251 research outputs found

    High Performance Digital Circuit Techniques

    Get PDF
    Achieving high performance is one of the most difficult challenges in designing digital circuits. Flip-flops and adders are key blocks in most digital systems and must therefore be designed to yield highest performance. In this thesis, a new high performance serial adder is developed while power consumption is attained. Also, a statistical framework for the design of flip-flops is introduced that ensures that such sequential circuits meet timing yield under performance criteria. Firstly, a high performance serial adder is developed. The new adder is based on the idea of having a constant delay for the addition of two operands. While conventional adders exhibit logarithmic delay, the proposed adder works at a constant delay order. In addition, the new adder's hardware complexity is in a linear order with the word length, which consequently exhibits less area and power consumption as compared to conventional high performance adders. The thesis demonstrates the underlying algorithm used for the new adder and followed by simulation results. Secondly, this thesis presents a statistical framework for the design of flip-flops under process variations in order to maximize their timing yield. In nanometer CMOS technologies, process variations significantly impact the timing performance of sequential circuits which may eventually cause their malfunction. Therefore, developing a framework for designing such circuits is inevitable. Our framework generates the values of the nominal design parameters; i.e., the size of gates and transmission gates of flip-flop such that maximum timing yield is achieved for flip-flops. While previous works focused on improving the yield of flip-flops, less research was done to improve the timing yield in the presence of process variations

    VLSI hardware neural accelerator using reduced precision arithmetic

    Get PDF

    Approximation and Optimization of an Auditory Model for Realization in VLSI Hardware

    Get PDF
    The Auditory Image Model (AIM) is a software tool set developed to functionally model the role of the ear in the human hearing process. AIM includes detailed filter equations for the major functional portions of the ear. Currently, AIM is run on a workstation and requires 10 to 100 times real-time to process audio information and produce an auditory image. An all-digital approximation of the AIM which is suitable for implementation in very large scale integrated circuits is presented. This document details the mathematical models of AIM and the approximations and optimizations used to simplify the filtering and signal processing accomplished by AIM. Included are the details of an efficient multi-rate architecture designed for sub-micron VLSI technology to carry out the approximated equations. Finally, simulation results which indicate that the architecture, when implemented in 0.8µm CMOS VLSI, will sustain real- time operation on a 32 channel system are included. The same tests also indicate that the chip will be approximately 3.3 mm2, and consume approximately 18 mW. The details of a new and efficient method for computing an approximate logarithm (base two) on binary integers is also presented. The approximate logarithm algorithm is used to convert sound energy into millibels quickly and with low power. Additionally, the algorithm, is easily extended to compute an approximate logarithm in base ten which broadens the class of problems to which it may be applied

    Study of spaceborne multiprocessing, phase 1

    Get PDF
    Multiprocessing computer organizations and their application to future space mission

    Low power digital signal processing

    Get PDF
    corecore