661 research outputs found

    Design Simulation of Multiple Differential Transceiver at 2.0 GHz for Third Generation Mobile Communication System

    Get PDF
    Third generation mobile communication system is widely used nowadays. One of its parameter standard, which is QPSK modulation has been adopted by International Telecommunication Union (ITU) to be used in IMT-2000. However, due to amplitude variations introduced in QPSK, a rather robust and reliable data modulation technique, namely the 7c/4-shift Differential QPSK is proposed. For detection purposes, two types of detectors are evaluated for their performance in AWGN and Rayleigh fading channels. A differential detection technique called multiple differential detection technique which uses maximum-likelihood sequence estimation (MLSE) of the transmitted phases is compared with conventional differential detection which uses symbol-bysymbol detection. By using some of the IMT-2000 standard parameters, the simulation results show that multiple differential detection scheme performs much better than conventional differential detection scheme

    Performance Evaluation of Multiple Differential Detection for Third Generation Mobile Communication System

    Get PDF
    Third generation mobile communication system is widely used nowadays. One of its parameter standard, which is QPSK modulation has been adopted by International Telecommunication Union (ITU) to be used in IMT-2000. However, due to amplitude variations introduced in QPSK, a rather robust and reliable data modulation technique, namely the p/4-shift Differential QPSK is proposed. For detection purposes, two types of detectors are evaluated for their performance in AWGN and Rayleigh fading channels.A differential detection technique called multiple differential detection technique which uses maximumlikelihood sequence estimation (MLSE) of the transmitted phases is compared with conventional differential detection which uses symbol-by-symbol detection. By using some of the IMT-2000 standard parameters, the simulation results show that multiple differential detection scheme performs much better than conventional differential detection scheme

    Spectral Efficiency Optimization in Flexi-Grid Long-Haul Optical Systems

    Full text link
    Flexible grid optical networks allow a better exploitation of fiber capacity, by enabling a denser frequency allocation. A tighter channel spacing, however, requires narrower filters, which increase linear intersymbol interference (ISI), and may dramatically reduce system reach. Commercial coherent receivers are based on symbol by symbol detectors, which are quite sensitive to ISI. In this context, Nyquist spacing is considered as the ultimate limit to wavelength-division multiplexing (WDM) packing. In this paper, we show that by introducing a limited-complexity trellis processing at the receiver, either the reach of Nyquist WDM flexi-grid networks can be significantly extended, or a denser-than-Nyquist channel packing (i.e., a higher spectral efficiency (SE)) is possible at equal reach. By adopting well-known information-theoretic techniques, we design a limited-complexity trellis processing and quantify its SE gain in flexi-grid architectures where wavelength selective switches over a frequency grid of 12.5GHz are employed.Comment: 7 pages, 9 figure

    A study of the minimum shift keying modulation scheme

    Get PDF
    This thesis concerns itself with the study of the Minimum Shift Keying (MSK) modulation scheme. The aspects considered are its operation under non-linear conditions as well as an investigation into the hardware implementation of both coherent and non-coherent MSK modems. The literature on digital data transmission and MSK in particular is surveyed, and a comprehensive theoretical description of MSK is given. In addition, papers on the operation of MSK under non-linear conditions were studied, and their major findings are presented. Due to the lack of theory on the effects of incorrect modulation index on the error performance of MSK, an investigation into this avenue was performed. The design of a correction mechanism for maintaining the modulation index at its correct value is described, and aspects of its implementation are considered. Using the available literature, various modules of which a coherent MSK modem is comprised were developed, and their design is discussed. The design of a non-coherent MSK demodulator is also described

    Design tradeoffs and challenges in practical coherent optical transceiver implementations

    Get PDF
    This tutorial discusses the design and ASIC implementation of coherent optical transceivers. Algorithmic and architectural options and tradeoffs between performance and complexity/power dissipation are presented. Particular emphasis is placed on flexible (or reconfigurable) transceivers because of their importance as building blocks of software-defined optical networks. The paper elaborates on some advanced digital signal processing (DSP) techniques such as iterative decoding, which are likely to be applied in future coherent transceivers based on higher order modulations. Complexity and performance of critical DSP blocks such as the forward error correction decoder and the frequency-domain bulk chromatic dispersion equalizer are analyzed in detail. Other important ASIC implementation aspects including physical design, signal and power integrity, and design for testability, are also discussed.Fil: Morero, Damián Alfonso. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. ClariPhy Argentina S.A.; ArgentinaFil: Castrillon, Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Aguirre, Alejandro. ClariPhy Argentina S.A.; ArgentinaFil: Hueda, Mario Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Agazzi, Oscar Ernesto. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. ClariPhy Argentina S.A.; Argentin

    Improving the Spectral Efficiency of Modulation on Conjugate-Reciprocal Zeros (MOCZ) for Non-Coherent Short Packet Communications

    Get PDF
    Future internet of things (IoT) applications need to meet the stringent requirements of ultra high reliability and ultra low-latency. To meet the ultra low-latency requirements, the IoT networks will be employing the short data packets for data transmission between the devices. Employing the short data packet communications (SPCs) is not straightforward as there are several design problems related to the SPCs which still remain unsolved. Since the block length for SPCs is finite; the channel estimation is a challenging problem. This is because the conventionally used known pilot symbols to estimate the channel will severely degrade the spectral efficiency of SPCs. Recently a novel non-coherent modulation technique named as modulation on conjugate reciprocal zeros (MOCZ) was proposed which supports the blind detection of transmitted data, i.e., detection without the knowledge of channel. It is also well known that SPCs suffers from data rate loss as compared to the channel capacity limit. Hence, in this thesis, we aim to increase the spectral efficiency of MOCZ. We improve the spectral efficiency of MOCZ by proposing a technique named as spectrally efficient modulation on conjugate reciprocal zeros (SE-MOCZ) which combines MOCZ with a technique named as faster than Nyquist (FTN) Signaling. Hence; in SE-MOCZ, we end up transmitting the coefficients of MOCZ, modulated on T-orthogonal pulses, at a rate faster than the Nyquist limit, i.e., τT, instead of T, where 0 < τ < 1. That said, we intentionally introduce inter symbol interference (ISI) between the received samples of SE MOCZ. To partially remove the ISI, we introduce a discrete-time filter at the receiver. We further optimize the radius of complex zeros of SE-MOCZ in the presence of ISI. Simulation results show the gains of proposed SE-MOCZ in terms of spectral efficiency

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Forward Error Correcting Codes for 100 Gbit/s Optical Communication Systems

    Get PDF
    corecore