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Abstract

Future internet of things (IoT) applications need to meet the stringent requirements of ultra high-reliability

and ultra low-latency. To meet the ultra low-latency requirements, the IoT networks will be employing the

short data packets for data transmission between the devices. Employing the short data packet communi-

cations (SPCs) is not straightforward as there are several design problems related to the SPCs which still

remain unsolved.

Since the block length for SPCs is finite; the channel estimation is a challenging problem. This is because

the conventionally used known pilot symbols to estimate the channel will severely degrade the spectral

efficiency of SPCs. Recently a novel non-coherent modulation technique named as modulation on conjugate

reciprocal zeros (MOCZ) was proposed which supports the blind detection of transmitted data, i.e., detection

without the knowledge of channel. It is also well known that SPCs suffers from data rate loss as compared

to the channel capacity limit. Hence, in this thesis, we aim to increase the spectral efficiency of MOCZ.

We improve the spectral efficiency of MOCZ by proposing a technique named as spectrally-efficient mod-

ulation on conjugate reciprocal zeros (SE-MOCZ) which combines MOCZ with a technique named as faster-

than-Nyquist (FTN) Signaling. Hence; in SE-MOCZ, we end up transmitting the coefficients of MOCZ,

modulated on T -orthogonal pulses, at a rate faster than the Nyquist limit, i.e., τT , instead of T , where

0 < τ < 1. That said, we intentionally introduce inter symbol interference (ISI) between the received sam-

ples of SE-MOCZ. To partially remove the ISI, we introduce a discrete-time filter at the receiver. We further

optimize the radius of complex zeros of SE-MOCZ in the presence of ISI. Simulation results show the gains

of proposed SE-MOCZ in terms of spectral efficiency.
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1 Introduction

1.1 Motivation

The emerging applications of internet of things (IoT) will be delay sensitive and will require high-reliability

during the wireless data transmission, i.e., they need to fulfil the stringent requirements of ultra-reliable

low-latency communications (URLLC). Depending on the application, for example tactile internet systems,

the end-to-end latency requirements can go down to 1 ms or below [1]; while the reliability requirements can

be as strict as achieving the error rate of 10−9 [2]. To meet the stringent requirements of low-latency, finite

blocklength of the message will be employed as opposed to the conventionally used large blocklength of the

message [3]. The wireless transmission which utilizes the finite blocklength of the message is termed as short

packet communications (SPCs).

The SPCs poses several challenges, and one of them is the channel estimation. During the wireless

transmission, the transmitted signal gets reflected, diffracted, and scattered by the objects present in the

environment. As a result, multi-path components of the transmitted signal are received which interfere

constructively and destructively, hence, distort the transmitted signal. Conventionally, known pilot symbols

are used for the channel estimation such that various equalization techniques can be employed to cancel the

channel effect. However, using pilots in SPCs will severely degrade the spectral efficiency of the transmission

due the length of the message/data packet being comparable to the pilot length. Further, depending on the

application, if the data transfer is sporadic, the channel may need to be estimated with every transmission

which will further degrade the spectral efficiency. Hence, non-coherent modulation techniques that do not

use pilots for channel estimation are needed for SPCs. One such technique which is named as modulation on

conjugate reciprocal zeros (MOCZ) was proposed recently in [4].

The finite blocklength of SPCs result in degradation of the achievable data rate as compared to the

channel capacity. To compensate for the data rate loss; recently, faster-than-Nyquist (FTN) signaling has

been proposed as a candidate solution for SPCs [5]. The idea of FTN signaling started when J. E. Mazo in

1975, showed that the transmission of the pulses carrying the data can be accelerated by 25% beyond the

Nyquist limit without degradation in the bit error rate (BER); however at the cost of increased complexity at

the transmitter, receiver or both, due to the intentionally introduced inter symbol interference (ISI) between

the received samples. Hence, FTN signaling can improve the spectral efficiency while maintaining the same

bandwidth at the cost of increased processing complexity.
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1.2 Research Objective

Improving the spectral efficiency of MOCZ for non-coherent short packet communications. In

order to achieve this objective, we combine MOCZ with FTN signaling by accelerating the transmission

of T -orthogonal pulses carrying the coefficients of MOCZ by τT , where 0 < τ < 1 is the FTN acceleration

parameter. As in MOCZ, the information bits are modulated onto the complex zeros of transmitted baseband

signal in the z-domain, hence; the ISI due to FTN signaling translates to adding more complex zeros to the

received signal. To achieve the noise robustness for transmit complex zeros in the presence of these additional

complex zeros, we derive the optimal radius for the modulation of transmit complex zeros in the z-domain.

We also design the partial-complex-zeros-removal filter to remove part of the additional complex zeros which

were introduced due to the FTN signaling ISI.

1.3 Organization of Thesis

The thesis is written in a manuscript format and is organized in various chapters as follows. The first Chapter

discusses the motivation and the research objective for this thesis. The second Chapter reviews in details the

modulator and demodulator of a conventional modulation technique, i.e., M -QAM, and the recently proposed

MOCZ to elaborate the difference between both techniques. Further, the second Chapter presents the effect

of the wireless channel on both modulation techniques, i.e., M -QAM and MOCZ. That said, the literature

review is presented towards the end of the Chapter. The third Chapter is presented in the form of manuscript

for the paper which is under review for publication in IEEE Transaction on Wireless Communications. The

chapter discusses the integration of FTN signaling into MOCZ to improve the spectral efficiency of MOCZ,

provides the derivation of optimal radius for SE-MOCZ, as well as, the design of the partial-complex-zeros

removal filter. The summary and the future research problems are presented in the fourth Chapter.
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2 Background

In wireless communications, the aim is to reliably transmit the data to the receiver. For data transmission,

the incoming bits are converted to the modulation symbols. These modulation symbols are then carried by

the Nyquist pulses for the generation of continuous time signal. This continuous time signal is up-converted

to the higher frequency known as carrier frequency in order to produce the radio-frequency (RF) signal which

will be transmitted wirelessly. During the transmission, due to the scattering, reflection, and diffraction of

the transmitted signal, multiple copies of the signal are received. If the duration of all the received copies, i.e.,

time delay spread, exceeds the duration of modulation symbols of the transmitted signal, these copies will

appear as resolvable multi-path components of the transmitted signal. As a result, the channel response can

be modelled as a multi-tap filter and is referred to as frequency-selective channel. The effect of frequency-

selective channel is that each frequency component in the transmitted signal gets affected by a different

channel gain. To cancel the effect of the frequency-selective channel, equalization techniques are employed

which require the channel state information (CSI). Conventionally, the known symbols commonly referred as

pilot symbols are sent along with the transmit data to acquire the CSI. The pilots can be employed without

noticeable degradation in spectral efficiency of the transmission if the packet length of the transmit data is

infinite or sufficiently long. The challenge comes in when the data packet length is short.

To fulfil the requirements of ultra low-latency, future internet of things (IoT) applications will be using

short packet communications (SPCs). Usage of the pilot symbols to estimate the channel will severely degrade

the spectral efficiency of the transmission when the blocklength is finite, i.e., short, because of data packet

length being comparable to the pilot length. Another issue for channel estimation in case of SPCs is that

the highly dispersive channels cannot be estimated accurately. This is because as the number of channel

taps increases, more pilot symbols are needed to correctly estimate CSI; however, we might not be able to

send the required number of pilot symbols due to the limited packet length. Lastly, sporadic data transfer

between the devices employing SPCs will further increase the challenge as the channel gets changed with

every transmission; hence, need to be re-estimated. Therefore, sporadic data transfer will further decrease

the spectral efficiency in SPCs if pilots are used to estimate the channel. That said, to overcome the

aforementioned issues; non-coherent modulation techniques are required for SPCs. One such technique was

recently proposed in [1] which is named as modulation on conjugate reciprocal zeros (MOCZ). As MOCZ is a

novel technique, so to elaborate the difference between MOCZ and the conventional modulation scheme such

as M -QAM modulation, this chapter presents in details the modulator and demodulator of both modulation

techniques, as well as, presents the effect of the frequency-selective channel on these modulations.
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This chapter is organized as follows: First, the modulators of M -QAM and MOCZ are discussed in

Section 2.1. Following that the effect of wireless channel is discussed in Section 2.2. Section 2.3 discusses the

demodulators of M -QAM and MOCZ. Finally, the literature review is presented in Section 2.4.

2.1 Modulators

2.1.1 Modulator of M -QAM

The block diagram of the M -QAM modulation is shown in Fig. 2.1. In the modulation process [2]; first, the

incoming data bits of the information message m are grouped into K groups of bits or symbols, i.e., m =

(m1,m2, . . . ,mk, . . . ,mK), where mk is the kth group consisting of log2 M bits and M is the constellation

size of M -QAM. These K group of bits are then mapped into K constellation points in the IQ-plane using

LUTs, where I represents the in-phase axis which indicates the real component of the constellation point and

Q represents the quadrature axis which indicate to the imaginary component of the constellation point. This

mapping of K group of bits to the K constellation points produces the discrete-time transmit signal, i.e.,

x = [x0, x1, . . . , xk, . . . , xK−1]
T, xk ∈ C which represents the set of complex numbers.

To understand the mapping, let us consider M = 2, i.e., 2-QAM which is commonly referred as binary

phase shift key (BPSK) modulation. In BPSK, each group of bits mk, k = 1, . . . ,K, consists of only 1 bit.

The two possible values ofmk, i.e., 0 and 1, are represented by the two unique constellation points in IQ-plane.

Hence, one way of mapping is that if mk = 0, it will be represented by the constellation point -1; else, if the

mk = 1, it will be represented by the constellation point 1. The LUT for axis I for 2-QAM/BPSK is shown

in the Fig. 2.2a, where Fig. 2.2b shows M = 2 constellation points in the IQ-plane for 2-QAM/BPSK. Note

that the constellation points for 2-QAM/BPSK have Q component equals 0. Fig. 2.2c shows the mapping

of the message m = (1, 0, 1, 0, 1, 1, 1) to the constellation points of 2-QAM/BPSK modulation. As m1 = 1;

using the LUT, it will be mapped into the constellation point having the value 1+ 0j. The next group of bit

m2 = 0; hence, it will be mapped to the constellation point −1 + 0j. Similarly, rest of the mk, k = 3, . . . , 7,

are mapped to the constellation points as shown in the Fig. 2.2c.

Now, let us discuss the mapping for higher order M -QAM. In M -QAM, M > 2, as each group of bits

mk consists of log2 M bits, half of the bits are mapped on the axis I and the remaining half are mapped

on the axis Q. Therefore, there will be M/2 unique numerical values on each axis to uniquely map all

possible combination of bits in mk. To have a clear understanding, consider M = 16. The LUTs for the

axis I and Q for 16-QAM are shown in the Fig. 2.3a. The constellation points corresponding to M = 16

combinations of mk, using the gray mapping are shown in the Fig. 2.3b. In the gray mapping, the bits

between the neighbouring constellation points differ by only one bit to reduce the probability of error during

the detection. That said, consider the message m = (0001, 1101, 0010, 0000, 1100, 0111, 0110). As m1 = 0001,

the first two bits in m1, i.e., 00 are mapped on the axis I, and the last 2 bits, i.e., 01 are mapped on the axis

Q. Using the LUTs for axis I and Q in Fig. 2.3a, we can see that the first two bits in m1 will be mapped
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Im{ŷ} = Im{[ ŷ0, ŷ1,…, ŷN-1]T} 

Figure 2.1: Block diagram of M -QAM.
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(a) LUT for axis I.
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(b) Constellation points corresponding to mk, k = 1, . . . ,K.
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(c) Mapping of the message m = (1, 0, 1, 0, 1, 1, 1) to constellation points.

Figure 2.2: Mapping of the K = 7 group of bits to the K = 7 constellation points of 2-QAM/BPSK.
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to the numerical value of 1 on the axis I and last two bits in m1 will be mapped to the numerical value of

−1j on the axis Q. Hence, m1 will be mapped to the constellation point 1− 1j as can be seen from the Fig.

2.3c. Given that m2 = 1101, using the LUTs, one can reach to a conclusion that it will be mapped to the

constellation point −3 − 1j. Similarly, rest of the mk, k = 3, . . . , 7, are mapped to the constellation points

as shown in the Fig. 2.3c.

2.1.2 Modulator of MOCZ

The block diagram of MOCZ is shown in the Fig. 2.4. Similar to M -QAM, the incoming bits in MOCZ are

first grouped into K group of bits, i.e., m = (m1,m2, . . . ,mk, . . . ,mK), where mk, k = 1, . . . ,K, consist of

log2 M bits and M is the constellation size of MOCZ. These K group of bits will be mapped onto the K

unique complex zeros α = [α1, α2, . . . , αK ]T in the z-domain. Following that, a sequence of K+1 coefficients

corresponding to these K complex zeros is generated, i.e., x = [x0, x1, . . . , xk, . . . , xK ]T, xk ∈ C, which

represent the discrete-time transmit signal.

To understand how the K group of bits are mapped onto K complex zeros, let us consider the binary case,

i.e., M = 2, which is referred as binary modulation on conjugate reciprocal zeros (BMOCZ). First, the unit

circle in z-plane is divided into K sectors such that kth group of bits, i.e., mk, is mapped onto the complex

zero in the kth sector. As a complex zeros can be characterized with its phase and radius, so the phase of kth

complex zeros is calculated as 2π(k − 1)/K. The radius of kth complex zero, i.e., |αk|, is calculated based

on the value of mk. If mk = 0, the radius |αk| is chosen 1/R, where R > 1; however, if mk = 1, |αk| will

be R. Fig. 2.5 shows the mapping of K = 7 group of bits onto the K = 7 complex zeros for the message

m = (1, 0, 1, 0, 1, 1, 1). As m1 = 1, the radius of the first complex zeros, i.e., |α1| is R, where the phase of α1

is calculated as 2π(k − 1)/K = 2π(1− 1)/7 = 0. The radius |α2| is 1/R as m2 = 0, while the corresponding

phase is 2π(1)/7. Similarly, rest of mk, k = 3, . . . , 7, are mapped onto the complex zeros as shown in the

Fig. 2.5.

Now we discuss the mapping of K group of bits onto the K complex zeros for higher order MOCZ. The

higher order MOCZ is referred to as M -ary phase modulation on conjugate reciprocal zeros (M -PMOCZ).

Since in M -PMOCZ, mk contains more than 1 bit, the most significant bit (MSB) in mk is modulated onto

the radius |αk|. The remaining log2 M − 1 bits in mk are mapped on the phase of αk. In order to do so,

each of kth sector needs to be further divided into M
′
= M/2 sub-sectors. The phase of a sub-sector present

in kth sector is calculated as 2π(k − 1)/K + 2πd/(M
′
K), where d ∈ {0, ...,M ′ − 1} is the decimal value of

the remaining log2 M − 1 bits after excluding the MSB. Fig. 2.6 shows the mapping of group of bits to the

complex zeros given 16-PMOCZ for message m = (0001, 1101, 0010, 0000, 1100, 0111, 0110). As m1 = 0001

and the MSB of m1 equals 0, the radius |α1| is 1/R as shown in the Fig. 2.6. The decimal value of remaining

3 bits in m1, i.e., Bi2De(001) = 1, as a result, the phase of α1 is 2π(1− 1)/7 + 2π(1)/((8)(7)) = 2π(1)/56 as

shown in the Fig. 2.6, where Bi2De(.) represents the binary to decimal conversion operator. That said, the

MSB of m2 is 1, so |α2| is R while its phase is 2π(2− 1)/7 + 2π(5)/((8)(7)) = 2π(13)/56. Similarly, rest of
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(c) Mapping of the message m = (0001, 1101, 0010, 0000, 1100, 0111, 0110) to constellation points.

Figure 2.3: Mapping of the K = 7 group of bits to the K = 7 constellation points of 16-QAM.
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Figure 2.5: Mapping of K = 7 group of bits onto K = 7 complex zeros for BMOCZ message
m = (1, 0, 1, 0, 1, 1, 1). Black circles represent complex zeros corresponding to the message m, red ring
represents the unit circle and the black rings represent the circles of radii R > 1 and 1/R. The decision
boundaries between sectors are represented by solid black lines.
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Figure 2.6: Mapping of K = 7 group of bits onto K = 7 complex zeros for 16-PMOCZ, given the
message m = (0001, 1101, 0010, 0000, 1100, 0111, 0110). The solid black lines represents the decision
boundary between the sectors. The decision boundaries between the sub-sectors are omitted for clarity
of presentation.

mk, k = 3, ..., 7, are mapped to the complex zeros as can be seen from Fig. 2.6.

Once theK group of bits are mapped onto the complex zeros, the sequence ofK+1 polynomial coefficients,

i.e., xk, k = 0, . . . ,K, corresponding to the K complex zeros αk, k = 1, . . . ,K, are generated which represent

discrete-time transmit signal x in MOCZ. A Toeplitz iterator for the polynomial coefficients generation was

presented in [1]. However, as will be discussed in Section 2.2, the notation of z-transform used in this thesis

is different than the notation used in [1]; hence, a modified Toeplitz iterator is presented below. That said,

the polynomial’s coefficient vector x is calculated as:

x = ejϕ0x(K)/∥x(K)∥2, (2.1)

where ϕ0 is the global phase and the vector x(K) is generated iteratively. The sth vector x(s), which is

generated in the sth iteration, is given as:

x(s) = s
(s−1)
1 − αss

(s−1)
2 , (2.2)

where s = 2, . . . ,K and αs represents the sth complex zero. The elements of the vectors s
(s−1)
1 and s

(s−1)
2

belong to the vector x(s−1) which was generated in the previous iteration, i.e., iteration number s− 1; hence,

s
(s−1)
1 = [x

(s−1)
0 , . . . , x

(s−1)
(s−1), 0]

T, and s
(s−1)
2 = [0, x

(s−1)
0 , . . . , x

(s−1)
(s−1)]

T. The vector x(1), which is required to

generate x(2), is given as x(1) = [1 − α1].

As in MOCZ, the unit circle in the z-domain is divided into K sectors and the complex zero in the kth

sector represent log2 M bits of mk; hence, in the codebook of MOCZ, there will be M possible complex zeros
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Figure 2.7: The unique MK complex zeros which belong to the complex zero codebook ζ are
represented by the cyan circles for K = 7 and 16-PMOCZ.

in every sector. That said, the complex zero codebook ζ of MOCZ is defined by the cartesian product of K

complex zero sets, i.e., ζ = ζ1 × ζ2 × ... × ζK [1], where ζk is defined as:

ζk =
{
α
(0)(R)
k , ..., α

(M
′
−1)(R)

k , α
(0)(1/R)
k , ..., α

(M
′
−1)(1/R)

k

}
, (2.3)

where α
(d)(r)
k = rej2π(((k−1)M

′
)+d)/(M

′
K), d ∈ {0, ...,M ′ −1}, and r ∈ {1/R, R}. From each of kth zero set,

one complex zero is selected based on mk. Hence, the codebook ζ defines MK combination of the transmit

complex zeros vector α. The MK unique complex zeros of codebook ζ for K = 7 and M = 16 are shown in

the Fig. 2.7.

Huffmann Polynomial and Optimal Radius for MOCZ: Generally, the complex zeros are unstable

such that even noise having a small variance has a tendency to move the location of complex zeros in the z-

domain. However, if the complex zeros corresponds to a special polynomial named as Huffmann Polynomial,

the complex zeros can achieve noise robustness [1]. This can be seen from Fig. 2.8a which shows the

complex zeros corresponding to the Huffmann polynomial at Eb/N0 = 19 dB, where Fig. 2.8b shows the

complex zeros corresponding to the non-Huffmann polynomial, also at the same Eb/N0 value. It can be seen

from these two figures that the received complex zeros corresponding to the non-Huffmann polynomial are

severely disturbed by the noise as compared to complex zeros corresponding to the Huffmann polynomial.

The Huffman polynomial have three noticeable properties [1]. First, its complex zeros are present on two

circles which are centered at the origin with the radius R and 1/R. Secondly, it is important to optimize

the radius R to achieve the noise robustness for the transmit complex zeros. The last noticeable property

of the Huffmann polynomial is that its auto-correlation, i.e., a = x ∗ x−, where x− represent the conjugate

and time reversed coefficient vector, helps in channel length estimation and time synchronization due to
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its impulse like appearance [1, 3]. As it is important to optimize the radius of transmit complex zeros for

noise robustness, authors in [1] derived the optimal radius for MOCZ by maximizing the minimum distance

between the complex zeros in the codebook ζ. That said, the optimal radius R for BMOCZ is given as:

R =
√

1 + 2λsin(π/K), (2.4)

where λ is approx. 1/2. For PMOCZ, the radius R is given as:

R =

√
1 +

(
(ln (2M)− 0.3) sin

( π

KM ′

))
, (2.5)

where ln denotes the natural logarithm. It is worth mentioning that there can be other polynomials that can

lead to good noise robustness properties but they are out of the scope of our current research.

2.2 Effect of the Wireless Channel

When the transmit signal is passed through the wireless channel, it experiences the fading phenomenon. This

phenomenon of transmit signal fading can be categorized into two categories, i.e., large scale fading and small

scale fading. The large scale fading takes place over longer distance; whereas, the small scale fading occurs

over a shorter distance, i.e., comparable to the wavelength of the transmitted signal.

The large scale fading is sub-divided into two categories named as i) path-loss and ii) shadowing. The

phenomenon of path-loss is defined as the loss in the transmit signal power due to the constructive and

destructive interference between multi-path components of the transmit signal, generated by a fixed set of

reflectors present in the channel, given that the signal travels through a long distance, i.e., 100-1000 m [4].

Hence, the exact value of path-loss is deterministic at a particular distance. The power loss that occurs due

to the reflection, diffraction, scattering, and absorption of the transmitted signal by random objects such as

buildings, trees, hills, etc., in the channel, given that the signal travels through a distance much greater than

the wavelength of the transmitted signal, is referred as shadowing.

On the other hand, the small scale fading is categorized into i) multi-path propagation effect and ii) time

variance of the channel. The random variation in the signal power over shorter distances, i.e., less than the

wavelength, due to the constructive and destructive interference between the multi-path components of the

transmitted signal is referred as multi-path propagation effect. The time variance of the channel is defined

as the phenomenon of change in the channel state with time; either, due to the movement of objects present

in the environment, or due to the movement of transmitter, receiver, or both.

Now, we will discuss the important terms related to the multi-path propagation. The first term related to

the multi-path propagation is the time delay spread Td which is defined as time duration between the arrival

of first and last multi-path component of the transmitted signal. If Td is less than the symbol duration T

of the transmitted signal, then the multi-paths cannot be resolved and the channel can be estimated with a

single-tap filter. The inverse of Td is the coherence bandwidth Bc of the channel, i.e., Bc = 1/2Td, which is

defined as the bandwidth over which the channel response in the frequency domain remains constant. Given
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(a) Complex zeros for Huffmann polynomial.
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(b) Complex zeros for non-Huffmann polynomial.

Figure 2.8: Complex zeros when transmitted coefficients are disturbed by the noise at Eb/N0 = 19
dB. Black circles represent the complex zeros of transmitted polynomial and magenta circles represent
the complex zeros of received polynomial.
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that B is the bandwidth of the transmit signal, if Td is less than T , so Bc will greater than B because of

the inverse relationship between symbol duration and bandwidth. Hence, for the single-tap channel, all the

frequency components in the transmitted signal are affected by the same channel gain; therefore, such type of

channel is referred as flat fading channel. If the time delay spread Td exceeds the time duration T , so there will

be multiple resolvable multi-path components of the transmitted signal in the time domain and the channel

can be modelled by a multi-tap filter. In the frequency domain, it results in different frequency components

in the transmitted signal being affected by the different channel gains; hence, this channel is referred to

as frequency-selective channel. The frequency-selective channel is modelled by the convolution operation

between the transmitted signal and channel response in the time domain; whereas, in the frequency domain,

it is modelled by the multiplication operation between the transmitted signal and the channel response.

That said, we will now discuss the terms related to the time variance of the channel. First, the coherence

time Tc is defined as the time period over which the channel state remains the same. If Tc is much greater

than the symbol duration T of the transmitted signal, it means the channel state changes slowly and more

than one transmitted symbol will be affected by the same channel conditions or channel response. This

phenomenon is referred as slow fading. If Tc is less than T , so single transmitted symbol will be affected by

the various channel responses and such a phenomenon is hard to deal with and is referred as fast fading. The

inverse of Tc is the doppler spread Bd, i.e., Bd = 1/4Tc. The doppler spread is the frequency delay spread

of the channel which occurs due to the movement of the transmitter, receiver, or both. The reason behind

doppler spread is the change in the carrier frequency of the transmitted signal by the doppler frequency fd

due to the movement. If Tc is less than T , so Bd will be greater than B and the received signal will experience

spectral broadening.

In this thesis, we assume that: (i) the channel is frequency-selective, and (ii) the channel response remains

the same over blocklength of the message. That said, the discrete-time received signal vector y in the presence

of the frequency-selective channel h and the white Gaussian noise w is given as:

y = x ∗ h+w, (2.6)

where * represent the convolution operator which characterize the effect of the frequency-selective channel

on transmit signal x in the time domain. The discrete-time frequency-selective channel h is defined as [4]:

h =

Lch−1∑
l=0

alδ[m− ϕl], (2.7)

where Lch is the total number of channel taps, al is the magnitude of the lth tap, and ϕl is the lth delay.

2.2.1 Effect of Channel on M -QAM

In M -QAM, the elements of the received vector y, i.e., yn, n = 0, . . . , N − 1, where N = K, are corrupted

from the inter symbol interference (ISI) due to the frequency-selective channel h. To cancel the ISI before

the detection, equalization techniques are utilized. The equalization techniques can be classified into two
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categories, i.e., i) linear equalization and ii) non-linear equalization. The linear equalization techniques

includes zero forcing (ZF) equalization and minimum mean-square error (MMSE) equalization [4]. The

ZF equalizers performs the equalization by multiplying the inverse of a known channel response with the

frequency response of received signal. As a result, if the magnitude of the channel response is very low, there

will be huge noise enhancement due to the ZF equalization. That said, the MMSE equalizers minimizes the

square of error between the estimated and the original data symbols for the cancellation of channel effect.

In the frequency domain, it is equivalent to dividing the frequency response of the received signal with the

sum of the channel response and the noise. Hence, MMSE does not lead to as much noise enhancement as

compared to the ZF equalizers. The non-linear equalization results in better performance as compared to the

linear equalization. That said, the equalizers which fall under the category of non-linear equalizers include

decision feedback (DF) equalizers. The DF equalizers uses a feedback filter to feed the detected sequence back

into the system in order to improve the detection. The downside of DF equalizers is that they suffer from

the error propagation [4]. To achieve the optimal performance, the maximum likelihood sequence estimation

(MLSE) equalization can be employed. The MLSE estimates the probability of transmitted data sequence

based on the received sequence of data or symbols. Given the received data sequence, whichever sequence

of transmit data maximizes the likelihood of transmit data, that sequence will be chosen as the transmitted

data sequence. The disadvantage of MLSE is that its complexity increases with the delay spread length [4].

The linear and non-linear equalization techniques require the channel state information which is acquired

usually with the help of pilot symbols. For the scenario when channel state information is not available, blind

equalization such as those presented in [5], [6], and [7] can be employed.

2.2.2 Effect of the Channel on MOCZ

Similar to M -QAM, the elements of the receive vector y in MOCZ, i.e., yn, n = 0, . . . , N − 1, where

N = K + Lch, are also corrupted from ISI due to the frequency-selective channel. As discussed earlier, the

information bits in MOCZ are modulated onto the complex zeros in the z-domain of the transmit signal x;

therefore, MOCZ does not require equalization techniques to cancel the ISI introduced by the frequency-

selective channel. To understand this, let us re-write (2.6) in the z-domain as:

Y(z) = X(z)H(z) +W(z), (2.8)

where Y(z), X(z), H(z), and W(z) are the z-domain polynomials of y, x, h, and w, respectively. The

polynomial X(z) corresponding to the transmit coefficients vector x is defined as:

X(z) =

K∑
k=0

xkz
−k, (2.9)

where xk is the kth coefficient in the vector x and the degree of X(z) is K if xK ̸= 0. Similarly, the degrees of

Y(z), H(z), and W(z) are N − 1, Lch − 1, and N − 1, respectively 1. Since a polynomial can be represented

1Note that the notation of the z-transform in (2.9) is slightly different than the notation used in [1].
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Figure 2.9: Complex zeros for frequency-selective channel, i.e., Lch = 4, and no noise scenario. Black
circles represent the complex zeros of X(z), i.e., transmit complex zeros, magenta circles represent
the complex zeros of received signal, i.e., Y(z), and green circles represent the complex zeros of the
channel, i.e., H(z).

as the product of its complex zeros if it has a degree greater than 1; therefore, X(z) can be represented as:

X(z) = x0

K∏
k=1

(z − αk), (2.10)

where x0 is the constant term in (2.9) and αk is the kth complex zero of X(z), i.e., X(αk) = 0, k = 1, . . . ,K.

In the same manner, the polynomials H(z), W(z), and Y(z) can be expressed as the products of their

complex zeros. Hence, it is evident from (2.8) that the frequency-selective channel will introduce Lch − 1

extra complex zeros in the received signal. This is the reason that the length of received vector y in case of

MOCZ is N > K, as the received vector y represent the coefficients corresponding to the complex zeros of

X(z) and H(z). If the magnitude of X(z)H(z) in (2.8), i.e., |X(z)H(z)|, is greater than the magnitude of

the noise, i.e., |W(z)|, the noise W(z) will not introduce the extra complex zeros in the received signal [8];

however, this noise will disturb the positions of complex zeros of X(z) and H(z) from their original locations

in the z-domain. Fig. 2.9 shows the complex zeros of transmit signal X(z) and received signal Y(z), in

the presence of frequency-selective channel H(z) with Lch = 4 and no noise. It can be seen from the figure

that the number of received complex zeros is greater than the number of transmit complex due to the extra

complex zeros introduced by the channel H(z). Fig. 2.10 shows the complex zeros of X(z) and Y(z), at

Eb/N0 = 19 dB. It can be seen from the figure that the received complex zeros are disturbed from their

actual locations due to the noise W(z). That said one can detect the K transmitted zeros non-coherently,

i.e., without the knowledge of the complex zeros introduced by the channel, using the MOCZ codebook as

will be explained in the next section.

17



-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 2.10: Complex zeros for MOCZ with frequency-selective channel, i.e., Lch = 4, and noise with
Eb/N0 = 19 dB. Green circles represent the complex zeros of H(z).

2.3 Demodulator

2.3.1 Demodulator of M -QAM

To detect the transmitted signal x̂ based on the equalized signal ŷ in M -QAM, the minimum distance rule

is used. Hence, the value of each nth received and equalized sample, i.e., ŷn, n = 0, ..., N − 1, where N = K,

is compared with all possible M constellation points in the IQ-plane, whichever constellation points is found

closer to ŷn, that constellation points is chosen as the nth transmitted constellation point. Fig. 2.11 shows

the demodulation of the message m = (0001, 1101, 0010, 0000, 1100, 0111, 0110) for 16-QAM. It can be seen

that the first received and equalized sample ŷ0 fall within the boundary of the constellation point 1− 1j, i.e.,

it is found closer to the constellation point 1− 1j as compared to the other constellation points; hence, x̂0 is

estimated as 1− 1j. The second received and equalized sample ŷ1 is found closer to the constellation point

−3− 1j; therefore, x̂1 is estimated as −3− 1j. Similarly, the rest of x̂k, k = 2, . . . , 6, can be determined by

comparing the minimum distance between the received and equalized sample ŷn and the constellation points.

Once x̂ = [x̂0, x̂1, . . . , x̂K−1]
T is determined, it will be demodulated to the group of bits m̂k.

2.3.2 Demodulator of MOCZ

For the non-coherent detection of MOCZ, three detectors were proposed in [1] namely the root finding

minimum distance (RFMD) detector, maximum likelihood (ML) detector, and an efficient detector named

as direct zero-testing (DiZeT) detector.
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ŷ6 
X2 
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Figure 2.11: Demodulation of the message m = (0001, 1101, 0010, 0000, 1100, 0111, 0110) for 16-
QAM. Black circles represents the elements of the discrete-time transmit vector x in IQ-plane, blue
circles represents the constellation points for the 16-QAM, and magenta circles represents the elements
of the received and equalized vector ŷ. The dashed lines represent the boundaries between the con-
stellation points.

i) Root Finding Minimum Distance (RFMD) detector:

The RFMD detector detects K transmitted complex zeros based on the minimum distance between the

received complex zeros and the MK complex zeros of the codebook ζ. First, the received complex zeros

corresponding to the received coefficient vector y are determined by using a root finding technique. Then,

each of the received complex zero αn, n = 1, . . . , N − 1, is classified into one of the K sectors using the

following criterion [1]:

Ξk =
{
n | ∀ k

′
̸= k : min

d∈{0,...,M ′−1}
r∈{1/R,R}

d(αn, α
(d)(r)
k ) ≤ min

d∈{0,...,M ′−1}
r∈{1/R,R}

d(αn, α
(d)(r)

k′ )
}
,

(2.11)

where Ξk defines the set of the indices n of received complex zeros, which are classified in the kth sector,

and d(αn, α
(d)(r)
k ) represents the Euclidean distance between the nth received complex zero αn and the

codebook complex zero α
(d)(r)
k belonging to the kth sector; therefore, α

(d)(r)
k = rej2π(((k−1)M

′
)+d)/M

′
K ,

d ∈ {0, . . . ,M ′ − 1}, and r ∈ {1/R,R}. Hence, the indices of received complex zeros, which are found closer

to one of the codebook zero corresponding to the kth sector as compared to the codebook zeros of the other

sectors, are assigned to Ξk. This implies that more than one received complex zero can be assigned to kth

sector. Therefore, one needs to eliminate the extra complex zeros classified in the kth sector; hence, pick only

one received complex zero from each sector as the transmitted complex zero based on the minimum distance

of received complex zero from the codebook zeros. This method of eliminating the extra complex zeros from
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the kth sector; hence, finding the radius r̂k and phase d̂k corresponding to the kth transmitted complex zeros

can be mathematically described as [1]:

[r̂k, d̂k] = arg min
d∈{0,...,M ′−1}

r∈{1/R,R}

min
j∈Ξk

d(α
(d)(r)
k , αn). (2.12)

If MSB of m̂k is denoted by ĉk; then, ĉk is defined as:

ĉk =

0, r̂k = 1/R

1. r̂k = R

(2.13)

That said, the least significant bits b̂k in m̂k are represented by the binary equivalent value of d̂k, i.e.,

b̂k =De2Bi(d̂k).

Fig 2.12 shows the detection process of MOCZ using the RFMD detector. The Figure shows that the

received complex zero denoted as α̂1 is assigned to the first sector. This is because the distance of α̂1 from

the codebook zeros at the phase 0 and radius R was found to be small as compared to the distance of α̂1 from

codebook zeros corresponding to the rest of sectors. Following the same criterion, the rest of the received

complex zeros are assigned to one of the K sectors. After the received complex zeros are assigned to the

K sectors, the extra complex zeros (if there are any) from each sector are eliminated. Fig. 2.12 shows that

two received complex zeros are classified in the first sector; one of the received complex zero is close to the

codebook zero having the radius R, and the other received complex zero is close to the codebook complex

zero having the radius 1/R. However the distance of α̂1 from the codebook zero having the radius R is less as

compared to the distance of the other received complex zero from the codebook zero having the radius 1/R.

Therefore, the received complex zero denoted as α̂1 is decided as the first transmitted complex zero having

the phase 0 and radius R. That said, the second sector have only one received complex zero α̂2, which is

close to the codebook zero having the radius 1/R; therefore, α̂2 is decided to be the second transmitted zero

having the radius 1/R and phase (2π)/7. Similarly, the rest of the transmitted complex zeros are determined.

If a kth sector is found to be empty, i.e., Ξk = {}, the extra complex zeros in the neighbouring sectors can

be searched to classify the closest complex zero from the neighbouring sector into the empty sector. Similar

performance was observed in our simulation results when instead of picking the extra closest complex zeros

from the neighbouring sector, the bits for m̂k were assigned randomly for a scenario when a sector was found

to be empty.

ii) Maximum Likelihood (ML) Detector:

The authors in [1], derived the maximum likelihood ML detector for MOCZ, which is given as:

arg max
α∈ζ

p(y|x(α)) = arg min
α∈ζ

∥(VH
αVα)

−1/2VH
αy∥22, (2.14)

where α = [α1, α2, . . . , αK ]T, VH
α is the generalized Vandermonde matrix, and Vα is the Hermitian of VH

α .

The generalized Vandermonde matrix is defined below, however, in a slightly different manner than in [1]
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Figure 2.12: Detection of K transmit complex zeros of MOCZ when K = 7 and Lch = 3. Black
circles are the complex zeros of X(z), cyan circles are the MK complex zeros of the codebook ζ,
magenta circles are the complex zeros of Y(z), and green circles is the complex zeros of H(z).

due to different notation of z-transform being used in my research:

VH
α =



1 α−1
1 α−2

1 . . . α
−(N−1)
1

1 α−1
2 α−2

2 . . . α
−(N−1)
2

...
...

...
...

1 α−1
K α−2

K . . . α
−(N−1)
K


. (2.15)

That said, (2.14) will be evaluated for all the possible combinations of K complex zeros from the codebook

ζ. Whichever combination of the K complex zeros, i.e., α, minimizes the objective function in (2.14), that

combination will be selected as the combination of transmitted complex zeros. The transmitted message m̂

will then be determined based on the sequence of the detected complex zeros.

iii) Direct Zero-Testing (DiZeT) Detector:

The simplification of ML detector (2.14) leads to an efficient detector named as direct zero testing (DiZeT)

detector [1]. As the kth complex zero for BMOCZ is defined as αk = rke
2π(k−1)/K , k = 1, . . . ,K, where rk

is the radius of αk, therefore, if one defines V
H
αVα in (2.14) with its equivalent matrix Cα, i.e., Cα = VH

αVα,
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the elements of matrix Cα are given as:

ck,m (αk, αm) =

N−1∑
n=0

(α−1
k α−1

m )n,

=

N−1∑
n=0

(r−1
k r−1

m )ne−(j2πn(k−m)/K). (2.16)

For the diagonal elements of matrix Cα, (2.16) simplifies as ck,k(αk) =
1−r−2N

k

1−r−2
k

. As for the off diagonal

elements, if the transmitted bits are equally likely, the expected value of (rkrm)−1 in (2.16) will be 1, i.e.,

E[(rkrm)−1] = (R (1/R))
−1

= 1. Therefore, for independent and identically distributed bits, the off diagonal

elements of matrix Cα will be approximated by zero because
∑N/K−1

l=0 e−
j2πl(k−m)

K

∑N−1
n=0 e−

j2πn(k−m)
K = 0,

given that N/K ∈ N, where N is the natural number. Hence, (VH
αVα)

−1/2 in (2.14) can be approximated with

the diagonal matrix W|α| having the kth diagonal element defined as w(|αk|) = c
−1/2
k,k (αk). Moreover, from

(2.9) and (2.15), it can be concluded thatVH
αy in (2.14) represents the z-domain polynomial of the received co-

efficient vector y when evaluated at the transmitted complex zeros, i.e., VH
αy = [Y(α1),Y(α2), . . . ,Y(αK)]T.

It implies that the detection of kth transmitted complex zero can be performed independently from the other

K − 1 complex zeros. As a result, ML detector in (2.14) simplifies as follows for BMOCZ [1]:

α̂k = arg min
αk∈{R,R−1}e

j2π(k−1)
K

|w(|αk|)Y(αk)|. (2.17)

That said ĉkis calculated as:

ĉk =
1 + sign

(∣∣∣w(|R−1e
j2π(k−1)

K |)Y(R−1e
j2π(k−1)

K )
∣∣∣− ∣∣∣w(|Re

j2π(k−1)
K |)Y(Re

j2π(k−1)
K )

∣∣∣)
2

,

=

1 + sign

(∣∣∣∣( 1−R2N

1−R2

)−1/2

Y(R−1e
j2π(k−1)

K )

∣∣∣∣− ∣∣∣∣( 1−R−2N

1−R−2

)−1/2

Y(Re
j2π(k−1)

K )

∣∣∣∣)
2

,

=

1 + sign

((
1−R−2N

1−R−2

)−1/2[(
1−R2N

1−R2

)−1/2(
1−R−2

1−R−2N

)−1/2

|Y(R−1e
j2π(k−1)

K )| − |Y(Re
j2π(k−1)

K )|
])

2
.

(2.18)

By ignoring the common term, i.e., ( 1−R−2N

1−R−2 )−1/2 and replacing the term
√

(1−R2)(1−R−2N )
(1−R2N )(1−R−2)

with its equiva-

lent, i.e.,
√

(1−R2)(1−R−2N )
(1−R2N )(1−R−2)

= R−N+1, (2.18) can be written as:

ĉk =
1 + sign

(
R−N+1

∣∣∣Y(R−1e
j2π(k−1)

K

)∣∣∣− ∣∣∣Y(Re
j2π(k−1)

K

)∣∣∣)
2

. (2.19)

The same approximation considered above will be used for M -PMOCZ; hence, d̂k and ĉk for M -PMOCZ can

be calculated, respectively, as:

d̂k = arg min
d∈{1,...,M ′}

min

{
R−N+1

∣∣∣Y (R−1ωkM
′
−M

′
+d

M ′K

)∣∣∣ , ∣∣∣Y (RωkM
′
−M

′
+d

M ′K

)∣∣∣}, (2.20)
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ĉk =
1 + sign

(
R−N+1

∣∣∣Y(R−1ωkM
′
−M

′
+d̂k

M ′K

)∣∣∣− ∣∣∣Y(RωkM
′
−M

′
+d̂k

M ′K

)∣∣∣)
2

, (2.21)

where ωM ′K = ej2π/M
′
K . That said, b̂k can be estimated from d̂k, i.e., b̂k = De2Bi(d̂k).

FFT Implementation of DiZeT: The DiZeT detector can be implemented using the fast fourier

transform (FFT). To do so, let us define the discrete fourier transform (DFT) matrix S of dimensions

N × N . The elements of S are given as Su,v = e−j2πuv/N , where u = 1, 2, . . . , N and v = 1, 2, . . . , N .

Also, let DR and DR−1 be N × N diagonal matrices with their respective diagonal vectors given as

[1, R1, R2, . . . , RN−1]T and [1, R−1, R−2, . . . , R−(N−1)]T. Finally, let D̂R and D̂R−1 be the matrices of the

dimensions (N +N
′
)×N , i.e., D̂R = (DR0N×N ′ )T and D̂R−1 = (DR−10N×N ′ )T, where N

′
= QKM

′ −N

and Q = ceil(N/K). Having said that, the vector of Y(z) evaluated at the complex zeros having the radius

R, i.e., [Y(Re
j2π(0)

QKM
′ ), . . . ,Y(Re

j2π(QKM
′
−1)

QKM
′ )], can be calculated as:

Y(αQ
R) = SD̂R−1y =



∑N−1
n=0 ynR

−ne
−j2πn 0

QKM
′

...

∑N−1
n=0 ynR

−ne
−j2πnQKM

′
−1

QKM
′


= FFT(D̂R−1)y. (2.22)

For BMOCZ, picking every Qth sample from (2.22) will result in Y(Re
j2π(k−1)

K ), k = 1, ...,K, which is

required in (2.19) to calculate ĉk. Similarly, for M -PMOCZ, upsampling of (2.22) by a factor of Q will

produce Y
(
RωkM

′
−M

′
+d

M ′K

)
which is required in (2.20) and (2.21) to estimate d̂k and ĉk, respectively, where

k = 1, . . . ,K and d = 1, . . . ,M
′
. Hence, after upsampling of (2.22), first M

′
samples corresponds to k = 1,

the following M
′
samples corresponds to k = 2, and so on. In the same manner, Y(αQ

R−1

) is defined as:

Y(αQ
R−1

) = SD̂Ry =



∑N−1
n=0 ynR

ne
−j2πn 0

QKM
′

...

∑N−1
n=0 ynR

ne
−j2πnQKM

′
−1

QKM
′


= FFT(D̂R)y, (2.23)

to obtain Y(R−1e
j2π(k−1)

K ), k = 1, ...,K, for BMOCZ and Y
(
R−1ωkM

′
−M

′
+d

M ′K

)
, k = 1, . . . ,K, and d =

1, . . . ,M
′
, for PMOCZ. Simulation results in [1] showed that DiZeT detector is best among the three detectors,

namely RFMD, ML, and DiZeT detector, in terms of balancing between the low-complexity and performance.
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2.4 Literature Review

2.4.1 Non-Coherent Communication for SPCs

Some studies have been conducted which proposed the non-coherent transmission/detection schemes for SPCs

to avoid the pilot overhead. For example; in [9], a hybrid composite hypothesis test (HCHT) and generalized

likelihood ratio test based non-coherent receiver was proposed for the scenario when the transmission is

made by utilizing scatter radio frequency shift key. Following that, a blind index modulation technique for

non-coherent detection of orthogonal frequency division multiplexing index modulation (OFDM-IM) scheme

was proposed in [10]. In blind OFDM-IM, the data is transmitted via K active sub-carriers out of total

N sub-carriers; hence, the information bits are uniquely represented by the indices of active sub-carriers.

The detection can simply be performed by finding the combination of K sub-carriers (valid according to the

transmit signal codebook) which have maximum power. The authors studied the scheme for single input

multiple output (SIMO) scenario and showed through the simulation results that the received data reliability

increases with the number of antennas. That said, a novel blind transmission technique named as pilot-less

one-shot (PLOS) transmission, which is based on sparse vector coding, was proposed in [11]. The mapping

was achieved by encoding the control information into the non-zero blocks of sparse vector; whereas, the non-

zero position of the chosen blocks encoded the transmit data. For the blind detection, deep neural network

(DNN) was employed to achieve the purpose. Recently, the authors in [12] proposed the blind receiver

design for uplink MIMO single-carrier interleaved frequency division muliple access (SC-IFDMA) technique

to perform the blind data detection in the scenario of SPCs. The receiver first perform the blind channel

shortening; and then, blindly estimate the channel frequency offset and compensate for it. Following that,

the blind signal-to-noise (SNR) maximization is performed; and then, the transmit data is detected blindly

by using the fractional low-order statics constant modulus algorithm (FLOS-CMA).

2.4.2 Faster-than-Nyquist (FTN) Signaling

The idea of faster-than-Nyquist (FTN) signaling started when J. E. Mazo realized and showed in his work [13]

that the transmission of Nyquist pulses can be accelerated by a factor of 0.802T without increasing the

minimum Euclidean distance between the pulses and without degradation in BER while maintaining the

same bandwidth. The violation of Nyquist criterion introduces the inter symbol interference (ISI) between

the received samples; hence, requires complex processing at the receiver for proper detection of transmitted

data. Since, FTN signaling helps in achieving the higher data rate as compared to the Nyquist signaling,

FTN signaling has been proposed as a candidate solution to compensate for the data rate loss in SPC when

compared to the channel capacity.

In the Nyquist signaling, we transmit and sample the T -orthogonal pulses at the intervals of T such that

at the sampling intervals, the contribution of the neighboring pulses is zero. On the other hand, in FTN
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signaling we perform the transmission and sampling of the received signal at the intervals of τT instead of T ,

where 0 < τ < 1, is the acceleration parameter. Hence, the contribution from the neighboring pulse, in case

of FTN signaling, will not be zero at the sampling intervals. The difference between Nyquist signaling and

FTN signaling is explained in Fig 2.13; where, Fig. 2.13a shows the raised cosine (RC) pulses at the intervals

of T and Fig 2.13b demonstrate the RC pulses at the intervals of τT . It can be seen in Fig. 2.13a that

the received waveform representing the summation of these pulses exactly coincides with the peak values

of the RC pulses as the contribution from the neighbouring pulses is 0 at each sampling instant. Hence,

at every sampling interval T , we will be able to sample the exact peak values of the transmit pulses. Fig.

2.13b, shows the RC pulses at the intervals τT , where τ = 0.7, representing the FTN signaling. One can

see from the figure that the contribution from the neighbouring pulses at the sampling intervals is non-zero.

Hence, the waveform which represent the summation of these pulses does not coincides with the peak of the

RC pulses at the sampling interval. Therefore, every received sample which is picked at the interval of τT

is corrupted from the contributions of the neighbouring pulses. We refer to this corruption of the received

samples from the neighboring pulses as inter symbol interference (ISI). Due to the intentionally introduced

ISI in FTN signaling, the transmit symbols cannot be estimated independently from each other; rather, the

joint estimation of transmit symbols need to be performed since each received symbol in FTN signaling is

dependant on the neighbouring symbols.

Several studies have been performed for the detection of FTN signaling in the presence of additive white

gaussian noise (AWGN) channel. For example; in [14], the detection was performed by using turbo equaliza-

tion when high-rate single parity-check codes were employed. That said, the performance of FTN signaling

was studied using the truncated Viterbi algorithm in [15]. The authors in [15] further studied the perfor-

mance of FTN signaling when convolutional encoder and interleaver is implemented to cancel the ISI during

turbo equalization. Following that, the authors in [16] proposed two novel successive interference cancella-

tion based methods, named as symbol-by-symbol sequence estimation (SSSSE) and symbol-by-symbol with

go-back-K sequence estimation (SSSgbKSE), for the detection of FTN signaling which are suitable for the

scenario when the high acceleration parameter is employed. In [17], the performance of SSSSgbKSE detec-

tor was investigated in the presence of polar codes based channel coding. The polar coded FTN signaling

does result in the improved performance of SSSSgbKSE detector. A novel Ungerboeck observation model

based reduced-complexity maximum-A-posteriori (MAP) equalization technique was presented in [18]. For

the scenario when FTN signaling employed M -ary phase shift key (PSK) symbols, a semidefinite relaxation

(SDR) and Gaussian randomization based detection algorithm was presented in [19]. Following that, the

authors in [20] proposed the convex quadratic relax-and-quantize sequence estimation (CQRAQSE) method

for detection, which was based on convex relaxation, primal-dual predictor-corrector interior point method,

and quantization. The FTN signaling was employed for SPCs in [21] to compensate for the data rate loss in

comparison to the channel capacity. The authors employed non-binary low-density parity-check (NB-LDPC)

codes and perform the detection by adopting the SSSSgbKSE detector. In [22], to reduce the detection
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complexity of FTN signaling, the authors introduced the deep learning based list sphere decoding (DL-LSD)

method, contrary to the conventional list sphere decoding (LSD) algorithm. More specifically, to reduce the

complexity during soft detection, an optimal radius of LSD hypersphere is determined based on the neural

network. The optimized hypersphere include significantly less number of lattice points in comparison to the

original LSD. Recently; in [23], an eigenvalue decomposition based precoding technique was proposed for the

FTN based index modulation technique.

The more practically encountered channel type during wireless transmission is the frequency selective

channel. The presence of frequency selective channel further increases the challenge of detection in FTN

signaling. In conventional Nyquist signaling, the known pilots symbols are usually sent along with the data

symbols to learn and estimate the channel. However, if the same method is employed in case of FTN signaling,

pilot symbols will encounter self-interference, i.e., interference from the neighbouring pilots; hence, more

involved signal processing techniques should be utilized. The authors in [24] proposed a Gaussian message

passing (GMP) algorithm to perform the estimation of channel and the decoding of the message jointly.

In particular, their proposed GMP algortithm was the combination of belief propagation (BP) algorithm,

expectation propagation (EP), and variational message passing (VMP) algorithm. A low-complexity, semi-

blind minimum mean square error based algorithm was proposed in [25] for the joint detection of data and the

estimation of the channel. The authors further proposed the guidelines to design the pilot sequence for the

channel estimation. Recently, in [26], the authors employed the combination of linear pre-equalization (LPE),

spectral precoding, Tomlinson-Harashima precoding (THP), and conventional frequency domain channel

estimation technique, to cancel the FTN signaling ISI and estimate the channel. In the aforementioned

technique, LPE cancels the FTN signaling ISI; however, results in signal spectral brodening. Hence, Spectral

precoding was employed to deal with the problem of signal spectral brodening. That said, spectral precoding

introduces intentional ISI to counter the effect of spectral brodening of the signal. Therefore, Tomlinson-

Harashima precoding (THP) was employed to cancel the ISI introduced by the spectral precoding. Following

this process, as the only remaining ISI is the ISI introduced by frequency selective channel, authors employed

the conventional frequency domain channel estimation techniques used for Nyquist signaling to cancel this

ISI.

Some studies have been performed to enable the non-coherent detection of FTN signaling. For examples,

the authors in [27] employed differentially encoded phase-shift key symbols (DPSK) for non-coherent detection

of FTN signaling. Under the assumption of flat-fading channel, the FTN signaling ISI was equalized using

frequency domain equalization as the complete knowledge of FTN signaling ISI is available at the receiver.

Following this process, the equalized DPSK symbols were non-coherently decoded to PSK symbols using

conventional differential demodulation technique. Simulation results demonstrated that the proposed scheme

has a potential to outperforms the conventional coherent FTN scheme in fast fading channel at high SNR.

After that, the authors in [28] employed 16-point double star quadrature amplitude modulation (QAM),

instead of PSK modulation as it was the case in [27], for differential FTN (DFTN) signaling. The results did
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show the benefits of employing the star-QAM aided DFTN signaling over PSK in terms of BER performance.

Recently, the authors in [29] proposed the non-coherent detection of differential phase modulated FTN

signaling based on the decision feedback algorithm. The proposed algorithm for non-coherent detection in

the presence of unknown phase shift was proved to be of low-complexity and energy efficient; however, the

authors studied the performance under the AWGN channel with constant transmission ratio.

That said, to the best of our knowledge, there are no work related to non-coherent detection of FTN

signaling under the frequency-selective channel. The proposed technique in this research will easily allow

the non-coherent detection of FTN signaling in the presence of frequency-selective channel when we employ

the MOCZ technique. This is possible because MOCZ is a unique technique in which the information is

modulated onto the complex zeros in the z-domain of transmit baseband signal.

2.5 Summary

This chapter elaborated the difference between conventional modulation technique M -QAM and the novel

modulation technique MOCZ by discussing in details their modulators/demodulators and the effect of chan-

nel. It was shown that contrary to the conventional modulation scheme like M -QAM in which information

bits are directly modulated onto the discrete-time transmit signal, in MOCZ, the information bits are modu-

lated onto the complex zeros of the z-domain polynomial corresponding to the discrete-time transmit signal.

When the transmit signal is passed through the frequency-selective channel, the extra random complex zeros

from the channel are added to the signal. To perform the detection, the MOCZ receiver does not require

information regarding the channel state or channel zeros. Whereas in the M -QAM, when the transmit signal

passes through the frequency-selective channel, the M -QAM receiver may need the channel information to

perform the non-blind channel equalization before the detection. Hence, MOCZ is a suitable technique for

the transmissions which cannot acquire channel state information during transmission such as SPCs.
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Figure 2.13: Figure elaborating the difference between Nyquist and FTN signaling. The colored
pulses, except black one, represent the RC pulses, where the received waveform representing the
summation of theses pulses is shown in the black color. Laslty, the vertical dashed-dottted lines
represent the sampling intervals
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3 Spectrally-Efficient Modulation on

Conjugate-Reciprocal Zeros (SE-MOCZ) for

Non-Coherent Short Packet Communications

Submitted as: A. A. Siddiqui, E. Bedeer, H. H. Nguyen, and R. Bartson, “Spectrally-Efficient Modula-

tion on Conjugate-Reciprocal Zeros (SE-MOCZ) for Non-Coherent Short Packet Communications,” IEEE

Transactions on Wireless Communications.

This chapter contains the manuscript of the paper which is under review for publication in the journal

IEEE Transactions on Wireless Communications. In this paper, we improved the spectral efficiency of

a recently-proposed modulation scheme named as modulation on conjugate reciprocal zeros (MOCZ) by

combining MOCZ with a technique named as faster-than-Nyquist (FTN) signaling. The combination of

MOCZ with FTN signalling introduced inter symbol interference (ISI) between the received samples of MOCZ,

which translates to the extra complex zeros in the z-domain. We optimized the radius of transmit complex

zeros to increase the noise robustness; hence, to improve the bit error rate (BER) performance of MOCZ,

in the presence of extra complex zeros (due to the FTN signaling ISI). We also designed a partial-complex-

zeros-removal filter at the receiver to remove part of the complex zeros due to the FTN signaling. Lastly, we

derived the maximum likelihood (ML) detector to estimate the transmitted sequence of coefficients; hence,

the transmitted complex zeros in the presence of induced complex zeros corresponding the FTN signaling.
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Spectrally-Efficient Modulation on

Conjugate-Reciprocal Zeros (SE-MOCZ) for

Non-Coherent Short Packet Communications

Aiman Asad Siddiqui, Ebrahim Bedeer, Ha H. Nguyen, and Robert Barton

Abstract

This paper proposes a non-coherent communication scheme for short packet communications (SPCs), called

spectrally-efficient modulation on conjugate reciprocal zeros (SE-MOCZ). The proposed SE-MOCZ scheme

is realized by combining the recently-proposed MOCZ and faster-than-Nyquist (FTN) signaling. Specifically,

the pulses carrying the polynomial coefficients of MOCZ are accelerated beyond the Nyquist limit to enhance

the spectral efficiency. The spectral efficiency enhancement, however, comes at the expense of inter-symbol

interference (ISI), which increases the number of received complex zeros in the z-domain of the polynomial

representing the received signal. We design a partial-complex-zeros-removal filter at the receiver to partially

remove the extra complex zeros caused by FTN signaling. Furthermore, we also optimize the radius of

the transmit complex zeros in SE-MOCZ to improve the bit error rate (BER) performance. We propose

a maximum likelihood (ML) detector for the proposed SE-MOCZ scheme. To strike a balance between

the BER performance and computational complexity, we adopt a root-finding minimum distance (RFMD)-

based detector. Simulation results clearly show the performance advantage of the proposed SE-MOCZ when

compared to MOCZ for a wide range of operating parameters.

Index Terms

Faster-than-Nyquist signaling, modulation on zeros, non-coherent detection, Nyquist criterion, short packet

communications, ultra-reliable and low-latency communications.

3.1 Introduction

Future wireless communication will encompass diverse Internet of things (IoT) applications, such as telemedicine,

autonomous vehicles, and automated factories, that need to fulfill the stringent requirements of ultra-reliable

and low-latency communication (URLLC) [1]. For example, wireless telesurgery requires a packet error rate

33



of 10−7 and a latency of less than 100 ms, 25 ms, and 5 ms for audio/video feedback, haptic feedback, and

interactive live holographic feedback, respectively [2]. Likewise, IoT applications in automated factories re-

quire an end-to-end latency in the range of 1 to 50 ms along with packet error rates from 10−6 to 10−9 [3]. To

avoid collision in autonomous vehicles, the latency needs to be in the order of milliseconds while maintaining

high reliability [4]. To meet such stringent latency requirements, URLLC necessitates the use of short data

packets for data transmission [1, 5].

Short packet communications (SPCs) pose several design challenges when compared to the conventional

large-blocklength communications. For instance, large-blocklength communications can use pilots to effi-

ciently estimate the wireless channel. However, using pilots to estimate the channel in SPCs will severely

degrade the spectral efficiency since the pilot length is comparable to the length of short data packets [5].

Another design challenge for channel estimation in SPCs is that the traffic is mostly sporadic, i.e., the wire-

less channel changes from one transmission to the next, which requires re-estimation of the channel for every

transmission [6]. Therefore, there is a need to design efficient transmission techniques, e.g., modulation and

coding, for SPCs.

Recently, a novel modulation technique, known as modulation on conjugate-reciprocal zeros (MOCZ), was

proposed for non-coherent SPCs [7]. In MOCZ, the information bits are modulated onto the complex zeros of

the z-domain polynomial corresponding to samples of the transmit discrete-time signal. When the transmit

signal propagates through the frequency-selective channel, the number of complex zeros of the polynomial

corresponding the received signal increases due to the insertion of the complex zeros associated with the

polynomial of the channel response. At the receiver, based on the codebook of the transmit complex zeros

that is known to the receiver, the transmit complex zeros can be separated from the channel complex zeros

without knowledge of channel state information (CSI) [7].

Each of the transmit complex zeros can either carry a single information bit, which is known as binary

modulation on conjugate reciprocal zeros (BMOCZ), or more than one information bit, which is known as

phase modulation of conjugate reciprocal zeros (PMOCZ). Different detectors of MOCZ were proposed in [7]

to balance the tradeoff between performance and the computational complexity. In [8], the authors studied

performance of MOCZ under timing offset and carrier frequency offset and proposed an efficient detector that

can jointly estimate the carrier frequency offset and decode the transmit information. The performance of

MOCZ in multi-user transmission was recently investigated in [9], where the authors studied two transmission

techniques, namely, MOCZ single-carrier time division multiple access (MOCZ-TDMA) and MOCZ single-

carrier frequency division multiple access (MOCZ-FDMA). The authors demonstrated performance gains, in

terms of block error rate, of the proposed techniques over the orthogonal frequency-division multiple access

(OFDMA) technique for highly-mobile and frequency-selective channels.

Because of the use of finite (usually short) blocklength, the achievable rate of SPCs is less than the

channel capacity [10]. Recently, faster-than-Nyquist (FTN) signaling was proposed as a promising solution

to compensate for the rate loss of SPCs [11]. The history of FTN signaling dates back to 1975 when J. E.
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Mazo showed in [12] that the uncoded transmission of binary sinc pulses can be accelerated up to 25% beyond

the Nyquist limit without deteriorating the asymptotic error rate. This is remarkable considering that FTN

violates the orthogonality condition and causes intersymbol interference (ISI). In summary, FTN signaling

makes a better use of transmission bandwidth to increase the spectral efficiency, but at the cost of additional

complexity at the transmitter and/or receiver to compensate for the introduced ISI [13].

Although the ISI generated from FTN signaling has a trellis structure [14], standard trellis-based detection

techniques such as the Viterbi and BCJR algorithms are not directly applicable to detect FTN signaling

due to the excessive processing complexity, especially at small acceleration parameters. Reduced-trellis or

reduced-search variants of the Viterbi and BCJR algorithms can be used to detect low-order modulation

FTN signaling [15, 16], but it becomes more challenging for high-order modulation FTN signaling. On the

other hand, precoding techniques at the transmitter [17,18] or estimation techniques at the receiver based on

concepts from non-linear optimization theory [19,20] can strike a balance between performance and detection

complexity. For high acceleration parameters, techniques based on frequency-domain equalization [21] or

symbol-by-symbol estimation [22] can achieve satisfactory detection performance. We refer the interested

reader to [13] for more detailed discussion on FTN signaling.

Inspired by the advantages of MOCZ and FTN signalling, in this paper we propose and investigate a

new non-coherent communication scheme, called spectrally-efficient modulation on conjugate-reciprocal zeros

(SE-MOCZ) to improve the spectral efficiency of MOCZ. In a nutshell, the proposed SE-MOCZ combines

MOCZ and FTN signaling in such a way that the transmission of Nyquist pulses carrying the polynomial

coefficients of MOCZ is accelerated beyond the Nyquist rate. As a consequence of intentionally violating the

Nyquist limit, the ISI between the received samples occurs. As explained before, in MOCZ the information

bits are modulated onto the complex zeros of the transmit polynomial in the z-domain. The violation of the

Nyquist limit leads to additional complex zeros in the received polynomial, complicating the detection of the

information bits. To deal with these additional complex zeros (caused by ISI of FTN signaling), we design a

partial-complex-zeros-removal filter at the receiver. Further, we optimize the radius of the transmit complex

zeros so that they are robust against noise in the presence of the additional ISI-induced complex zeros. We

develop the maximum likelihood (ML) detection rule for the proposed SE-MOCZ. Since the ML detection has

high computational complexity, a low-complexity root-finding minimum distance (RFMD) detector similar

to that in MOCZ can also be applied for SE-MOCZ to strike a balance between computational complexity

and performance. Simulation results show that spectral efficiency gains of up to 25% can be achieved with

the proposed SE-MOCZ and without any penalty in terms of average energy per bit when the ML detector

is employed. When the low-complexity RFMD detector is employed, the spectral efficiency gain reduces to

about 11% and at the expense of about 1 dB average energy per bit.

The remainder of this paper is organized as follows. Section 3.2 describes the system model of the proposed

SE-MOCZ technique. Then, a brief review of MOCZ is presented in Section 3.3. Section 3.4 discusses the

effect of ISI due to FTN signaling on the received complex zeros and optimal radius design for SE-MOCZ. In
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Figure 3.1: A block diagram of the proposed SE-MOCZ.

Section 3.5, the design of a partial-complex-zeros-removal filter and different detectors, namely the ML and

RFMD detectors, are presented. Simulation results are presented and discussed in Section 3.6. Section 3.7

concludes the paper.

Notations: Throughout the paper, lower-case and upper-case boldface letters denote vectors and matrices,

respectively. The complex conjugate and time reversal of vector a is denoted as a−, the transpose of vector

a is denoted as aT, and the Hermitian of matrix A is denoted as AH. We use IN to represent the identity

matrix of size N × N , C to represent the set of complex numbers, and ∥a∥2 to represent the norm of vector

a. We denote a complex Gaussian random variable with mean µ and variance σ2 as CN (µ, σ2). Further,

E[·], De2Bi(·), ln(·), and * represent the expectation, the decimal to binary conversion, natural logarithm,

and the convolution operator, respectively.
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3.2 System Model

A block diagram of the system model describing the proposed SE-MOCZ is shown in Fig. 3.1. The incoming

data bits of the information messagem are organized intoK groups of bits asm = (m1,m2, . . . ,mk, . . . ,mK),

where mk is the kth group consisting of log2 2M bits and 2M is the constellation size of SE-MOCZ. The bits

in mk are mapped onto a unique complex zero αk ∈ C, k = 1, . . . ,K, in the z-domain, where the mapping

criterion is explained later in Section 3.3. It follows that the information message m can be represented

by a set of K unique complex zeros. For transmission, a sequence x = [x0, x1, . . . , xk, . . . , xK ]T, xk ∈ C,

containing K + 1 polynomial coefficients corresponding to the K unique complex zeros is generated.

In MOCZ, the coefficients in x are transmitted over the channel by modulating the basic T -orthogonal

transmit pulse p(t) as
∑K

k=0 xkp(t − kT ), where T is the symbol duration. In the proposed SE-MOCZ,

the coefficients in x are transmitted using FTN signaling, i.e., every τT seconds, where 0 < τ ≤ 1 is the

acceleration parameter. Hence, the transmit signal in the proposed SE-MOCZ is given as:

x(t) =

K∑
k=0

xkp(t− kτT ). (3.1)

Considering baseband transmission and let h(t) represent the impulse response of the multipath fading

channel, then the received baseband signal r(t) is given as:

r(t) =

∫
h(t′)x(t− t′)dt′ + n(t), (3.2)

where n(t) is additive white Gaussian noise (AWGN) with zero mean and one-sided power spectral density

(PSD) of N0. Moreover, the multipath fading channel h(t) can be modeled as:

h(t) =

Lch−1∑
l=0

alδ(t− ϕl), (3.3)

where Lch is the number of channel taps, al and ϕl are the gain and delay of the lth tap, respectively. Using

(3.3), the received signal r(t) can be re-written as:

r(t) =

Lch−1∑
l=0

alx(t− ϕl) + n(t),

=

K∑
k=0

xk

Lch−1∑
l=0

alp(t− kτT − ϕl) + n(t). (3.4)

At the receiver, the received signal is passed through a filter p∗(−t) which is matched to the transmit

pulse p(t). For a real transmit pulse p(t), we have p∗(−t) = p(−t). The signal after the matched filter is

written as:

y(t) =

∫
p(t′)r(t− t′)dt′,

=

K∑
k=0

xk

Lch−1∑
l=0

alg(t− kτT − ϕl) + w(t), (3.5)
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where g(t) and w(t) are given, respectively, as:

g(t) =

∫
p(t′)p(t− t′)dt′, (3.6)

w(t) =

∫
p(t′)n(t− t′)dt′. (3.7)

The signal y(t) at the output of the matched filter is then sampled at every τT to obtain the following

sampled signal:

y[n] =

K∑
k=0

xk

Lch−1∑
l=0

alg[n− k − ϕl] + w[n]. (3.8)

For convenience, define the effective channel response heff [m] as:

heff [m] =

Lch−1∑
l=0

alg[m− ϕl]. (3.9)

Then (3.8) can be equivalently written as:

y[n] =

K∑
k=0

xkheff [n− k] + w[n]. (3.10)

Note that for 0 < τ < 1, the noise samples w[n] are still zero-mean Gaussian random variables, but they are

correlated.

The convolutions in (3.10) and (3.9) can be, respectively, represented in the vector form as:

y = x ∗ heff +w, (3.11)

heff = g ∗ h, (3.12)

where g, h, w are vectors of samples obtained by sampling g(t), h(t), and w(t), respectively, by the sampling

period τT . The length of g is theoretically infinite. However, for practical purposes, we set it to 2Lg + 1

by properly truncating the coefficients of the shaping pulse. The lengths of h and heff are Lch and Leff =

2Lg + Lch, respectively, and the length of w is N = K + Leff . Note that, for the conventional Nyquist

signalling, τ = 1, hence heff = h and Leff = Lch. From (3.11) and (3.12), it is clear that (3.8) can be written

in vector form as:

y = x ∗ g ∗ h+w, (3.13)

where the length of the vector y is also N .

The sampled signal y is then passed through a discrete-time filter designed to partially remove the

complex-zeros introduced by FTN signaling. This filter shall be named partial-complex-zeros-removal filter

and it is presented in detail in Section 3.5. Next, the filtered signal is processed by the detector to recover

the information message as m̂ = (m̂1, m̂2, . . . , m̂k, . . . , m̂K), where m̂k is the estimate (detected) version of

the kth group of bits.
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3.3 Review of MOCZ

As discussed earlier, the information message m in MOCZ consists of K groups of data bits, each having

log2 2M bits, where 2M is the size of MOCZ constellation. Each of the K groups of data bits is mapped onto

a unique complex zero in the z-domain. This means that each information message m is mapped onto a set of

K complex zeros for transmission. In general, when the coefficients of the transmit polynomial are disturbed

by noise, the receive complex zeros become unstable and can be far away from their original locations (i.e.,

the locations of the transmit complex zeros) in the z-plane [7]. However, it has been shown that the complex

zeros corresponding to the coefficients of a special polynomial called the Huffman polynomial can be robust

to noise [7].

The Huffman polynomials have the following properties [7]: (i) The complex zeros of the Huffman poly-

nomial lie on two circles centered at the origin, where the radii of these circles are the reciprocal of each

other, i.e., R > 1 and 1/R, (ii) Optimizing the radius R is crucial in achieving noise robustness, and (ii) The

auto-correlation of a Huffman polynomial, i.e., a = x ∗ x−, has an impulse like shape, and hence, is helpful

for channel length estimation and time synchronization [7, 8].

To illustrate how the modulator of MOCZ works, we first discuss the mapping from information bits to

complex zeros when M = 1, i.e., for the case of BMOCZ. Then, we discuss the mapping when M > 1, i.e.,

2M -PMOCZ.

In BMOCZ, each group mk, k = 1, . . . ,K, has only one bit that is mapped to a unique complex zero.

The mapping is achieved by dividing the z-plane into K sectors, where each sector k, k = 1, . . . ,K, contains

one complex zero corresponding to one bit of the information message m. The location of a complex zero in

the z-plane is determined by its radius and phase. In particular, the kth complex zero αk of BMOCZ has a

phase value of 2π(k − 1)/K, whereas its radius is determined by the bit value of mk as follows: if mk = 0,

|αk| = 1/R, and if mk = 1, |αk| = R > 1.

To further illustrate the idea of BMOCZ, consider an example of message m = (1, 0, 1, 0, 1, 1, 1) that

consists of seven groups of bits, i.e., K = 7, each group having only one bit. The first bit m1 = 1 is mapped

to a complex zero located at phase 2π(k − 1)/K = 2π(1− 1)/7 = 0 and radius R > 1 as shown in Fig. 3.2.

The second bit m2 = 0 is mapped to a complex zero at radius 1/R and phase 2π(k − 1)/K = 2π(1)/7. The

other 5 bits in mk, k = 3, . . . , 7, are mapped similarly as shown in Fig. 3.2.

Similar to BMOCZ, 2M -PMOCZ divides the z-plane into K sectors and maps each group of bits mk,

k = 1, . . . ,K, into a given sector. In particular, in 2M -PMOCZ, every group of bits mk consists of log2 2M

bits and the mapping is performed as follows. The most significant bit (MSB) in mk is mapped to the radius

of αk, just like in BMOCZ. The remaining log2 M bits are mapped to the phase of αk. Therefore, each of

the sector in the z-plane is further divided into M sub-sectors, where the phase of a given sub-sector within

the kth sector is 2π(k− 1)/K +2πd/(MK). Here d ∈ {0, . . . ,M − 1} is the decimal value of the remaining

log2 M bits after excluding the MSB.
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Figure 3.2: Mapping of K = 7 groups of bits onto K = 7 complex zeros for BMOCZ message
m = (1, 0, 1, 0, 1, 1, 1). Black circles represent the complex zeros corresponding to the message m. The
red ring represents the unit circle and the black rings represent the circles of radius R > 1 and 1/R.
The solid black lines represents the decision boundary between the sectors.
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Figure 3.3: Mapping of K = 7 groups of bits onto K = 7 complex zeros with 8-PMOCZ when the
message is m = (111, 110, 001, 101, 000, 111, 110). The solid black lines represent the decision boundary
between the sectors. The decision boundaries between the sub-sectors are omitted for clarity.

40



To illustrate the idea of 2M -PMOCZ, consider using 8-PMOCZ (i.e., M = 4) for the message m =

(111, 110, 001, 101, 000, 111, 110) that consists of K = 7 groups of bits, each having 3 bits. The mapping of

this message to complex zeros is shown in Fig. 3.3. Since the MSB of m1 = 111 is 1, the radius of α1 is

R. The remaining log2 M = log2 4 = 2 bits in m1, namely bits 11, have an equivalent decimal value d = 3

and accordingly the phase of α1 is 2π(3)/28. Similarly, for m2 = 110, since the MSB is 1, the radius of α2 is

set to R. The decimal value of the remaining 2 bits in m2 is 2, so the phase of α2 is 2π(6)/28. In a similar

manner, other groups of bits mk, k = 3, . . . , 7, are mapped to the complex zeros as shown in Fig. 3.3.

Two different codebooks for MOCZ can be defined: one is for the complex zeros, i.e., complex zero

codebook ζ; while the other is for the complex coefficients i.e., coefficient codebook ρ. The MOCZ complex

zero codebook ζ is the Cartesian product of the K complex zero sets, i.e., ζ = ζ1 × ζ2 × . . . × ζK [7]. Each

of the kth complex zero set ζk consists of all possible 2M complex zeros within the kth sector. Therefore,

the kth complex zero set ζk can be defined as:

ζk =
{
α
(0)(R)
k , . . . , α

(M−1)(R)
k , α

(0)(1/R)
k , . . . , α

(M−1)(1/R)
k

}
, (3.14)

where α
(d)(r)
k = rej2π(((k−1)M)+d)/(MK), d ∈ {0, . . . ,M − 1}, and r ∈ {1/R, R}.

Based on the bits in mk, only one of the complex zeros is selected from the kth complex zero set ζk for

transmission. Hence, the complex zero codebook of MOCZ consists of the 2MK unique complex zeros, which

defines the (2M)K combinations of the complex zeros that can be transmitted based on the message m. Fig.

3.4 shows all the 2KM unique complex zeros for K = 7 and M = 4.

The coefficient codebook ρ consists of all (2M)K combinations of the complex coefficients corresponding

to the (2M)K combinations of the complex zeros defined by the complex zero codebook ζ.

Finally, the K + 1 polynomial coefficients xk, k = 0, . . . ,K, corresponding to the K complex zeros αk,

k = 1, . . . ,K, are generated using the Toeplitz iterator presented in [7].

3.4 The Proposed SE-MOCZ

Similar to MOCZ, the proposed SE-MOCZ maps K groups of information bits onto K complex zeros and

generates polynomial coefficients corresponding to these complex zeros for transmission. The SE-MOCZ is

different from MOCZ in the way the polynomial coefficients are carried by the transmit pulses: In SE-MOCZ

the pulses p(t) are transmitted every τT , 0 < τ ≤ 1, as opposed to every T in MOCZ. Because the Nyquist

criterion is intentionally violated in SE-MOCZ, ISI is introduced between the received samples, which gives

rise to a larger number of received complex zeros in the z-domain. This is discussed in more detail in the

following.
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Figure 3.4: The unique 2KM complex zeros which belong to the complex zero codebook ζ are
represented by cyan circles for K = 7 and M = 4.
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Figure 3.5: Complex zeros for BMOCZ with flat fading channel, i.e., Lch = 1, and no noise. Black
circles are the complex zeros of X(z), and magenta circles are the received complex zeros, i.e., complex
zeros of the polynomial Y(z).
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Figure 3.6: Complex zeros for SE-BMOCZ with τ = 0.9, flat fading channel, i.e., Lch = 1, and no
noise. Black circles are the complex zeros of X(z), magenta circles are the complex zeros of Y(z), and
white circles are the complex zeros due to ISI resulting from FTN signalling, i.e., complex zeros of the
polynomial G(z).

3.4.1 Effect of ISI due to FTN signaling on received complex zeros

Using the convolution property of the z-transform, the received signal y in (3.13) can be expressed in the

z-domain as:

Y(z) = X(z)G(z)H(z) +W(z), (3.15)

where Y(z), X(z), G(z), H(z), and W(z) are the z-domain polynomials of y, x, g, h, and w, respectively.

The polynomial X(z) corresponds to the transmit coefficients vector x and is defined as:

X(z) =

K∑
k=0

xkz
−k, (3.16)

where xk is the kth element of x and the degree of X(z) is K if xK ̸= 0. Similarly, the degrees of Y(z), H(z),

G(z), and W(z) are N − 1, Lch − 1, 2Lg, and N − 1, respectively. The effect of ISI due to FTN signaling

is through G(z) in (3.15) and can be seen with the help of Fig. 3.5 and Fig. 3.6. These two figures show

the complex zeros of X(z) and Y(z) for BMOCZ and binary SE-MOCZ (SE-BMOCZ), respectively, for the

scenario of no noise and flat fading channel, i.e., Lch = 1. Obviously, in both figures the transmit signals

have the same number of complex zeros. However, the received signal in the case of SE-MOCZ has more

complex zeros that are introduced by ISI due to FTN signaling.

As discussed earlier, the complex zeros representing the information bits should be carefully designed to

be located at the optimal radii of R > 1 and 1/R to be robust against noise. In particular, the transmit

coefficients should be selected to be a Huffman polynomial. However, the ISI due to FTN signaling is
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Figure 3.7: Complex zeros for SE-BMOCZ with τ = 0.9, flat fading channel, i.e., Lch = 1, and
Eb/N0 = 19 dB. Black circles are the complex zeros of X(z), magenta circles are the complex zeros of
Y(z), and white circles are the complex zeros of G(z).

determined by the transmit and receiver pulse shapes, and hence, we have no control over the complex zeros

of G(z) once the filters are selected. In general, the complex zeros due to G(z) are sensitive to noise. This

can be shown with the help of Fig. 3.7, which plots the complex zeros of the received signal for SE-BMOCZ

at Eb/N0 = 19 dB and flat fading channel, i.e., Lch = 1. As can be seen from Fig. 3.7, for the same noise

power; the complex zeros corresponding to G(z) are distributed much more when compared to the complex

zeros corresponding to X(z).

3.4.2 Optimal radius design for the proposed SE-MOCZ

To have a reliable communication with SE-MOCZ, it is intuitively desirable to maximize the Euclidean

distance between the complex zeros of G(z) and the unique 2KM complex zeros of the codebook ζ. As

can be seen from Fig. 3.8, the complex zeros of G(z) are, in general, far from the 2KM complex zeros of

the codebook ζ, except for two complex zeros denoted as αG and 1/αG, which are conjugate reciprocals of

each other. Among these two complex zeros, αG is closer to the complex zeros of the codebook ζ. Therefore

we aim to maximize the distance between αG and the closest complex zero of the codebook. Since we have

no control over the complex zeros of αG, we shall control the positions of the codebook zeros by jointly

maximizing (i) the Euclidean distance dg, and (ii) the minimum distance between dph and drad, where dg

is the distance between αG and the closest codebook zero having radius 1/R, dph represents the distance

between the neighboring complex zeros having radius 1/R, and drad is the distance between the conjugate

reciprocal pairs of codebook complex zeros, i.e., drad = R− 1/R. These distance measures are illustrated in

Fig. 3.9 (for even values of K) and Fig. 3.10 (for odd values of K). Observe that such joint maximization
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Figure 3.8: Complex zeros of G(z) and the 2KM unique complex zeros of the codebook ζ with
K = 8 and τ = 0.9. White circles represent the complex zeros of G(z), and cyan circles represent
2KM unique complex zeros of the codebook ζ for SE-BMOCZ.

can be achieved by setting λdrad = dg because dph > drad, where the factor λ is introduced to take into

account that αG is unstable in the presence of noise as compared to the codebook zeros. For SE-BMOCZ,

the value of dg depends on whether the number of the groups of bits K is odd or even, and both cases will

be discussed separately.

For K even, as shown in Fig. 3.9, αG lies at a phase of 180 degrees and the closest codebook complex

zeros are also present at the same phase, therefore dg = (1/R − d), where d is the location of αG. It is

pointed out that the value of d depends on τ and the pulse shape. Furthermore, the number of complex zeros

introduced by ISI changes with τ as well. It is clear that the optimal radius R should satisfy

λ

(
R− 1

R

)
=

(
1

R
− d

)
, λ > 0. (3.17)

Note that (3.17) can be used to find the optimal radius R for higher-order SE-MOCZ, i.e., SE-PMOCZ

for both even and odd values of K. This is because in SE-PMOCZ, there are always complex zeros in the

codebook that lie at the phase of 180 degrees, irrespective of the value of K.

For K odd, as shown in Fig. 3.10, no codebook zeros are present at the phase of 180 degrees. Therefore

dg can be found as:

dg =
sin(π/K)d

sin(γ)
, (3.18)

where γ can be found as:

sin(γ)

d
=

sin(π − π
K − γ)

1/R
, (3.19)
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Figure 3.9: Maximizing the distance between complex zero αG and the closest complex zeros of
the codebook ζ for even K. Note that the outer complex zeros of G(z) are omitted for clarity of
presentation.
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Figure 3.10: Maximizing the distance between the complex zero αG and the closest complex zeros
of the codebook ζ for odd K. The outer complex zeros of G(z) are omitted for clarity of presentation.
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which simplifies to:

γ = arctan

(
Rd sin

(
π − π

K

)
1 +Rd cos

(
π − π

K

)) . (3.20)

In summary, the optimal radius R for K odd satisfies

λ

(
R− 1

R

)
=

sin
(
π
K

)
d

sin

(
arctan

(
Rd sin(π− π

K )
1+Rd cos(π− π

K )

)) , λ > 0. (3.21)

Note that the value of λ in both (3.17) and (3.21) can be calculated numerically to achieve the best BER

performance.

As will be explained in Sub-section 3.5.1, a partial-complex-zeros-removal filter can be employed to cancel

the inner complex zeros introduced by the ISI due to FTN signaling. Using such a filter, the complex zero

αG will also be removed, making 1/αG the closest complex zero. In other words, to find the optimal radius

R when taking into account the ISI in SE-MOCZ and the partial-complex-zeros-removal filter, one needs to

consider the complex zero 1/αG instead of αG. Performing similar analysis as before, the optimal radius R

when SE-BMOCZ with even K is used, or when SE-PMOCZ (even or odd K) is used satisfies:

λ

(
R− 1

R

)
= (dfilt −R) , λ > 0, (3.22)

where dfilt = 1/d, is the location of complex zero 1/αG. Likewise, the optimal radius R when SE-BMOCZ

with odd K is used can be found from:

λ

(
R− 1

R

)
=

sin
(
π
K

)
dfilt

sin

(
arctan

(
dfilt sin(π− π

K )
R+dfilt cos(π− π

K )

)) , λ > 0. (3.23)

For convenience, in the rest of the paper, we shall use the notation Ropt1 for the optimal radius obtained

from (3.17) and (3.21), and Ropt2 for the optimal radius calculated from (3.22) and (3.23).

Before closing this section, it is pointed out that the definition of the z-transform in (3.16) is slightly

different from that used in [7]. For completeness and to avoid confusion, we present next the coefficient

generation technique for the proposed SE-MOCZ. The coefficient vector x is calculated as:

x = x0x
(K), (3.24)

where x(K) is generated iteratively and x0 is defined as:

x0 = ejϕ0∥x(K)∥−1
2 , (3.25)

where ϕ0 is the phase of the first complex zero, i.e., the global phase, which was chosen to be 0 in this paper.

The iterative method to generate x(K) consists of K − 1 iterations. The sth iteration generates the following
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vector:

x(s) =



x
(s−1)
0 0

x
(s−1)
1 x

(s−1)
0

x
(s−1)
2 x

(s−1)
1

...
...

x
(s−1)
(s−1) x

(s−1)
(s−2)

0 x
(s−1)
(s−1)



 1

−αs

 , (3.26)

where s = 2, . . . ,K, αs is the sth complex zero and x
(s−1)
i , i = 0, . . . , s−1, is the ith element of vector x(s−1)

generated in the previous iteration. The vector x(1), which is required in the first iteration (corresponding

to s = 2), is given as [1 − α1]
T. The final iteration (corresponding to s = K) results in x(K), which is

required in (3.24).

3.5 Demodulation of SE-MOCZ

In this section, we first discuss the partial-complex-zeros-removal filter that partially removes the complex

zeros introduced by ISI due to FTN signaling. We then present the ML and RFMD detectors for the proposed

SE-MOCZ.

3.5.1 Partial-complex-zeros-removal filter

To facilitate the detection of the complex zeros representing the information message, the sampled received

signal y is passed through a filter in an attempt to partially remove the complex zeros introduced by the

ISI due to FTN signaling. In other words, such a filter tries to remove the complex zeros of G(z) that lie

inside the unit circle. The partial-complex-zeros-removal filter is designed such that its poles are placed at

the locations of the complex zeros introduced by the ISI inside the unit circle. This is achieved with the

help of spectral factorization. Specifically, the vector g responsible for the ISI is factorized as g = f ∗ f−,

where f and f− = f− are the coefficient vectors corresponding to the outer and inner complex zeros of ISI,

respectively. Note that the exact spectral factorization of the square-root raised cosine pulse p(t) considered

in this paper is only valid for τ ≥ 1/(1 + β), where β is the roll-off factor [23].

In the z-domain, the spectral factorization can be written as G(z) = F(z)F(1/z). By designing the

partial-complex-zeros-removal filter in such a way that the z-transform of its impulse response is exactly
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Figure 3.11: Complex zeros of the received signal without implementing the partial-complex-zeros-
removal filter at Eb/N0 = 19 dB. Black circles are the complex zeros of X(z), magenta circles are the
complex zeros of Y(z), and white circles are the complex zeros of G(z).

1/F(1/z), the signal at the output of such a filter is expressed in the z-domain as:

Q(z) = Y(z)/F(1/z),

= X(z)F(z)H(z) +
W(z)

F(1/z)
. (3.27)

As can be seen from (3.27), the inner complex zeros of G(z) are removed and we are left with only the outer

complex zeros of G(z), the channel complex zeros, and the transmitted complex zeros. All these remaining

zeros are disturbed by the filtered noise. Fig. 3.11 and Fig. 3.12 show the complex zeros of Y(z) and Q(z),

respectively, at Eb/N0 = 19 dB. It can be seen from Fig. 3.12 that the inner complex zeros of G(z) have

been removed.

The time-domain signal q at the output of the partial-complex-zeros-removal filter can be written as:

q = x ∗ f ∗ h+wwh, (3.28)

where length of q and wwh is Lfilt = Lg + Lch + K and wwh is the time-domain vector corresponding to

Wwh(z) = W(z)/F(1/z). The PSD of W(z) is N0G(z), where N0 is the one-sided PSD of n(t). Therefore,

the PSD of the noise after the partial-complex-zeros-removal filter is N0|F(1/z)|2/|F(1/z)|2 = N0, which

means that Wwh(z) is white noise. Hence, the partial-complex-zeros-removal filter is also the whitening

filter. However, we call it the partial-complex-zeros-removal filter to emphasize its main purpose. Note that

placing the poles of the filter to cancel the complex zeros outside the unit circle will make the filter unstable.

Therefore, we can only partially remove the inner complex zeros of G(z) introduced by ISI due to FTN

signaling.
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Figure 3.12: Complex zeros of the signal at the output of partial-complex-zeros-removal filter at
Eb/N0 = 19 dB. Black circles are the complex zeros of X(z), magenta circles are the complex zeros of
Q(z), and white circles are the complex zeros of F(z).

3.5.2 Maximum likelihood (ML) detector

Rewrite the signal at the output of the partial-complex-zeros-removal filter in (3.28) as:

q = XFh+wwh, (3.29)

where X is a Toeplitz matrix of size Lfilt × (Lg + Lch) whose first column is [x0, x1, . . . , xK , 0, . . . , 0]T.

Similarly, the Toeplitz matrix F of size (Lg +Lch) × Lch is defined based on the vector f . Based on (3.29),

the maximum likelihood detection of the transmitted coefficients is given as:

x̂ = argmax
x∈ρ

p(q|x), (3.30)

where p(q|x) ∼ CN (uq,Σq) and is expressed as

p(q|x) =
1

(2π)Lfilt/2|Σq|1/2
exp

(
−1

2
(q− uq)

H
Σ−1

q (q− uq)

)
. (3.31)

Under the assumption that the channel h and noise wwh are zero mean complex Gaussian random vectors,

it is clear that uq = 0. On the other hand, the covariance matrix Σq = E[qqH] is computed as:

Σq = E[(XFh+wwh)(XFh+wwh)
H],

= XFE[hhH]FHXH +XFE[hwH
wh] + E[wwhh

H]FHXH + E[wwhw
H
wh],

= XFDpF
HXH + σ2ILfilt

, (3.32)

whereDp = E[hhH] is a diagonal matrix of size Lch × Lch whose diagonal elements are the power delay profile

(PDP) vector p of the channel h. To be specific, we define the PDP of h as p = (p0, p1, . . . , pLch). Note that

50



the covariance of white noise wwh is E[wwhw
H
wh] = σ2ILfilt

, where σ2 = N0(1 + β)/2T . Furthermore, since

both wwh and h are zero-mean independent random vectors, we have E[hwH
wh] = E[wwhh

H] = 0. Hence, the

ML rule in (3.30) can be re-written as:

x̂ = argmin
x∈ρ

(
1

2
qH
(
XFDpF

HXH + σ2ILfilt

)−1
q + log

(
(2π)

Lfilt/2
∣∣XFDpF

HXH + σ2ILfilt

∣∣1/2)) .
(3.33)

Using the Sylvester’s determinant identity (also known as the Weinstein-Aronszajn identity) [24], namely

|IS +VC| = |IO +CV|, where V and C are matrices of dimensions S × O and O × S, respectively, one

can re-write the second term in (3.33) as

∣∣XFDpF
HXH + σ2ILfilt

∣∣1/2 =
∣∣∣(D1/2

p )HFHAFD1/2
p + σ2ILch

∣∣∣1/2, (3.34)

where A = XHX is the autocorrelation Toeplitz matrix constructed from the autocorrelation vector a.

For the proposed SE-BMOCZ, the autocorrelation vector a corresponding to the Huffman polynomial is

constant, i.e., for all possible combinations of the coefficient vector x, the autocorrelation vector a remains

the same, and is given as:

a = x ∗ x−,

a = [a0, 0, . . . , 0, aK , 0, . . . , 0, a2K ]T, (3.35)

where the magnitudes of a0 and a2K are much less than the magnitude of aK , making aK the peak of the auto-

correlation vector a. Since the matrix A is based on the autocorrelation vector a, it is constant as well, i.e., it

remains the same for every possible matrixX. It follows that the term log
(
(2π)

Lfilt/2
∣∣XFDpF

HXH + σ2ILfilt

∣∣1/2)
in (3.33) is a constant and hence can be dropped from the optimization problem. Thus, the ML rule in (3.33)

can be simplified as:

x̂ = argmin
x∈ρ

(
qH
(
XFDpF

HXH + σ2ILfilt

)−1
q
)
,

= argmin
x∈ρ

(
σ2qH

(
(XFD1/2

p )(σ−2ILch
)((D1/2

p )HFHXH) + ILfilt

)−1

q
)
,

(3.36)

where (D
1/2
p )H = D

1/2
p as Dp is real.

To further simplify the ML detection rule, we shall make use of the Woodbury matrix identity, which is

given as [25] (Z + ECV)−1 = Z−1 − Z−1E(C−1 +VZ−1E)−1VZ−1, where the sizes of the matrices Z, E,

C, and V are, respectively, O × O, O × S, S × S, and S × O. Applying this identity results in the

following:

x̂ = argmin
x∈ρ

(
σ2qH

(
I−1
Lfilt

− I−1
Lfilt

(XFD1/2
p )

(
(σ−2ILch

)−1 +(D1/2
p FHXH)I−1

Lfilt
(XFD1/2

p )
)−1

(D1/2
p FHXH)I−1

Lfilt

)
q

)
,

= argmin
x∈ρ

(
σ2∥q∥22 − σ2qH(XFD1/2

p )
(
σ2ILch

+ (D1/2
p FHXH)(XFD1/2

p )
)−1

(D1/2
p FHXH)q

)
. (3.37)

51



-3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

Figure 3.13: Assigning the received complex zeros to K sectors for K = 7, Lch = 2, and τ = 0.9.
Black circles are the complex zeros of X(z), cyan circles are the 2KM complex zeros of the codebook
ζ, magenta circles are the complex zeros of Q(z), green circle is the complex zeros of H(z), and white
circles are the complex zeros of F(z).

Ignoring the constant term σ2∥q∥22 simplifies (3.37) to:

x̂ = argmax
x∈ρ

(
qHXFD1/2

p

(
σ2ILch

+ D1/2
p FHXHXFD1/2

p )−1D1/2
p FHXHq

)
,

= argmax
x∈ρ

(
qHXF

(
D−1/2

p (σ2ILch
+D1/2

p FHXHXFD1/2
p )D−1/2

p

)−1

FHXHq
)
,

= argmax
x∈ρ

(
qHXFB−1FHXHq

)
, (3.38)

where B = σ2D−1
p + FHXHXF. Finally, the ML detection of the transmitted coefficients in the proposed

SE-MOCZ is expressed as:

x̂ = argmax
x∈ρ

∥B−1/2FHXHq∥. (3.39)

Since there are (2M)K possible candidates for x, the complexity of the ML detector increases exponentially

with K. Also, the complexity further increases by a factor M for SE-PMOCZ. Hence, low-complexity

detectors are needed for employing SE-BMOCZ with a large value of K, as well as for SE-PMOCZ.

3.5.3 Root-finding minimum distance (RFMD) detector

As originally described in [7], the basic idea of the RFMD detector is to identify the transmit complex zeros

based on the minimum distance between the received complex zeros and the complex zeros belonging to the

transmit codebook ζ. In the RFMD detector, the Lfilt−1 complex zeros of the received polynomial Q(z) are

determined by using the received coefficient vector q and a root-finding technique. To detect the K transmit

complex zeros, and hence, the K groups of bits m̂k, k = 1, . . . ,K, first all the Lfilt−1 received complex zeros
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are assigned to one of the K sectors based on the minimum distance between the received complex zeros and

all the possible complex zeros within the codebook ζ. For example, the received complex zero denoted by

α̂1 in Fig. 3.13 is assigned to the first sector, i.e., the sector having phase 0. This is because α̂1 is closest to

one of the complex zeros within the first sector of the codebook ζ as compared to the complex zeros in other

adjacent sectors of the codebook. This criteria of assigning the jth received complex zero to the kth sector,

when K > 1, is mathematically described as [7]:

Ξk =
{
j | ∀ k′ ̸= k : min

d∈{0,...,M−1}
r∈{1/R,R}

d(αj , α
(d)(r)
k ) ≤ min

d∈{0,...,M−1}
r∈{1/R,R}

d(αj , α
(d)(r)
k′ )

}
. (3.40)

In the above expression Ξk contains the indices of the received complex zeros which are classified in the kth

sector, j is the index of the received complex zero assigned to the kth sector, αj is the jth received complex

zero, d(a, b) is the Euclidean distance between a and b, i.e., d(a, b) = |a− b|, and α
(d)(r)
k is defined as:

α
(d)(r)
k = rej2π(((k−1)M)+d)/MK , (3.41)

where d ∈ {0, . . . ,M − 1} and r ∈ {1/R,R}. Note that for K = 1, Ξ1 = {1, . . . , Lch}.

Thus, in general more than one complex zero can be assigned to the kth sector. Amongst the received

complex zeros that are classified in the kth sector, the one that has the minimum distance from one of 2M

possible complex zeros in the kth sector is decided as the kth transmitted complex zero and estimated by the

closest complex zero of the codebook ζ. Fig. 3.13 shows that the last sector, i.e., the seventh sector, contains

two received complex zeros and both are close to the codebook zero having the phase (2π6)/7 and radius R

as opposed to radius 1/R. However, the received complex zero denoted by α̂7 is decided as the transmitted

complex zero. This is because the distance of α̂7 from the codebook zero, having the phase (2π6)/7 and

radius R, was smaller as compared to the distance of other received complex zeros from the same complex

zero of the codebook.

The above approach of finding the kth transmitted complex zero, i.e., the radius r̂k and phase d̂k within

the kth sector, can be mathematically described as [7]:

[r̂k, d̂k] = arg min
d∈{0,...,M−1}
r∈{1/R,R}

min
j∈Ξk

d(α
(d)(r)
k , αj). (3.42)

Let the MSB and the least significant bits of m̂k be denoted by ĉk and b̂k, respectively, i.e., m̂k = [ĉk, b̂k].

Then ĉk is given as:

ĉk =

0, r̂k = 1/R

1, r̂k = R

(3.43)

and b̂k = De2Bi(d̂k).

For the case that Ξk is empty for a particular kth sector, one can look for extra complex zeros in the

neighboring sectors and then classify the closest complex zero from a neighboring sector into this kth sector.
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Another option is to randomly assign the bits for that m̂k. The performance in both cases was observed to

be the same in our simulation results, but the transmission in these cases is unreliable anyway as the noise

severely disturbs the location of the kth complex zero. To have acceptable reliability in such a scenario,

re-transmission of the packet can be requested.

Before closing this section, recall that the locations of the complex zeros introduced by the ISI due to

FTN signaling are known. However, they are very sensitive to noise disturbance as discussed in Section 3.4.

It appears that eliminating the complex zeros of the ISI due to FTN signaling before detecting the complex

zeros of X(z) does not improve the detection performance of the RFMD detector.

3.6 Simulation Results

In this section, we evaluate the BER performance of the proposed SE-MOCZ and compare it with the BER

of MOCZ to quantify the spectral efficiency gain. In our simulations, we use a square-root raised cosine pulse

with a roll-off factor β = 0.3. The span of the pulse is set by truncating the coefficients whose magnitudes

are less than 0.1% of the peak magnitude. We consider sporadic transmission, hence consecutive packets

experience different channel realizations.

The channel is normalized to have an average energy of one with flat PDP. To have a fair comparison with

MOCZ, the energy of the transmit signal of SE-MOCZ is set to equal its counterpart of MOCZ as K + Lch

joules so that both techniques have the same Eb/N0. Therefore, the energy per bit Eb in the transmit signal

is Eb = (K + Lch)/B, where B = K log2 2M is the total number of transmitted bits per packet. It follows

that Eb/N0 = (K + Lch)/N0B.

The spectral efficiencies of MOCZ and SE-MOCZ are calculated as K log2 2M/ ((K + Lch) (1 + β)) and

K log2 2M/ (τ (K + Lch) (1 + β)), respectively.

The ML detector for MOCZ is implemented according to [7, Eqn. (45)] to have a fair comparison with

the ML detector for our proposed SE-MOCZ. Note that the ML detector in [7, Eqn. (19)] is an approximate

version and may result in a minor degradation as compared to the exact ML performance of MOCZ. Further,

the radius R of MOCZ for the binary case, i.e., BMOCZ is given as [7]:

RMOCZ =
√
1 + sin(π/K), (3.44)

whereas for higher-order modulation, i.e., PMOCZ, it is given as [7]:

RMOCZ =

√
1 +

(
(ln (2M)− 0.3) sin

( π

KM

))
. (3.45)

Fig. 3.14 plots the BER curves of BMOCZ and SE-BMOCZ versus Eb/N0 obtained with ML and RFMD

detectors for K = 7, Lch = 10 and τ = 0.9. For BMOCZ, RMOCZ = 1.1974. For SE-BMOCZ, the parameters

are Ropt2 = 1.1959 and λ = 2 when the ML detector is used, whereas Ropt2 = 1.1232 and λ = 3.2 for the

RFMD detector. Note that the values of Ropt2 are different for the ML and the RFMD detectors because

the optimal radius is found based on the BER performance of SE-MOCZ, which depends on the type of
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Figure 3.14: BER performance of BMOCZ and SE-BMOCZ when K = 7, Lch = 10, and τ = 0.9.

detector. It can be seen from Fig. 3.14 that, when the ML detector is used, the proposed SE-BMOCZ

achieves practically the same performance as BMOCZ. On the other hand, when the RFMD detector is

used, the performance gap between SE-BMOCZ and BMOCZ is about 3 dB at the BER of 10−3. This

comparison means that, using the ML detector the proposed SE-BMOCZ provides a spectral efficiency gain

of 0.3519−0.3167
0.3167 = 11.11% without any penalty in transmit power or BER performance. However, when the

low-complexity RFMD detector is used, in order to have the same spectral efficiency gain, SE-BMOCZ incurs

about 3 dB penalty in the transmit power as compared to BMOCZ.

In Fig. 3.15, we compare the ML performance of SE-BMOCZ and BMOCZ, with and without implement-

ing the partial-complex-zeros-removal filter when K = 7, Lch = 10, and τ = 0.8. It can be seen that when the

partial-complex-zeros-removal filter is not implemented and the radius R in SE-BMOCZ is set to be the same

as that in MOCZ, i.e., R = RMOCZ = 1.1974, the performance gap between SE-BMOCZ and BMOCZ at the

BER of 10−3 is about 2.8 dB. This gap reduces to about 1.8 dB when Ropt1 = 1.3524 and λ = 0.6 is used

for SE-BMOCZ. Finally, when the partial-complex-zeros-removal filter is implemented with Ropt2 = 1.3581

and λ = 0.95, the performance of SE-BMOCZ approaches that of BMOCZ, with only about 0.18 dB gap.

This leads to 0.3959−0.3167
0.3167 = 25% gain in the spectral efficiency of SE-MOCZ over MOCZ. Note that when

the partial-complex-zeros-removal filter is implemented, the optimal radius Ropt2 is used instead of Ropt1 as

discussed in Sub-section 3.4.2. One can conclude from Fig. 3.15 that, for small values of K such as K = 7,

optimizing the radius without implementing the partial-complex-zeros-removal filter (i.e., using Ropt1) result

in about 1 dB saving in transmit power, whereas implementing the partial-complex-zeros-removal filter along

with the optimal radius Ropt2 for the proposed SE-BMOCZ results in about 1.8 dB saving in the transmit

power.
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Figure 3.15: BER performance of BMOCZ and SE-BMOCZ using the ML detector when K = 7,
Lch = 10, τ = 0.8.

Because of the high computational complexity of the ML detector at high values of K, we use the RFMD

technique for the proposed SE-BMOCZ at higher values of K. Fig. 3.16 plots the BER performance of SE-

BMOCZ with the RFMD detector when K = 40, Lch = 10, and τ = 0.9. The SE-BMOCZ when implemented

without the partial-complex-zeros-removal filter and with R = RMOCZ = 1.0385 needs about 2 dB more in

transmit power as compared to BMOCZ in order to achieve the BER of 10−3. The error performance remains

the same when Ropt1 = 1.0373 (with λ = 4.5) is used in place of RMOCZ. This indicates that, for higher values

of K, the performance of SE-MOCZ is insensitive to optimizing the radius only. This is in contrast to the

observation of Fig. 3.15 that the BER performance is quite sensitive to radius optimization at small values of

K. Finally, when the partial-complex-zeros-removal filter is implemented along with Ropt2, the performance

gap between SE-BMOCZ and BMOCZ reduces to about 1 dB, where Ropt2 and the corresponding λ were

found to be 1.0419 and 6.5, respectively. Hence, 11.11% spectral efficiency gain can be achieved by the

proposed SE-BMOCZ at K = 40 using the RFMD detector, albeit at the expense of 1 dB penalty in the

transmit power. This finding suggests that the RFMD detector is more effective and attractive for the

proposed SE-MOCZ at high values of K.

In Fig. 3.17, we investigate the effect the channel length Lch on the BER performance of SE-MOCZ

using the RFMD detector when K = 40 and τ = 0.9. As expected, the BER performance degrades as Lch

increases. The values of Ropt2 for Lch = 10, 20, 30, and 40 are found to be 1.0419, 1.0381, 1.0325, and 1.0278

with the values of λ = 6.5, 7.2, 8.5, and 10, respectively. The value of Ropt2 changes with Lch because we

find Ropt2 based on the BER performance, which degrades with increasing Lch.

The BER performance for higher-order SE-MOCZ, namely SE-4-PMOCZ is shown in Fig. 3.18 when

K = 20, Lch = 7, and τ = 0.9. At the BER of 10−3, the performance gap between 4-PMOCZ and SE-
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Figure 3.16: BER performance of BMOCZ and SE-BMOCZ using the RFMD detector when K = 40,
Lch = 10, τ = 0.9.
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Figure 3.17: BER performance of SE-BMOCZ using the RFMD detector when K = 40 and τ = 0.9.
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Figure 3.18: BER performance of 4-PMOCZ and SE-4-PMOCZ using the RFMD detector when
K = 20, Lch = 7, and τ = 0.9.

4-PMOCZ is about 2 dB when no partial-complex-zeros-removal filter is included and the MOCZ radius

RMOCZ = 1.0417 is used. When the radius is optimized to be Ropt1 = 1.0538 and λ = 3, the performance

gap slightly reduces to about 1.7 dB. Hence, it can be concluded that for higher-order SE-MOCZ, i.e.,

SE-PMOCZ, the BER performance is not too sensitive to the optimization of the radius alone. When the

partial-complex-zeros-removal filter is implemented along with Ropt2 = 1.0630 and λ = 4.2, the performance

of 4-SE-PMOCZ approaches that of 4-PMOCZ, with a gap of about 0.7 dB. This means that there is about

1.2662−1.1396
1.1396 = 11.11% spectral efficiency gain at the expense of 0.7 dB increase in the transmit power.

3.7 Conclusions

We proposed and investigated a non-coherent communication scheme for short packet communications

(SPCs), called spectrally-efficient modulation on conjugate reciprocal zeros (SE-MOCZ). SE-MOCZ aims

to improve the spectral efficiency of the recently-proposed MOCZ by combining MOCZ with faster-than-

Nyquist (FTN) signaling. Accelerating the transmission of the pulses carrying the polynomial coefficients

of MOCZ beyond the Nyquist limit introduces ISI. The ISI due to FTN signaling increases the number

of received complex zeros in the z-domain. To partially remove these extra complex zeros, we designed a

partial-complex-zeros-removal filter at the receiver. We also optimized the radius of the transmit complex

zeros for SE-MOCZ to achieve better robustness against noise and ISI due FTN signaling. The maximum

likelihood (ML) detector as well as the low-complexity root-finding minimum distance (RFMD) detector were

presented for the proposed SE-MOCZ scheme. Compared to MOCZ, simulation results showed a spectral

efficiency gain of up to 25% by the proposed SE-MOCZ when the ML detector is used with small values of
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K. For high values of K, a spectral efficiency gain of up to 11% can be achieved with the low-complexity

RFMD detector, but at the expense of about 1.0 dB in the transmit power. Simulation results also showed

that optimizing the radius of the transmit complex zeros in SE-MOCZ is beneficial at low values of K. For

high values of K or higher-order SE-MOCZ, where the RFMD detector is used, there is little gain in radius

optimization. Lastly, implementing the partial-complex-zeros-removal filter along with the radius of transmit

complex zeros optimally designed by taking into account such a filter improves the BER performance for

both low and high values of K.
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4 Summary and Suggestions for Future Studies

4.1 Summary

Short packet communications (SPCs) is deemed to be necessary for future internet of things (IoT) applications

which need to meet the stringent ultra low-latency requirements. There are several challenges associated with

SPCs and one of the major challenges is the channel estimation. Conventionally, known pilot symbols are

sent along with the data, which will help in determining the channel state information (CSI) based on how

the known pilots get affected by the channel. As the blocklength in SPC is finite, so sending the known pilots

in case of SPCs will greatly decrease the spectral efficieny of the transmission. Therefore, SPCs require the

non-coherent modulation techniques, i.e., the modulation techniques which do not require CSI for reliable

detection of the transmitted data.

A novel non-coherent modulation technique named as modulation on conjugate reciprocal zeros (MOCZ),

which is suitable for SPC, has been discussed in this dissertation. In MOCZ, the information bits are

modulated onto the complex zeros in the z-domain, and the coefficients corresponding to these complex

zeros are transmitted through the channel. Due to the transmission via frequency-selective channel, the

random complex zeros of the channel are also added to the signal which increases the number of received

complex zeros. At the receiver, the transmitted complex zeros are detected without the knowledge of the

channel, using one of the following three detectors, namely, root finding minimum distance (RFMD) detector,

maximum likelihood (ML) detector, or direct zero-testing (DiZeT) detector.

The finite blocklength of the message in SPCs result in data rate loss as compared to the channel capacity.

To recover this loss of data rate without any increase in the bandwidth, faster-than-Nyquist (FTN) signaling is

demeed as the candidate solution. This recovery of data rate loss is achieved by accelerating the transmission

of Nyquist pulses, carrying the data, beyond the Nyquist limit. Hence, FTN signaling improves the spectral

efficiency of the transmission at the cost of introducing inter symbol interference (ISI) between the received

samples.

In our research, we improved the spectral efficiency of MOCZ by proposing a novel modulation tech-

nique named as Spectrally-Efficient Modulation on Conjugate-Reciprocal Zeros (SE-MOCZ). This technique

combines MOCZ with FTN signaling, i.e., in this technique the transmission of Nyquist pulses, carrying

the coefficients of MOCZ, is accelerated beyond the Nyquist limit. Accelerating the transmission of pulses

increases the number of complex zeros at the receiver due to the ISI introduced by the FTN signaling. The

extra complex zeros corresponding to the ISI, negatively impact the BER performance. Hence, to achieve
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better BER performance, we optimized the radius of the transmit complex zeros in the presence of extra

complex zeros. We further designed a partial-complex-zeros-removal filter at the receiver to partially remove

the complex zeros coming from the ISI. Lastly, we derived the maximal likelihood (ML) detector to optimally

perform the detection in the presence ISI. To achieve a balance in terms of the high performance and low

complexity, root finding minimum distance (RFMD) detector was employed at high values of K and higher

order SE-MOCZ. Simulation results showed that with ML detector, at small values of K, SE-MOCZ results

in 25% improvement in the spectral efficiency. At the high values of K, the spectral efficiency gain of 11%

can be achieved using the RFMD detector; however, at the expense of about 1 dB increase in the transmit

power. The results of optimizing the radius for SE-MOCZ were not prominent for high values of K and higher

order SE-MOCZ when RFMD detector was employed. Further, the simulation results showed that the BER

performance is improved at high and low values of K by implementing the partial-complex-zeros-removal

filter at the receiver.

4.2 Suggestions for Future Studies

• Due to the complexity of the ML detector, one cannot employ the ML detector for high values of

K, as well as, for higher order SE-MOCZ, whereas using the RFMD detector results in non-optimal

performance. A possible solution is to utilize a neural network consisting of several layers which takes

the complex received zeros as input and decide on the transmitted complex zeros. This may result in

improved BER performance, i.e., performance close to the ML detector, while maintaining the low-

complexity in comparison to the ML detector.

• Other potential research problem is to employ precoding technique at the transmitter to remove the

extra complex zeros due to the FTN signaling.

• Lastly, as the transmit complex zeros in SE-MOCZ are modulated onto two radii, 1/R and R, instead

one can use four radii, i.e., 1/R1, R1, 1/R2, and R2, for the modulation such that the distance of

transmit complex zeros can be further maximized from the ISI complex zeros according to the location

of ISI complex zeros.
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