|+ |C|

)
. This completes the

initialization phase for one virtual layer Li.

The time complexity, excluding the acyclicity check, for the modified version of Dijkstra’s algorithm,
as presented in Algorithm 6.2, is O

(
|Ci| · log |Ci|+ |E i|

)
when executed on a complete CDG Di. As

previously mentioned, a heap with O(1) time complexity for the “decrease-key” operation, is needed
to achieve this complexity. The optimization, see Section 6.2.6.1 and conditions (i) – (iv), results in a
differentiated time complexity for the acyclicity check of Di, see line 15 of Algorithm 6.2. In the best
case, i.e., condition (i) or (ii) are applied, the time complexity is O(1). The same applies to the “merge”
of the two acyclic subgraphs assuming that ω(cq) is zero, see line 6 of Algorithm 6.4. An actual merge,
see lines 7 and 8, of two vertex-disjoint and acyclic subgraphs with varying identification numbers can
only be performed |N| times throughout the execution of Nue routing. Hence, the time complexity of
all merge steps is at most O

(
|N| · (|Ci|+ |E i|)

)
. The time complexity for any depth-first search within a

subgraph of Di is O
(
|Ci|+ |E i|

)
. However, the DFS has to be executed at most once per edge e ∈ E i and

per virtual layer Li, because afterwards the state of e is either used or blocked, and condition (iv) cannot
be applied again. Therefore, the aggregated time complexity for |N| executions of Algorithm 6.2, i.e.,
once for each destination node, is O

(
|N|(|Ci| log |Ci|+ |E i|)+(|N|+ k|E i|) · (|Ci|+ |E i|)

)
. The memory

complexity for the modified version of Dijkstra’s algorithm is O
(
|N|+ |Ci|+ |E i|

)
. The DFS to search for

cycles can be performed within Di, and therefore does not increase the memory complexity.

Considering the entire routing function, then the time complexity, as well as the memory complexity, to
store the paths in forwarding tables is O

(
|N|2

)
, and the time complexity to update the channel weights

is O
(
|N|2

)
. The summary of the complexity analysis of the individual steps for Nue routing is given in

the following proposition:
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6 Routing on the Channel Dependency Graph

Proposition 6.1. The time complexity of Nue routing for a given interconnection network I, with a fixed

maximum switch radix ∆, with ∆ ∈ N, and a fixed number of supported virtual channels k, with k ∈ N, is

O
(
|C|

)
Partitioning

+ k ·O
(
∆|Ci|

)
Build complete CDG

+ k ·O
(
∆|N|2

)
Convex Hi

+ k ·O
(
|N| log |N|+ |C|

)
Spanning Tree

+ O
(
|N|(|Ci| log |Ci|+ |Ci|+ |E i|)+ k|E i|(|Ci|+ |E i|)

)
Routing

+ O
(
|N|2

)
Forwarding Tables

+ O(|N|2
)

Weight Updates

= O
(
|N|2(∆ log(∆|N|)+ k∆

4)
)

= O
(
|N|2 · log |N|

)
while its memory complexity (including storing the result) is

O
(
|N|+∆ · |N|+∆

2 · |N|+ |N|2
)
= O

(
|N|2

)
assuming that the number of channels of I can be approximated by ∆ · |N| and assuming that |E i| ≤ ∆2 · |N|.

Therefore, Nue routing achieves one of the initial goals stated in Table 2.1, i.e., to have a time complexity
less or equal to O

(
|N|3

)
. Section 6.3.3 will present Nue’s runtime in comparison to other algorithms,

showing the competitiveness of the developed Nue implementation.

6.3 Evaluation of Nue Routing

For the following sections, an implementation of Nue routing has been added to the InfiniBand subnet
manager, which allows simulations and measurements for the InfiniBand network technology. These
simulations rely on the toolchain presented in Chapter 4 enabling the collection of edge forwarding index
statistics for various topologies and routings, measurement of their runtimes, as well as flit-level accurate
throughput measurements by use of the OMNeT++ framework. Section 6.3.1 compares Nue routing to
other routing algorithms with respect to the path length, since Nue does not necessarily create shortest
paths in the network, and with respect to the induced edge forwarding index. Subsequently, throughput
simulations for the all-to-all exchange pattern, recall Section 4.3.3.2, are carried out in Section 6.3.2 for
different topologies routed with routing algorithms implemented in the production-quality InfiniBand
network manager, OpenSM in version 3.3.19 [Mel13]. Most of these routing algorithms either omit
the calculation of switch-to-switch paths entirely, e.g., fat-tree routing (Section 3.3.5) or Up*/Down*
routing (Section 3.3.4), or ignore these paths during the deadlock-avoidance calculation phase, e.g.,
DFSSSP (Section 3.3.8), since switch-to-switch paths are only used for management messages and not
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data messages. Therefore, for a fair comparison, switches are excluded from the set of destination nodes
for Nue routing while performing the following evaluations. Furthermore, the Nue implementation
in OpenSM forgoes the usage of a Fibonacci heap, and uses d-ary heaps, with d = 4, instead, which
outperform a Fibonacci heap in practice despite their O(logd n) time complexity for the “decrease-key”
operation [Joh75; LST14]. Finally, Section 6.3.3 shows the fault-resiliency and runtime of Nue routing,
indicating its supremacy over other state-of-the-art topology-agnostic routing algorithms.

6.3.1 Path Length and Edge Forwarding Index

Nue routing does not always create routes along the shortest-paths, depending on the available number
of virtual channels and whether the escape path is used or not. However, non-minimal routes increase
latency and may cause higher network congestion. So, analyzing the path length of routes created by
Nue in comparison to other shortest-path algorithms is reasonable. Additionally, the edge forwarding
index γ for inter-switch ports in the network, see Definition 3.12, is investigated for these topology and
routing combinations. The latter metric demonstrates the quality of the routing function in terms of path
balancing. Remember that a high minimum γR(c) and low maximum γR(c), for all c ∈C, are indicators
for a well balanced routing algorithm.

To evaluate both metrics, the simulation toolchain is used to create 1,000 random topologies. Each
topology consists of 125 switches interconnected by 1,000 channels, and eight terminals connected to
each switch. Nue routing is applied, with 1 ≤ k ≤ 8 virtual channels, as well as LASH and DFSSSP
routing, to create deadlock-free forwarding tables. The toolchain reports the following metrics for each
topology/routing combination: minimum, maximum, and average edge forwarding index, and the standard
deviation (sdv), i.e., γmin(It ,R) := min

c ∈C
γR(c), γmax(It ,R), γavg(It ,R), and γsdv(It ,R) for topology It and

routing R. These metrics are then arithmetically averaged for all 1,000 topologies:

Γ
R
min =

1,000

∑
t = 1

γmin(It ,R)

1,000

and so forth.
Figure 6.10 shows the result as box plots, with whiskers indicating ΓR

min and ΓR
max, and with the box

indicating the average ΓR
avg and ΓR

avg±ΓR
sdv. As can be seen, Nue routing performs almost similar to

DFSSSP, for k ≥ 4. It is worth mentioning, that DFSSSP needs at least four virtual channels to calculate
deadlock-free routes for all these topologies, or even five virtual channels in some exceptional cases.
LASH’s virtual channel requirement is lower compared to DFSSSP and ranges between two and four VCs.
However both, Nue and DFSSSP, clearly outperform LASH with respect to the edge forwarding index
metric. Even so Figure 6.10 indicates that DFSSSP slightly outperforms Nue, it is evident that Nue routing
is designed for arbitrary topologies and supports every given number of virtual channels. Therefore, Nue
will be able to calculate deadlock-free paths even if when scaling up the size of the topologies, while the
other routings, such as DFSSSP, will fail due to VC limitations, see Section 6.3.3.
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for the box; Simulations for 1,000 random topologies each consisting of 125
switches, 1,000 terminals, and 1,000 switch-to-switch channels

The increased edge forwarding indices for k < 4 have two reasons: firstly, the concentration of paths
on certain channels to bypass routing restrictions, and the other reason are longer paths due to the use of
the escape paths or parts of them. It is clear that a longer path changes γR(c) for more ports or channels
in the network. Hence, for all 1,000 random topologies, the maximum path length in the network was
determined, as well. For the best case, Nue routing needs only two virtual channels to support the same
maximum path length as the shortest-path algorithms DFSSSP and LASH. On average, Nue routing
achieves the same maximum path length as DFSSSP, i.e., an arithmetic average of 5.3, if Nue distributes
the paths among at least seven virtual layers. The worst case length of the longest path for Nue ranges
between 7 hops and 10 hops, depending on the given number of VCs, while it is 6 for DFSSSP and LASH
routing.

The number of fall backs to escape paths depends on many factors, such as topology type, size, number
of virtual channels, and the chosen root node for the spanning tree. For the random topologies with no
additional virtual channels, i.e., the first whisker marked Nue 1 VC, Nue did fall back for 0% – 9.7% of the
destinations, with an average of 0.95% across all 1,000 simulations for this case. For 8 VCs this average
is below 0.006%. A general prediction of the number of times Nue uses the escape paths is beyond the
scope of this thesis.

6.3.2 Throughput for Regular and Irregular Topologies

Additionally to the random topologies from Section 6.3.1, the achievable throughput for four stan-
dard topologies, i.e., fat-tree, torus, Kautz graph, dragonfly (see Section 3.2 for details about all these
topologies), is measured with the simulation toolchain. Three real-world topologies, namely Cray’s
Cascade (Section 3.2.4), the multi-island fat-tree of Taurus, and TSUBAME2’s 2nd rail fat-tree network
connecting 1,408 compute node (Section 3.2.6), are analyzed. The Cascade topology is configured
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Table 6.1: Topology configurations, with link redundancy rC′ , used for throughput simulation
results visualized in Figure 6.11

Topology Switches Terminals Inter-switch channels rC′

Random 125 1,000 1,000 1
3D torus(6,5,5) 150 1,050 1,800 4
10-ary 3-tree 300 1,100 2,000 1
Kautz(7,3) 150 1,050 1,500 2
Dragonfly(12,6,6,15) 180 1,080 1,515 1
Cascade(2 groups) 192 1,536 3,072 1
TSUBAME2 243 1,408 3,384 1
Taurus 211 2,090 2,490 1

with 192 global channels to connect two Cascade electrical groups. Furthermore, an arbitrary random
topology has been chosen among the 1,000 created random topologies for this throughput measurement.

All topologies accommodate approximately 1,000 terminals to allow comparison between topologies,
as well. Each switch is connected to at least one terminal for all topologies, except for the two fat-tree
topologies. Detailed topology configurations, utilizing 36-port switches (exception: 48 ports for Cascade),
are given in Table 6.1. The simulated interconnects are assumed to be based on QDR InfiniBand with a
limit of eight virtual channels. Hence, the original QDR/FDR multi-island fabric of Taurus is downgraded
to QDR for this simulation, and each HCA is assumed to be a terminal, raising the number of terminal
above the number of nodes due to the dual-HCA I/O and GPU nodes. The remaining simulation parameters
are in compliance with the configuration used in Section 4.3.2. The redundancy rC′ listed in Table 6.1
refers to a multiplication of switch-to-switch channels with respect to the usual topology definition to
increase the port usage, see Definition 3.3.

The flit-level simulator performs an all-to-all send operation with 2 KiByte message size between all
terminals of the network. An exchange pattern of varying shift distances, see Section 4.3.3.2, is used at
each terminal to communicate with all other terminals. Simulating uniform random injection traffic yields
similar behaviour of Nue, and showing these results will not provide further insight. The throughput is
measured for all nine routing algorithms that are available in OpenSM version 3.3.19, see Section 3.3
for the complete list. Impossible topology and routing combinations, such as Torus-2QoS routing for
the 10-ary 3-tree, are ignored. Nue routing is compared for a given topology to the other usable algorithms,
for every number of virtual channels 1≤ k ≤ 8, see Figure 6.11.

Besides the simulated throughput for each topology and routing combination, the number of needed
virtual channels is given atop of the bars in Figure 6.11. For example, DFSSSP routing needs four VCs for
a deadlock-free routing of the random topology. However, the deadlock-free SSSP routing usually uses
all eight available virtual channels to optimize the path balancing across the virtual layers, a technique to
increase the throughput slightly [Dal90].

Two trends are visible for all investigated topologies: First, an increase of used virtual channels
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for Nue also increases the throughput for the all-to-all communication. This is a result of the de-
creased γmax(It ,Nue) when multiple virtual channels are used, as reported in Section 6.3.1. The outliers
from this pattern, e.g., the decrease in throughput for the random topology and four virtual channels,
correlate to a sudden increase in fall backs to the escape paths. In this particular example, Nue had to fall
back for 14 of the 1,000 destinations, while Nue with two and more than four virtual channels was able to
route the topology without any fall back.

The second trend is that Nue shows a slight variance in throughput after reaching a certain peak, usually
for about k ≥ 5 in these examples, but this generally depends on topology type and size. This behavior
can be accounted to a mismatch between the static routing and the execution order of the point-to-point
communications, which assemble the all-to-all traffic pattern. A mismatch can cause temporary congestion
in the network which slows down the entire communication process as a result, which is a known problem,
see Section 4.4.3 or Hoefler et al. [HSL08], respectively.

In general, Figure 6.11 shows that Nue routing is competitive to the best performing routing for each
individual topology, i.e., offers between 83.5% for the 10-ary 3-tree and 121.4% throughput for the
Cascade network in comparison. Occasionally, depending on the given number of virtual channels, Nue
is able to outperform the best competitor, which are Torus-2QoS routing for the torus, and DFSSSP
routing for all other topologies. For example, for the random topology, Nue with k ≥ 6 offers up
to 15% higher throughput than DFSSSP, and for the Cascade network up to 21% higher throughput,
with k≥ 3 (excluding k = 6). Furthermore, when given enough virtual channels, Nue is able to outperform
the other routings, such as fat-tree routing or LASH, to a great extent. Therefore, it is evident that Nue
routing is an adequate alternative to the other investigated algorithms, or is at least a suitable fall back in
case the best performing algorithm becomes inapplicable, as shown in the following Section 6.3.3.

6.3.3 Runtime and Practical Considerations

Proposition 6.1 mathematically derived an O
(
|N|2 · log |N|

)
time complexity of Nue routing. To put

this into perspective, the runtime of Nue, with eight virtual channels, needs to be compared to other
deadlock-free routing algorithms implemented in OpenSM. Slight variations in the runtime, depending on
the given number of virtual channels, are possible for Nue, as for the other routing algorithms. However,
providing these numbers here will not provide substantially more insight. For the following measurement,
an implementation of Nue routing algorithm (Algorithm 6.3) has been integrated into the current OpenSM,
i.e., version 3.3.19, to achieve a fair comparison.

The underlying base topology for this runtime measurement is a 3-dimensional torus, which has proven
to be challenging for most investigated fault-tolerant algorithms, see Section 4.4.3, and therefore offers
insight into the fault-tolerance and applicability of Nue, at the same time. The simulation toolchain is
used to create 25 3D torus networks with a difference in dimension of at most one, i.e., the grid size
for the switches starts at 2x2x2, 2x2x3, 2x3x3, . . ., and goes up to 10x10x10. Each of these switches
connects to four terminals, hence the 10x10x10 torus accommodates 4,000 terminals. Furthermore, the
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assumption for this test is that the maximum of available virtual channels is 8, adjacent switches utilize
no channel redundancy, and 1% link/channel failures are randomly injected into the topology. The 1%
link failures have been chosen according to the observed annual failure rate of production HPC systems,
see Section 4.1. Besides Nue, the toolchain is used to evaluate the runtime of DFSSSP, LASH, and
Torus-2QoS routing to calculate deadlock-free routing tables for the same faulty topology. The testbed,
which executes the subnet manager, is a dual-socket Intel Xeon E5-2620 server with 64 GiByte of main
memory. The InfiniBand fabric simulator (ibsim) is pinned to socket 0 and the OpenSM is pinned to
socket 1 to minimize disturbances.

Two main conclusions can be drawn from the results shown in Figure 6.12: First, Nue is competitive in
terms of runtime. Nue routing calculates the forwarding tables faster than the topology-agnostic DFSSSP,
which has the same time complexity of O

(
|N|2 · log |N|

)
, see Table 2.1 or previously published work

by the author of this thesis [DHN11], respectively. Nue outperforms the runtime of LASH routing for
tori larger than 4x4x4 with 256 terminals attached. Only the topology-aware Torus-2QoS routing is on
average 9x faster than Nue, which is as expected since Torus-2QoS is able to avoid deadlocks analytically.
The second important result is an applicability of 100%, i.e., Nue routing scales with the topology size.
The other three deadlock-free algorithms fail, notice the missing data points in Figure 6.12, either because
the algorithms run out of virtual layers, i.e., DFSSSP and LASH exceed the 8 VC limit, or because the
failures prevent an analytical solution for the deadlock-free paths problem, in the case of Torus-2QoS
routing. Only Nue routing is always applicable while offering good path balancing.
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The most important role of each supercomputer is to provide other research domains, such as material sci-
ence, meteorology and climate research, biomedical informatics, or astrophysics, etc., with computational
resources otherwise not available. The high-speed interconnection network, connecting the nodes of the
HPC system, plays a crucial role in achieving scalability and throughput of these scientific applications.
Key factors of the interconnection network are low latency, high bandwidth, high message throughput,
deadlock-freedom, resiliency, and availability, hence factors which depend not only on the networking
hardware, but also depend on the software used for network management. This thesis advances the
state-of-the-art of network management in three main areas of interest for the HPC community, by:

• Showing that HPC interconnection networks can be operated in fail-in-place mode and providing a
simulation toolchain to plan future systems and to establish operation policies,

• Developing a new and low overhead scheduling-aware routing algorithm to improve the scientific
throughput and network utilization of multi-user/multi-job HPC environments, and

• Introducing a novel concept for solving the deadlock-freedom of routing algorithms, which allows
the calculation of deadlock-free and path-balanced forwarding rules for arbitrary topologies within
a given virtual channel constraint.

The developed simulation toolchain helps system designers and administrators in the decision making
about the correct combination of topology and routing algorithm, and helps to extrapolate the performance
degradation of a fail-in-place network based on estimated or known failure rates. The comprehensive
empirical study of combinations of topologies, routing algorithms, and network failures shows that
HPC networks, and not only hard drives, can be operated in fail-in-place mode to reduce maintenance
costs and to utilize the remaining resources. Even so the resulting irregular topologies pose a challenge
to the used routing algorithms, a low failure rate of the network components supports a fail-in-place
network design strategy, which bypasses non-critical failures during the system’s lifetime. To guarantee
high overall network throughput over the lifetime of the supercomputer, a resilient topology needs to be
combined with an appropriate fault-tolerant or topology-agnostic routing algorithm. However, both types
of existing deterministic routing algorithms, i.e., fault-tolerant topology-aware and topology-agnostic,
show limitations. The performance degradation using a topology-aware routing algorithm increases more
with an increase of failures compared to topology-agnostic routings. Furthermore, a large number of
switch and link failures can deform a regular topology to a state which cannot be compensated by the
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topology-aware routing, because it cannot recognize the underlying topology. In contrast, topology-
agnostic routing algorithms are ideal for fail-in-place networks by design, but the investigated algorithms
either show weaknesses in terms of deadlocks, such as MinHop routing, or cannot be used beyond a
certain network size. The deadlock-avoidance via virtual channels by state-of-the-art routings can require
more than the available number of virtual channels, e.g., in the case of LASH and DFSSSP for the
3-dimensional torus(7,7,7) with more than 2,000 terminals, both exceed the current hardware limit of
eight VCs. The performed analysis of lost connections after a failure, and time before a rerouting step is
finished, is valuable for other fault tolerance areas as well. The knowledge about the runtime of a rerouting
step can be used to calculate appropriate retry counters and timeout values in the communication layer.

While the fail-in-place network operation increases the resiliency and availability considerably, the
overall achievable throughput decreases slightly when the supercomputer is used by a single scientific
application. Nonetheless, this is rarely the case, since most HPC systems located at universities or national
laboratories are used by multiple users simultaneously. When the network of these systems utilizes flow-
oblivious routing, e.g., as used by the 37.6% IB-based supercomputers of the TOP500 list, then this causes
two problems: parts of the network are underutilized, while application performance is reduced by local
congestion. The developed scheduling-aware routing (SAR) approach for the interconnection network is
able to mitigate these problems. The SAR approach periodically analyzes the state of the batch system,
with its low overhead filtering tool, and reroutes the network while factoring in the locality of concurrently
running applications. As a result, the observable throughput for MPI-parallelized applications improves
considerably, and is less sensitive to actual locality of the compute nodes within the supercomputer.
Furthermore, the amount of dark fiber, i.e., installed but unused cables, is reduced. Combining the
knowledge of two different resource management domains has proven to be effective in theory, as well
as in practice in over one year of usage on the Taurus HPC system. The conducted empirical study,
based on the simulative replay of the historical job-to-node allocation of Taurus and TSUBAME2, reveals
that SAR is able to improve the overall system utilization by up to 17.74%, and reduce the effective
edge forwarding index of individual jobs by up to 71.2%. Conducted communication benchmarks on
Taurus, while the system was simultaneously used by other researchers and scientific applications, showed
throughput increases by up to 17.6% after SAR optimized the forwarding rules for the locality of the
benchmark job. Unfortunately, changing the forwarding rules, not subject to error correction, within an
interconnection network can cause unintended network packet delivery, such as out-of-order delivery,
packet drops, and deadlocks, etc. Upper layer protocols, e.g., the MPI communication protocol, might
fail, if a lossless interconnection technology, such as InfiniBand, is not able to handle these problems. The
devised five-phase update protocol, tailored for the InfiniBand architecture, achieves a property preserving
network update to ensure fault-free operation. Even so, the update protocol is currently inapplicable due
missing firmware features, users of Taurus have not experienced any application crashes due to SAR,
presumably because of resiliency features build into the transport layer of InfiniBand.

Additionally, a fail-in-place network is also more prone to deadlocks, when it is based on lossless
interconnection technology. The lossless transmission of messages, e.g., by using credit based flow control
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in InfiniBand or Priority Flow Control (PFC) with pause frames in Ethernet, requires deadlock-free routing
to function reliably. The same is true for many Network-on-Chip architectures. However, the applicability
of topology-aware and topology-agnostic routings for faulty regular topologies or arbitrary topologies
is limited, as discussed before, and universally applicable routings, such as Up*/Down*, are scarce and
perform poorly with respect to path length and balancing. The novel approach of applying a graph search
algorithm within the complete channel dependency graph instead of the actual network, presented in this
thesis, is the first reliable strategy to route arbitrary topologies with a limited number of virtual channels,
while achieving close to optimal path length and competitive path balancing. Similar to Up*/Down*,
deadlock-free forwarding rules can always be calculated, even in the absence of virtual channels. A model
implementation of the new approach, called Nue routing, is tailored for the deadlock-free, oblivious, and
destination-based routing needed in Converged Enhanced Ethernet (CEE) and InfiniBand and can directly
be employed for both, e.g., using InfiniBand’s virtual lanes or using PFC together with Priority Code
Point for CEE. Possible applications of Nue for NoC architectures include, but are not limited to, the
routing between tiles connected by virtual channel routers in a fault-tolerant manner. An extensive study,
conducted for multiple regular, irregular, and real world topologies, shows that Nue routing outperforms
other topology-agnostic routings, such as LASH and DFSSSP, with respect to runtime and resiliency. Flit-
level simulations indicate that Nue enables competitive or superior global throughput, i.e., between 83.5%
and 121.4% throughput for an all-to-all traffic pattern, in comparison to the best performing state-of-the-art
routing for the respective topology. Another advantage is Nue’s capability of arbitrarily limiting the
number of used VCs which allows the combination of deadlock-freedom and quality of service (QoS)
when QoS is based on the same technology feature. For instance, InfiniBand’s service levels are mapped to
virtual lanes, which are all used by LASH or DFSSSP to avoid deadlocks. So, previously, the choice for IB
was either having QoS with topology-aware routing or ignoring QoS and using topology-agnostic routings
based on virtual lanes. All these characteristics and advantages, combined with Nue’s low time complexity
of O(|N|2 · log |N|) and memory complexity of O(|N|2), make Nue routing a suitable algorithm to route
modern large-scale supercomputers, lossless data center networks, and NoC architectures.

The developed simulation toolchain, as well as implementations of the two novel routing approaches,
i.e., scheduling-aware routing and Nue routing, are freely available:

• Topology generator and fail-in-place simulation toolchain:
http://spcl.inf.ethz.ch/Research/Scalable_Networking/FIP

• Scheduling-aware routing and filtering interface between SLURM and OpenSM:
https://gitlab.com/domke/osm-routing-dev/tree/sar-3.3.20

• Implementation of Nue routing in OpenSM for IB-based networks:
https://gitlab.com/domke/osm-routing-dev/tree/nue-3.3.19

allowing researchers, systems designers, and administrators, to conduct further studies or to improve their
supercomputers.
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Both devised routings, SAR and Nue, are opening up new research areas for the HPC community to
adapt and improve the underlying ideas. These algorithms did undergo extensive simulations with various
topologies and real-world testing on two production supercomputers in preparation for an integration into
the network manager of the OpenFabrics Enterprise Distribution, which would make the routings available
on all IB-based HPC system. Especially, Nue should be evaluated against MinHop routing as the fall back
routing algorithm, since MinHop fails to provide the required deadlock-freedom. Additional future work
for network hardware vendors and the HPC community consists of revising the support to drain queue
pairs and adapting the five-phase update protocol for other upper layer protocols, besides MPI.

While the most accurate results are provided by the flit-level simulation framework, the underlying
combination of OMNeT++ and ibmodel currently lacks scalability for networks beyond 5,000 terminals
due to the single-threaded and memory-inefficient implementation. One option for future work is to
parallelize the ibmodel and reduce the memory footprint considerably. An alternative is the renunciation
of flit-level accuracy and the replacement of the 4th stage of the toolchain, i.e., the simulator, with the
highly parallel CODES simulator, enabling packet-level simulations instead. Furthermore, the number
of supported base topologies by the toolchain can be expanded, to include novel designs, such as
ExpressMesh, Slim Fly, flattened butterfly, and HyperX networks.

Evidently, the scheduling-aware routing algorithm decreases the theoretical upper bound for the worst-
case congestion within batch jobs, and therefore improves the runtime of all-to-all communication patterns
substantially. However, unknown is both the impact of SAR on the mutual interference of multiple jobs
and the available throughput for deviating communication patterns. Hence, future research is required to
shed light on these questions, and to potentially incorporate additional information, either provided by
users or provided by the system, into the routing decisions to enhance the quality of SAR. Furthermore, a
yet uninvestigated field is the applicability of SAR to optimize the default paths of an adaptively routed
network architecture to minimize the number of adaptations performed by switches.

A wide range of directions for future research opens up with the novel approach of routing within
the complete channel dependency graph, e.g., most obviously: combining SAR and Nue routing into an
unified algorithm. In addition, some interconnection architectures require source-based routing or all-to-all
routing (i.e., paths are determined by source and destination), as used in Myrinet or Bull’s eXascale
Interconnect (BXI), respectively, which potentially benefit from the new concept of avoiding routing
deadlocks. Whether this concept is applicable to architectures which utilize distributed routing or not is as
unknown as a parallelized algorithm to verify the cycle-freedom of the complete CDG to improve Nue’s
runtime. Furthermore, Nue’s distribution of destinations to virtual layers requires additional research to
decrease the fall backs to the escape paths, and therefore improving latency and achievable throughput.
Logically, Nue’s ability to route arbitrary topologies in the absence of virtual channels renders it a suitable
routing to calculate the escape channels for fully adaptive routings based on Duato’s protocol [DT03,
14.3.2], usable in Intel’s Omni-Path or Cray’s Cascade architectures, and the integration of Nue into
the respective network manager should be evaluated. The same holds for NoCs and software-defined
networking (SDN) architectures, where a comparison to the state-of-the-art routings is desired.
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