
A VLSI Hardware Neural Accelerator using

Reduced Precision Arithmetic

Zoe F. Butler

Thesis submitted for the degree of

Doctor of Philosophy

University of Edinburgh

October 1990

Acknowledgements

Acknowledgements

I would like to acknowledge the help and support I have received from many people

during the time taken to complete the research for this thesis.

Firstly, in the department, I would like to thank my supervisor Alan Murray for his

help, patience and guidance in the last four years.

Thanks are due to Alan Gundlach, Bill Gammie and the Edinburgh Microfabrication

Facility for fabricating the wafers required for the research and to Ron Mackie for pro-

viding help with the wafer testing and advice on hardware design.

The help of Keith Manning, John Hannah and particularly Henry Bruce was much

appreciated. I would like to thank them for their advice on the VMEbus and hardware

designs.

Stuart Anderson is to be thanked for giving me a crash course on the ES2 Solo chip

design and Sandy Alexander for all his tips in "C" programming. I would also like to

thank the Department of Electrical Engineering for providing all the facilities to com-

plete the research.

Secondly, thanks go to the Science and Engineering Research Council for their finan-

cial support and to British Aerospace in Filton for CASE sponsorship.

Thirdly, I would like to thank my father for proof reading this thesis and to my parents

for their continual support and help throughout 	my time at university.

Declaration

Declaration

The work presented in this thesis was carried out entirely by the author, unless

indicated otherwise.

Abstract
	

111

Abstract

A synthetic neural network is a massively parallel array of computational units (neu-

rons) that captures some of the functionality and computational strengths of the brain.

The functions that it may have are the ability to consider many solutions simultane-

ously, the ability to work with corrupted or incomplete data without any form of error

correction and a natural fault tolerance, which is acquired from the parallelism and the

representation of knowledge in a distributed fashion giving rise to graceful degradation

as faults appear.

A neuron can be thought of, in engineering terms, as a state machine that signals its

"on" state by the presence of a voltage on its output and signals its "off' state by the

absence of a voltage. The level of excitation of the neuron is represented by its quan-

tity of activity. The activity is related to the neural state by an activation function,

which is usually the "sigmoid" or "S-shape" function. This function represents a smooth

switching of neural state from off to on as the activity increases through a threshold.

Direct stimulation of the neuron from outside the network and contributions from

other neurons in the network will change the level of activity. The levels of firing

from other neurons to a receiving neuron are weighted by interneural synaptic weights.

The weights represent the long term memory storage elements of network. By altering

the value of the weights, information is encoded or 'learnt" by the network, which

adds to its store of knowledge.

There are three broad categories into which neural network research can be divided.

These are mathematical description and analysis of the dynamical learning properties

of the network, computer simulation of the mathematical models and the VLSI

hardware implementation of neural functions or classes of neural networks. It is the

final category into which the main thrust of this thesis falls.

The research presented here implements a VLSI digital neural network as a neural

accelerator to speed up simulation times. The VLSI design incorporates a parallel array

of synapses. The synapses provide the connections between neurons. Each synapse

effectively "multiplies" the neural state of the receiving neuron by the synaptic weight

between the sending neuron and the receiving neuron. The "multiplication" is achieved

Abstract 	 iv

by using reduced precision arithmetic that has a 'staircase" activation function modelled

on the sigmoid activation function and allows the neuron to be in any one of five

states. Therefore, with little loss in precision, the reduced precision arithmetic avoids

using full multiplication, which is expensive in silicon area. The reduced arithmetic

synapse increases the number of synapses that can be implemented on a single die.

The VLSI neural network chips can be easily cascaded together to give a larger array

of synapses. Four cascaded chips resulted in 108 synapses in an array. However, this

size of array was too small to perform neural network learning simulations. Therefore

the synapse array has been configured in a paging architecture, that has traded off

some of the high speed of the chips (upto 20MHz) against increased network size.

The synapse array has been wired with support circuitry on to a board to give a neural

accelerator that is interfaced to a host Sun computer. The paging architecture of the

board allows a network of several hundred neurons to be simulated. The neural

accelerator is used with the delta learning rule algorithm and results show its increased

acceleration to be up to two orders of magnitude over equivalent software simulations.

Contents 	 V

Table of Contents

Introduction... 1

Chapter 1. 	Introduction to Neurons 	... 5

1.1. 	The Neuron 	...

1.1.1. 	The 	Axon 	... 6

1.1.2. Dendrites and Synapses 	.. 6

1.1.3. Cell Membrane and Action Potential 	.. 7

1.2. The History of Neural Research 	... 10

1.2.1. Early Biological 	Research 	... 10

1.3. Neural Network Modelling and Learning Procedures 13

1.3.1. The Perceptron Learning Theorem 	... 13

1.3.2. The Delta (Widrow-Hoff) Learning Algorithm 16

1.3.3. The Generalised Delta Rule 	.. 17

1.3.4. 	Hopfield Model 	.. 19

1.3.5. Wallace-Hopfield Training Algorithm 20

1.3.6. Competitive Learning 	.. 21

1.3.7. 	Grossberg's Network 	... 21

1.3.8. 	Other Neural Models 	... 23

Chapter 2. 	Neural Network Implementation in VLSI25

2.1. The Motivation for VLSI Networks ...25

2.2. Hardware Implementation ...2 7

2.2.1. Digital Neural Networks ...28

2.2.2. Analogue Neural Networks ...32

Dynamic Weight Storage ...33

Contents 	 vi

Technology Dependent Analogue Weights36

Imprecise, Low-area Arithmetic ...38

Subthreshold Circuits ...39

2.2.3. Pulse stream Networks ...39

2.2.4. Optical Neural Networks ..43

Chapter 3. 	A Digital, Reduced Arithmetic Neural Network 47

3.1. Digital verses Analogue Network 	.. 47

3.2. Bit-serial verses Bit-Parallel Network 	... 48

3.3. 	Reduced Arithmetic 	.. 48

3.4. Verification of the Reduced Arithmetic 	... 50

3.4.1. Simulated Performance of the Reduced Arithmetic 51

3.4.2. Simulation Procedure 	.. 52

PatternLearning 	.. 52

PatternRecall 	.. 53

Learning with Fixed Weights 	.. 53

3.4.3. 	Simulation 	Results 	.. 54

Learning with Different Activation Functions 54

Effects of Weight Limits and Temperature on Learning 57

Recall with Different Activation Functions 57

3.5 	Conclusions 	.. 59

Chapter 4. 	VLSI Design of Synapse Array ..62

4.1. Synapse Requirements ..62

4.1.1. Weight Storage ...62

4.1.2. Synapse Logic ..64

4.1.3. Synapse Array Design ..66

4.2. Fully Custom Integrated Circuit Design ..67

4.2.1. Weight Storage Shift Register ..68

Contents 	 I 	 vii

4.2.2. Synapse Logic Tree Design ...68

4.2.3. Synapse Array Layout and Simulation69

4.2.4. Test Procedure for the Integrated Circuit76

4.3. ES2 Solo 1400 Design .. 78

4.3.1. Synapse Gate Level Design ...79

4.3.2. Synapse Array Layout and Simulation82

4.3.3. Test Procedure for the Integrated Circuit82

4.4. Conclusions ... 85

Chapter 5. 	Neural Network Accelerator Board ...87

5.1. "Moving Patch" Paging Architecture ..87

5.1.2. Hardware Support for the "Paging" Architecture88

5.2. VMEbus Interface ... 90

5.2.1. Slave Interface to VMEbus ...91

5.3. Neural Accelerator Board Architecture ..92

5.3.1. "Patch" Computation ...94

5.3.2. Array Computation ...96

5.4. Software to Control the VMEbus ..100

Chapter 6. 	Simulations using the Neural Board ..104

6.1. Software Support for the Accelerator Board104

6.2. Neural Accelerator Board Used as a Pattern Associator105

Pattern Associator Model ..105

DeltaRule .. 106

6.2.1. Performance of the Accelerator Board107

Simulation Procedure ..109

6.2.2. Results ... 109

6.3. Conclusions 	...113

Contents
	 vii'

Chapter 7. Conclusions and Discussion 	 115

7.1. Conclusions about Accelerator Board ..115

Successes...116

Shortcomings...116

7.2. Improvements to Accelerator Chip Design ..116

7.3. Improvements to Neural Board Design ...119

7.4. Concluding Remarks ..120

References... 122

AppendixA... 13 1

AppendixB... 132

AppendixC 	.. 134

AppendixD... 135

AppendixE... 137

AppendixF.. 143

AppendixG: 	.. 145

Figures 	 1X

Table of Figures

Chapter 1. 	Introduction to Neurons ...5

1.1 Major parts of the neuron ..8

1.2 Pre-synaptic and post-synaptic membranes ...9

1.3 Development and firing of the action potential9

1.4 Rashevsky's exclusive-OR network ...12

1.5 Rosenblatt's three-layered perceptron ..14

1.6 Perceptron analysed by Minsky and Papert ..15

1.7 Multilayer network with input, output and hidden units18

1.8 Major components of the Grossberg classifier net23

Chapter 2. Neural Network Implementation in VLSI25

2.1 	Activation functions 	.. 26

2.2 WISARD Discriminator 	.. 29

2.3 WISARD Multi-Discriminator System 	.. 29

2.4 NETSIM card within the physical organisation of the GRIFFIN 30

2.5 Interconnected network of synchronously operating multipliers 32

2.6 Bell Lab chip showing the array of amplifier units and resistors 34

2.7 Schematic diagram of the programmable 'resistive connection 34

2.8 Analogue synaptic connection 	... 35

2.9 Cross section of an MNOS device 	.. 37

2.10 Aker's analogue synthetic neural cell 	.. 40

2.11 Verleysen's synapse and neuron circuits 	... 40

2.12 	Pulse 	stream neuron 	.. 42

2.13 	Pulse stream synapse 	.. 42

Figures
	 x

2.14 An excitatory and inhibitory analogue pulse stream synapse43

2.15 Optoelectronic neural network analogue circuit 45

2.16 Partitioned optoelectronic network to implement learning 45

Chapter 3 A Digital, Reduced Arithmetic Neural Network47

3.1 Reduced arithmetic with 4,5 and 7-state activation functions49

3.2 5-state activation function ..5 1

3.3 Example of the weight value distribution in a network 55

3.4 Random pattern learning with the 3 activation functions56

3.5 Pattern recall with the 5-state and 2-state activation functions 58

3.6 Pattern recall with the 5-state and sigmoid activation functions60

Chapter 4 	VLSI Design of the Synapse Array ..62

4.1 Connection between synaptic weights for loading purposes 63

4.2 Synapse array structure 	.. 65

4.3 	Single phase shift register 	... 69

4.4 Transistor logic trees for the synapse ... 70

4.5 Penplot of a synapse in 3pm technology .. 72

4.6 Flow diagram showing the stages in the chip design 73

4.7 Silicon layout of the synaptic array 	... 74

4.8 Silicon layout of a synapse in the array 	... 75

4.9 DAS timing diagram for the shift registers in the array 77

4.10 Gate level design of the sign-extend logic 	... 80

4.11 Gate level design of the sum/carry logic 	... 81

4.12 Solo interpretation of the synapse array 	... 83

4.13 DAS timing diagram for the Solo synapse array 84

Chapter 5 	Neural Network Accelerator Board ..87

5.1 Paging architecture of the array ...88

Figures
	 xi

5.2 Main Structure of the neural accelerator board90

5.3 SLAVE interface to the VMEbus ..93

5.4 Flow diagram explaining the "patch" operation 95

5.5 Detailed schematic of the neural board ...97

5.6 Waveform diagram of the board control signals98

5.7 Array Computation ..99

5.8 Photo of the neural board ..101

5.9 Neural board interfaced to the host SUN workstation102

Chapter 7 Conclusions and Discussion ...115

7.1 Alterations to the synaptic weight shift register118

Tables
	 xli

Table of Tables

Chapter 4 	VLSI Design of the Synapse Array ..62

4.1 Sum and carry output values ...67

4.2 Comparisons between the MCE and Solo designs 85

Chapter 5 Neural Network Accelerator Board ..87

5.1 VMEbus address space allocation to the SLAVE RAMs92

5.2 Function of the SLAVE 18-bit counter ...94

Chapter 6 Simulations using the Neural Accelerator Board104

6.1 Results comparing the performance of the 5-state hardware, 5-state

software and sigmoid software activation functions110

6.2 Activity computation for 288 neurons at varying frequencies111

6.3 Degradation of the output patterns with degradation in the input pat-

terns...113

Introduction

A neural network can be viewed as large numbers of computational units (neurons)

operating in parallel arrays, the functionality of which is based loosely on what is

understood to be used in the nervous system. The brain's neurons, which form the

basic computing elements, are several orders of magnitude slower than silicon logic

gates, but are organised so they are able to perform some computations many times

faster than the fastest digital computers now in existence. The brain appears to do this

via its massive parallelism. As there are huge numbers of neurons, the weak com-

puting powers of these many slow elements combine to form a powerful resultant com-

putational machine. The scientific desire to understand human behaviour and the

brain construction has motivated much of the past and present research into neural net-

works. Some of the properties a synthetic neural network may aspire to mimic are the

ability to consider many solutions simultaneously and the ability to work with cor-

rupted or incomplete data without explicit error correction. Neural networks also have

a natural fault tolerance, which arises from the parallelism and distributed knowledge

representation giving rise to graceful degradation as faults appear.

In engineering terms, a biological neuron is a unit that signals its state by the presence

("on") or absence ("off') of a voltage on its output, or axon. It decides its state by

computing its activity, which represents the level of excitation of the neuron. The state

is related to the activity by an activation function. The activation function is generally

the "sigmoid" or "S-shape" function which represents a smooth switch of neural state

from off to on (not firing to firing) as the activity increases through a threshold. The

level of activity can be altered by direct stimulation of the neuron from outside the net-

work and by contributions from other neurons in the network.. The contributions from

other neurons are weighted by interneural synaptic weights, which are in effect, the

long term memory storage elements of the network. Information is encoded or "learnt"

by the network by altering the value of the weights to add to its store of knowledge.

The present research into neural networks falls into three broad categories. The first is

that of mathematical description and analysis of the dynamical and learning properties

of the networks. The second category, which is probably the largest, covers research

Introduction 	 2

using computer simulation based on, for example, array processor or other supercom-

puter architectures to model and extend the mathematical descriptions. The third group

of research, into which the thrust of this thesis falls, aims to implement either particu-

lar neural functions or classes of neural network in LSJJVLSI hardware.

The LSIIVLSI neural network circuits at present use planar silicon technology,

although this technology is almost certainly not the ultimate medium in which neural

networks will fully realize their power. Three dimensional materials are more suited to

the three dimensional form of a neural network, but there is no solution yet that would

enable these materials to be a suitable medium for hardware circuits. However,

hardware neural networks can be easily designed and manufactured in silicon VLSI

and are able to make use of developments in network design and learning procedures

to solve real problems.

The approach in this thesis is to implement a VLSI neural network as a digital neural

accelerator to speed up network simulation times. This involves the design in VLSI of

a network consisting of a parallel array of synapses. The synapses provide connections

between neurons. Each synapse holds locally the synaptic weight between the sending

neuron and the receiving neuron and has a means of "multiplying" the weight by the

neural state of the receiving neuron. This generally involves the full multiplication of

the synaptic weight by the neural state, which can be expensive in silicon area, allow-

ing only a small number of synapses on a die. The reduced precision arithmetic

approach in this thesis uses a "staircase" activation function modelled on the sigmoid

activation function, that allows a neuron to be any one of 5 states. It avoids the use of

full multiplication, thus reducing the size of a synapse and greatly increasing the

number of synapses that can be integrated on a single die.

Simulation in software of the 5-state activation function obtained from using the

reduced precision arithmetic showed that its performance was only degraded a little

compared to that of the sigmoid activation function and there was little loss in preci-

sion in neural network pattern learning simulations. The simulation results justified the

design of a neural network using the reduced precision arithmetic. The nature of this

approach lends itself to a VLSI, bit-serial, digital design. A single phase clocking

scheme capable of speeds up to 20MHz was, at the time, being developed in the

department and was used in the integrated circuit design.

Introduction 	 3

The main attraction of the reduced precision arithmetic is that it provides a means of

building a fast, digital hardware neural network, that can be used as a hardware

accelerator to reduce the lengthy simulation times of equivalent simulations run totally

in software. The problem with software models is that neural networks with only tens

of neurons can take many hours to simulate. The main body of this thesis describes

how a significant speed-up is achieved by using a VLSI neural network operating in a

"neural accelerator board".

The thesis, first of all, provides a brief overview of the function of biological neurons

in Chapter 1. The history and background of neural networks is given, from the origi-

nal ideas about perception and memory up to the present day knowledge, along with

the most well known learning algorithms and neural network models that are used

today. Chapter 2 explains the motivation behind VLSI implementations and gives an

account of the research into hardware neural networks. The research covers digital,

analogue, pulse-stream and optical aspects of implementation.

Chapter 3 describes the details of the reduced precision arithmetic and how the 5-state

activation function relates to the sigmoid activation function. The simulation procedure

that was used to compare the performance of the two activation functions is described.

An analysis of the results shows the suitability of the reduced precision arithmetic to be

implemented in VLSI.

The VLSI design of the synapse array in Chapter 4 7 reports two different design pro-

cedures. The first design use a fully custom computer aided design layout tool with

3p.m CMOS technology and the second uses the the European Silicon Structures silicon

compiler, Solo, for the complete design and layout procedure in 2pm technology.

Simulation results of the fabricated devices for each manufacture are presented.

Chapter 5 specifies how the neural network chips can be cascaded together on a neural

board to achieve a larger array of synapses. It explains how the synapse array is config-

ured in a paging architecture, that trades off some of the fast operating speed of the

chips against network size to create an array of several hundred neurons.

The results reported in Chapter 6 compare the performance of the the hardware neural

accelerator in a program with a learning procedure, to an equivalent software 5-state

activation function network and a software sigmoid activation network. Finally,

Introduction
	 4

Chapter 7 draws conclusions about the design and performance of the hardware

accelerator board and suggests improvements than could be made to increase its speed

and efficiency.

Chapter 1
	 5

Chapter 1

Introduction to Neurons and Neural Networks

The human brain is one of most complex structures known. There has been much

research over the centuries by anatomists, physiologists and psychologists into its

development, structure, the electrical and chemical phenomena that take place in its

nerve cells, and into its unique behaviour. Until the beginning of the twentieth

century, the brain was believed to be an exception to the basic biological principle, that

all tissues are made up of individual cells. Now it is thought to consist of 100 billion (

1011) individual neurons arranged in several hundred distinct groups, with 95% in the

cerebral cortex [1, 2]. It is this massively parallel computational ability of the brain to

perform a wide range of tasks that has urged researchers to build intelligent machines.

This chapter gives a brief introduction to biological neurons and their function. Much

of the biological terminology is used in the description of synthetic neural network

models and although it is not essential to have a good understanding of the nervous

system, some familiarity with the jargon is useful.

An outline of the history of synthetic neural networks in the second part of the

chapter, shows how the understanding of the nervous system and brain function

developed and inspired early researchers to develop mathematical neural models and

later in the 1950's, to build physical models that could perform some sort of learning.

The last section gives an overview of synthetic neural network models and learning

procedures used today that are implemented either mathematically, in software or in

hardware.

1.1. The Neuron

A typical neuron [2,3] consists of a cell body containing the nucleus and a number of

fibres extending from it as shown in figure 1.1. The neuron transmits information to

other cells by sending its activity out through only one fibre, the axon. All the other

fibrous extensions from the cell body, the dendrites, receive information from other

neurons. An axon generally divides into a number of small fibres that end in terminals.

Chapter 1 	 6

Each terminal forms a synapse with a dendrite or the cell body of another neuron and

is the point where information is transmitted from one neuron to another. A small

space, the synaptic cleft, separates the axon terminal from the dendrite or cell body of

the other neuron with which it synapses.

1.1.1. The Axon

An axon has two essential functions in the neuron. One is to conduct information in

the form of the action potential, which is the process axons use to carry information

from the neuron's cell body to the synaptic terminals, in order to trigger synaptic

transmission. The other function is to transport chemical substances from the cell body

to the synaptic terminals and backwards from the synaptic terminals to the cell body.

The resistance of the neuron's cytoplasm is sufficiently high that signals cannot be

transmitted along the axon greater than 1 mm before their information is lost. For this

reason, the larger axons in the human brain are surrounded by a thin insulating sheath

called myelin. The myelin increases the speed of conduction of the action potential

along the axon by reducing the capacitance between the cytoplasm and the extra-

cellular fluid [4]. The sheaths are made up from non-neural cells called Schwann cells

which are approximately 1mm in length and in general, the larger the the diameter of

the axon, the thicker the myelin, up to a possible 100 layers. Gaps of lp.m which

occur in the Schwann cells, are nodes of Ranvier These nodes act as repeater sites

where the signal is periodically restored. A single myelinated fibre can carry signals the

length of the longest axons, which may be a metre or greater. Although myelination is

the most important distinguishing feature of larger axons, axons of less than lfJ.m in

diameter are unmyelinated.

1.1.2. Dendrites and Synapses

Dendrites constitute all the fibres extending out from the neuron, excluding the axon

and serve to extend the neuron's receptive surface. In the cerebral cortex, many of the

dendrites have dendritic spines which form synapses with axon terminals of other

neurons as in figure 1.2. The dendritic spine forms the postsynaptic part and the axon

terminal forms the presynaptic part of the synapse. They are separated by the synaptic

cleft which is about 20nm wide. The dendritic spine synapses are thought to be

Chapter 1 	 7

excitatory and synapses that cluster on the cell body are thought to be inhibitory.

When a synapse is active and transmits information, vesicles in the axon terminal fuse

with the presynaptic membrane and release neurotransmitter into the cleft. The

transmitter molecules diffuse across the narrow gap and attach to specific chemical

receptor molecules on the postsynaptic membrane, which activates the postsynaptic

target cell.

1.1.3. Cell Membrane and Action Potential

The neuron cell membrane has properties that allow it to conduct and transmit

information to other neurons. One of these properties is ion channels through the

membrane that allow sodium (Na), potassium (K) and chloride (C1) ions to pass in

and out of the cell. The axon has a resting potential of about -70 mV. This is due

mainly to a large concentration of K + ions inside the cell and a smaller concentration

of K ' ions outside the cell and involves a passive process of ions moving through

permanently open ion channels. The distribution of K ions is due in turn to

negatively charged proteins in the cell. The distribution of Na + and C1 ions also

contributes to the resting potential, but is less important than that of K ' ions.

The action potential in a typical neuron begins at the point where the axon leaves the

cell body and travels to the axon's terminal. The Na + gates open for about 0.5ms and

Na + ions enter the cell increasing its potential to + 50 mV relative to the outside as in

figure 1.3. The Na + gates then close and the potential goes back towards the resting

level. This growth and decay of the action potential is termed the absolute refactory

period. During this period, the axon cannot be electrically stimulated to generate

another action potential. Meanwhile, the K gates have opened, some of the K

moves out and the membrane potential becomes even more negative (—75 mV) for a

few milliseconds. This is the after potential or relative refactory period. The axon

can be electrically activated in the period of the after potential, but it requires a

stronger than normal stimulus. This is the relative refactory period.

The activation of a single synapse on a neuron will not cause it to develop an action

potential. Enough synapses have to be activated together and exert their influence on

the receiving neuron. The activations of all the synapses are summed together. If they

are activated repeatedly at a fast enough rate, they will sum over time and generate a

Dendrites with spines

Schwann Cells

Myelin Sheath

des of Ranvier

Axon

ill body

us

Chapter 1

Figure 1.1 Major parts of the neuron

Chapter 1

Vescicles

Prenaptic Membrane

Synaptic Cleft

-00-Post Synaptic Membrane

Figure 1.2 Pre-synaptic and post-synaptic membranes

0

-

.0
E.
00'

Na+Ch , 	- 	 -

Outside
Na+

Membrane

Inside 	 I 	 I 	I closed 	open

Outside 	
K+

Membrane ETTM I L 	k 	! I
Inside 	closed 	open

K+ Channels

Figure 1.3 Development and firing of the action potential

Chapter 1 	 10

post synaptic potential large enough to make the cell fire. A normally functioning

neuron is continuously summing information over time and space and "deciding"

whether or not to fire.

1.2. The History of Neural Research

Research into neural and brain function has a long history starting from the

observations of Hippocrates at 500 BC and Plato and Aristotle at around 400 BC, who

associated memory with the sensory processes. The attempt to understand the neural

structure has captured the interest of philosophers, psychologists, mathematicians,

physicians and anatomists, but first major contributions providing an early conceptual

framework for the study of nerve net action were undertaken by Pavlov [5, 6], the

famous Russian psychologist, with his research on conditioned reflexes and Rashevsky

[7], with a mathematical description of biological processes. From then, neural

research and understanding has been expanding right up to the present day.

1.2.1. Early Biological Research

The end of the Classic period during the 2nd century was marked by Galen, a Greek

physician, who proved that the brain was the seat of intelligence and memory [8]. The

increase in knowledge from Hippocrates to Galen was considerable in detail, but there

were little changes in attitude. Galen coordinated all that was known in medicine and

science, which influenced thinking for the next fourteen centuries. Physiological

knowledge of the brain showed few significant advances until Descartes in 1596 first

recognised a conditioned reaction, "when one sees an object that has previously been at

the time an emotion has been experienced, it will induce that emotion there is a

connection between the stimulus and the response being made through a definite path;

this connection is the fundamental process of the nervous structures in the body". This

was the basis on which study of the nervous system was established. Over 300 years

later, Pavlov started his work on the conditioned reflex, the linking up of the action of

a new stimulus with an unconditioned (or inborn) reflex, using Descartes' idea of the

nervous reflex. To show this Pavlov experimented with dogs. He used an

unconditioned signal of a brief electric shock in a dog's paw to tell it that food was

about to appear. This signal was alien to food, but the animal soon learned to salivate

on receiving the shock and wanted to eat. Thus he had transformed apparent pain to

Chapter 1
	

11

overt pleasure.

Research into memory and brain function continued steadily through the 19th century.

Some of the main contributions were from James Mill (1773 - 1836) who wrote

'memory is nothing more than the fact of recall through association. Jr is the appearance

of a sensation that can be associated with the time and place it has been presented

previously". Gall, a well known anatomist at the time, asserted that human "faculties"

were located in strictly localised areas of the brain [9] and in 1861, Paul Broca, a

French anatomist, localised for the first time a complex mental function to a particular

part of the brain.

The work of J. H. Jackson [10] in the 1870's put forward the hypothesis that

connections in the brain were physical entities that could be changed and that it was

likely that a part of the brain's network was prewired to deal with a certain processing

task. If that task became irrelevant, then that part of the network could be used for

something else. Jackson pointed out this view as a difficulty for strict localisationist

views that had become that popular at the time. Some of the earliest roots of the PDP

(Parallel Distributed Processing) approach came from Jackson [10] and Luria [11], the

Russian psychologist and neurologist. Luria put forward the idea of the dynamic

functional system. On this view every behavioural or cognitive process resulted from

the coordination of a large number of different components, each roughly localised in

different regions of the brain, but all working together in dynamic interaction.

In 1913 Henri Poincare [12], a French mathematician, attempted to explain neural

action from an atomical point of view and in 1938, Rashevsky [7] gave the first

mathematical description of the biological processes. Rashevsky showed how certain

logical operations might be carried out by simple nerve arrangements as in figure 1.4.

This shows how an exclusive-or function is mechanised by inhibitory and excitatory

connections. He also gave an explanation for short term memory by means of

recirculating neuron loops, in which an impulse, once initiated, would continue to

cycle indefinitely or until terminated by an inhibitory pulse. Another psychologist,

Thorndike [13] in his neural research found that "connections that words have in a

person's experience produce modifications in his brain the modifications consist of

changes at the points where one neuron transmits to another".

Chapter 1
	 12

B >
Figure 1.4 Rashevesky's exclusive-OR network using excitatory and inhibitory connec-
tions

The work of Lashley [14,15] may be seen as the beginnings of modern experimental

physiological psychology. He moved away from the Pavlovian reflex and worked on

the search for the engram [16] and the localisation of function in the rat's brain. He

traced the representation of remembered events to the cerebral cortex and proved that

the degree of degradation of memory was roughly proportional to the area of cortex,

thus showing the distributed representation of memory. He concluded that there was

relatively little localization of function in the cerebral cortex. Lashley's paper In search

of the Engram emphasised the diffuseness of neural mnenomic processes and insisted

that no special cells were reserved for special memories. He conceived brain operation

as large scale patterns of activation involving a great many active neurons leading to

other large patterns of activity.

Two hypotheses, which have become the basis of many nerve net models are the work

of Donald Hebb [17-19], who was a student of Lashley in the 1930s. Hebb postulated

that the synaptic junction was the site of permanent memory, that consisted of the

value of the attenuation (strength) of the junction and that memory of any event was

distributed within a network residing in the small changes in strength which occur as

the result of the event impinging upon a large number of synapses. He suggested the

following rule for the change in strength of a junction as the result of activity: "When

an axon of cell A is near enough to excite a cell B and repeatedly B takes part in firing

Chapter 1 	 13

it, some growth process or metabolic change takes place in one or both such that A's

efficiency, as one of the cells firing B is increased". Hebb also postulated the formation

of what he called "cell assemblies", where there were interconnected, self-reinforcing

subsets of neurons that formed the representation of information in the nervous system.

Single cells might belong to more than one assembly, depending on the context.

Multiple cells could be active at once, corresponding to complex perceptions or

thoughts. He said there was a distributed representation at the functional level as well

as the anatomical level. Before Hebb's work, it was believed that some physical change

must occur in a network to support learning, but it was not clear what this change

could be. Hebb's ideas about the nervous system remained untested until it became

possible to build some form of simulated network to test learning theories.

1.3. Neural Network Modelling and Learning Procedures

One of the first neural models was introduced by McCulloch and Pitts [20] who, by

using Boolean Algebra showed how neural-like networks could compute. They used

the "all or none" character of nervous activity, with the activity of any inhibitory

synapse preventing the excitation at a given time and allowing only a fixed number of

synapses in any given period to excite the receiving neuron.

The neural model of A. E. Roy stored information in binary pulses and on being

presented with a section of a message stored previously, it would recall the rest of the

message. A discussion of the model can be found in [21-23].

1.3.1. The Perceptron Learning Theorem

The first attempt to build a simulated network was the learning machine of Edmonds

and Minsky in 1951, which consisted of hundreds of tubes, motors and automatic

electric clutches, with its memory stored on 40 controls knobs. Details of the function

can be found in detail in [24]. Rosenblatt, an acquaintance of Minsky, achieved the

first neuron-like learning model with the perceptron [25]. He analysed his models

mathematically and ran digital simulations of the three-layered perceptron, its

environment and memory modification rules in a digital computer program.

Rosenblatt's three-layered perceptron is a single transmission network containing 3

types of signal generating unit as in figure 1.5. This shows the basic organisation of

Chapter 1
	

14

Reinforcement

Control System

Control

Stimuli
Environment

(W)

Perceptron

Figure 15 Rosenblatt's three-layered perceptron

the experimental system where the output of the perceptron is capable of modifying its

stimulus environment. It starts with an S - (sensory) unit (eg. a "retina') which

projects to higher levels. The S - unit is a transducer responding to physical energy

and forms the first layer. This is connected to a second layer, an association area or A

- units, by random, localised connections with fixed synaptic weights. A number of

cells in the region of the S - units project onto a single A - unit in the higher layer.

The A - unit is a logical decision element, which generates an output signal if the

algebraic sum of its inputs is greater than a threshold quantity, 0 > 0. The association

layer is reciprocally connected to a third layer of R - (response) units. The R -

(response) unit emits the output:-

• - f +
1 if I input signals> 0, and

r 	—1 if 7, input signals < 0.

If the sum of the inputs is zero, the output is zero or indeterminate. The activation of

the appropriate R - unit for a given input pattern or class of input patterns is the

operation goal of the perceptron. During learning, the values (weights) stored in the

r.c.s. (reinforcement control system) are changed when they do not correspond to some

Chapter 1 	 15

arbitrary desired response Ti ,
for the given input pattern. The perceptron uses an error

correcting system in that a correction is made in accordance with the rules of a

specified reinforcement system on the network only if an erroneous response is

obtained. When it is necessary to correct a response, the strength of the weights

connected to that output change simultaneously. This will yield a solution to the input

stimulus within a finite time. Rosenblatt commented that the simple three-layered

perceptron is capable of learning any type of classification or associating any responses

to stimuli. Therefore for a multi-layered perceptron, ie. a perceptron with two or more

layers of association units, to offer any functional advantage over the three-layered

perceptron there would have to be an increase in efficiency of such responses.

Minsky and Papert undertook a careful mathematical analysis of the one layered

perceptron [26]. The machine they examined is in figure 1.6, which shows a set of

binary threshold units with fixed connections to a subset of units in the retina.

Binary

Figure 1.6 Perceptron analysed by Minsky and Papert

From this analysis, Minsky and Papert showed which functions it could and could not

compute and demonstrated the importance of a mathematical approach to analysing

computational systems. They also argued that there was no indication how a learning

procedure could be applied to multi-layered networks. The analysis suggested that

perceptron like devices would have no future in artificial intelligence.

Chapter 1 	 16

Perceptrons and early related work had been in decline for several years before the

work of Minsky and Papert, as perceptrons had failed to achieve much beyond their

initial success. Practical results had failed to materialize and the Minsky and Papert

book "Perceptrons" [26] seemed to prove to the scientific community that there was

little future in neural networks. However, perceptron-like models can be successful at

modelling a number of aspects of perception and cognition. Multilayered networks

[19], which have input, output and hidden units can provide solutions to problems by

the internal representation in the hidden units and learning can be achieved by the

Generalised Delta Rule using back propagation. This is described in section 1.3.3.

1.3.2. The Delta (Widrow-Hoff) Learning Algorithm.

Neural network models generally are networks of processing units that are connected

together in some way. An activation rule combines the inputs applied to a unit with

its current state to produce a new level of activation for that unit. A learning rule

modifies the existing patterns of connectivity between units through experience. These

rules are the bases for parallel distributed processing in that some of the models' units

carry out their computations at the same time. Usually the units will be one of three

types: input, output and hidden units. Input units receive inputs from external sources,

which may be sensory or otherwise. Output units send signals directly out of the system

and hidden units have inputs and outputs from within the system with no external

connections. They are connected between the input and output units (sometimes in

layers), and are not "visible" to the outside world.

Many of the learning rules for these types of models are variants of Hebb's Learning

rule given in section 1.2.1. This can be generalised to: A connection or synaptic weight,

w, increases or decreases in proportion to a reinforcement signal, r, such that:-

w.3 (t+1) = w,1 (i) + ir1 (z) 	 (1.2)

where q = reinforcement signal to synapse i, at time t and determines the change in

connection weight.

The Widrow-Hoff or Standard Delta Rule [27,28] was based on this theory. The

Widrow-Hoff system used linear threshold units with random variable connection

strengths. Each linear threshold computed a weighted sum of activities of the inputs

Chapter 1 	 17

times the synaptic weight, plus a bias element. If the sum was greater than zero, the

output became +1. If it was equal to or less than zero, the output was —1. It then

compares this to a desired output or target vector. If there is no difference, no learning

takes place. Otherwise the weights are changed to reduce the difference. The rule for

changing the weights, w11 , between any two units i and j following the presentation of

an input/output pair s is given by:-

, wii = i (t, - 00 ii 	r b, ii

where t,, is the target input for the jth component of the output pattern for the pattern

S, o, is the jth element of the actual output pattern produced by the presentation of

input pattern s, i,, is the value of the ith element of the input pattern, and i, w 1 is the

change to be made to the weight from the ith to the jth unit following presentation of

input pattern s. This learning procedure applies only to models with no hidden units.

1.3.3. The Generalised Delta Rule

The Standard Delta Rule uses two layer associative systems, that have only input and

output units and no hidden units, and is useful in applications where similar input

patterns can be mapped to similar output patterns. Where the mappings are very

different, a network without the internal representation would be unable to perform

the necessary computation.

Minsky and Papert [26] in their analysis of conditions under which such systems are

capable of carrying out required mappings, showed that in a large number of cases,

networks of this kind were unable to solve problems. They also showed that if there is

a layer of simple perceptron-like hidden units as in figure 1.7, the input information to

the input units is recoded to an internal representation, which generates the

appropriate output pattern. The Generalised Delta Rule [19] allows learning to take

place in systems with hidden units. It uses a semi-linear activation function in which

the output of a unit is a non-decreasing and differentiable function of the net total

output, as in equation 1.4 below:-

1
Os) =

1 + exp [—(w 1 o,1 + ø) I
(1.4)

The Generalised Delta Rule has the same form as the Standard Delta Rule in equation

Chapter 1

Output Patterns

Internal

Representation

Units

Input Patterns

Figure 1.7 A Multilayer network with input, output and hidden units

1.3. The weight on each line should be changed by an amount proportional to the

product of an error signal, 8, available to the unit receiving an input along that line

and the output of the unit sending activation along that line. The error signal, B j , for

an output unit is:-

= (r - o,,)o (1 - 0'j) 	 (1.5)

and the error for an arbitrary hidden unit, u, is given by:-

= o3 (1 - 03J)8 5k w kJ 	 (1.6)

Two stages of computation are involved in the Generalised Delta Rule. The first stage

is as follows:

1. 	Present the input to the network and allow it to propagate through the network to

compute the output, o,, for each unit.

Chapter 1
	 19

Compare the computed output, ok,, to the target output, t,, and calculate from

equation 1.5, the error signal, 8, , for each output.

The second stage involves:

A backward pass through the network where the error signals are passed to the

units and the appropriate weight changes are made. The weight changes are first

calculated for all connections that feed into the final layer.

When this is done, the B's for all the units in the penultimate layer are computed.

This propagates the error back one layer.

The same process is repeated for every layer.

The backward pass allows a recursive computation of 8. The learning rule used for

change in weights is calculated from:-

bw 1 (n+l) = 'q (b,o51) + a 8w 1 (n) 	 (1.7)

where 	is the learning rate and a is a constant which determines the effect of past

weight changes on the current direction of movement in weight space. n is the

presentation number. This equation is a modified version of the Standard Delta Rule.

1.3.4. Hoptield Model

The Hopfield model can be regarded as a content addressable memory type [29] in

that the exact contents of the memory can be retrieved on the basis of sufficient partial

or partly erroneous information being presented to it. For example, the system has

locally stable points X, Xb, (ie. contents in memory). If the system then is presented

with (X = X. +) it will proceed in time until X = Xa , ie. (X a +) represents a

partial knowledge of X. and the system then generates the total information X a .

The processing units in Hopfield's original model are 2-state neurons, the state V 1 = 1

("firing at maximum rate") and V. = 0 ("not firing"). The instantaneous state of the

system is specified by listing the N values of V 1 (i = 1.....N). Each neuron has a fixed

threshold U1 such that:-

: : 	
{if 	 : 	 (1.8)

Each neuron evaluates randomly and asynchronously, whether it is above or below a

Chapter 1 	 20

certain threshold, and readjusts it accordingly. The states V 1 ... V. ... VN are the

stable states of system.

The model uses an information storage algorithm which allows the synaptic weights

between neurons to be set for the storage of any particular set of states V', s = 1.....n.

This is:-

w. = 	(2V;-1)(2V7-1)
	

(1.9)
S

The neurons are totally interconnected with w 1 = 0 and there are no hidden units.

From equation 1.9 it can be seen that if two adjacent states are excitatory, the synaptic

weight between them is increased. Using equation 1.9, a weights matrix can be formed

for states V.

There are two limitations to this type of model. The first is that the number of states,

s, that a given set of neurons, N, can learn is limited to s = 0.15N, otherwise the

storage prescription fails. The second limitation is that if a start vector is chosen at

random or if it shares many bits in common with another start vector and is allowed to

iterate using the weights matrix, sometimes it may fail to "find" one of the stored states.

The state that it does finally iterate to is known as a local minima.

1.3.5. Wallace-Hopfield Training Algorithm

The problem of the Hopfield storage prescription becoming inexact at small values of

s/N has been analysed by Wallace [30]. He has developed a simple iterative algorithm

for the Hopfield model which is guaranteed to store exactly any s vectors in a finite

number of steps, provided it is known that a solution is possible. Starting with the

storage prescription in equation 1.9, the approximate weights for the vectors, V', to be

stored are calculated. All the vectors are tested to see if they have been stored correctly

by iterating equation 1.9 once. This enables an error mask to be calculated for each

V1 such that:-

(

I 1 	if Vi' changes
r - I 	 (1.10)

- 1 0 if Vf is stable

I'

The storage perscription is then reinforced for those weights wrongly stored, given by:-

Chapter 1 	 - 	 21

N

Awii = I VfVJ (€f + €7)
3=1

All the vectors, V 3 , are tested again with the new w and the w.1 are modified until

convergence has been achieved.

1.3.6. Competitive Learning

Competitive Learning [19] is another learning procedure. Individual units learn to

specialise on sets of patterns and thus become feature detectors or pattern classifiers.

The architecture of a competitive learning system uses a set of hierarchical layered

units in which each layer connects via excitatory connections with the layer

immediately above it. Within a layer, the units are broken into sets of inhibitory

clusters, in which all elements inhibit all other elements within the cluster. These

elements at one level, compete. with one another, to respond to the pattern appearing

on the layer below. The more strongly any particular unit responds to an incoming

stimulus, the more it shuts down the other members of the cluster.

A number of researchers have developed competitive learning models or variations on

models. Examples of these can be found in [31-35]. A general competitive learning

model has sets of clusters in a layer, which are of a winner takes all form, such that the

unit receiving the largest input achieves its maximum value while all the other units in

the cluster are pushed to their minimum value. In general, each unit in a cluster

receives inputs from all the units in the layer below and projects outputs to all units in

the next higher layer. A unit learns only if it wins the competition with other units in

the cluster. Each unit has a fixed amount of weight and learns by shifting weight from

the inactive to the active input lines. In von der Malsberg learning rule [31], if a unit

wins a competition, each of the input lines gives up some of its weight and the weight

is then evenly distributed among the active input lines.

1.3.7. Grossberg's Network

Grossberg [36] has proposed a pair of equations that describe the dynamical behaviour

of a set of neurons and their synaptic weights. These equations have a level of

generality unmatched by other descriptions of synthetic neural networks and are based

on what is known to occur in the brain. The dynamic behaviour of the neurons is

Chapter 1 	 22

shown by:-

xi 	 j=n 	1="

-s-- = —A,x, + 	- 	+ 11 (1) 	 (1.12) Dilij Vi
j=1

where A i is the passive decay of the activity in the absence of both synaptic and direct

external input, w 1
 ()

is the excitatory (inhibitory) weight and I. is a stimuli that can

force a state on the network.

The change of synaptic weight over time is given by:

bwij =
—B 1 w j + D VU q (x 1) 	 (1.13)

B, is the passive decay of the synaptic weight. D. is the learning strength that allows

learning to be modulated for each synaptic link, V is a neural "learning signal' and Uq

(x1) is a linear-threshold activation function. The speed of learning is controlled by

D., but the rate of change of synaptic weights must be much slower than that of the

neural states.

Grossberg uses a sigmoid activation function that represents the smooth switching of

the neural state V from 0 to 1 as the neural activity x 1 increases through the threshold

value 1, where T controls the sharpness of the transition, as in equation 1.14:-

vi = 1

+ exp[
(i _X1)]

1
T

(1.14)

Grossberg has developed a network using his Adaptive Resonance Theory, that forms

clusters and is trained without supervision [34,35]. A simplified diagram of the

network is in figure 1.8. A binary input is presented to the lower nodes as an

exemplar for the first cluster. A second input is then presented and compared to the

first cluster exemplar. The dot product of the two exemplars is computed and divided

by the number of "is" in the input. if the ratio is greater than a vigilance threshold, the

input will be clustered or "classified" with the first exemplar. If the ratio is less than the

threshold, the input is considered to be "different" from the first exemplar and is added

as a new exemplar. The vigilance threshold can be set between the range 0.0 and 1.0.

Inputs are presented sequentially to the network and compared to all stored exemplars

and classified in the same way. Each additional new exemplar requires one node and

Chapter 1
	

23

Output

input 	 IflUt

Figure 1.8 Major components of the Grossberg classifier net

2N connections to compute matching scores.

1.3.8. Other Neural Models

The above sections have given a general overview of the most well known neural

models and learning procedures. There are however, many other relevant types of

modelling that are discussed here briefly. Among these is the work of Anderson

[37, 38] who has worked on distributed representation and neurally inspired models for

theories of concept learning and amnesia. Wilishaw pursued distributed memory

models and analysis of the properties of distributed representative schemes [39].

Kohonen introduced self-organising feature map algorithms [40], which are modelled

on the organised mappings of the body surface on to the cortex such that the

organisation of neurons at higher levels is created during learning by algorithms which

promote self-organisation. Here, the essential mechanism of the scheme is to cause the

system to modify itself so that nearby units respond similarly. This is achieved by the

units responding randomly to a parameter of interest. When an input signal with some

value of the parameter is provided, one unit responds 'best" to that input. This unit is

located, in order that its neighbours, ie. units in some region around it and the unit

itself have their synaptic weights changed, so the units now respond like the best unit

did.

Chapter 1 	 24

Hopfield's contribution [29] of the idea that networks can be seen as seeking minima

in energy landscapes played a prominent role in the development of the Boltzmann

Machine [41]. The machine is composed of visible and hidden non-linear

computational units. Which are connected to each other by bi-directional weights. A

unit is either on or off and will adopt either state as a probabilistic function of the two

states of its neighbouring units and the states between them. With the right

assumptions, units can be made to act so as to minimise global energy. If some of the

units are externally forced or "clamped" into particular states to represent a particular

input, the system will find the minimum energy configuration that is compatible with

that input. A Boltzmann distribution is used to find the global minimum.

The Hamming Net [42] is a maximum likelihood classifier using neural type units. The

model calculates the Hamming distance between binary inputs corrupted by noise and

the learned state and uses this to classify the input with the correct output.

This chapter has given a brief summary of biological neurons and their function. The

history of the development of the understanding of the nervous system has been a

major influence in synthetic neural network modelling and learning algorithms. Much

of the current research evolves around software modelling of the networks and learning

algorithms given in this chapter, but an increasing minority of research work is now in

developing hardware implementations. The next chapter discusses how the various

types of models have been implemented in hardware.

Chapter 2
	

25

Chapter 2

Neural Network Implementation in VLSI

This chapter gives an account of the implementation of neural networks in hardware.

The majority of the hardware is in the form of VLSI ASICs (Application Specific

Integrated Circuits) in either analogue or digital forms or a combination of both, often

supported by memory and a host computer. Some VLSI circuits employ learning and

recall techniques, but generally they act as hardware accelerators in a "neural system'.

The vast majority of the work has been carried out in the last 3 - 4 years.

2.1. The Motivation For VLSI Networks

The most general neural model is based on computational units (neurons) that are

connected together in a totally interconnected array or in a layered network. The

connections are made via synaptic weights. The synapses have the effect of weighting

the response of any neuron to its inputs from all other neurons in the network so they

may be more or less excitatory to the receiving neuron and the total weighted sum

changes the level of activity of that neuron t. Each neuron receives activity from

other neurons in the network. The total activity, x, of any neuron j [36] is given by:-

j =N

x = 	 (2.1)
j=1

where T is the weight between neuron i and neuron j and V1 is the present state of

the neuron. Equation (2.1) is a simplified form of Grossberg's equation (1.12) in

section 1.3.7. The activity is thresholded according to an activation function, F,:-

Vj = F(x,) 	 (2.2)

The neural activity may be thought of as the level of excitation of the neuron and the

activation function as the way it reacts (by altering its state V) in response to a change

in activation. The activation is not bounded in the same way as V1 . The magnitude of

V can be changed by interactions from other neurons in the network, by a passive

decay of the weight over time and by an external stimulus.

t An excitatory input will tend to turn a neuron on and an inhibitory one will tend to turn it off.

Chapter 2 	 26

Figure 2.1 shows a selection of activation functions. These are the threshold function

(sometimes referred to as the "Hopfield" function), where the state is either 0 or 1, the

linear threshold function and the non-linear sigmoidal function, which represents a

smooth switch of state from 0 to 1 as the activity, x, increases through a threshold

value x. A parameter, T, (often termed "temperature") controls the sharpness of the

transition.

1(x)

Threshold Function 	I
-U

f(x)=llfx>xt

f(x)=Olfx<xt 	 c

1(x)
Linear
Threshold Function

1(x) =Off x<xt

f(x)=x-xtlfx>xt 	C

1(x)
Non-Linear

Sigmoidal Function

1(x) Eux. 	 C
xt Is threshold

Figure 2.1 Activation functions

The arithmetic operations in equations 2.1 and 2.2 both appear straightforward, but

synthetic neural networks consist of a parallel array of units calculating F Tij Vj

synchronously. Therefore, if the number of units is large, the amount of computational

power required overwhelms even a supercomputer. Small networks consisting of tens

of units take many hours to simulate on computer, thus there is much incentive to

Chapter 2
	 27

build LSIJVLSI networks which will complete the same computation in milliseconds.

A VLSI network also offers the advantage of being cheaper to run after the initial

manufacture outlay, than hours of CPU time and it allows several tens or hundeds of

neurons to be fabricated on a die.

Although VLSI networks offer many attractions for neural implementation, the

majority of current research is aimed at algorithmic development using computer

simulation, often based on array processor or other supercomputer architectures to

simulate mathematical models and demonstrate their correctness and processing ability.

An example of this can be found in the work of Wallace [30,43]. Here an ICL

Distributed Array Processor (DAP) is used with 4096 bit-serial processing elements

hard wired in a 64 x 64 square array to develop algorithms to improve the storage

performance and content addressability of the Hopfield net for random patterns [29].

Numerical simulations were run to show how the number of perfectly stored vectors, p,

depends on the number of nodes N in the network. The storage prescription adopted

by Hopfield (equation 1.9) was used with different values of p and N to produce a

"signal plus interference" approximation to obtain an approximation for the perfect

storage fraction in terms of p and N. The loss of memory capacity as the number of

nominal vectors was increased was analysed in terms of phase transitions in statistical

mechanics (ie. changes in minimum energy). The results of the simulations led to an

extension of the Wallace-Hopfield algorithm based on the Delta Rule in Chapter 1,

section 1.3.5.

Another such example is a ten processor, programmable systolic array computer which

has been used for back propagation simulations in work done by Pomerleau et at [44].

Here, 60 fully interconnected hidden units perform one learning trial in 0.8ms, which

is approximately 17 million connections per second. This has proved to be the fastest

implementation of back propagation and most cost effective for neural network

simulation.

2.2. Hardware Implementation

Hardware synthetic neural networks fall into two broad categories, digital and

analogue, with some of a hybrid digital/analogue form. The majority consists of

systems with a VLSI circuit specially designed to compute neural functions in some

Chapter 2 	 28

way and many are based on the Hopfield model. There has also been some

implementation using microprocessors and digital signal processing (DSP) integrated

circuits [30,43-45].

An early neural computing machine, the WISARD (Wilkie, Stonham and

Aleksander's Recognition Device) [46,47], is an adaptive pattern recognition machine

based on neural principles. The observation that a binary neuron may be viewed as an

n-input - single output logic element is related to one column of RAM registers, where

each value is set independently and represents the truthtable of a logic device with one

output. The WISARD architecture is shown in figure 2.2. The RAM network or

"Discriminator" consists of K x N-input RAMs with one output feeding to a summation

operator. A binary pattern or training set of K N bits is input to a Discriminator and

a "1" is stored in each RAM. Unknown patterns representing a class are later presented

and the Discriminator measures the similarity of an unknown pattern to each of the

patterns in the training set. If two patterns are similar, the RAM outputs, a "1". The

"is" are then summed to give the response, r, of the Discriminator. In a multi-class

problem, M Discriminators can be used to represent M classes as in figure 2.3. An

unknown pattern can then be "classified" to a particular Discriminator by the indication

of how close it is to one of the learned patterns. If an unknown pattern that is

completely different from any of the initial "learned" patterns were presented to a

Discriminator, no RAM would output a "1" and hence r=0 and the patterns would not

be classified to the Discriminator. The correct input on a RAM's address line will

produce a "1" output. Adjusting the value stored at that location during training will

cause the Discriminator's class to emerge, when unknown inputs are presented.

2.2.1. Digital Neural Networks

The neural equations 2.1 and 2.2 can be implemented using digital hardware, resulting

in fast and accurate neural network computation. DSP chips used as neural accelerators

fall in between the extremely fast computation time of a VLSI circuit and the relative

slowness of a computer simulation as has been shown by Penz et a! [45]. In this work,

the TMS 32020 DSP chip is used to accelerate the matrix multiplication in the

network. A 256 square component matrix multiplying a 256 component vector

performing a single multiply/accumulate instruction showed to be 2.5 times faster than

Chapter 2
	

29

xl
X2

X(N+1)

X(N+2)

X2N

XKN

r

Figure 2.2 WISARD Discriminator

Input plane

DiscdminatO(1 111101-

Discriminator 2

VT!
Discriminator n low-

Output classification

S 	
I

U 	
S

S 	
I

U 	
S

S 	
S

S 	
I

I 	
S

:

'F 	 I

R(max)

VT'!

Calculator

Figure 2.3 WISARD Multi-Discriminator system

256

the 	DEC VAX 8600 The time taken to perform one 2 T, V 1 is 39ms, but
1= 1

this is still many times slower than the same computation in VLSI which would be

about 0.02msin a device operating at 20MHz. Further acceleration can be achieved

using a parallel computer architecture as, for example, the Odyssey Board developed

by Texas Instruments, which consists of many DSP modules sharing a common bus to

provide the necessary computational power for advanced signal processing. Each

module contains a TMS 32020, 16 kbytes of program memory and 128 kbytes of data

memory that will store a 256 x 256 array of 16 bit numbers, ie.,,. T. for a 256 x 256

Chapter 2 	 30

problem. A board consists of 4 modules and is capable of 20 million arithmetic

operations per second. Again in comparison to the DEC VAX, the Odessey board will

compute a 1000 x 1000 matrix 40 times faster.

A DSP neural system is well suited to solving small groups of networks, but as the

numbers increase the time required for the solution increases accordingly. An

alternative solution to this has been developed by Garth [48-50] with the GRIFFIN

neural machine. It consists of a distributed array of autonomous neural network

simulators called NETSIM as in figure 2.4.

COMMUNICATIONS 	
SOLUTION
ENGINE

 INTEL
80188

8k eprom j J MICROPROCESSOR 	

U

I 	SYNAPSE
MEMORY

PROGRAM MEMORY 	 lMxl6 DRAM

32K SRAM 	I 	I

NETM I 	 I NETSM

NETSIM I 	- I 	I NETSIM

!'r 	 ~M ra - m 7 "' colm
Figure 2.4 NETSIM card within the physical organisation of the GRIFFEN

Each NETSIM card comprises a local microprocessor, a solution integrated circuit (a

specialist co-processor to implement the neural network function at high speed, with

the weights and states stored in local DRAM) and a communications integrated circuit

to allow large numbers of NETSIMs to be connected to form the GRIFFIN. The

solution integrated circuit performs the multiply and sum operation required for

forward or backward propagation and multiply and update operations required for

Chapter 2 	 31

synaptic weight update according to the error propagation algorithm in chapter 1,

section 1.3.3. The microprocessor computes other elements of the simulation,

including the non-linear function and the simulated interconnection. The resultant

information is then loaded into the communications integrated circuit for transmitting

to the relevant node in the system. For a 256 neuron network a full synaptic update

including forward and back propagation is calculated to be 350ms. A fully pipelined 5

x 5 x 5 NETSIM array computes in forward propagation 450 million synapses per

second and 90 million in backward propagation. A similar concept using a CMOS

special purpose primitive processing element array to build a parallel MIMD

neurocomputer [51] is being persued at U. C. L..

An alternative solution for a digital neural network is the implementation of a VLSI

array with interconnected, synchronously operating multipliers as in figure 2.5 to

compute the neural function in equation 2.1. Each multiplier has a register for weight

storage and the activities for neurons are computed in parallel. Here, the

multiplication of a synaptic weight by a neural state is achieved by right-shifting the

weight. An add/subtract circuit at each multiplier stage allows excitatory and

inhibitory inputs to the neuron and computes the accumulating activity of the neuron.

The resulting staircase activation function, allows neurons to take intermediate states

between off and on. A simple Hopfield net is used and delta rule learning [27] is

computed off-chip. This approach forms the main thrust of this thesis and is described

in detail in chapters 3 and 4. An idea similar to this using a Hopfield model with

multi-state neurons, where the states are {-3, -2, -1, 0, +1, +2, +31 can be found in

work by Potu et at [52].

A VLSI Hopfield digital network that includes a learning algorithm on-chip is given in

[53]. The network has N identical neuron cells, each one with full arithmetic

capability for learning and updating and a local memory containing the relevant

column of the synaptic matrix. Neural states are stored in a N x 1 bit shift register

clocking at 20 MHz and a partial potential update in each neuron is performed at each

shift of the register. After 1 cycle, each neuron takes its decision. Other digital VLSI

hardware neural accelerator systems are given in [54-56].

Digital techniques offer several useful properties for neural implementations in that

weights can be easily stored and programmed, they have greater flexibility, high

Chapter 2 -
	 32

Synapse T23 adds
TV3 to x2

Neuron 3
V3

Figure 2.5 Interconnected network of synchronously operating multipliers

precision and clock rates in excess of 20 MHz. However, there is a major drawback in

that a large silicon area is required for the multiplication function allowing a maximum

of tens of neurons to be fabricated on an integrated circuit giving a small network.

Therefore, to obtain a large enough network that will perform useful simulations might

require several integrated circuits to be hardwired together to provide a larger system.

2.2.2. Analogue Neural Networks

The implementation of neural networks in analogue VLSI circuitry has taken several

forms. These include op-amp resistor networks [57-59], dynamic weight storage [59-

62], sub-threshold circuits [4], low-area arithmetic arrays [63-67] and pulse stream

networks [68-72]. The major problem within an analogue approach is the storage of

Chapter 2 	 33

the synaptic weights. Various methods have been developed including resistor arrays

[57-59], storing charge on 'on-chip' capacitors [59-62,72], and by using MNOS [73]

and a-silicon technologies [74,75].

The most straightforward form of an analogue neural network can be derived from the

digital architecture in figure 2.5, by using operational amplifiers instead of neurons and

a resistive input R ij at each synapse location. This approach has been used by Sivilotti

et at at Caltech [57] and Graf et at at Bell Labs [58,59]. Sivilotti uses resistive

elements and achieves negative values for inhibitory connections by using 4 pass

transistors operating in their resistive regime. This gives a tn-flop cell allowing the 3

connection strengths of 1-1, 0, + 11. The connections are also programmable, but have

a large hardware overhead in that a programmable synapse requires 41 transistors

instead of 16 required for an unprogrammable one.

The network developed at Bell Labs is given in figure 2.6. It consists of an array of 54

amplifiers with their inputs and outputs fully interconnected through a matrix of

resistive coupling elements. The input voltage to each amplifier is determined by

summing the contributions from the amplifiers to which it is connected. The outputs

are programmed to source or sink current into the input line of every other amplifier.

This is controlled by 2 memory cells. Figure 2.7 shows how the resistive elements can

be programmed to be excitatory or inhibitory.

The function of associative memory is achieved by simultaneous collective operation of

all the amplifiers. Each circuit state is described by a 54 component vector. A desired

set of states is made stable by proper choice of the connections in the coupling

network. After the circuit is initiated with an input vector, it evolves to the stable state

that most closely resembles the input. Data input and output are through a buffer in

which one memory cell is connected to each amplifier unit. From this buffer data can

be loaded into memory cells or used to initialise the circuit.

Dynamic Weight Storage

The storage of an analogue weight as charge on MOS capacitors or transistor gates

allows synapses to have a smaller number of transistors and hence a higher level of

integration on a chip. This can be subject to problems of leakage and data corruption

and needs refresh circuitry if long hold times are required. Capacitor circuits are used

Chapter 2
	

34 -

Address

(7) 1. fines

-4II'

EI2I1IiII
Interconnection 	 I 	i

I 	0
Matrix

'a 54 x 54 cells

Ict

54 Amplifier Units

Data Out
(4) lines

-

Buffer
Ines (4) 	

Data In

Control Logic/Column Dec. 	Control
Signals

(4) lines

Address

Figure 2.6 Bell Lab chip showing the array of amplifier units and resistors

Vdd

A

RAM 	Excitatory
outtK

RAM 	Inhibitory

I vi
Vss

Figure 2.7 Schematic diagram of the programmable resistive connection

Chapter 2
	

35

by Bell Labs [59-61] and a switched capacitor circuit is described in [621.

The Bell Lab circuit shown in figure 2.8 is of a synaptic connection.

Weight update and decay

by shifting charge

I 	I 	I

Output = w * input

Figure 2.8 Analogue synaptic connection represented by the difference in voltage
stored on two capacitors

The connection strength is represented by the difference in voltages stored on 2 MOS

capacitors. The capacitors lose about 1% of their charge in 5 minutes at room

temperature, but the leakage rate can be reduced by lowering the temperature of the

device, e.g. by up to 5 orders of magnitude at —100 degrees C. The output is a

current proportional to the product of the input voltage and the connection strength.

The output currents are summed on a wire and sent "off-chip" to external amplifiers.

Connection strengths can be adjusted for learning by transferring charge between the

capacitors through a chain of transistors.

The switched capacitor implementation [61] uses MOS transistors as switches, which

are controlled by switch "phase" periodic waveforms. A totally interconnected neuron

network is used and charge is transferred from each neuron output to the neurons'

inputs by the switches. The total charge input to a neuron is collected and thresholded

according to the sigmoid activation function.

Chapter 2 	 36

A network implementing Kohonen's self-organising feature map algorithm [40] that

uses charge stored on the gate of an MOS transistor as a synaptic weight is given in

[76]. An analogue input is represented by a voltage on the transistor drain and if the

gate voltage exceeds the maximum input voltage by an amount greater than the

transistor threshold voltage (so that the device is operating in the ohmic region), then

the current through the transistor is proportional to the product of the input and

weight voltages. The transistor constitutes the synaptic connections and by connecting

synapses to a single wire, current summing is performed to give the neural activity.

Goser [77,78] describes an associative network using a floating-gate transistor

technique for weight storage. The device acts as a non-volatile storage cell, where the

electrical charge on the floating-gate represents the information and is stored

independently from the power supply to the cell. This type of device does not store the

analogue value accurately, but the integration of a CCD (charge-coupled device) loop

connected to the floating-gate within a synapse cell can overcome the disadvantages of

low accuracy and long degradation time, although a large cell area is needed for this.

The number of CCD's in the loop yields the accuracy of the connection weight and the

information stored in the loops can be read out by opening the loops. In this way,

adaptive weights can be written into the loops enhancing the learning procedure.

Technology Dependent Analogue Weights

A CCD/MNOS (metal-nitride-oxide-semiconductor) has been used by Sage et al in

their analogue neural network [73]. The design uses a totally interconnected array of

neurons with charge packets to represent the analogue information transmitted through

a synapse and MNOS device structures to store electrically changeable, non-volatile

synaptic weight values. A cross section of an MNOS device is in figure 2.9. The

structure is similar to an MOS device, except the main gate insulator is silicon nitride

with a very thin silicon oxide layer, so at gate voltages of ± 35 volts, electrons and

holes move by quantum-mechanical tunnelling between the underlying silicon and long

lifetime traps in the nitride layer. A high voltage causes a shift in the charge stored in

the traps. If the gate voltage is kept below 10 volts the trapped charge becomes

permanent and makes the voltage on the gate appear to shift its switching threshold.

The apparent modulation of the gate voltage is used to control the size of the

Chapter 2
	

37

metal

nitride

oxide

silicon

Figure 2.9 Cross section of an MNOS device

synaptically transferred charge packets. The total charge, Ni for a neuron i, is

accumulated from the synaptic connections to it, using equation Ni = T1 V1 , where

the state is either 0 or 1. The state V = 1, allows the charge in the synapse to flow in

the gate and be added to the total, Ni . If V = 0, the charge is blocked. The total

charge is compared by a sense circuit to a threshold value to determine the neuron

state for the next cycle in the circuit.

Amorphous silicon (a-Si) has been used at Bell Labs [74,75] in order to achieve 256

neurons on a chip using a resistive network for weight storage and amplifiers with

inverting and non-inverting outputs for the neurons to make inhibitory and excitatory

connections. Synaptic resistor values are chosen to correspond with the desired

memories and the values are derived from an adaptive learning rule [79]. Current

summing is used to add together all the contributions to the input of an amplifier. As

there is in excess of 100,000 resistors on a chip, their size must be very small with a

resistance of a few mega-ohms to keep the power consumption low. High value a-Si is

used for this, however this approach does not allow the resistors to be changed once

fabrication is finished, hence giving a fixed set of stable states. Electron-beam direct

writing is used to pattern the resistors.

Research is taking place at CalTech [80, 811 into how an electrically switchable,

resistive component with memory can be incorporated at each synaptic intersection in a

Chapter 2 	 38

matrix such as that described by Graf et at in the Dynamic Weight Storage section

above [74,75]. The matrix could become a PROM, with a further possibility of

EEPROM, if the memory switch could be made reversible. Hydrogenated a-Si thin

film technology is a possible solution. Others include a-Ge/alloys and

platinum/aluminium oxide films.

Thin film technology may be a solution for achieving hundreds of neurons integrated

on a single chip with a suitable programmable material. Otherwise, large networks are

restricted to being non-programmable with limited use for their implementation.

Alternatively, CCD techniques have been shown to be programmable, however, their

implementation on silicon results in a large area per device and hence a small number

of neurons per chip.

Imprecise, Low-area Arithmetic

One method to increase the level of neuron integration on a VLSI chip is to make use

of a neural networks natural fault tolerance towards imperfection in synaptic/neuron

detail. This is due to the nature of large parallel arrays and learning procedures by

using simple transistor circuits to approximate to the neural arithmetic i.e., the multiply

and add function [63-67].

The approach used by Akers et at at Arizona [63,64] uses a limited interconnect

analogue neural cell given in figure 2.10. Weights are stored dynamically on the gates

of transistors Ti, T2 and T3 and the 'multiplication" T. V is performed as the drain

terminals of 77 - T9 are charged to voltages equal to the approximate T ij voltage

minus the device threshold of Ti - T3. When the clock 01 is at a logic "1", the charge

accumulations representing these voltages are summed via the analogue adder. V 0,,, is

then thresholded according to the inverter T16/T17. N-type current sources are used

to achieve small synapses.

The circuit shown in figure 2.11 is proposed by Verleysen et at [67]. Two values

stored in each synapse allow it to take the values {-i, 0 or + 11. Positive currents are

sourced on one line and negative currents on the other. The input to the neuron is the

sum of all the synaptic currents. The neuron compares the two currents 1+ and i- and

will switch on if the total positive current is greater than the total negative current,

otherwise it will switch off. The use of only N-type transistors avoids the mismatch

Chapter 2 	 39

between P- and N-type current sources, due to their different mobilities. When the

mismatch is multiplied by the number of active synapses, it soon reaches the value of

one synaptic current and would therefore limit the number of neurons that could be

cascaded together.

Subthreshold Circuits

Neural network modelling using CMOS circuits operating at sub-threshold (weak

inversion) has been the work of Mead at CalTech [4]. Digital designs using MOSFETs

in saturation (strong inversion) require that V, > V., but in sub-threshold operation

where 1/ 3 < VT, Id, QZ e '' ,t where K varies inversely with the amount of doping in

the CMOS process [4,82]. The advantage of this type of operation is that the power

dissipated in circuits is very low, usually in the region of 10-12 to 10 W. Also, drain

	

currents saturate in a few 	- tt allowing transistors-- to operate as current sources

over most of the voltage range from ground to Vdd I. This property is shared with

bipolar transistors, thus allowing bipolar circuits to be adapted for MOS usage. The

problems of noise immunity in such circuits, caused partly by the mismatch of

transistors due to threshold differences may be lessened by the natural fault tolerance

due to the massive parallelism of neural networks.

Mead shows how many biological nerve functions can be translated to equivIent

electrical circuits and that the nerve membrane conductance is exponentially dependent

on the potential across the membrane, analogous to the 'ds - v83 relation above. His

work also includes the implementation of some processing functions such as the retina

(chapter 15 [4,83],), the cochlea (chapter 16 [4,84],) and the problem of motion

detection (chapter 14 [4, 85],).

2.2.3. Pulse stream Networks

The inspiration for the pulse stream technique [68-71] is its analogy to the

electrical/chemical pulse mechanism of biological neurons and the discovery that some

arithmetic operations such as multiplication can be implemented efficiently using pulse

	

t V83 = gate-source voltage, / 	drain-source voltage, VT = threshold voltage.

tt k = bolwnan constant, q = electronic charge on an electron.

Chapter 2
	 40

Analogue "multiplier
	

Analogue adder

clock(1)

LL
clock(2)

vi 	 TI 	T4
rLJL

T7

clock(I)

LL
clock(2)

V2 	-

- 	T2 	T5 Ta

clock(2) Iock(I)

LL
V3 	--- 	 T T6 T9

Logic threshold Control

Vdd

	

T1j 	
Vout

T12 4 l T16

	

113 	 TI7

Figure 2.10 Aker's analogue synthetic neural cell

syn j 	mem2
	

T4
	

T5

T1OIF bias ~Tl .~C 	
T6 17

out

T3 	memi 	

Eri2 neuron 1+ 	 neuron i- T1 1
neuron 1+ 	 bias 	neuron I-

I 	 1 	I

Synapse 	 Neuron

Figure 2.11 Verleysen's synapse and neuron circuits

Chapter 2 	 41

streams. The name 'pulse stream" is derived from the signalling mechanism used in

that when a neuron is ON it fires a regular train of voltage spikes (at rate R, pulses

per second) on its output and when it is OFF it ceases to fire. The neuron circuitry is

given in figure 2.12. Excitatory and inhibitory pulses are signalled on separate lines

and used to dump or remove charge packets from an activity capacitor. The resultant

varying analogue voltage, X 1 , is used to control a voltage controlled oscillator (VCO),

which outputs short pulses. The voltage based pulse stream synapse in shown in figure

2.13. Synaptic gating is achieved by using synchrounous "chopping clocks" to define

time intervals during which pulses may be passed or blocked. The clocks have mark-

space ratios of 1:1, 1:2, 1:4, etc. and are used in conjunction with synaptic weights

stored in digital RAM, to gate the appropriate portion of pulses to either the excitatory

or inhibitory column.

This network proved the viability of the pulse stream technique which has now

undergone some refinements involving the removal of the digitally stored weights, the

pseudo-clocking scheme and separate signals for the excitatory and inhibitory signals.

Accordingly, a fully programmable, totally analogue synapse using dynamic weight

storage has been developed [70,72, 86, 87], which operates on individual pulses to

perform arithmetic. The activity capacitor has been distributed amongst the synapses,

reducing the neuron to a voltage controlled oscillator

The synapse circuit in figure 2.14 has the synaptic weight, Tk, stored as a voltage on a

capacitor. At room temperature, refresh of dynamically stored values is necessary. The

viable storage time of the charge is determined by capacitor size, temperature of the

chip surface and leakage characteristics of the CMOS process used. Presynaptic input

pulses { VK } at a constant width D, and frequency determined by the state of neuron k

discharge the output of inverter T1/T2 linearly from V,,,,,,, to OV as shown, and at the

end of a pulse, the capacitor recharges to its original voltage. The second inverter has

an output pulse proportional to the synaptic voltage TIk. Multiplication is only linear

over the range 1V 5 T,,, 5 3V, and by choosing suitable values for the aspect ratios of

T6/T7, it is possible to achieve excitation (2V 5 T 3V) and inhibition (1V s T,k

s2V).

This arrangement allows synapses to be cascadable as in figure 2.6, with the activity

capacitor on the drain connections of T6 and T7 aggregating the total activity x, for

Chapter 2
	 42

Neural Potential

EXCITATION

I 	I 	I 	I

I NHIBITIONH 	Xi 	voltage

controlled

H(i 	
oscillator

Charge Packets

Dumped and Removed

F_ Fmax

II

Figure 2.12 Pulse stream neuron

Inhibit. 	Excit.

Tij

1 1 1 1 1 0 1 1 101

r
chopping
clocks

L
Si

Figure 2.13 Pulse stream synapse using chopping clocks and digital weight storage

Chapter 2
	

43

Vdd

Vsupply <Vdd 	
Vswitch
/ T3

BUFFER
SYNAPTIC
WEIGHTTIJ

-- 	IL 	
T1

T 	HT2
PRESYNAPTIC

STATE S [T5
BIAS VOLTAGE

/
jRC 	

//DLTIi

DARGE H I-
1

T

INPUT PULSE Si

Vdd

CURRENT PULSE

-. ACT WIlY Xl

$1iAJ
CURRENT PULSE -

Figure 2.14 An excitatory and inhibitory analogue synapse

any neuron i from all the other neurons connected to it. This circuit has been

implemented in 2i.m CMOS array of 100 synapses and functions correctly.

Further work is being done on analogue synapse circuits using only 3 N-type devices in

addition to the storage capacitor. Details of this will be published at a later date.

2.2.4. Optical Neural Networks

The vast majority of neural network implementations use VLSI technology, but optical

neural computing with its parallelism and speed offers an alternative to VLSI, however

there has been little in the way of neural computing optical devices. The first analogue

optoelectronic hardware implementation of neural networks, introduced in 1985,

received attention for several reasons. The main one is that the optoelectronic

approach combines the massive interconnectivity and parallelism of optics and the

flexibility, high gain, and decision making capability offered by electronics. The

construction of large scale optoelectronic neurocomputers can solve optimisation

problems at potentially very high speeds by learning to perform mappings and

associations.

An example of one of the earliest optoelectronic neurocomputers consists of a totally

interconnected network and is shown in figure 2.15 [88]. To avoid interference

Chapter 2 	 44

effects, an incoherent light source is used, which also relaxes the stringent alignmeni

required in coherent light systems. An optical crossbar interconnect carries out the

vector-matrix multiplication {T 1 V} required. The state vector is represented by a linear

light emitting array (LEA), the connectivity matrix {T 1 } is implemented in a

photographic transparency mask and the activation potential x1 , is measured with a

photodiode array (PDA). Light from the LEA is smeared vertically onto the {T 1 }

mask. Light passing through the rows of weights is focussed on the PDA. The

neuron threshold O i and external input stimuli are injected optically with the aid of a

pair of LEAs, whose light is focussed on the PDA. A third PDA is used for the

injection of noise. This architecture has been successfully employed as a 32 neuron

network with associative memory.

To implement learning, the network needs to be partitioned into input, output and

hidden layers of neurons. An efficient way to do this is in figure 2.16 where the layers

are partially interconnected and the weight matrix is divided into an input group, V 1 ,

an output group, V 2 and hidden units, H. V 1 and V 2 are only connected via H. The

connection weights are programmably computer controlled by a spatial light modulator

(SLM). The architecture uses supervised learning and the weights are updated

according to a prescribed formula until all the training vectors evoke the correct

desired output. This network has also been used to demonstrate supervised stochastic

learning by simulated annealing. For this, the computer controller controls the

annealing profile, monitors the convergent state vectors and computes and executes the

weight modifications.

The use of neurocomputers in practical applications involving fast learning or the

solution of optimisation problems requires large networks that still have

programmability and flexibility as in the network described above. One method being

developed at the University of Pennsylvania [88] uses a "clusterable photonic neural

chip" concept. Here the architecture in figures 2.15 and 2.16 is modified to include

internal optical feedback and "non-linear' reflection (opti lIstction, amplification

and thresholding) on both sides of the connectivity matrix. Another approach has been

to use a 2-D arrangement of neurons to increase packing density [89].

A Hopfietd neural network using optical techniques has been developed at British

Aerospace [90]. Computer generated holograms are used to form fixed weighted

Chapter 2
	

45

I 1

IIA

L)
rLEEAA ~56'

=WiJSJ-9ii3O.

PDA

External input Ii

Wij

LEA

Si

Figure 2.15 Optoelectronic analogue circuit of a fully interconnected neural network

v1

ie V2

ays

Dntroller

Figure 2.16 Partitioned fully interconnected network to implement learning

Chapter 2 	 46

interconnections and a spatial light modulator enters the input image. The holographic

interconnections perform the vector-matrix multiplication and the resultant product is

thresholded and fed back into the matrix multiplier. There is a drawback however in

this type of network, in that material limitations severely limit the size of such a

machine and the weight connections are fixed. Despite this, a factor in favour of this

optical system is the ease in producing a complex hologram compared to an extensively

wired electronic system. The largest machine that could seriously be constructed using

this method is a 25 x 25 neuron array. Nevertheless, this still represents a powerful

processing capability which can be applied to less extensive networks such as edge

detection algorithms.

Optoelectronics offer advantages for the design and construction of a new generation

of analogue neurocomputers capable of performimg computational tasks at high speed.

The architectures of the present optical prototypes aim to demonstrate the best

attributes of optics and electronics and can be combined with programmable non-

volatile spatial light modulators and displays to form neural networks that include

associative storage and recall, self-organisation and adaptive learning.

Chapter 3
	

47

Chapter 3

A Digital, Reduced Arithmetic Neural Network

This chapter describes a digital bit-serial neural network, that uses a "reduced

arithmetic' multiplication function to implement the {T 1 V } product. Software

simulation results using this computation style are given, showing comparisons of the

2-state, reduced arithmetic and sigmoid activation functions.

3.1. Digital verses Analogue Network

There are fundamentally two approaches to implementing any function in silicon -

digital and analogue. .Each approach has its advantages and disadvantages. These are

listed below along with the merits and demerits of bit-serial architectures in digital

(synchronous) systems.

The primary advantage of digital design for a synapse array is that digital memory is

well understood and can be incorporated easily for programmable synaptic weights.

Learning networks are therefore possible without recourse to unusual techniques or

technologies. Other strengths of a digital approach are that the design techniques are

more advanced, automated and easily amenable in VLSI implementation than their

analogue counterparts and noise immunity and computational speed can be high.

Unattractive features are that digital circuits of this complexity need to be synchronous

and all states and activities are quantised, while real neural networks are asynchronous

and unquantised. Furthermore, digital multipliers occupy a large silicon area and an n

neuron network requires n parallel multipliers, resulting in a low synapse count on a

single chip.

The advantages of analogue circuitry are that synchronous behaviour and smooth

neural activation are inherent. Circuits elements can be small with faster settling than

digital ones, but noise immunity is relatively low and arbitrarily high precision is not

possible. However, a drawback of analogue networks until the last year, has been that

no reliable analogue non-volatile memory technology was readily available, but as

discussed in chapter 2, section 2.2.2, there are now several implementations using

analogue weight storage. For this reason, the first learning networks lent themselves

Chapter 3 	 - 	 48

more naturally to digital design and implementation.

3.2. Bit-Serial verses Bit-Parallel Network

Bit-serial arithmetic and communication can be efficient for computational processes. It

allows good communication within and between VLSI chips, with signals leaving and

entering the chips on single pins, an essential requirement for achieving the largest

possible number of synapses on a single device. Structures can be pipelined for

maximum efficiency, eg., each synapse in an interconnected array computes its partial

activity and passes it immediately to the next synapse in the column so that the

accumulating activity of the neurons is being calculated every clock cycle. A bit-serial

strategy is ideal for neural networks as it minimises the interconnect requirement by

eliminating multi-wire busses. Although a bit-parallel design would have a lower

computational latency (delay between input and output), a bit-serial synaptic array

lends itself to pipelining and thus can make optimal use of the high bit rates possible in

serial systems and allows efficient use of silicon area.

3.3. Reduced Arithmetic

In a digital network each synaptic weight, Tq , is represented by a binary word. The

division of a binary number by 2, simply requires the right-shift of the number by 1

bit. For example, when 10110 2 (= 22) is right-shifted, the word becomes 01011 2 (=

11). Since the synaptic function is {T x V1 }, the right-shift of the weight by 1 bit is

equivalent to the multiplication of the weight by the state, V1 =0.5. Similarly the right-

shifting of the weight by 2 bits, would be equivalent to multiplying the weight by V =

025. Therefore a full multiplication and add function can be reduced to a "right-shift"

and add. The state V = 1 only requires the synapse to add the weight to the total

activity, x,, of the receiving neuron and the state V = 0 requires no weight to be

added to the total. By allowing V < 0 and replacing the adder with a switchable

added/subtractor, gives the further states of —1, —0.5, —0.25, etc., which need only a

few extra transistors. The reduced arithmetic approach gives a staircase activation

function shown in figure 3.1. Five, seven, nine, etc. neural states are therefore feasible

with circuitry that is slightly more complex than a serial adder. For example, for a 5-

state activation function, the synapse function between neurons i and j now becomes:-

Chapter 3
	

49

2-state

>
w
I-

Increasing Precision

-0.5

4—state

5—state
0.5 0*5 	

7 state

0.5

05

0.25

0.25

-0.5

ACI1VITY X i

Figure 3.1 Reduced arithmetic allows four, five, seven, etc., state activation functions

V) = 1, 	add T11 to xi

V1 = 0.5, 	right-shift and add T,1 to x1

vi. 	add Otox1

V1 = — 0.5, 	right-shift and subtract T, from x

V1 = —1, 	subtract T.1 from x,

where x1 = >TIJ V1 for neuron i

The activation function showing quantisation is given in figure 3.2. The sharpness of

the transition of the staircase is represented by the gradient of the sigmoid activation

function.

The use of a 5-state activation function instead of a sigmoid activation function allows

the size of a VLSI synapse to be greatly reduced. However software simulation

comparing the learning and recall capabilities of a network using the 5-state activation

function with those of the sigmoid is required to verify that the 5-state activation

function performs adequately to justify its use in a VLSI implementation.

Chapter 3
	

50

3.4. Verification of the Reduced Arithmetic

Firstly, a relationship between the staircase function and a smooth sigmoid had to be

defined before a network of neurons using reduced arithmetic could be simulated. A

neuron with a sigmoid activation function has a neural state that can take on a

continuous value between 1 and 0. The state is described by the equation:-

Vi = 	
1 (3.1)

1+exp1
T J

where x, is the neuron threshold and x is the neuron activity as given in figure 2.1,

chapter 2. T is the parameter "Temperature" that determines the slope of the function.

The form of equation 3.1 is derived from the Fermi - Dirac statistics of electrons in

conductors, where the Fermi - Dirac distribution function, F(e,r) gives the probability

that an available energy state, €, will be occupied by an electron at absolute

temperature, t. The Fermi - level is the energy state that has a probability of % of being

occupied by an electron which is analogous to the threshold, x1 , for a neuron. At a

'Temperature" T = 0, the function becomes the rectangular, 2-state threshold function

as used by Hopfield and there is no probability that an electron will occupy an energy

state above the Fermi level. As the temperature increases the gradient of the sigmoid

becomes lower and the probability that states above the Fermi level will be filled

increases.

Threshold limits were calculated by experiment for the thresholds x 1 , x 2 , x 3 and x 4 in

the 5-state approximation given in figure 3.2, for any value of T. The limits are

derived from equation 3.1 by obtaining the threshold, x,, in terms of V1 , x and T.

These are:-

Vi = 1 when x 4 < x,

V = 0.5 when x 3 < x 	x4,

Vi = O when x2<xf:-:x3,

Vi = —0.S when x 1 <xSx 2 ,

V = —1 when x 	x 1 .

X4 = x, + (T. log (8.00))

X3 = x + (T. log (1.75))

X2 = x, - (T . log (1.75))

x 1 = x1 - (T . log (8.00))

As the 'Temperature" increases, the threshold values become further apart on the x-

axis as the gradient of the sigmoid decreases.

Chapter 3
	

51

Neural

State, V

+1

+0.5

El

-0.5

-1
xl 	x2 x3 x4 	activation, X

Figure 3.2 The 5-state activation function

3.4.1. Simulated Performance of the Reduced Arithmetic

The simulated performance of the reduced arithmetic was work carried out by A. V.

W. Smith and is reported in [71]. A totally interconnected neural network with 64

neurons was chosen for the simulation. The network was restricted to this size due to

the lengthy computation time of larger networks. The Hopfield - Wallace Learning

Algorithm ([30] and Chapter 1, section 1.3.5
)

was used to store 32 random patterns

using:

2-state activation function, with the neural states -1 and +1.

5 - state activation function, with the neural states -1, -0.5, 0, +0.5, +1.

Sigmoid activation function, with the neural states in the continuous range from

-1 to +1.

In each case the network was iterated until each pattern being learned matched the

initial set-up pattern. The weights, T1 , were floating point, integer numbers and were

limited to the ranges -20T 1 +20, -30:5T:5+30, -40_T11 +40,

-50_T11 _+50, -60!~-T11 +60, -70:5T1 :5:-+70 in the simulations so the optimum

Chapter 3
	 52

range of weight myht be found. As it was not possible to encode all patterns correctly

using the above restricted weights set, a maximum of 150 iterations was allowed.

Recall was then attempted with 12.5% noise introduced to the initial random patterns.

This was achieved by selecting 8 nodes at random and changing them from +1 to —1

or from —1 to +1. Each set of patterns was learned using each activation function and

then recalled by all three activation functions separately, giving nine possible

combinations of the activation functions for the learning and recall. The simulation of

each combination was repeated several times and the average number of correct

recalled patterns for each was noted.

3.4.2. The Simulation Procedure

The simulation followed the succeeding steps.

Pattern Learning

Random pattern array: 32 random patterns were produced. Each was stored in a

64 (8 x 8) node array. The nodes were either + 1 or —1.

Network weight and state initialisation: Weights were initialised to a small

(almost zero) value and the states were initialised to the first random pattern.

Network iteration: The network was iterated according to the equation:-

N

	

X, = 	T J VJ 	 (3.2)
j= 1

where T, is the weight between nodes i and j, V3 is the state of node j and x is

the new activity of node i.

New neural state calculation: The node activities were thresholded according to

the activation function with which the network was learning, to give the new

neural states and hence the new output pattern.

Error array calculation: The new output pattern was compared to the initial

random pattern to produce an error array such that:-

	

(1 	if V, (r) #

= 	
0 otherwise 	

(3.3)

where r is the pattern number, V 1 is the new neural state, V,_ 1 is the previous

Chapter 3 	 53

neural state of the same neuron i and 	is the error of node i in pattern r.

The above 5 steps were repeated for each random pattern.

Weight update: When an error mask for each pattern had been calculated, the

weights were updated according to:

= E V 1(r)V(') (e 1 (') + 	 (3.4)

where V1 and V are the present states of nodes i and j in pattern r.

Iterate to update weights: The procedure in steps 1 - 6 was repeated. The

network was reset to each random pattern, the new neural states were calculated

and the weights updated accordingly. This was iterated 150 times maximum or

fewer if a pattern was stored correctly in under 150 iterations.

Steps 1 - 7 were repeated for 3 different "temperatures'.

Pattern Recall

The weight set was used to recall the random patterns corrupted with 12.5% noise.

Initialise network: The network was initialised to the first noise corrupted pattern

and equation 3.2 was iterated until the new neural states calculated were stable.

The states were compared to the initial uncorrupted pattern. If there was no

difference, the patterns had been recalled correctly.

Step 1 was repeated for each pattern in the array.

Steps 1 and 2 were repeated for each activation function.

Steps 1 - 3 were repeated for 3 different 'temperatures".

Learning with Fixed Weights

Updating the weights in the learning procedure can lead to weight saturation when a

fixed weight set is used. This happens when the weight grows above the maximum limit

allowed. Three methods to reduce the saturated weights to within the weight limit were

simulated, while still achieving the maximum learning capability of the network.

1. 	Renormalisation: The complete weight set was renormalised so the largest weight

was reduced to fit within the weight limit. Eg. if the maximum weight limit is ±

Chapter 3
	

54

30
30 and a weight is updated to + 36, then each weight is renormalised to 	of it

original value. The majority of weights however, are small integer values.

Therefore a weight of + 2 would become renormalised to +1. This introduces a

large error into the learning procedure. A typical example of a weight value

distribution is given in figure 3.3.

Forgetting: The inclusion of a decay or "forgetting" term can be introduced in the

learning cycle [36]. At each weight update a "forgetting" term subtracts a

proportion of each weight to keep them within the weight limit. This can cause

the information that is learned at each iteration to be destroyed.

Clipping: Any weight that becomes saturated is set to the maximum allowed

weight value. Weights within the limits remain untouched. In the learning

procedure unclipped weights readjust for the clipped ones.

There have been other experiments, which have indicated that a Hopfield network can

"forget" in a different way, under learning control, giving preference to recently

acquired memories [91].

3.4.3. Simulation Results

The simulations showed how the properties of the different activation functions effect

the learning and recall capabilities of the network. Different weight limits and

temperatures also determine the number of iterations required to learn and recall

patterns.

Learning with Different Activation Functions

The number of iterations required to learn the 32 random patterns using the 3 different

activation functions with varying 'Temperatures" and weights limits is presented in

figure 3.4. Integer weights with a dynamic range greater than ± 30 were necessary to

preserve storage capability. The following conclusions can be drawn from the graphs:-

For all values of 'Temperature" and weight limit, the 5-state activation function

required more iterations than the 2-state function to learn the random patterns.

A rise in 'Temperature" from 10 to 20 showed a subsequent increase in the

number of iterations needed to learn using the 5-state function.

1,000

800

700

600

500

400

300

20C

1 O(

Chapter 3
	

55

CON- 	C) C) V, 	V c%J c 	c) 	•

.02

)CC17

Weight value

Figure 3.3 Example of the weight value distribution in a network

Chapter 3 	
0

	 56

32
0
E
C)

E

CD

0
0

I-

suoiieieu iO JOQWflN

0
0
0
th

0

0

E
-J 2
, 	I-

a)
I-

suoiie o ieqwn.j

E
0:

0
0
0

w
cl

2 9 9 2°

SUOIjejeN o .iaqwn4

Figure 3.4 The graphs show the number iterations required to learn 32 random pat-
terns using the 3 activation functions with varying 'Temperatures" and weight size lim-
its.

Chapter 3 	 57

3. 	The sigmoid activation function exhibited the most efficient learning when the

weight limit was 	±50 with a "temperature" of 10 and 20.

Effects of Weight Limits and Temperature on Learning

Renormatisation: Renormalisation of the weights was unsuccessful, suggesting

that information distributed throughout the numerically small weights was being

destroyed. This led to no solution being found.

Forgetting: In the time available for experiments, a rate of decay could not be

"tuned" sufficiently well to confirm that including a "forgetting" term in the

learning cycle can produce the desired weight limiting property. As a result,

errors could not be reduced in the learning cycle and no patterns were stored

perfectly.

Clipping: Clipping proved to be a successful method as the learning algorithm

adjusted the weights over which it still had control to compensate for the

saturation effect in the upper weights. As the sigmoid function has more

intermediate states thai the 5-state function, it takes longer to readjust the non-

saturated weights. The results show that for high temperatures and small weight

limits (< 50), clipping occurs and the 5-state function learns faster than the

sigmoid. Clipping also occurred for weights with the values T.7IaX = 50 - 70, but

network performance was not seriously degraded over that with an unrestricted

weight set.

Recall with Different Activation Functions

1. 	Patterns learned with the Sigmoid Function: Figure 3.6 shows the results of

patterns recalled using the 5-state and sigmoid activation functions, having first

been learned with the sigmoid function. The results are for patterns learned and

recalled at the same 'Temperature". For TiTax > 50, the recall ability of the

functions is approximately the same and up to 70% of the patterns were recalled.

However, at Tj and "temperature" = 20 and 30, the 5-state function recalled a

small number of patterns and the sigmoid function function recalled none. These

graphs suggest that the higher the weight limit and temperature, the greater the

number of recalled patterns.

Chapter 3
	

58

0

0
0

.4-

C
0

>
4-.
C)
CIS
C)
CU
4-.
4-.

U)

as

C)
C
Cl)

C)

U-) 2 	 LU

punol sued o ieqwn,j

ir

Ln

CD

0•g N
.- 	a) 	II

0
p)

M.

C
0
0
C

.4-

C
0

>

a)

U)

0
N

0

(14

0
N

LA-
LO
	

0 	 u)

punol swaged jo ieqwn

Figure 3.5 The graphs show the number of patterns recalled with the 5-state and
2-state activation functions. Learning was with the 5-state activation function.

Chapter 3
	 59

Patterns learned with the 5-state Function: Figure 3.5 shows the number of

patterns recalled with the 5-state and 2-state activation functions, which were first

learned the 5-state activation function. At each 'Temperature", the 5-state

function recalled more patterns than the 2-state function. The 5-state activation

function with a middle 'Temperature" (T = 20) gives the best recall (38% of

patterns) with the weight limit, TI7' ~! 40.

Patterns learned with the 2-state Function: A low number of patterns were

recalled using the 2-state function to obtain a weight set. Hence the results do not

merit discussion.

3.5. Conclusions

The 5-state activation function required the most iterations to learn the 32 patterns and

the sigmoid required the least provided the 'Temperature" was low. Both the 5-state

and the sigmoid function had faster learning as the "Temperature" was decreased.

Over the whole temperature range, the 2-state activation function exhibited the best

learning ability. The reason for this is that as the 2-state network learns, any neuron

has 50% chance of being in the wrong state, therefore on the next iteration the neuron

will be in its correct state. Neurons learning with the 5-state activation function have

80% chance of being in the wrong state at the start of learning and the network will

take longer to iterate through the 5 states until each neuron arrives at the correct state.

The 5-state function had better recall ability than the 2-state function for patterns

learned using the 5-state function. For patterns learned with the sigmoid function, the

recall abilities of the 5-state and the sigmoid were very similar for T17 > 30.

However, many more patterns were recalled with the 5-state function (70%), that were

first learned with the sigmoid, than were learned and then recalled with the 5-state

function (38%).

The simulations proved that learning and recall using the 5-state function were

significantly better than that using the 2-state. Full sigmoidal activation was better than

the 5-state, but the enhancement was not so great as that incurred by moving from the

2-state to the 5-state. This suggests that the law of diminishing returns applies to the

addition of the levels to the neural states. This issue has been studied mathematically

[92], with results that agree qualitatively with those given above.

Chapter 3

0
N

0
.4-.
0
C

C
0

C', >
4-.
()
C',
a)

CO

CO

W.

o••E 0
— 	II a)
Cl)

_c 0
o.g) c

a)

C
CV)

o 	it

0
c.'J

Lt) 	 0 	 LO 	 0 	 LO 	 0
Cu 	 Cu

punol suJe2d jo ieqwn

0
N

0

>
4-.
C.)
CO

0

E
c,)
U)

C)
C
U)

C',
C)
G)

0
LO 0

E-

CD o

-C C14

a) 	II
0>

0

II
I-

0

0
c- 1

IC) 	 CO 	 10 	 0 	 to 	 0

Cu 	 Cu -r-

punol swaid o .ioqwflN

Figure 3.6 The graphs show the number of patterns recalled with the 5-state and
sigmoid activation functions. Learning was with the sigmoid activation function.

Chapter 3
	

61

The results of the 5-state activation function simulations proved that the reduced

arithmetic approach was well worth pursuing for the synaptic function instead of full

multiplication, without degradation of the synapse performance. The succeeding

chapter gives details of how a reduced arithmetic synapse has been implemented in a

VLSI circuit.

Chapter 4
	

62

Chapter 4

VLSI Design of the Synapse Array

The previous chapter has shown how a "reduced arithmetic" approach can be used as a

compromise for the full multiplication required for the synaptic function {T x V1 }.

This chapter gives the design details and simulations of two bit-serial, digital integrated

synaptic array circuits using reduced arithmetic. The first integrated circuit was

designed and fabricated using a fully custom 3iim design, however, owing to a layout

error the integrated circuit did not function correctly. A second fabrication of the

design using the same process had 0% yield owing to problems with the metal layers.

Therefore a second integrated circuit was designed with the ES2 (European Silicon
devices i

Structures) Solo 1400 silicon compiler as this process guaranteed workingi A
 and •a

fabrication time of 8 weeks.

4.1. Synapse Requirements

The synapse array was designed to operate at maximum speed and efficiency with

minimum latency (bit delay between input and output) and full pipelining. The size of

the array was restricted by the area of silicon and the number of pins on the packages

available.

Each synapse required a programmable weight storage capability for T,,, a state

multiplexor to allow any of the 5-states representing the value V to be selected and a

full adder/subtractor. The adding/subtracting of the activity at each synapse had also

to accommodate word growth for the total activity calculated in each column.

4.1.1. Weight Storage

The storage of a digital weight is straightforward as an n-bit shift register will hold an

n-bit weight. The simulation results of the learning and recall capabilities of the 5-state

activation function given in the previous chapter showed that the best performance is

achieved when the weights have a large dynamic range. The range used in simulation

was integer values up to ±70 and therefore an 8-bit weight (ie. 2) was used for the

hardware as this gives integer values over the range —127 to + 128. A 6-bit weight (ie.

8-bit weight
switch to load or shift weights

synapse 	
\ 	/

dat

Chapter 4 	 63

26) would, for example, only give the range —63 to +64 and hence is not large

enough. The dynamic range —127 to + 128 was suitable for this type of network and

the learning procedure used in the software simulation. As the same network is to be

used in hardware, an 8-bit weight was chosen.

A single phase clocking technique was implemented in preference to a two-phase

clocking technique. Single phase has advantages in that it allows a higher speed as it

does not suffer from overlapping clocks and race hazards that occur in two phase

systems.

An 8-bit shift register per synapse required one input pin to load the synaptic weight.

In order to integrate the maximum possible number of synapses on a die it was

imperative that the weight input pin count be kept to a minimum. This was achieved

by connecting each 8-bit shift register to form one long shift register through the array

as shown in figure 4.1.

Figure 4.1 The connection between synaptic weights in the array for loading purposes.

Synaptic weights are loaded sequentially through one pin until each weight has reached

the appropriate synapse. For example, a 10 synapse array would require 80 clock cycles

Chapter 4

for the LSB (least significant bit) of the synaptic weight furthest from the input pin to

reach its correct location. A 'load/shift" multiplexor controls the synaptic weight

operation. The multiplexor allows each weight to be loaded and subsequently isolated

and shifted through the register so that it may be "multiplied' by the neural state.

During the {T 1, x V 1 } computation, the weight is shifted around the the register. A

further complete shift cycle of the weight permits an 8-bit word growth allowing a 16-

bit activity word to be summed down the synapse column. The MSB (most significant

bit) of each weight is sign-extended for 8-bits during the second shift phase by a "sign-

extend" control signal. These control signals were easily incorporated within the logic

required to select the neural state.

4.1.2. Synapse Logic

The neural state multiplexor in the synapse controls whether the weight is right-shifted

(x ±0.5), killed (xO), or its full value (x ±1). A positive state adds the 16-bit

JTjj x V } to the running total in the synapse column and a negative state subtracts it.

Each neural state is signalled on a 3-bit bus that runs horizontally across the array, as

shown in figure 4.2. The signals are rs (right shift), kill and pm (plus/minus). The

sign extension of the neural state is controlled by two further signals, sel and se2. sel

sign extends the weight 8 bits when V = ±1 and se2 sign extends the weight 9 bits

when V = ± 0.5 as the weight has already been right-shifted by 1 bit.

The adder/subtractor has two parts: The first is summing logic that adds the

accumulating activity from the previous synaptic computation in the neuron column to

the present {T 1 x V,) along with any carry from the summation of the previous bits of

the synapses' weights. The second part is carry logic that signals any carry that occurs

in the summation part.

Two's complement arithmetic is used. In this representation, positive numbers are in

normal signed binary. The difference lies in the representation of negative numbers.

The one's complement or inverse of the negative number is first computed and then one

is added, as shown in the following example, which gives the two's complement

representation of —5.

= 00000101

The one's complement of +510 = 11111010

Activity xi
__. ..• U..

............

sending neural
state Vi (3 bits

*05
*00 sending neural 	N.

state Vi
(3 bits)

Chapter 4
	

65

- .. _. _. U.

ME

IIIp'I

Is, I • .. _• U. U. __. U.

:. dM oi l IiI • U.- -'U. ..•

ME 00 1

Figure 4.2 Synapse array structure, showing the 8-bit weight, 3-bit state multiplexor
and adder/subtractor.

Chapter 4

	

(adding 1) 	 +1

	

Therefore, the two's complement is 	11111011

	

Hence, (+3) 	00000011

	

(-5) 	+ 11111011

11111110

The result can be identified by computing the two's complement

The one's complement of 11111110 is 00000001

	

(adding 	1) 	+ 1

Hence, the result (= + 2) 00000010

Therefore, the result represented by 11111110 is correct.

It is possible to add or subtract signed numbers, with the significant advantage that a

carry generated by adding the MSBs is ignored in the value of the result. If this were

not the case, the result would have to be corrected for the sign, each time.

A table giving the sum/carry logic output based on the equation 4.1 of a 16-bit word

being added/subtracted is given in table 4.1.

j =N

0, then Sum= f T,_ 1 V_ 1 - T1 V - carry

	

When pm 	 j=N 	 (4.1)

	

- 	1, then Sum =T, T, 	V 	+Tij Vj + carry
j= 1

A LSB signal is synchronised to the LSB of the accumulating activity word and clears

any carry that is generated at the addition/subtraction of the MSB of the previous

activity word to avoid it being added into the LSB of the present activity word.

4.1.3. Synapse Array Design

The synapse array architecture is also shown in figure 4.2. Each neural state is input

to the array on 3 pins and carried on a 3-bit bus. The first synapse in each column has

an external input that allows accumulating activities to be added in when the integrated

circuits are cascaded together. The last synapse in each column outputs the total

Chapter 4
	

67

pm
j =N I T3_1V_1
j= 1

Tij V1 Carryin Sum Carryout

o 0 0 0 0 0

o 0 0 1 1 1

o 0 1 0 1 1

o 0 1 1 0 1

o 1 0 0 1 0

o 1 0 1 0 0

0 1 1 0 0 0

o 1 1 1 1 1

1 0 0 0 0 0

1 0 0 1 I 0

1 0 1 0 1 0

1 0 1 1 0 1

1 1 0 0 1 0

1 1 0 1 0 1

1 1 1 0 0 1

1 1 1 1 1 1

Table 4.1 Sum and carry output values calculated from equation 4.1.

activity. The three control signals are shifted in registers adjacent the array in order

that they coincide with the activity computation.

Once the functional requirements of the synapse were realised, the transistor level

design of the synapses could be begun.

4.2. Fully Custom Integrated Circuit Design

The main advantage of a fully custom design over a silicon compiled design, is that

designing circuits at transistor level enables the minimum number of transistors to

compute any particular logic function to be used, achieving optimum use of the silicon

area. The technology used was 3p.m 2-metal P-well CMOS. The CAESAR CAD

Chapter 4 	 68

(computer aided design) tool was used to layout the complete circuit.

4.2.1. Weight Storage Shift Register

The single phase technique [93] used for the custom design was based on static logic

trees charging and discharging dynamic latched (or shift registers). A logic tree is a

circuit of transistors that computes a required logic function. It effectively uses two

phases of the clock, the logic 1 (5 volts), referred to as the i1'-phase and the logic 0 (0

volts), referred to as the AL-phase. Figure 4.3 shows the shift register, with pre-charge

circuitry. On the TV -phase, the input is passed by i'.-transistor Ti to node 2 and

inverted at node 3. Any input at logic 1 will not be passed as a "good" logic I by

transistor Ti, therefore when the clock goes low, p-transistors T4 and T5 pull node 2

Lolp to a good logic 1. The value at node 3 is now passed by transistor T6 to node 7.

The two "pull-.ktransistors T8 and T9 ensure that any logic 0 passed by transistor T6,

will be pulled 4o.uo a good logic 0 at node 7. When the clock returns low, the output

appears 1 clock cycle later at node 10. Eight shift registers in each synapse hold the

weight bit-serially.

The shift register had previously been fabricated on a 3pm CMOS integrated circuit

[71] and the test results showed it functioned correctly up to 20 MHz. Tests were not

attempted above this frequency owing to the limitations of the test equipment.

4.2.2. Synapse Logic Tree Design

The logic trees in the synapse required the pre-charge circuitry and a shift register to

evaluate the correct output. Logic trees with the minimum number of transistors were

obtained from boolean type functions or logic level descriptions of the state

multiplexor, sum logic and carry logic by the MOSYN CAD Circuit Synthesis program
oJfd.

[94, 95]. These descriptionsAcircuit function that give the minimum circuits generated

by MOSYN are given in Appendix A.

The minimum transistor logic trees are shown in figure 4.4. Each tree is joined to the

pre-charge circuitry given in figure 4.3. On the first (p.) phase of the clock cycle (logic

0), node 11 is "pulled up" to a logic 1, regardless of the inputs to the transistors in the

tree. During the ir-phase of the clock, the node ii evaluates the correct output. The

inverter 112 allows node 11 to be "pulled down" to a good logic 0, if the transistor

precharge circuitry

7

clock -H
(node 11)

top

T5

clock

JL

/
node2

e10

bottom

clock

- Chapter 4

Figure 4.3 Single phase shift register.

inputs are such that there is a path to ground. The shift register outputs the correct

value one clock cycle later. The correct logic function of each tree was verified by the

RNL [96] timing logic simulator for digital MOS circuits. RNL is an event driven

simulator that uses a simple RC (resistance capacitance) model of the circuit to

estimate node transition times and to estimate the effects of charge sharing. Two

intermediate programs NETLIST and PRESIM are required to be run first using a

transistor netlist derived from the MOSYN netlist, to generate the correct binary netlist

input file. bin for RNL. The netlist, sum. net the input RNL logic data file, sum.1 and the

output, su,n.out generated by RNL for the sum logic tree are given in Appendix B.

A complete synapse required 170 transistors. Once this had been verified by RNL as

functioning correctly, the custom layout could proceed.

4.2.3. Synapse Array Layout and Simulation

The layout of a fully custom integrated circuit involves each transistor being

constructed from the nine layers available in the 2-metal CMOS process. First, the

synapse was designed to be as compact as possible. Each transistor had the minimum

BE

connects to
top and
bottom on
shift register
precharge
circuitry

sel

Chapter 4
	

70

bottom

State logic tree

sum in 	 top

muxout

carry in

1T

Sum logic tree

i-I-Il

Carry logic tree

Figure 4.4 Transistor logic trees for the synapse.

plus/mi

muxout

lsb

carry in

Chapter 4 	 - 	71

geometrical dimensions, ie. 4iim long and 3m wide. As the 10 transistor shift register

had been previously designed [71] and shown to function correctly, the layout was used

in the synapse. The metal 2 layer was used to carry all signals from the pads to the

synapse array and for the Vdd (+ 5 Volts) and GND (0 Volts) power lines. A layout

plot of a synapse is shown in figure 4.5. The area of silicon required for 1 synapse was

670m by 240m and approximately one third of this was taken up by the 8-bit weight

storage shift register. The layout also required substrate contacts to be placed every

70i.m in the design. The CAESAR design rule checker LYRA, was employed at each

new stage in the design to ensure that the layout dimensions did not violate the

minimum geometries permitted for each layer.

Once the synapse design was completed a CIF (Caltech Intermediate Format) file was

created by CAESAR. CIF is a low level graphics language used for describing

integrated circuit layouts. The CIF file is then read by MEXTRA, a circuit extraction

tool for VLSI simulation, to create a circuit description file for use by PRESIM as

described in section 4.2.2. RNL was then run to verify that the layout was functioning

correctly. The flow diagram given in figure 4.6 shows the design procedure using the

CAD tools.

The second stage of the layout involved placing the maximum number of synapses in

the allowed silicon area to form an array. The array size was 3 by 9 synapses, as is

shown in a chip photograph in figure 4.7. The photograph in figure 4.8 shows a

synapse in the array. This can be compared to the layout plot of a synapse in figure

4.5. The area of the array including the control circuitry shift registers was 5.70 mm

(2.49 x 2.29 mm) and accommodated 4958 transistors. The area of the chip including

pads was 16.61 mm' (4.27 x 3.89 mm). MEXTRA, PRESIM and RNL verified that the

layout was correct. The array was simulated as fully as possible by the CAD tools

before fabrication by MCE (Micro Circuit Engineering).

A design of this size pushes the design capabilities of CAESAR, RNL and the Vax to

their limits. Complete screen and paper layout plots took 2 to 3 hours and one column

of 9 synapses required approximately 9 man hours and several hundred CPU hours of

simulation. This makes the correction of errors a slow and tedious task.

The 3j.m technology allowed 27 synapses to be fabricated in an area of 5.70mm 2 . This

may appear to be a disappointingly low number, but it is favourable when compared to

ra
load/shift multiplexor

4

sign-extend tree

I 	R FMI

sum tree

I
carry tree

I
-

(T
1

I
8-hit shift register

orange 	p+ implant 	blue 	metal I
yellow 	n+ implant 	red 	polysilicon
black 	contact 	green 	active area

Figure 4.5 3pm CMOS technology penpiot of one synapse 	 brown P-well, via
t'J

Chapter 4 	 73

create booleanhlogic iev&[iemos I
of logic function

V

_
MOSYNJ

V
select required minimised

logic tree

V
edit file,tre to obtain r edit to file.ne
file.net for NETLIST

in CAESAR

[
	 CAESAR J layout tree in filenet

J 	file.cif J 	extracted layout file

	

input file 	file.sim for input to MEXTRA
for PRESIM

PRESIM MEXTRAJ

Lbin J 	L7file.simj for PRESIM input file
input file for RNL

V

	

RNL 	-a*— 7fil e. I I
V

simulation output

	

of logic tree 	

{

iIe.out J
Figure 4.6 Flow diagram showing the stages in the chip design.

------- -
10 0

(.haptcr 4

rk
4

II

I

a

41 	•'
AN 	 AU ,Ed

Figure 47 11COfl Li'iiI 	f OIL 	IuAptIc arr\

Lhaptcr 4

,

I .

T

r

UJLIAJ

U1Ii:it 1•
It ..

Iwi 1L

J-F
là

Figure 4.8 Silicon layout of a synapse in the array.

Chapter 4 	 76

a full multiplier which would require approximately 1mm X 1mm area in 3i.m

technology. However if a projection is made to a him minimum feature design on a

10mm x 10mm die, based on the area required for 27 synapses, it would be possible

to achieve approximately a 58 neuron array (582 synapses).

For example,

If 27 synapses require 5.70mm 2 in 3im technology, then 27 x 3 (=243)

synapses require 5.70mm 2 in 1pm technology.

If the available area of silicon on a 10mm X 10mm die is 81mm2 (excluding pad

81
area), then the number of synapses =

570
x 243 = 3400 == 58 neurons (582

synapses).

The size of this array is more suitable for learning and recall simulations.

4.2.4. Test procedure for the integrated circuits.

The manufactured integrated circuits were tested using a DAS (Digital Analysis

System). It allows patterns of logic is and Os that are generated by the user to be input

to the integrated circuit under test and reads back logic is and Os output from the

device. The DAS generates a clock pulse up to a maximum of 5MHz.

The first test ensured the correct functioning of the 216-bit weight shift register, which

is loaded bit serially and the 3 control shift registers for the signals sel, se2 and lsb

described in section 4.1.2. The DAS timing diagram in figure 4.9 shows the registers

shifting the data correctly. For example, the data on line "DOUT" which is the output

from the weight shift register appears 216 clock cycles after the input on line 'DATA"

and the data is then shifted around the 8-bit shift register once the "load" line has

returned to a logic 0.

The next test was to apply a neural state, V, to each row of synapses and observe the 3

outputs "sa out", "sb out" and "sc out", which should give the total activation in each

column, ie.:

9

j=1

where x0 is the total activity in column a and 	is the synaptic weight between

neurons a and j. However, each device had the "sum out" output pins held at a logic

Chapter 4 	- 	 77

TIMING DIAGRAM MAG: CURSOR SEQ: 438
DELTA TIME: EJ

SRCH
ft I

PODCHNAEft II

5A6 	DATA Ii tIn_____ 8
5A 5 	0 OUT ft 	 I ft 	IIIHFI 8
5A4CLK II ft 1

II ft
5A3 	SE IN ft ft 	rLnJ1J1O
5A2SE OUT ft ft
5A1 	TEIN Il I
5A8 	TEOUT ft ft 	W1ILFO

587 LSBIH 	ft-
586 LSBOUT 	Ill II 	ILPJULO
585 SA OUT 	II I 	0
584 SBWT 	ft II 	8

ft ft
583 SCOUT 	ft ft 	8
582 ft 1 	8
581 11! IIII'8

5B8 it 1 	8

Figure 4.9 DAS timing diagram for the shift registers in the array.

Chapter 4 	 78

0, implying that a design or manufacturing error had been made, that was holding the

outputs to the OND line on the device. Careful examination of the layout plot of a

synapse showed that a "contact" had been omitted from the precharge circuitry of the

logic tree shift register. This had the effect of shorting the output of each logic tree to

GND. The circuit extractor MEXTRA does not extract substrate contacts into the

file.sim to be simulated by PRESIM. Hence the layout error was not d etected.t

Once the substrate contact had been redesigned, the chip was manufactured by the

EMF (Edinburgh Microfabrication Facility), University of Edinburgh, as the process

was no longer available through MCE. Unfortunately, the resulting wafers had faulty

metal layers and had 0% yield. At this stage, as the time to complete the research was

running short, the only alternative route to achieve a fully working chip, was to

completely redesign the synapse array was using the ES2 Solo 1400 Compiler for

fabrication at ES2 (European Silicon Structures), as this process guaranteed working

devices and a fabrication time of 8 weeks.

4.3. ES2 Solo 1400 Design

The Solo 1400 silicon compiler is a software tool for designing custom integrated

circuits to manufactured in 2p.m 2-metal N-well CMOS. The fundamental building

blocks of the solo design are basic library parts. The parts are NAND, NOR, XOR,

buffer, flipflops etc., which are stored in the Base Library and are recognised by the

design subsystem. The Solo software provides facilities, which will guarantee a

"working" integrated circuit if they are used in the correct order. The Base Library

provided enough parts to design the neural accelerator chip. The following procedure

was used for the design.

Design Entry: This allowed circuits to be input to Solo as a gate level schematic

or in a text form using a Hardware Description Language (HDL) or in a

combination of both.

Compilation: The Hardware Description Language (HDL) was compiled to

produce an Intermediate Design Language (DL) file, which was used by the

simulation and physical design phases. At this stage the FANOUT of the design

was checked to ensure that it met the fanout restrictions on components.

t The contact was between active area and metall in the inverter of the precharge circuitry, therefore the inverter

had no GND connection. As the contact was in the active area of a substrate contact, MEXTRA assumed that a con-

nection to GND existed. This meant the logic tree output was always pulled down to GND.

Chapter 4 	 79

Simulation: This was done at gate level and had to be carried out before the

physical design stage. The DL file provided the input to the EXERT simulator.

After the physical design a "load" file was produced that contained data on circuit

capacitances. This allowed a second EXERT simulation file to check the

maximum and minimum gate delays and to check that the final integrated circuit

would work correctly for all operational conditions.

Physical Design: Circuit layout was performed by the PLACE, GATE, and

ROUTE programs. Transistor sizing was already preselected in the Base Library

and could not be changed. The only influence a user had in the PLACE program

was in the placing of the gates in the layout. This was not necessary in the neural

accelerator chip.

Validation and Production: Solo allowed the required package for the design to

be chosen and checked that all the programs required for a "working" integrated

circuit had been run in the predefined order. In this way, a correct functioning

manufactured design was virtually guaranteed.

4.3.1. Synapse Gate Level Design

The synapse array function and size were kept the same as that in the MCE 3ji.m

design. The reason for this was that the neural board with the hardware support for the

accelerator chips had already been designed specifically for a 3 x 9 synapse array.

The boolean and logic descriptions for the state multiplexor, sum logic and carry logic

that were described in section 4.2.2 were used to represent the functions at gate level.

Figure 4.10 and 4.11 shows the Solo gate level design for this. The dynamic shift

register used for weight storage and logic tree evaluation in the previous design was

replaced by a static D-type flipflop. Each D-type consists of 10 gates (30 stages). Solo

defines a stage as "a single, equal size p and n type transistor". The complete synapse

circuit required 331 stages (662 transistors). This is approximately four times as many

as those needed for the CAESAR synapse. The reason for this is that Solo has

predefined parts consisting of logic gates that perform specific functions. The synapse

had to use the available parts wired together to perform the required logic function,

whereas the synapse designed with CAESAR, used the minimum possible number of

transistors to perform the logic function. At this point the synapse was simulated by

Chapter 4 	 80

0
0)
0)

ID
(U

0) 	 0)
(I)

0) t)
0
N

C.

co 	 C
CTJ
-l()J

U) 4-

0) (0
00

(0

10

LO

0 -

	

(1) 	(i)
C- a)
Q) £
> (I)

4J -4

9-

•
(0
L
o <

:j
OE

(U J

	

• 	(0
(1)

ci) U
C
0 4)

11 L

	

(1) 	(0
C. 0
U)
>

0
0

	

r1 	 1

0 1))
In

'-I

	

(D 	 . 	U)
('Jo)
U) I:

	

ii. 	 LU 	 0 	 C) 	 CO 	
I 	 Lu 	C11

Figure 4.10 Gate level design of the sign-extend logic.

Chapter 4 	 81

o 	c
(E
L1J 	 C 	 I

I 	U) 	 I
(0 	I 	 I

>. I
U)
ow

0
0)

(0

CD
Ln

L oJ
C

- U) _
U)
U)
00

4-
(0

U)

In 	
fri

to

o
C-..

•s-.'

U) U)
C-
U)

.0
(I)

>
1

-4--)
4-

(0
C_ .0

o
(I)
0

•
o

0
(0

(T) U)

In
U) (0

> .4-

[1 0

-4 o .l
(1)

U)

CD

•
cJ
cnr

0)
0)

WU)

Figure 4.11 Gate level design of the sum/carry logic.

Chapter 4 	 82

the EXERT simulator to verify that it was adding, subtracting and shifting without

error.

4.3.2. Synapse Array Layout and Simulation

A 3 X 9 synapse array was constructed again at the gate level design and D-type

flipflops were used for the control circuitry shift registers. Figure 4.12 shows the Solo

interpretation of the synapse array. Each "part" represents the 3 synapses in each row

sharing the same neural state. The three "sum out" lines are adjoined to the adjacent

"part" to the right. The final "sums out" appear at the rightmost "part", the ninth

synapse in each column. The 8-bit and 9-bit shift registers required for the lsb, sel and

se2 signals are below the synapse array. Once the EXERT simulator had verified the

function of the array, the design work for the accelerator chip was complete.

The layout procedure was performed entirely by the compiler using the PLACE,

GATE and ROUTE programs. EXERT was used again as a final check that the gate

delays and FANOUT were still within the set limits. As with the CAESAR, the

simulation on Solo, proved to be the slowest part of the design, taking approximately

the same man and CPU hours to achieve a full simulation of the array. For this, at

least 95% of the transistor nodes had to toggled as part of the design validation

process.

Another design validation constraint required that all metal track lengths must be less

than 10000 p.m. As neural network designs have a large number of interconnects

between parts, several long track lengths occurred in the routing around transistors.

Therefore buffers had to be added on all long track lengths. Figure 4.12 shows the

clock and load signals with buffers dividing up the lengths of track. The area of silicon

used for the array was 19.28 mm' (4.79 x 4.03 mm) made up from 9360 stages (18720

transistors) and the area of the array including pads was 29.13 mm' (5.78 x 5.04).

4.3.3. Test Procedure for the integrated circuit

The manufactured integrated circuit was tested using the Digital Analysis System with

the same data input programs generated for the NICE design test. The first test

showed that the 216 weight shift register and the 3 control shift registers had the

correct function. This is shown in figure 4.13. The second test applied a neural state to

r stt'
IA sxrbt I 	sisb7

n- tri1 fcBe.

'1 ' 	' - ys.Ar

iL

11

ae

eli

Chapter 4

- 	0

J

-I

H

:1 	1 2 	3 	1
4 	

1
5

83

6 	7

6 	
I

JT

LC'PW 1 73
-J 	 ___________________-': •____________ 	- 	sd_______L__i_______1

LIr

t__ 	

4

tLj 	 141

4_1

- iFft, _

C 	 .b a
SB

b I 	 e
!

out
_ 	

iri
B

_____ 	 _______ 	

se9 	

FEE

cut 	 e lqhtnh 9 14
out

:_

Eurooean Silicon Structures. Solo iesicfl 3.0.0 Draft ve r sion 60.0

1 	ra 	a''a 	Im r --

Figure 4.12 Solo interpretation of the synapse array

Deone zo

Chapter 4 	 84

TIMING OIAM 	MAG: 	 CUW 5Q: 178
DELTA TIME: EI

GRCH 	•VV.M 	yV'.i'.. 	vvvv

nil CH M
LUU

a 	
• DATA

a

W IF, 1

5A3 SE IN
5A2 SE OUT
5A TEIN
5A 8 TE OUT

587 LSBIH
586 LSJJT
585 SA OUT
5B4 SBOUT

5B3 SC OUT
582 SA IN
58 1 SB IN
588 SBIH L

Figure 4.13 DAS timing diagram for the Solo synapse array.

p.

p.

p.

1
1
1
8

p.

P

Chapter 4 	 85

each synapse row and allowed the chip to compute the total activity in each column

according to equation 4.1.

The following tests were done.

All Tij = 0 and all V = 1, "sa in", "sb in" and 'sc in", the sums at the top of

each synapse column were given 16-bit random words.

The integrated circuits gave the correct results of 'sa in" = "sa out', "sb in" = "sb out"

and "sc in" = "scout".

Positive and negative random values of T were input to the array and each

synapse row was given a known state. x, Xb and x were calculated by hand and

then compared to the values calculated by the integrated circuit. The answers

were the same indicating that the array was computing in the correct way. These

results were obtained at 5MHz, the maximum operating frequency of the DAS.

Once the integrated circuit function had been verified, four of the chips were mounted

with hardware support on a board. The hardware support consisted of memory to hold

the neural weights and states and control circuitry to supervise the calculations in and

out of the neural accelerator chips. The board was interfaced to a host Sun 3/110 Work

station and its function is described fully in Chapter 5.

4.4, Conclusions

The designs of the two synapse array integrated circuits using CAESAR and Solo 1400

CAD tools gave interesting comparisons between the tools. Although the two designs

had exactly the same function, major differences occurred in the design time, the

number of transistors used and the area of silicon used as shown in table 4.2.

Synapse Array Array Chip No. of No. of

Design 	transistor transistor area area weeks to weeks to

count count in mm2 in mm design manufacture

CAESAR 	170 4958 5.70 16.61 36 24

ES2 Solo 	662 18720 19.28 29.13 8 6

Table 4.2 Comparisons between the MCE and Solo designs.

Chapter 4 	 86

The advantage of the layout facility of CAESAR was that it allowed a compact design

using the minimum number of transistors possible for the function. This was proved

by the large difference in the number of transistors per synapse. The ES2 design had

four times as many transistors and used five times as much silicon area, allowing for

the minimum geometry differences in the process. The disadvantage of CAESAR was

that the layout process was long and tedious and prone to errors.

The major advantage of Solo was the turnaround time from the initial design to

receiving working chips. This was 14 weeks for the neural accelerator chips compared

to 60 weeks for the CAESAR/MCE design. Solo was easy to learn and by its design

facilities guaranteed that the chip would function in hardware.

The software simulation times on both designs were approximately the same, although

the Solo simulation had rigorous design constraints that had to be adhered to, hence

the guarantee of working silicon.

Chapter 5

Chapter 5

Neural Network Accelerator Board

The neural network integrated circuit described in chapter 4 is a 3 x 9 synapse array

using a reduced arithmetic technique to compute the neural function x1 = 	T1 V,

where x1 is the activity of neuron i, T. is the synaptic weight between neurons i and j

and V is the state of neuron j. The integrated circuit is to be used as a hardware

accelerator for simulations as, for example, described in chapter 3 for the learning and

recall of patterns.

The size of the synapse array on one integrated circuit alone was too small to be used

with a learning algorithm to perform learning and recall simulations. SPICE simulations

of the single-phase clocking technique showed that the neural accelerator would

operate upto 20MHz allowing each synaptic column to compute the activity in a

minimum time of 1.3s and if the synaptic weight set were stored in supporting RAM

(random access memory) with an access time of 45ns, the weights for 27 synapses

could be loaded into an integrated circuit in 9.72s. Therefore, the projected

minimum total computation time for the three activities is 11.02i.s. This performance

of a hardware accelerator is much faster than speeds attainable in a natural neural

network. Hence, a paging architecture described in the following section has been

developed to "trade off" some of this excessive speed for increased network size.

5.1. "Moving Patch" Paging Architecture

To increase the number of simultaneous synaptic calculations, 4 of the chips have been

cascaded to give a 12 x 9 array. The paging architecture uses this new array size to

give a virtual array size of 288 potentially totally interconnected neurons and acts as a

neural accelerator to a host Sun computer. The paging architecture can be visualised as

a "moving patch" where the small "patch" (the 12 X 9 array) simulates a small number

of synapses sliding across a much larger array. On each new simulation, the "patch"

moves down the synaptic column to the adjacent patch and the new synaptic weights

are loaded into it. A general architecture showing this is in figure 5.1.

Chapter 5

000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000

12 x 9 synapse bpatchn
moves over array

2 	3 	4 	 24

mu
Full synapse

set for 288
neurons

Figure 5.1 Paging architecture of passing a small synaptic "patch" over a larger synaptic
array.

Each "patch" computes the partial activity for each column of synapses. These

activities are subsequently held in memory until the next "patch" is ready to compute.

The partial activities are then fed into the top of the new "patch" to be added to the

new activities being computed. This ensures that each synaptic column receives a

contribution of activity from each synapse in it. A virtual array size of 288 neurons

and a "patch" size of 12 X 9 synapses gives 32 "patches" in a column and 24 columns

of "patches". After 32 iterations the "patch" reaches the bottom of the first column, the

total activities for the first 12 neurons have been computed and are then stored in local

RAM. The "patch" then proceeds to iterate down the next column of "patches", until

all 24 columns have been iterated. When all the activities have been computed, they

are downloaded to the host, which then thresholds them according to the 5-state

activation function to form the new set of neural states for the array. The host

computes the learning and the weight updating for the network. Details of the neural

accelerator functioning as a pattern associator using the delta learning rule are given in

Chapter 6.

5.1.2. Hardware Support for the Paging Architecture

The neural network accelerator board requires hardware support circuitry to perform

the paging operation described in the section above. The board runs as a SLAVE

Chapter 5 	 89

module, which responds to the data bus transfer (DBT) operations generated by the

MASTER, the host Sun processor. board. The neural accelerator board is interfaced to

the host Sun by the Sun's VMEbus [97]. The VMEbus allows communication between

the MASTER and the accelerator board and in this case, it enables the weights and

states calculated by the host to be transferred to the on-SLAVE RAM. The

accelerator board runs independently from the host while it computes the neural

activities. Once this has been done, the board signals to the host to read and threshold

the activities.

One complete computation cycle requires the synaptic weights and neural states for

every patch to be unloaded from on-board RAM, the partial activities between

adjacent patch computations to be stored in shift registers and the total activities to be

stored in memory, until the "patch" has iterated across the whole board. Therefore, 3

separate RAMs are required to store the synaptic weights, present neuron states and

new neuron activities. Twelve 16-bit shift registers synchronise the partial activities of

the previous "patch" to be added correctly to the present "patch" computation and an

18-bit counter controls the "patch" iteration across the array. Figure 5.2 shows the main

structure of the board.

These parts constitute the major components of the neural accelerator board, that

would be required regardless of the host and interface environment for the activity

thresholding and weight updating. However, the operation of the VMEbus interface

system influenced some of the details of the board design in order to tailor it to the

VMEbus specification requirements for the transferring of data between the SLAVE

and MASTER. Hence the neural accelerator board is divided into 2 parts. The first

is buffering and control circuitry to allow the VMEbus to write to and read from the

SLAVE RAMs. The second part is buffering, control circuitry and a SLAVE address

system for the neural activity computation when the board is running independently.

Section 5.2 gives a brief description of the VMEbus and its implementation with

respect to the neural accelerator board requirement and section 5.3 gives the

subsequent design of the board, showing details of how the "patch" computation and

the "patch" iteration is achieved.

Chapter 5

data lines 	 -

weight 	I 	Ti - bit

-" 	 RAM 	
counter

VME 	

bus 	 P iri 	J_I

accelerator chips

state
RAM

adressii

Figure 5.2 Main structure of the neural accelerator board

5.2. VMEbus Interface

The VMEbus is an interfacing system for use in interconnecting data processing, data

storage and peripheral data control devices in a closely coupled configuration. The

mechanical structure of the VMEbus is a backplane, which is a printed circuit (PC)

board with a pair of 96 pin connectors that provide the bus signal paths to the SLAVE

module. The VMEbus interface system consists of backplane interface logic that takes

into account the characteristics of the backplane (its signal impedance, propagation

time, terminal values, etc.), four groups of signal lines called "buses" and a collection

of "functional modules" that can be configured as required to interface devices to the

buses. The functional modules communicate with one another by means of bus signal

lines provided by the backplane.

The interface functions of the VMEbus are divided into 4 areas. Each functional area

consists of a bus and associated functional modules which work together to perform

specific duties within the interface system. The only area used by the neural

accelerator and therefore discussed here is that of 'Data Transfer". Details of the other

Chapter 5 	 91

three areas - Data Transfer Bus Arbitration, Priority Interrupt and Utilities can be

found in [97-99].

The Data Transfer bus (DTB) contains the data and address pathways and associated

control signals. In this area, functional modules called 'DTB Masters" and 'DTB

Slaves" use the DTB to transfer data between each other. The VMEbus MASTER

allows 32-bit (long word), 16-bit or 8-bit (short word) data transfers and 32-bit, 24-bit

or 16-bit addresses. The neural accelerator board requires a 32-bit data bus as the

neural states for one neural accelerator chip are signalled on a 27-bit and a 24-bit

address bus. The SUN processor board allocates specific areas of its memory for the

different sizes of VME data and address buses [99, 100]. The area of memory in the

24-bit VMEbus Address Space Allocation reserved for "small user devices" has

sufficient memory space for the data which is to be transferred to the neural

accelerator board. The physical (hexadecimal) address range of this area is OxD00000 -

OxDF0000 representing the addresses A 23 - A 20 , A 19 - A 16 , A 15 - A l2 , A 11 - A 8 , A 7 - A 4

and A 3 - A 0 . Address lines A 23 - A 19 are permanently at address OxD (1011 2).

5.2.1. Slave Interface to the VMEbus

The 3 neural accelerator board RAMs are addressed by the VMEbus. The weight

RAM requires 12 data lines (as 12 RAM chips are required to store the weights for

288 neurons) and the neural state RAMs require 27 data lines to load the states (the

maximum number of data lines is 32), therefore the physical address range in the

VMEbus address space allocation is split up so that each of the 3 RAMs is addressed

individually, as is shown in table 5.1. The sectioning of the Address Space Allocation

allows the address line A 19 —A 16 (ie. the lines signalling address 3,4,5 or 6 to determine

the accessing of the RAMs) to be gated to form the "chip select" and "read/write"

control signals to each RAM. Figure 5.3 shows the SLAVE interfacing to the VMEbus

and how the address lines have been used for the various control signals.

When the neural accelerator board runs independently of the MASTER while it is

computing the neural activities, all the VMEbus data and address lines must be

buffered to allow them to be switched off. The address lines use uni-directional buffers

and the data lines use bi-directional buffers as data is written to and read from the

SLAVE. Table 5.1 shows that data is written only over the VMEbus address range

Chapter 5
	

92

/
Address RAM

D6xxxx "RUN" signal to SLAVE to compute activities

D5FFFF
to Address and read from "activity" RAM
D50000

D4FFFF
to Address and write to "neural state" RAM
D40000

D3FFFF
to Address and write to "synaptic weight" RAM
D00000

Table 5.1 VMEbus address space allocation to the SLAVE RAMs

OxD00000 - OxD4FFFF. Over the range OxD50000 to OxDSFFFF the activities are read

back from the SLAVE. In figure 5.3, the signal "read" is active low on address

OxD5FFFF, which sets the data buffer direction so that data may be read from the

board only at VMEbus address OxD5XXXX. The VMEbus has its own control lines

for the Data Transfer Bus which are used in the SLAVE interface design. These are

given in Appendix C.

Once the MASTER has written the weights and states to the neural accelerator board,

the VMEbus address is set to OxD60000, which sets the signal "run" shown in figure

5.3 to "active low", to enable the accelerator board to compute independently. The

"run" signal is gated to the interface buffers so that they become disabled at this

address. When all the activities are computed, the VMEbus switches to address

OxD50000 to read back the new values.

5.3. Neural Accelerator Board Architecture

The VMEbus address OxD60000 allows the SLAVE operation to be controlled

completely by an 18-bit counter. The frequency of the counter is determined by a

quartz oscillator. The counter controls the paging architecture of the "patch" giving the

288 neuron array. It also provides the address lines, chip select and read/write lines to

the RAMs and the control signals necessary for the neural accelerator chips. Table 5.2

Chapter 5
	

93

active'high' on address OxDxoocx

active iow on address oxeoocx \ DSO

A-A 23 iS 	 b DA

Nrunl L!J I
active W

on

 address D5:__

'_)

Ale -iS 	23
-A

Ioglc NO, I
logic controls chip
select/readlwrite A— A13 	

A 1 - A. c>t logi

for weight, state and Ub

 ____ 	____ 	
RAMS

'on enable

A,— A1 	 buffer signal I
r)i

AS

write

D-.-

'read

D31- D 24

I)

DTACK

8-bit shift
register

on enable

/
buffer signal

b
'fl END I
• signal from

_LJ board to tell
host it has
finished b lU _________

DSo DL)
LW 	 0fl enable

buffer signal

data direction
buffer signal

Address and END buffers are uni-directional

Data buffers are bi-directional

AS - address strobe

DS01 - data strobes

LW - longword

syscik - clock provided by VMEbus

D23- D O
_____ I 	_____

I) I I I__ _____ I ei

LU

D 15-D3 E:)

D7- D o 	b

I_ _E::)

Figure 5.3 SLAVE interface to the VMEbus

Chapter 5
	

94

shows how the counter controls the "patch" iteration.

Count or A 17 A 16 A 15 A 34 A 13 A l2 A ll A 10 A 9 A 8 A., A 6 A 5 A 4 A 3 A 2 A 1 A 0

Address Line

Function 5 MSBs count the Next 5 bits count 8 LSBs count 1

number of columns the number of complete "patch"

of 32 "patches" "patches" in a of 12 X 9 synapses

(ie. 0 - 23) to column (ie. 0 - 31) computation

give 288 neurons to give 288 (0 - 255 ciks)

synapses per column

Example: 100112 101102 xxxxxxxX2

Table 5.2 The function of the SLAVE 18-bit counter

The example in table 5.2 gives addresses A l2 - A 8 as 101102 = 2210 and addresses A 17 -

A 13 as -10011 2 = 1910.Therefore, this address implies that the 23rd patch in the 20th

column is computing the 23rd partial sum of the 20th neuron. Address A., - A 0 counts

through the patch computation. The paging architecture of the "patch" is given in

greater detail in section 5.3.2.

5.3.1. "Patch" Computation

A "patch" uses the 8 LSBs of the board counter (ie. clocks 0 - 255) to compute the

partial activity, with the remaining 11 bits of the counter being used to count the

iteration of the "patch" over the whole array, as is described in the section above, to

achieve 288 neurons. Figure 5.4 gives a flow diagram explaining the 'patch" operation.

The first 216 clock cycles require that the 8-bit weights for the 27 synapses are loaded

bit-serially into each accelerator chip. The neural states are applied to the accelerator

chips on clock cycles 216 - 241 while the activity is being calculated. The shift

registers are active on clock cycles 217 - 232 to allow the previous partial activity of the

adjacent "patch" above to be added to the present "patch" partial activity. The LSB of

the present partial activity exits the accelerator chip on clock cycle 226 and the partial

activity is loaded to the shift register over the clock cycles 226 - 241, where it is held

Chapter 5
	 95

Board function 	 clock cycle
for 1 "patch"

Load 27 8-bit weights 	 0-215
to accelerator chips

START ACTIVATION 	 216
COMPUTATION

Activate control signals
LSB, signextendl,2

Unload neural
states from RAM

	

START shift register 	 217

Unload Partial activation
of previous "patch" from
shift registers to top of

present "patch"

	

1st bit of new partial 	 226
activity exits from

accelerator chips

	

Load new partial activations 	 226
to shift register 	(or to
activation RAM if last

"patch" in column)

	

Finish unloading previous 	 233

partial activations

from shift registers

	

Final bit (MSB) of new 	 242

partial activation in
shift register

State RAM, Shift reg's off 	 243

Ready for next 'patch

Figure 5.4 Flow diagram explaining the 'patch" operation

Chapter 5 	 96

until it is required for the next adjacent "patch" in the column. There is, therefore, an

overlap of 7 clock cycles (226 - 232) while the shift registers are unloading the previous

partial activities and simultaneously loading the new partial activities. If the "patch" is

the last one in a column, the activities computed will be the total activities for that

column and hence will be loaded directly to the activity RAM, instead of the shift

register, to be read back later by the VMEbus. The shift registers are then cleared for

the start of the next column as the first "patch" in each column does not have any

previous partial activity to be added in.

A detailed schematic of the neural board is shown in figure 5.5. The weight RAM

requires 12 - 64K x 1 data bit RAMs, the state RAM requires 4 - 2K x 8 data bit

RAMs for 27 state lines (3 lines per state) and the activity RAM requires 2 - 2K x 8

data bit RAMs for 12 activity lines per "patch". The weight and state RAMs are

written to and addressed by the VMEbus, and read on being addressed by the board

counter. The activity RAM is written to on being addressed by the board counter and

read from, when addressed by the VMEbus. Buffering is therefore required to separate

the board data and address lines from the VME data and address lines to avoid

contention. The maximum operating speed of all the RAMs is 45ns. The partial

activities are stored in 12 16-bit shift registers (2 each x 8-bit shift registers). The

control circuitry is made up of separate integrated circuits which include 2, 3 or 4

input NOR, NAND, OR, AND and inverter gates. This provides the signals "load",

"lsb", "sel", "se2" for the accelerator chips as described in Chapter 4, along with the

shift register clock signal and the "chip select","read/write" and "output enable" signals

for the weight, state and activity RAMs. The "load" signal allows the synaptic weights

to be loaded into the accelerator chips and is active "high" for the clock cycles 0 - 215.

When the "load" signal is "low" on clock cycles 216 - 255, it allows the weights to be

shifted around its 8-bit shift register during the activity computation. A waveform

diagram showing the board control signals is given in figure 5.6.

5.3.2. Array Computation

As described earlier in the chapter, the 288 neuron array is achieved by iterating the

"patch" 32 times down a column across 24 columns. The "patches" in a column are

counted by the board addresses A l2 - A. and the number of columns is counted by the

addresses A 17 - A 13 as is shown in figure 5.7. The 12 x 9 synapse array of the "patch"

State RAM addressed by

VMEbus and board counter

State written to RAM by

VMEbIJS and read by board

z
C

Is

Im

as

a'

0-

(D

a'

0

1
a'

0
a'
-I
0

Weight RAM

Weights for

columns 16-2

Weights for

columns 8- 15

Weights for

columns 0-7

states

c7hipi 	0 states

0

C)

a'

Weight RAM addressed by VMEbus

and board counter 	
(Il

\ Weights loaded by VMEbus

and read by board to

supply accelerator chips 	 Is-bit

counter
A o. 7 	 counts

board

buffers 	
computation

A815
 uiLI

END

states

[I> 	chip 	
A, 	44)ft counter

Control logic

QOJH shl
registers 	

p:'ev:/wrfte

	

............ : 	tal
................................

	

mm 	mm.............
Activity RAM addressed by board 	State RAM chip select/read
and VMEbus. Total Activities 	 Aelivity RAM
loaded by board and read 	 Activity RAM chip select/react/write

byVMEbus
buffers

Control 	
A0 - A17

Logic PI

-1

09

(D

Ui

.c'

1

0.

09
1

0

Cr
0

1
CL

C

14.

-,
0

09

rM

o 1 	
215216217218219220221 222223224225226227228229230231 232233 2342352382372382392402412422432 45 244246255

II _

unload previous 	- - - -
partial activation

output of activation 	- - - -
from accelerator

shift register 	- - - -
clock on

LSB 	 - - -.

signextendi 	- - --
(state= +1-1)

signextend2 	- - - -
(state=+I-0.5)

clock count

clock

load weights

set states

0
CD
-1

Li'1

5 volts
All signals are active Ihighu ie. OVOb

Chapter 5

<0_0_0000O,0I0I0I0 0

0000 	 0000———-
0000000w — — — — — 00000000

Row Address

	

A AAAA 	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1211 lOW e
00000 0

	

00001 	1

	

00010 	2

	

00011 	3

	

00100 	4

	

00101 	5

	

00110 	6

	

00111 	7

	

01000 	8

	

01001 	9

	

01010 	10

	

01011 	11

	

01100 	12

	

01101 	13

	

01110 	14

	

01111 	15

	

10000 	16

	

10001 	17

	

10010 	18

	

10011 	19

	

10100 	20

	

10101 	21

	

10110 	22

	

10111 	23

	

11000 	24

	

11001 	25

	

11010 	26

	

1 101 1 	27

	

11100 	28

	

11101 	29

	

11110 	30

	

11111 	31

N coyc CY

Total actMties are read to activity RAM

Figure 5.7 Array computation

Chapter 5 	 100

fitted conveniently into a 288 neuron array and could be counted easily with an 18-bit

counter.

With each "patch" iteration down a column, the counter address given by A l2 - A 8

increments by 1, until it reaches the address 11111 2 =3110,at the bottom of a column.

This address then signals to the activity RAM to read in the total activity values and to

clear the partial activity shift registers ready for the 1st "patch" in the next column.

Each column computes the activity for 12 neurons and is iterated 24 times counted by

the address A 17 - A 13 . Hence, 101112 = 2310 is the last column in the array. Address

A 17 - A 13 and A l2 - A 8 = 10111111112 signals the final 12 activities of the array are

ready to be loaded to the activity RAM. The next address 1 1 0 0 0 0 0 0 0 0 has A 17

and A 16 both equal to 1, which is used to signal to the VMEbus that the board has

completed its calculations and is ready to unload its activities to the host Sun. This is

the signal "END" shown in figures 5.3 and 5.5.

The maximum RAM speed of 45ns would allow the board to run at a maximum speed

of 22.2 MHz. However, with the control circuitry and buffers incorporated in the

board level design to support the accelerator chip computation, delays were introduced

which allowed the circuit to operate at only 8 MHz. Although this speed is slower

than was originally anticipated, it did not greatly affect the array computation time

with respect to the speed of operation of the software. This is because the computing

and loading of the new neural states takes, by far, the majority of time in a complete

board run cycle of loading weights and states via the VMEbus, computing new

activities, thresholding the activities to the new states of the network and subsequently

calculating the new weight set for board updating.

Figwe 5.8 shows a photo of the neural board and figure 5.9 shows the neural board

interfaced to the host Sun workstation.

5.4. Software to Control the VMEbus

Software controls the function of the VMEbus and transfer of data between the host

Sun and the neural board. The program in Appendix D shows how this is done. The

declaration "addr= VME24d32(VME_BASE,VME_SIZE,&fd)" maps the 32 bit data,

24 bit address VMEbus memory area in the host directly to the addressing on the

L/
F

-L

Figure 5.8 Photo of the Neural hoard

021

p.
CD
-i

It
1.4

z
CD

0

77

-1
0

CD

C)
CD

0

CD

0

'1

z

T
LA

Chapter 5
	

103

board.

The program reads weights from a file "weight—in" and writes them in parallel to the

appropriate address locations in the 12 integrated circuits of the weight RAM on the

board. It then readsthe states from a file "state—in" and writes them to the state RAM.

Line 64, "addr[RUN]O", signals to the board to start running and line 66,

"check= addr[RUN]", reads back from the board to check if A 17 and A 16 are both at a

logic "1". When this condition is satisfied, the neural activities are read back to the

host.

At this point the board was verified as operating correctly, with all weights in the input

file identical t and the states for each "patch' identical (states were changed between

adjacent "patches"). The file "weight—in" was in the form of 3-bit hexadecimal

numbers (ie. D 11 - D 0), the state file was 7-bit hexadecimal numbers (ie. D 26 - D 0) and

the activities were read back as 3-bit hexadecimal numbers. This is the form in which

the VMEbus handles data. This level of format of the input and output data is

suitable for a low level test of the board. Ideally, the weight file has each weight as an

8-bit two's complement number in a 288 x 288 byte array with indices corresponding to

the 288 x 288 synapse array and the state file has each state as + I or -I in a 288 bit

array corresponding to the 288 neural states. In this form, the data is much easier to

handle for neural learning simulations. The activities also need reorganising from 24

blocks of 12 16-bit binary numbers to a decimal number that can be thresholded to one

of the 5 neural states. Chapter 6 gives details of this along with simulation results of

the board operating as a pattern associator.

t Although all the weights in the input file were identical, the weights in each row of synapses in a 'patch be-
come shifted. During computation the weights are shifted around the shift register. Therefore, row I has no shifts,
row 2 has 1 shift, row 3 has 2 shifts row 8 has 7 shifts and row 9 has 8 shifts (ie. no change) before the weight
is involved in the multiplication'. Avoidance of this shifting of weights should have been taken into account during
the integrated circuit design.

Chapter 6
	

104

Chapter 6

Simulations using the Neural Accelerator Board

The testing of the neural board described in Chapter 5 verified that it computed the

287

neural function 	T1, V successfully and loaded the new activities back to the host
i ,j =0

Sun for thresholding to new neural states. At this stage, identical weights and states

were used for each "patch" to make the testing easier. However, this level of testing

proved only that the board was loading and unloading data to and from the RAMs

and shifting and calculating data on the correct clock cycles. Further software was

required, that incorporated a learning algorithm with the board computing 2Tjj V1 to

verify that the 5-state activation function hardware implementation could learn and

recall patterns. A second software program was required for the same size network as

the hardware and the same learning algorithm, but which computed 2Tjj VJ in

software, in order that the hardware and software versions of the 5-state activation

could be compared.

6.1. Software Requirement for the Neural Board

There are four main requirements for the software to enable simulations using the

neural accelerator board.

1. 	The nine neural states for each "patch" are passed by the VMEbus in a 7-bit

hexadecimal word. To make the handling of the simulations more user friendly,

the neural states should be written as +1 10 or —1 10 for each state. Therefore,

software was needed to convert the nine states for each "patch", written as + 1 1 0

of -1 1 0, into a 7-bit hexadecimal number. For example, if each neural state for a

"patch" = —1, the hexadecimal number would be 0x2492492, ie., the least

significant number, 2 1 6 represents 0010 2 , which represents in turn the values for

rs2, pml, killi, and rsl. Therefore, if the neural state is —1, then rsl=0,

killll, pmlO and rs2=0. The second least significant number, 9 16 = 1001 2 ,

gives the values for kil13, rs3, pm2 and kilI2 respectively etc..

Chapter 6 	 105

The weights are calculated in software using floating point numbers. The

accelerator chips, however, require that the weights are two's complement

numbers. Therefore, each weight must be converted from a floating point number

to a two's complement number. Furthermore, the precision of the 8-bit weight

allows the weight to be in the range —127 to + 128 so weights outside this range

must be clipped [101] to the permitted maximum and minimum values.

The weights must also be loaded in the correct order into the accelerator chips.

Each accelerator chip is a 3 x 9 array, so for example, the 1st chip in "patch" 1

uses the weights T 0 , 0 —T 0 , 8 , T 10 —T 18 and T 2 , 0 —T 2 , 8 , the 2nd chip in "patch" 1 uses

weights T 30 —T 38 , T 40 —T 48 and T 5 , 0 —T 5 , 8 and the 1st chip in "patch" 2 uses

weights T 09 —T 0 , 17 , T 19 —T 117 and T 2 , 9 —T 2 , 17 etc.. If the new weights are

computed in a 288 x 288 array, ie., 1st column is T 00 —T 0287 , 2nd column is

T 1 , 0 —T 1 , 287 etc., then the appropriate weights must be taken from the array in the

correct order for each "patch" and loaded bit-serially into the accelerator chips.

The total activities are also 16-bit two's complement numbers, which are loaded

to the host Sun in that form. The software is required to convert these to floating

point numbers, which can then be thresholded according to the 5-state activation

function to give the new states of the network.

The final part of the software is a learning algorithm that uses the new states of

the network to update the weights. Details of the learning algorithm are given in

the next section.

6.2. Neural Accelerator Board as a Pattern Associator

The Pattern Associator Model

The simulations run to verify the 5-state hardware learning capabilities used the

network configured as a pattern associator. This is where a set of input to the units

will cause a certain pattern on a set of outputs from the units, whenever the input is

applied. Pattern associators can be implemented as a set of units causing a pattern of

activation over another set of units without any intervening units. They have been

widely used in distributed memory modelling with the Hebb rule and the delta rule. A

pattern associator has a set of input units connected to a set of output units by a single

Chapter 6 	 106

layer of modifiable connections (weights) that are suitable for training with the Hebb

and the delta rule. It would, for example, be capable of associating a pattern of

activation of one set of units corresponding to the appearance of an object with a

pattern on another set corresponding to the aroma of the object, so that when an

object is presented visually, causing its visual pattern to become active, the model

produces the pattern corresponding to its aroma.

Single layer pattern associators, have several properties that make them attractive as

models of learning and memory. They can learn to act as content addressable

memories and can generalise the responses they make to novel inputs. Hence, if a new

pattern on the input units to the network is similar to one of the old ones, it will tend

to have similar effects and as learning of the interconnections occurs in small

increments, similar patterns reinforce the strengths of the links they share in common

with other patterns. Therefore, if the same pair of patterns is presented again and

again, but each time a small percentage of random noise is added to each pair, the

system will automatically learn to associate the similarities of the two patterns and will

learn to ignore the noise. Effectively, an average of the two patterns will be stored with

the slight variations removed. Conversely, if the network is presented with completely

uncorrelated patterns, they do not interact with each other. Another property of

pattern associators is their pattern retrieval performance degrades gracefully with

damage and noise, in that they do not require a perfect copy of the input to produce

the correct output, although its strength will be weaker in this case.

The Delta Rule

The learning algorithm implemented in the simulations was the delta rule. The delta

rule involves the presentation of a set of input and target output patterns. The network

uses the input pattern to produce its own output pattern and then compares this to the

desired output, or target. It is the difference between the target pattern and the

obtained pattern that drives learning. If there is no difference, no learning takes place,

otherwise the weights are changed to reduce the difference. The rule for changing

weights following the presentation of input/output pair n is given by:-

= 71(i1 —o,)v 	 (6.1)

where q is the learning rate, i,, is the target the the ith component of the output

Chapter 6 	 107

pattern for pattern n, o,,i is the ith element of the actual output pattern produced by

the presentation of input pattern n, v j is the jth element of the input pattern and

A. w is the change to be made to the weight from the jth to the ith unit following

presentation of pattern n.

The delta rule also requires that the pattern sum of squares, pss, is measured [102]. The

pattern sum of squares is the sum of the squared error over all output units, where the

error for each output unit is the difference between the target and the obtained state of

the neuron, ie., for an N neuron network:-

pss = 	(, rn 	
)2 	 (6.2)

n.j =0

This quantity is calculated for each pattern processed to give the total sum of squares,

tss, where:-

N

tss = 	pss 	 (6.3)
n =0

The total measure of all patterns, tss, gives the error between the target and the actual

output states. Therefore, on the first iteration, tss will be large (tss> >0). As the

connections between the input and the output are learned, tss-.0. When tss0, the

actual output equals the target output and the pattern associator can be deemed to

have learned the mapping between the input and the output.

The software for implementing the delta rule is straightforward in that it only requires

input and target pattern pairs to be read from files, calculation of the actual output

from the network activation and calculation of Li,, w 1 from equation 6.1. Optimum

values for the learning rate. 'q, and 'Temperature", T. for the network were found by

trial and error using a 36 neuron software model with the 5-state activation function;

The combination of T and i that gave the least number of iterations to learn sets of

patterns was used. The learning rate is a constant of proportionality that dictates how

fast the network will learn, and the 'Temperature" controls the sharpness of the

transition of the 5-state activation function between the states —1 to + 1.

6.2.1. Performance of the Accelerator Board

Three programs were used to obtain results to show the performance of the 5-state

activation function in hardware. The first, given in appendix E, incorporates running

Chapter 6 	 108

the neural accelerator board in a pattern associator network. The main four sections

described in section 6.1 can be seen. The function "boardrun", declared on line 61

and called on line 140, allows the board to compute. The length of computation time

taken by the board to compute can be measured by using the prof command in unix.

prof (display - profile data) produces an execution profile of the program, which gives

the number of milliseconds spent on a call to a function.

The second program in Appendix F has the same number of synapses, weight size and

activation function as the first, but executes the neural activation computation in

software with the weights and activations as floating point numbers. The function

"Actsum", declared on line 19 and called on line 65, computes in software the

equivalent task of the neural board. Therefore, by using the display - profile data

command, the run time for the function "Actsum" could be found. The values given

for "boardrun' and "Actsum" showed the comparative speeds of the hardware and the

n—I

software for the computation E T, V 1 for an n-neuron network.
i,j =0

The third program is identical to the second, but used a sigmoidal activation function

instead of the 5-state activation function. The three programs allowed a comparison of

performance between the 5-state hardware, the 5-state software and the sigmoid

software activation functions. Comparisons were done on the time to compute

n —I

T,3 V and the number of iterations each took to learn the requisite sets of input
i = 0

and target patterns. The expected results from these comparisons should show the

sigmoid activation function to learn patterns using the least number of iterations of the

three programms. The 5-state activation function in hardware and software should

learn with the same number of iterations.

The size of the network chosen to run the simulations was 36 x 36 synapses (36

neurons). Although the board computes the activation for a 288 neuron network,

simulation to judge the performance of the three networks alone can be run with

equivalent results on a smaller network. The main reasons for using a smaller network

were:

Software simulations of the 288 neuron network were intolerably lengthy.

Formatting the input files input for a 288 neuron network was also a long and

Chapter 6
	

109

tedious task.

3. The ordering and loading of the weights of the 288 neuron network was slow on

the host Sun 3/110. The Sun's own memory was not large enough to hold the

array sizes required for the weights and therefore the Sun had to access the file

server for extra memory. The process of swapping data to and from the file server

slows down the iteration time of the hardware simulations. This slowness could be

alleviated by the Sun having more memory of its own.

Simulation Procedure

The simulation procedure for each of the 5-state hardware, 5-state software and

sigmoid software activation function networks was as follows:-

Six sets of 20 random input and target pair patterns were generated.

Each of the networks learned each set of patterns in turn.

The number of iterations taken by each network to learn each set of patterns was

noted.

35

The time taken for each network to compute I T,, V was taken for each set of
i ,j =0

patterns (to find the average time over 6 sets).

For the hardware network only, noise was added to the input patterns and the

•noise on the corresponding degraded output patterns was measured and compared

to the target.

For each network simulation:

Each input and target pattern pair had 36 elements set either to + 1 or —1,

'Temperature, T = 50.

Learning rate, Ti = 5.

6.2.2. Results

The results comparing the performance of the 5-state hardware, 5-state software and

the sigmoid software activation functions are given in table 6.1. The results give the

times and iterations for each set of 20 patterns and the average values over the six sets.

A discussion of the results falls into 3 categories.

Chapter 6
	 110

5-state Hardware 5-state Software Sigmoid Software

number time for number time for number time for number of

of
287

T, V of
35

T, V 1 of
35

T,, V 1 of

pattern set
i,j=O

in ms iterations
ij=O

in ms iterations
i,j=0

in ms iterations

1 25.11 7 33.1 5 34.5 4

2 24.00 11 34.0 7 34.43 7

3 25.26 10 34.67 6 33.2 5

4 25.00 7 33.75 4 33.75 4

5 25.00 8 33.98 6 33.6 5

6 24.17 4 33.75 4 33.67 3

average 24.76 7.8 33.89 5.3 33.86 4.7

over 6 sets

Table 6.1 Results comparing the performance of the 5-state hardware, 5-state software
and sigmoid software activation functions

1. Activity Computation Times

The results give the average time for the sigmoid and 5-state software activation

35

functions to compute 	T.,V 1 to be 33.86ms and 33.89ms. The results for the
I ,j =0

287

hardware give the time to compute E T.1 V1 , since the design of the board is such that
I ,j = 0

it will run for only that size of network. A 36 neuron network is obtained by using a

36 x 36 synapse array and setting the unused weights and states to 0. From the board

run times of the 288 neuron network, the times for a 36 neuron network to run can be

calculated, which can then be compared to the sigmoid and 5-state software results.

Table 6.2 gives the measured time to compute the activity for 288 neurons at different

clock frequencies. The results agree with the theoretical ones calculated for the board

run time.

The calculation is as follows:

Time to compute the activity for 288 neurons at clock frequency, f.

= clock cycles per patch no. of columns no. of rows

= 256x32X24X

Chapter 6
	

111

Neural board run times

frequency actual time theoretical time
in MHz in ms in ms

6.0 33.11 32.77

7.5 .26.82 26.21

8.0 24.86 24.58

20.0 - 9.83

Table 6.2 Time to compute the activity for 288 neurons at varying clock frequencies

- 196608
f

The time taken to compute the activity for 36 neurons

= clock cycles per patch no. of columns no. of rows

= 256x3X4X

3072
f

- 3072
Hence, if frequency = 8MHz, time taken

- 8x106

=0.38ms

Therefore, theoretical time to compute a 36 neuron network = 0.38ms

3072
From table 6.1, actual time for a 36 neuron network 	= 196608 x 24.76

= 	x 24.76

= 0.39ms

This shows an 87 times acceleration using the hardware. Although the board-run

times should be the same, the prof command gives varying times for the execution

of the "boardrun" function. This is due to other processes running in the Sun's

central processing unit, that will vary the run times of the function.

These results are accurate enough to show that the board run time at 20MHz

would be within 2.5% of the theoretical time. This is the maximum difference

Chapter 6
	

112

between the actual and theoretical times in table 6.2. A frequency of 20MHz

would have given a 220 times acceleration in hardware. A frequency of 20MHz

was not obtainable owing to timing delays occurring in the board level design.

These slowed down the maximum clock frequency to 8MHz.

2. Comparison of Iterations

The sigmoid activation function required the smallest number of iterations to learn

the sets of patterns, followed closely by the 5-state software activation function.

The hardware 5-state activation function takes on average 2.5 more iterations than

the equivalent software. There are two reasons for this.

The first reason is due to floating point weights being truncated to integer

numbers in the conversion to two's complement numbers. For example if a

floating point weight = 7.75, this becomes truncated to 7 (integer), giving a

10.7% loss in accuracy. The larger the modulus of the weight the smaller the loss

in accuracy.

The second reason is a small change in the value of odd number weights if they

are right-shifted to be multiplied by 0.5. For example,

000001112 = 	10

right-shift by 1-bit 	00000011 2 = 3 	 (instead of 3.5)

= 14.3% change

011001112 = 10310

right-shift by 1-bit 	001100112 = 51 	 (instead of 51.5)

= 1.0% change

This change effects small weights more than the large ones, as shown in the

example, a weight of 3.5 is rounded to 3.

This implies that the overall effect of a truncated, right-shifted weight will have a

considerable loss in accuracy. From the examples above, a weight of 7.75 is

truncated and right-shifted to 3, where its true value should be 3.875, this

represents a 29% error in the final weight value.

Chapter 6
	

113

3. Degradation of Input

To observe the robustness of the neural board in a pattern associator network

under degraded input patterns, the number of degraded elements per output

pattern was measured, along with the maximum deviation of any element in the

output from the equivalent element in the target. The results for one set of

patterns are given in table 6.3. The region where the majority of the numbers of

degraded elements per pattern fall is also given.

Number of bits
changed per
input pattern

Percent
noise

%

Max. no. of bits
degraded in output

per pattern

Majority of
degraded bits

per pattern

Maximum
deviation
per pattern

0 0 0 0

1 2.8 0-11 0-4 0.5

2 5.6 0-16 2-8 1.0

3 8.3 2-18 4-12 1.5

4 11.1 2-19 5-14 2.0

5 13.8 2-20 6-15 2.0

Table 6.3 Table showing degradation in the output patterns with degradation in
the input patterns

The results show that for 1 element change per pattern in the input, the majority

of the changes in the output patterns are between 0 and 4 elements and the

maximum deviation of any output element from the target was 0.5. "Change"

means either + 1 becomes —1 or —1 becomes + 1. As the noise increases in the

input patterns, the number of elements degraded in the output patterns and the

maximum deviation of output elements from the target increases correspondingly.

Therefore, the strength of the output pattern becomes weaker with the rise in

noise in the input. The results vary slightly if different elements in the patterns

are changed or if different sets of patterns are used.

6.3. Conclusions

The neural board operated successfully as a pattern associator network and

accelerated the speed of the activity calculation by 87 times at a derated frequency

chapter 6
	

114

of 8MHz over an equivalent software calculation. The hardware took, on average,

2.5 more iterations (ie. 47% more iterations) to learn the weight set for a 36

neuron network than the software. This was owing to the loss of resolution in the

weights when they were converted from a floating point number to a two's

complement number. Finally, the pattern retrieval performance degraded

gradually with increasing noise added to the input patterns.

Chapter 7
	

115

Chapter 7

Conclusions and Discussion

This final chapter draws together the results from the previous sections regarding

the design, construction and demonstration of the chip set and accelerator board.

In particular, the successes and the shortcomings of the work are highlighted and

recommendations are made for future improvements.

7.1. Conclusions about the Accelerator Board

The 5-state activation function has been shown to operate correctly as

implemented by the accelerator chips. The neural board that incorporates the

accelerator chips has also proved that it can be used as a hardware accelerator in a

simple pattern associator network for the learning and recall of random patterns.
n —1

The neural board accelerated the calculation 	T., V by amost two orders of
I ,j =0

magnitude over that possible in equivalent software simulations. The board also

recalled patterns with the level of degradation in the output following the level of

degradation in the input. A minor drawback resulted from the inaccuracy of

changing floating point weights to two's complement weights, which is caused by

the computer's software rather than the board implementation. The inaccuracy

was incurred by the "multiplication" of a binary number by 2 (right-shifting the

number by one bit), as in the examples in Chapter 6, section 6.2.2, is a peculiarity

of the 5-state activation function. Integer arithmetic would have avoided the

truncation from floating point to integer numbers, decreasing the total error, but

an inaccuracy would still occur in right-shifting an odd two's complement number.

This, for example, would be 14% for the number 111 2 (7) and 1% for 110011 2

(51).

Even though the board accelerated the calculation of the activation, the design of

both the accelerator chip and the hardware support for the chip is now seen to be

non-optimal, so that the advantage of the increased speed was lost by the time

taken to run the software to support the accelerator board. The following successes

Chapter 7 	 116

and shortcomings summarize the operation of the neural board as a hardware

accelerator.

Successes

The neural board accelerated the calculation time of the activity to 87 times

that of the software.

There was no marked loss in performance using the hardware 5-state

activation function compared to equivalent software models.

The neural board can be used with any learning algorithm.

Any size of neural network can be used up to a maximum of 288 neurons.

Shortcomings

The inaccuracy occurring in small weights due to the conversion of floating

point numbers to two's complement numbers and in the right-shifting of odd

two's complement numbers.

The time taken for the software to run the neural board, which is increased

by the the calculation and reordering of the weights.

The run time of the neural board is always that for a 288 neuron network

regardless of the the actual network size.

The maximum operating frequency of the board is 8 MHz, although the

accelerator chips should operate upto 20MHz.

The major disadvantage is the speed of the software. This is incurred by the

reordering of the weights, so that they are input in the correct order to the neural

board weight RAM. Some redesign to the synapse array at the chip level would

help minimise the software required. Extra circuitry in the integrated circuit would

also reduce the quantity of support hardware required at the board level. This

would increase the overall speed of the neural board. Details of this are given in

the next two sections.

7.2. Improvements to the Accelerator Chip Design

There are three areas in the design of the accelerator chip where improvements

could be made to increase the speed and improve the overall efficiency of the

Chapter 7 	- 	 117

neural accelerator board. These are: changes to the array structure; alterations to

the weight shift register in the synapse to reduce the software required for weight

ordering and the addition of extra circuitry on the integrated circuit (separate

from the synapse array to reduce the complexity and quantity of hardware

required for the board level design).

1. Array Structure

The simplest design of the neural board and the software support required to run

it, would be achieved if an accelerator chip contained only one column of

synapses. For example, if 30 synapses formed part of a column of synapses for one

neuron, and if 5 chips were cascaded, a 30x 5 synapse array would form a "patch",

allowing the ordering and loading of weights to be much simpler. However, this

structure loses the parallelism made possible by a VLSI design.

There are not likely to be optimal array dimensions that will enable a more

efficient operation of the "patch" in the paging architecture. The best size of the

array will to some extent depend on the number of chips that are to be cascaded

to form a "patch". The "patch" size, in turn, will depend on the number of neurons

to be implemented in the network. It was fortunate with the present 9 x 3

accelerator chip, that one "patch" could be computed in 256 (2) clock cycles, with

only the last 12 clock cycles unused. These 12 clock cycles per "patch" represent an

overall redundancy of 4.5% of the total computation time. The design of the

integrated circuit would be more efficient if all the clock cycles were used during

the board computation.

A useful addition to the synaptic weight as it stands, would be to provide a

synaptic weight input pin per column of synapses. This would require 2 extra pins,

which does not create a significant problem, as only 53 of the 68 pins in the

package are used in the design. This alteration would trade off some of the

advantages of a bit-serial approach, in order that the loading of the neural weights

from the RAMs would be faster and would also necessitate less software for the

ordering of weights.

2. Alterations to the synaptic weight storage

Chapter 7
	

118

As described in the footnote in chapter 5, section 5.4, the synaptic weights are

shifted around the weight shift registers while computation proceeds down the

synaptic columns. This shifting was not taken into account during the integrated

circuit design and therefore software was used to ensure the bits in each weight

were in the correct order, ie., while the weights were shifted during computation,

the LSB of the weight about to be multiplied by the neural state was correctly in

the LSB of the shift register. This could be overcome by simply tapping off the

LSB of the weight from the bit in the shift register where it has been shifted to, as

drawn in figure 7.1, instead of tapping off each weight at the LSB of the shift

register.

LSB
row l,Oshlfts 	18171615141312111

LSB 	 to state

row 2, 1 shift 	1 1 1 8 1 7 1 6 1 5 I 4 13 I 2 I 	
multiplexor

LSB

row 3,2shifts 	12111817161514131
1 	 1W

LSB

row 4,3shifts 	13121118171615141

V 	 LSB

row 8, 7shlfts 	1716151413121 1 181

LSB

row 9,8shifts 	I8I7I6I5I 4 I3I 2 I 1 I
l p.

Figure 7.1 Alterations to the synaptic weight shift register

3. Extra Circuitry

The extra circuitry that could be implemented in the integrated circuit design, but

separate from the synapse array, would reduce the number of standard small scale

integrated (SSI) circuits required for the support hardware for the accelerator

chips. The SSI circuits form, effectively, "glue" logic that enables the functioning

of the accelerator chips in a neural network system. The circuitry falls into two

Chapter 7
	

119

sections. The first is the inclusion of a 16 bit shift register for each synaptic

column to hold the partial activation of the neuron before it is required for the

adjacent "patch" computation in the column. This would increase the area of

silicon required, but it would reduce by 24, the number of SSI circuits in the

support hardware. One extra pin on the accelerator chip would be used to control

the shifting of the registers.

The second section of extra circuitry would be the addition of the control circuitry

for the signals load, lsb, sel and se2. At present, the signals are derived by

connecting NAND, NOR, AND and OR gates to give the desired signal.

However, each gate incurs a delay and with several gates wired together in series,

delays became large enough to miss the change time allowed to ensure steady data

for the single phase clocking scheme, ie., the data must be held steady on the low

to high transition of the clock. This introduces timing problems in the board

design and provides one of the reasons for the slower than anticipated operating

speed for the neural board. The inclusion of the control circuitry would require 8

extra input pins for the address lines A 0 —A 7 , but the present input pins for the

signals load, lsb, sel and se2 would no longer be required (however, it is

recommended that the signal are connected to test pins so the correct timing of the

signals can be checked).

It is estimated, based on the fully custom 3iim CMOS integrated circuit design,

that the partial activation shift registers, the control circuitry and the 3 x 9 synapse

array would take up approximately double the silicon area that is presently used,

which is 5.7mm 2 , for the 3x9 synapse array alone. A 1m design would,

therefore, reduce this area by a factor of 9. Nine extra pins would be needed, but

there are already fifteen pins unused on the package. On the current board design,

43 of the 110 SSI circuits used would no longer be required, reducing the total by

39%.

7.3. Improvements to the Neural Board Design

The neural board design and size could be considerably reduced by including the

shift registers and control circuitry on the accelerator chip, thus leaving only

RAMs and buffers in the support hardware. This is the ideal solution, but the

Chapter 7
	 120

control circuitry would add complexity to the integrated circuit design. An

alternative to this would be to use a PLA (programmable logic array) for the

control, which could then also include the chip select and read/write control logic

for the weight, state and activity RAMs.

Larger RAMs than the present weight RAMs (64k each) are now more readily

available than when the board was designed. Each accelerator chip requires. 0.2

megabits of RAM, therefore a RAM of this size to supply each accelerator chip

could be used instead of the the present system of multiplexing 3 RAMs for each

chip. Also, reorganisation of the VMEbus data lines to the weight RAMs would

make the design more efficient and simplify the software.

7.4 Concluding Remarks

The design stages of the neural accelerator board were done separately in that the

accelerator chip design took place without anticipating a paging architecture board

using a VMEbus. The board design took place without full knowledge of how to

implement a learning algorithm program using the neural board as a neural

hardware accelerator. With hindsight, a substantially revised design for the

integrated circuit, to remove the stress from the board and software development

can be proposed. This would be to keep the present (or approximately the same)

array size (or a slightly larger array if a smaller design feature size were available)

with alterations to improve the neural board efficiency and speed. These

alterations are summarised in the following points:-

Inclusion of partial activation shift registers in the integrated circuit.

Inclusion of the control logic in the integrated circuit.

One weight input pin per synapse column in the integrated circuit.

Alterations to the synapse weight shift register to avoid weight ordering in

software.

Larger weight RAMs at the board level design to avoid multiplexing.

Better organisation of the VMEbus data lines to the weight RAMs

A large reduction in software after implementation of the above 6 points.

Chapter 7
	

121

A conclusion of this nature is inevitable when the length of time for the VLSI

design, fabrication, testing and board building, testing and- - implementing in a

learning algorithm is so long. Effectively, major decisions about the chip design

had to be made three years ago and their consequences endured through the

later board design stages.

Chapter 7 	 122

References

Young J. Z., A Model of the Brain, Oxford Clarendon Press, 1964.

Thompson R. F., The Brain - An introduction to Neuroscience, W. H.

freemann & Co, New York, 1985.

Shepherd G. M., Synaptic Organisation of the Brain, Oxford University

Press, New York, 1974.

Mead C., Analog VLSI and Neural Systems, Addison-Wesley, 1989.

Pavlov I. P., Conditioned Reflexes: An Investigation of the Pyschological

Activity of the Cerebral Cortex, Oxford University Press, London, 1927.

Blakemore C., Mechanics of the Mind, Cambridge University Press,

Cambridge, New York, 1977.

Rashevsky N., Mathematical Biophysics: Physicomathematical Foundations of

Biology, University of Chicago Press, 1938.

Pillsbury W. B., A History of Psychology, G. Allen & Unwin, London, 1929.

Luria A. R., The Working Brain, Allen Lane, London, 1973.

Jackson J. H., On Localistaion. In Selected Writings, 2, Basic Books, New

York, 1869.

Luria A. R., Higher Cortical Functions in Man, Tavistock Publications,

London , 1966.

Poincare H., Foundations of Science: Science and Hypothesis, Science Press,

New York, 1913.

Thorndike E. L., Selected Writings from a Connectionists Psychology,

Greenwood Press, New York, 1949.

Lashley K. S., Brain Mechanisms and Intelligence, University of Chicago

Press, Chicago, fll, 1929.

J. Orbach, The Neuropsychology after Lashley, Eribaum, New Jersey, 1982.

Lashley K. S., "In Search of the Engram," in Society of Experimental Biology

Symposium No 4: Psychological Mechanisms in Animal Behaviour, pp. 478 -

505, Cambridge University Press, London, 1950.

Chapter 7 	 123

Hebb D. 0., The Organisation of Behaviour, Wiley, New York, 1949.

Hawkins J. K., "Self-Organising Systems - A Review and Commentary,"

Proceedings of the IRE, pp. 31 - 48, January, 1961.

Rumeihart D. E. and J. L. McClelland, Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, 1, MIT Press, Cambridge,

Massachusetts, 1986.

McCulloch W. S. and W. Pitts, "A Logical Calculus of the Ideas Imminent

in Nervous Activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115 -

133, 1943.

Roy A. E., "On a Method of Storing Information," Bulletin of Mathematical

Biophysics, vol. 22, pp. 139 - 168, University of Chicago Press, Chicago,

1960.

Roy A. E., "On a Method of Storing Information II. A Further Study of

Model Properties.," Bulletin of Mathematical Biophysics, vol. 24, 1962.

Shimbel A. and Rapoport A., "Approach to the Theory of the Central

Nervous System," Bulletin of Mathematical Biophysics, vol. 10, pp. 41 - 55,

1948.

Minsky M., Neural Nets and the Brain Model Problem, Unpublished Doctoral

Dissertation, Princeton University, 1954.

Rosenblatt F., Principles of Neurodynamics - Perceptrons and the Theory of

Brain Mechanisms, Sparten, New York, 1962.

Minsky M. and S. Papert, Perceptrons, MIT Press, Cambridge,

Masachusettes, 1969.

Sutton R. S. and Barto A. 0., "Toward a Modern Theory of Adaptive

Networks: Expectation and Prediction," Psychological Review, vol. 88, pp.

135 - 170, 1981.

Widrow G. and Hoff M. E., "Adaptive Switching Circuits," IRE, Western

Electronic Show and Convention, Convevtion Record, vol. Part 4, pp. 96 -

104, 1960.

Hopfield J. J., "Neural Networks and Physical Systems with Emergent

Chapter 7 	 124

Collective Computational Abilities," Proc of Nat Acad Sci, vol. 81, pp. 3088

- 3092, USA, 1982.

Wallace D. J., "Memory and Learning in a Class of Neural Network

Models," Proc Workshop Lattice Gauge Theory: A Challenge in Large Scale

Computing, pp. 313 - 331, 1985.

Von der Malsberg C., "Self - Organizing of Orientation sensitive cells in the

Striate Cortex ," Cybernetics, vol. 14, pp. 85 - 100, 1973.

Fukushima K., "Cognitron: A Self-Organizing Multilayered Neural

Network," Biological Cybernetics, vol. 20, pp. 121 - 136, 1975.

Grossberg S., "Adaptive Pattern Classification and Universal Recoding: Part

1. Parallel development and Coding of Neural Feature Detectors," Biological

Cybernetics, vol. 23, pp. 121 - 134, 1976.

Lippmann R. P., "An Introduction to Computing with Neural Nets," IEEE

ASSP Magazine, pp. 4 - 22, April, 1987.

Carpenter G. A. and S. Grossberg, "Neural Dynamics of Category Learning

and Recognition: Attention Memory Consolidation and Amnesia," AAAS

Symposium Series, 1986.

Grossberg S., "Some Physiological and Biochemical Consequences of

Psychological Postulates," in Proc. Nat!. Acad. Sci. USA, vol. 60, pp. 758 -

765, 1968.

Anderson J. A.. "A Theory for the Recognition of Items from Short

Memorised Lists," Psychological Review, vol. 80, pp. 417 - 438, 1973.

Anderson J. A., "Neural Models with Cognitive Implications," in Basic

Processes in Reading Perception and Comprehension, ed. D. LaBerge and S.

J. Samuals, pp. 27 - 90, Erlbaum, 1977.

Wilishaw D. J., "Holography, Associative memory and Inductive

Generalisation," in Parallel Models of Associative Memory, pp. 83 - 104,

Erlbaum, New Jersey, 1981.

Kohonen T., Self - Organization and Associative Memory, Springer - Verlag,

Berlin, 1984.

Chapter 7
	

125

Hinton G. E., T. J. Sejnowski, and D. H. Ackley, Boltzmann Machines:

Constraint Satisfaction Networks that Learn, Tech. Rep. No. CMU-

CS_84_119, Carnegie - Mellon University, Department of Computer Science,

Pittsberg, PA, 1984.

Lippmann R. P., B. Gold, and M. L. Malpass , A Comparison of Hamming

and Hopfield Neural Nets for Pattern Classification, MIT Lincoln Lab

Technical Report TR-769 to be published.

Wallace D. J., "Spin Glass Models of Neural Memory; Size Dependence of

Model Properties," in Proc Conf on Advances in Lattice Theory, Tallahassee,

April 1985.

Pomerleau D. A., Gusciora G. L., and Touretzky D. S. et al, "Neural

Network Simulation at Warp Speed: How we got 17 Million Connections per

second," in IEEE international Conf on Neural Networks, San Diego, pp. 143

- 150, July, 1988.

Penz P. A. and Wiggins R., "Digital Signal Processor Accelerators for

Neural Network Simulations," in AlP Conf Proc, Neural Networks for

Computing, Snowbird, ed. J. Denker, vol. 151, pp. 345 - 355, New York,

1986.

Aleksander I. and Morton H., introduction to Neurocomputing, MIT Pres,

North Oxford, USA, UK, 1989.

Aleksander I., "Exploding the Engineering Bottleneck in Neural

Computing," in 2nd European Seminar on Neural Computing: the Commercial

Prospects, London, Feb., 1989.

Garth S., Associative Network Solution Chipset, Internal Report, Engineering

Department, Cambridge University.

Garth S., "A Chipset for High Speed Simulation of Neural Network

Systems," in Proc IEEE 1st mt Conf on Neural Networks, vol. 3, pp. 443 -

452, San Diego, July, 1987.

Garth S., "An Integrated System for Neural Network Simulations," in Proc

Conf on VLSI for Al, Oxford, ed. W. R. Moore, Kluwer Academic, USA,

1988.

Chapter 7
	

126

Pacheco M., Bavan S., and Lee M et a!, "A Simple VLSI Architecture for

Neurocomputing," in International Neural Network Society 1st Annual

Meeting, ed. T. Kohonen, vol. 1, p. 398, Pergamon Press, Sept., 1988.

Potu B. and Ramamoorthy P. A., "A Fully Digital Architecture for Multi-

state Neural Networks," in International Neural Network Society 1st Annual

Meeting, ed. T. Kohonen, vol. 1, p. 400, Pergamon Press, Sept., 1988.

Weinfeld M., "A Fully Digital Integrated CMOS Hopfield Network

including the Learning Algorithm," in Proc Con! on VLSI for Al, Oxford, ed.

W. R. Moore. pp. 169 - 178, Kluwer Academic, USA, 1988.

Faure B. and Mazare 0., "A VLSI implementation of Multilayered Neural

Networks," in VLSI for Al, Oxford, ed. W. R. Moore, pp. 159 - 168, Kluwer

Academic, USA, 1988.

Blayo F. and Hurat P., "A VLSI Systolic Array dedicated to Hopfield

Neural Network," in VLSI for Al, Oxford, ed. W. R. Moore, pp. 255 - 264,

Kluwer Academic, USA, 1988.

Ae T. and Aibara R., "A Neural Network for 3 - D VLSI Accelerator," in

VLSI for Al, Oxford, ed. W. R. Moore, pp. 179 - 188, Kluwer Academic,

USA, 1988.

Sivilotti M. A., Emerling M. R., and Mead C. A., "VLSI Architectures for

Implementation of Neural Networks," in AlP Conf Proc, Neural Networks for

Computing. Snowbird, vol. 151, pp. 408 - 413, New York, 1986.

Graf H. P. and de Vegvar P., "A CMOS Associative Memory Chip Based

on Neural Networks," in IEEE In: Conf Solid-States Circs, pp. 304 - 305,

February 1987.

Schwartz D. B., Howard R. E., and Hubbard W. E., "A Programmable

Neural Network Chip," IEEE Solid State Circs, vol. 24, no. 2, pp. 313 - 319,

April, 1989.

Mackie S., Graf H. P., and Schwartz D. B., "Microelectronic

Implementations of Connectionist Neural Networks," in Neural Infomation

Processing Systems, ed. D. Z. Anderson, pp. 515 - 523, AlP, New York,

1987.

Chapter 7 	- 	 127

Schwartz D. B., Howard R. E., and Hubbard W. E., "Adaptive Neural

Networks using MOS Charge Storage," in Advances in Neural Information

processing 1, ed. D. S. Touretzky, pp. 761 - 767, Morgan Kaufmann, San

Mateo, CA, 1988.

Tsividis Y. P. and Anastassiou D., "Switched - Capacitor Neural Networks,"

Electronic Letters, vol. 23, no. 18, pp. 958 - 959, August, 1987.

Akers L. A., Walker M. R., and Ferry D. et al, "A Limited - Interconnect,

Highly Layered Synthetic Neural Architecture," in VLSI for A!, Oxford, ed.

W. R. Moore, pp. 218 - 226, Kluwer Academic, USA, 1988.

Akers L. A. and Walker M. R., "A Limited - Interconnect Synthetic Neural

IC," in IEEE International Conf on Neural Networks, San Diego, pp. 151 -

158, July, 1988.

Card H. C., Tarassenko L., Moore W., and Murray A. F., "VLSI

Approximations to Hebbian Learning," Electronic Letters, 1989 (to be

published).

Murray A. F., Brownlow M., and Hamilton A. et al, Pulse Firing Neural

Chips implementing Hundreds of Neurons, 1989 (to be published).

Verleysen M., Sirletti B., and Jespers P., "A New CMOS Architecture for

Neural Networks," in VLSI for Al, Oxford, ed. W. R. Moore, pp. 227 - 235,

Kluwer Academic, USA, 1988.

Murray A. F. and Smith A. V. W., "Asynchronous Arithmetic for VLSI

Neural Systems," Electronic Letters, vol. 23, no. 12, p. 642, June 1987.

Murray A. F. and Smith A. V. W., "A Novel Computational and Signalling

Method for VLSI Neural Networks," in Proc Conf European Solid State

Circuits, 1987.

Murray A. F., Smith . V. W., and Tarassenko L., "Fully Programmable

Analogue VLSI Devices for the Implementation of Neural Networks," in

VLSI for Al, Oxford, ed. W. R. Moore, pp. 227 - 235, .Kluwer Academic,

USA, 1988.

Smith A. V. W., "The Implementation of Neural Networks as CMOS

Integrated Circuits," PhD. Thesis (University of Edinburgh), 1988.

Chapter 7
	

128

Murray A. F., Hamilton A., Reekie H. M., and Tarassenko L., "Pulse-

stream Arithmetic in Programmable Neural Networks ," in mt Symposium

on Circuits and Systems, Portland, Oregon, 1989.

Sage J. P., Thompson K., and Withers R. S., "An Artificial Neural

Network Integrated Circuit based on MNOS/CCD Principles.," in AlP Conf

Proc, Neural Networks for Computing, Snowbird, vol. 151, pp. 381 - 385,

New York, 1986.

Hubbard W., Schwartz D., Denker J., and Graf H. P., "Electronic Neural

Networks," in AlP Conf Proc, Neural Networks for Computing, Snowbird,

vol. 151, pp. 227 - 234, New York, 1986.

Graf H. P., Jackel L. D., Howard R. E., and Straughn B., "VLSI

Implementation os a Neural Network with Several Hundred Neurons," in

AlP ConfProc, Neural Networks for Computing, Snowbird, vol. 151, pp. 182 -

187, New York, 1986.

Mann J. R. and Gilbert S., "An Analog Self - Organising Neural Network

Chip," in Advances in Neural Information processing 1, ed. D. S. Touretzky,

pp. 739 747, Morgan Kaufmann, San Mateo, CA, 1988.

Goser K. and Ruckert U., "VLSI Design of Associative Networks," in VLSI

for Al, Oxford, ed. W. R. Moore, pp. 227 - 235, Kluwer Academic, USA,

1988.

Goser K., "Technological Challenge of Artificial Neural Networks," in 19th

European Solid State Device Research Conf, Berlin, ed. P Lange, pp. 321 -

328, Springer - Verlag, 1989.

Denker J. S., in Neural Network Models of Learning and Adaption, Internal

Publication, 1987.

Thakoor A. P., Lamb J. L., and Moopenn A. et al, "Binary Synaptic

Connections based on Memory Switching in Hydrogenated Amorphous-Si,"

in AlP Conf Proc, Neural Networks for Computing, Snowbird, vol. 151, pp.

426 - 431, New York, 1986.

Moopenn A., Langanbacher H, and Thakoor A. P. et al, "Programmable

Synaptic Chip For Electronic Neural Networks," in Neural Infomazion

Chapter 7 	 . 	 129

Processing Systems, ed. D. Z. Anderson, pp. 565 - 573, AlP, New York,

1987.

Vittoz E., "Analog VLSI Implementation of Neural Networks," in Proc. of

Journees D'Elecrronique - Artificial Neural networks, Lausanne, pp. 224 - 250,

October 1989.

Allen T., Mead C., and Faggin F. et a!, "An Orientation-Selective VLSI

Retina," Visual Communication ans Image Processing (Proc. 1988 SPIE

Conf.), p. 1040, 1988.

Lyon R. F. and Mead C., "An Analogue Electronic Cochlea," IEEE Trans.

Acoustic Speach and Signal Processing, vol. 36 , pp. 1119 - 1134, 1988.

Hutchison J., Koch C., Luo J., and Mead C., "Computing Motion using

Analog and Binary Resistive Networks," IEEE Computer Magazine, pp. 53 -

63, March 1988.

Murray A. F., Tarassenko L., and Hamilton A., "Programmable Analogue

Pulse-Firing Neural Networks," in Conf on Neural Information Processing,

Dec., 1988.

Murray A. F., "Silicon Implementation of Neural Networks," lEE

International Conf on Artificial Neural Networks, October, 1989.

Farhat N. H., "Optoelectronic Neural Networks and Learning Machines,"

IEEE Circuits and Devices Magazine, pp. 32 - 41, September, 1989.

Farhat N., Psaltis D., and Prata A., "Optical Implementation of the

Hopfield Model," Applied Optics, vol. 24, p. 1469, 1985.

H. J. White and W. A. Wright, "Holographic Implementation of a Hopfield

model with Discrete Weightings," Applied Optics, vol. 27, no. 2, pp. 331 -

338, January, 1988. 	 -

Parisi G., "A Memory which Forgets," Journal Phys. A: Math. Gen., vol.

19, pp. 617 - 620, 1986.

Fleisher M. and Levin E., "The Hopfield Model with Multilevel Neuron

Models," IEEE Conf on Neural lnfomation Processing Systems, Denver, 1987.

McGregor M. S., Denyer P. B., and Murray A. F., "Single - Phase Clocking

Chapter 7 	 130

Phase for CMOS VLSI," Advanced Research in VLSI: Proceedings of the

Stanford 1987 Stanford Conference, 1987.

Asada K. and Mayor J., "Mosyn: An MOS Circuit Synthesis Programm

employing 3-way Decomposition and Reduction based on 7-valued Logic,"

IEEE Trans. on CAD of Integrated Circuits and Systems, 1986.

Asada K., "MOS Circuit Synthesiser: MOSYN/2.0 User Mannual,"

Department of Electrical Engineering, University of Edinburgh, 1986.

UW/NW VLSI Consortium, "VLSI Design Tools," Reference Manual,

Department of Computer Science, University of Washington. Seattle., 1985.

VMEbus Specification Mannual, p. Printex Publishing, Inc., 1985.

User's Guide to the Sun-31110 VMEbus, 1987.

Configuration Guide for the Sun-3 Product Family, Hardware Configuration-

ChapterS, 1986.

Writing Device Drivers for the Sun Workstation, Hardware Context-Chapter 2,

1986.

Murray A. F., Smith A. V. W., and Butler Z. F., "Bit - Serial Neural

Networks," in Proc. AlP Conf. on Neural Information Processing Systems -

Natural and Synthetic, pp. 573 - 583, 1987.

McClelland J. L. and Rumeihart D. E., in Explorations in Parallel

Distributed Processing, A Handbook of Programs and Exercises, pp. 84 - 99,

MIT Press, London, England, 1988.

Appendix A
	

131

Appendix A

Carry tree input

Input for Carry Tree
*function carryout
CH: major(not(xor(sigjml ,pm)) ,b ,and(cl ,lsb))
else CO

Sum tree input

Input for Sum Tree
* function sigout
CH: not(xor(xor(not(xor(sigjml ,pm)) ,b,and(cl ,not(lsb))) ,pm))
else CO

Sign-extend tree input

Input for Sign Extend
;Sign extension with RS
* function SIGNEXT
* input FB SE1 SE2 TL TLP1 RS
CO: 000000 000001 000010 000101 001000 001001 001010 001011 001101 001111

010000 010001 010010 010100 010101 010110 011000 011001 011010 011011
011100 011101 011110 011111 100000 100001 100010 100101 101000 101010
110001 110101

CH: 100011 100100 100110 100111 101001 101011 101100 101101 101110 101111
110000 110010 110011 110100 110110 110111 111000 111001 111010 111011
111100 111101 111110 111111 001100 001110 010011 010111 000011 000100
000110 000111

Appendix B

Appendix B

RNL Netlist file, sum.net

(load "latchlib.net')
(node top bot intnode out sigjml pm b ci lsb cik N2 N4 N6 N7 N8)
(ptrans sigjmi top N4 4 3)
(etrans sigjmi top N2 4 3)
(ptrans b N4 N8 4 3)
(etrans b N4 N6 4 3)
(ptrans ci N8 bot 4 3)
(etrans lsb N8 bot 4 3)
(etrans ci N6 N7 4 3)
(ptrans lsb N7 bot 4 3)
(ptrans b N2 N6 4 3)
(etrans b N2 N8 4 3)
(mu intnode top bot cik)
(pisolo out intnode cik)
)

RNL logic data input file, sum.l

(load "uwstcl.l")
(load "icstd.l")
(read-network "sum_mp. bin")
(setq inc 100)
(log-file "sum_mp.out")
V cik 	lhlhlhlhlhlhlhlhlhlhlhlhlhlhlhlh
V sigjml llhhllhhllhhllhhllhhllhhllhhllhh
V b 	llllhhhhllllhhhhllljhhhhllllhhhh
V ci 	llllllllhhhhhhhhlllhlljlhhhhhhhh
V lsb llllllllllllIillhhhhhh11Jhhhhhhhh
w cik sigjmi ci lsb cik top bot intnode out N2 N4 N6 N8 N9 sim-init
R

132

133 Appendix B

RNL output file, sum.out

RNL simulation results: SWITCH LEVEL

TIME 	cik sigjml ci lsb clk top bot intnode out N2 N4 N6 N8
(ns)
0 00 000000 00000
10000 000000 00000
20010 001000 00000
30001 0001 X 0 0 1 X 1 X
40011 001101 01010
50000 0001 X 1 X 1 1 X
60010 001101 10110
70001 000111 1 1 X X 1
8001 1 001000 1 OXXO
90000 1001 X 0 0 X 1 X 1
100010 101101 00101
110001 100111 1 1 X 1 X
120011 101000 1 OXOX
130000 100110 0 X 1 1 X
140010 101000 0 XOOX
150001 1001 X 0 0 1 X X 1
160011 101101 01001
170000 010111 1 X 1 X 1
180010 011000 1 XOXO
190001 0101 X 0 0 1 X 1 X
200011 011101 01010
210000 0 10 1X1 1 X 1 1 X
220010 011101 10110
230001 010111 1 lxxi
240011 011000 1 OXXO
250000 110110 0 X1X1
260010 111000 0 XOXO
270001 1101 X 0 0 1 X 1 X
280011 111101 01010
290000 1101 X 1 Xlix
300010 111101 10110
310001 110111 1 ixxi
320011 111000 1 OXXO
q

Appendix C
	

134

Appendix C

Address strobe (AS): On its falling edge, AS informs the SLAVE that the
address is stable and can be captured.

Data strobes (DSO, DSI): Both DSO and DS are required for a long word
(32-bit) data transfer. The first data strobe falling edge indicates when the MAS-
TER has placed valid data on the data bus.

Long word (LW*): LW is active when a long word data transfer is in operation.

Write*: Write is used by the MASTER to indicate the direction of data transfer
operations. When write* is low, the data transfer is from the MASTER to the
SLAVE. When write * is high, the data transfer direction is from the SLAVE to
the MASTER.

Data acknowledge (DTACK'): The SLAVE drives DTACK low to indicate that
it has successfully received the data on a write cycle. On a read cycle, the
SLAVE drives DTACK' low to indicate that it has placed data on the data bus.

Appendix D
	

135

Appendix D

1 #include def.h'
2 #define VME_BASE 	OxD00000
3 #define VME_SIZE 	0x80000
4 #define Tij_syn 	Ox0001C/4
5 #define Tij_patchend 0x00360/4
6 #define Tij_colend OxO7COO/4
7 #define Tij_8colend 0x38000/4
8 #define STATE—start 0x40060/4
9 #define STATE—end 	0x400C4/4
10 #define STATE_colend OxOl F00/4
11 #define SUM_startcol 0x50000/4
12 #define SUM_endcol 0x50B80/4
13 #define SUM_startpatch 0x50008/4
14 #define SUM_endpatch 0x50048/4
15 #define RUN 	0x60000/4
16
17 extern longword *vME24d32O;
18 main()
19 begin
20 	mt p,q,r,t,u,v,w,x,a;
21 mt fd,weight,state,check;
22 longword *addr,1,y,activity;
23 FILE *fp *fpl ;
24
25 addr= VME24d32(VME_BASE,VME_SIZE,&fd);
26
27 	/* This section calculates weight address for each synapse and loads weight *1

28
29 fp= fopen("weight_in",'r");
30 p=0;
31 for (w= 1; w< = 8; + + w) begin 	/* No of columns/RAM1 chip *1

32 	q=O; 	 /* reset patch count at col top /
33 	for (v= 1; v< =32; + +v) begin 	/* no of patches/column *1

34 	r=0x340/4; 	 /* reset synapse count at patch start *1

35 	for (u=1; u<27; ++u) begin 	/* synapse count per patch /
36 	t=0; 	 /* resets weight bit count /
37 	for (x=0; x<8; + +x) begin 	1* counts bits per weight *1

38 	fscanf(fp,'%X",&weight);
39 	y=p+q+r+t;
40 	addr[y] = weight;
41 	t=t+Oxl;
42 	end
43 	r= r-0x20/4;
44 	end
45 	q=q+0x400/4;
46 	end
47 	p=p+0x8000/4;
48 end
49
50 	/* This section calculates the state address and loads it to state RAM /
51

/* calulates address */

counts synapses per patch */

/* counts patches per column */

/* counts columns */

Appendix D
	

136

52 fp= fopen("state_in" ,
53 for (v=0; v<=STATE_colend; v=v+OxlOO/4) begin
54 	fscanf(fp,%X",&state);
55 	for (a= STATE—start; a< = STATE_end; + + a) begin /* Load States to RAM 2 *1

56 	addr[a+v]= state;
57 	end
58 end
59 fclose(fp);
60 fclose(fpl);
61
62 	/* Board is now loaded and is set to RUN *1

63
64 addr[RUN]0; 	 /* Set to D6 for Board Run *1

65 do begin
66 	check= addr[RUN];
67 end while ((l&Oxl0000000)!Ox10000000); /* Ends board run on A17 = A16 = 1 /
68
69 	/* Board has ended and activies are read back to the Sun *1

70
71 	fp= fopen('activity.out","w");
72 for (a=SUM_startcol; a<=SUM_endcol; a=a+0x20) begin
73 	for (b= 0x0008/4; b< =0x0044/4; + +b) begin
74 	activitv=aiidrFa+h1 	 /* reads activities from board */
75

•

end
76 end
77 fclose(fp);
78 munmap(addr);
79 close(fd);
80 end
81

Appendix E
	

137

Appendix E

1 #include "def.h"
2 #include <math.h>
3 #define VME_BASE 	OxD00000
4 #define VME_SIZE 	0x80000
5 #define WEIGHTS—end Ox3FFFF/4
6 #define STATE—start 0x40060/4
7 #define STATE—end 	0x400C4/4
8 #define STATE_colend 0x00300/4
9 #define SUM_startcol 0x50000/4
10 #define SUM_endcol 0x50100/4
11 #define SUM_startpatch 0x50008/4
12 # define SUM_endpatch 0x50048/4
13 #define RUN 	0x60000/4
14
15 extern longword *vME24d32O;
16 mt sum[12],totalsum;
17 mt getweight[36][36][8],order[216];
18 mt statenum[]{2,3,0,7,6};
19 float status[]{-1 .0,-0.5,0.0,0.5,1 .0);
20 float temperature;
21 double xl,x2,x3,x4,xmid0;
22 float targetstate[720];

/ status is assigned to any of the 5-states *1

23 float newstate[720]; 	1* thresholded activities *1

24 float stateval[720]; 	1* state input value *1

25 float delta[720];
26 float deltaweight[36][36];
27 float newweight[36][36];
28 mt trunweight[36][36];
29 mt orderweight[36][36][8];
30
31 void Threshold (xmid, temperature) 1*

32 float temperature; 	 1*

33 double xmid;
34 begin
35 xl = xmid - (tempera ture * log(8.0));
36 x2 = xmid - (temperature* log(1.75));
37 0 = xmid + (temperature * log(1.75));
38 x4 = xmid + (tempera ture* log(8.0));
39 end
40
41 mt Get—state(data) 	 f* works out which state has been
42 float data; 	 /* read from "state_in" and returns *1

43 begin 	 /* t= 1 -> 4 for state -1 -> + 1 	/

44 register mt t;
45 t=O;
46 while (data != status[t])
47 	t++;
48 return(t);
49 end
50
51 mt Power(base, sup)

computes the threshold values *1

to threshold activities

*1

Appendix E
	

138

52 mt base, sup;
53 begin
54 	mt i,j;
55 j=1;
56 for (i=1;i<sup; ++i)
57 	j=j*l,;
58 return(j);
59 end
60 /* FUNCTION ALLOWS BOARD TO RUN */
61 void boardrun(addr)
62 longword * addr;
63 begin
64 longword 1;
65 addr[RUN]0; 	 /* Set to D6 for Board Run /
66 do begin
67 	1=addr[RUN];
68 end while ((1&0x10000000)! = Oxl0000000);
69 end
70
71 main()
72 begin
73 mt v,a ,b,c,d,f ,g,h,i ,j,k,n,readweight,counter,indexl ,index2;
74 mt a_col ,a_patch, a_syn ,a_bit ,patchcount,pattcount,count ,icount ,jcount ,syncount;
75 mt result, pattno ,pattmax ,pp ,MSB ,ord ,ordcount,nop;
76 float lrate,state_result ,stateinfo,x,m ,ptss,tss;
77 longword * addr ,1, e , y;
78 intfd;
79 void ThresholdQ;
80 FILE *fp*fpl*fp2*fp3,*fp4,*fp5,*fp6.*fp7;

81
82 addr= VME24d32(VME_BASE , VME_SIZE ,&fd);
83 fp = fopen("new_weight", "w");
84 fpl= fopen("state_in","r");
85 fp2= fopen("target_in","r");
86 fp3= fopen("temp","r");
87 fp4= fopen("learn","r");
88 fp5 = fopen("pattern_no","r");
89 fscanf(fp3,"%f',&temperature);
90 fscanf(fp4,"%f',&lrate);
91 fscanf(fp5 ,"%d",&pattmax);
92 Threshold(xmid,temperature);
93 a_col=0; 	 /* lines 93 - 102 initialise weights /
94 for (g=0; g<=7; g+ +) begin 	 /* No of columnsJRAMl chip *1

95 	a_patch=0; 	 /* reset patch count at col top *1

96 	for (n=0; n< =31; n+ +) begin 	 /* no of patches/column *1

97 	for (a_syn=0x340/4; a_syn>=0; a_syn=a_syn-0x20/4) begin /* 27 synapses *1

98 	for (a_bit0; a_bit<7; a_bit+ +) begin
99 	y= a_col+ a_patch+ a_syn+ a_bit;

100 	addr[y]=0;
101 	end
102 	end
103 	a_patcha_patch+0x400/4; 	 /* counts patches per column /
104 	patchcount(g*4)+ n+ 1;

Appendix E
	

139

	

105 	end 	 /* end n

	

106 	a_col= a_col+ 0x8000/4; 	 I counts columns /
107 end
108 pattcount=1;
109 count= 1;
110 do begin

	

111 	tss=0;

	

112 	for (pattno=0; pattno<=pattmax; pattno+ +) begin

	

113 	ptss=0;

	

114 	pp=pattno*36;

	

115 	if (pattno = = 0)

	

116 	{ fseek(fpl,0,0);

	

117 	fseek(fp2,0,0);

	

118 	}

	

119 	/* SECTION TO READ INPUT STATES */

	

120 	 1* Statenum gets the statenumber computed by Get—state then *1

	

121 	/ * (8 to power i (for i=0 -> 8)) to get the 9 states to *1

	

122 	/* input to VMEbus 	 *1

	

123 	for (v=0; v< = STATE_colend; v=v+OxlOO/4) begin /* count 4 patches in a column

	

124 	result= 0;

	

125 	for (i=0; i<=8; i++) begin 	1* want 9 states of patt pattno /

	

126 	fscanf(fpl,"%f',&stateinfo); 	/* reads in a state *1

	

127 	result= result+ (statenum[Get_state(stateinfo)] *P ower(8 ,i));

	

128 	counter pp+(c*9)+i ; 	 /* counts total no of states /

	

129 	stateval[counter] = stateinfo;

	

130 	end

	

131 	for (a= STATE—start; a< = STATE—end; + + a) begin /* Load States to RAM 2

	

132 	addr[a+v] = result; 	 1* 26 ciks for state /

	

133 	end

	

134 	end

	

135 	for (v= 0x0400/4; v<=OxlFOO/4; v=v+OxlOO/4) begin

	

136 	for (a= STATE—start; a< = STATE—end; + +a) begin /* Load States to RAM 2

	

137 	addr[a+v]0;

	

138 	end

	

139 	end

	

140 	boardrun(addr); 	 / accelerator board runs
/* SECTION READS STATES BACK FROM BOARD I

	

141 	for (a= SUM_startcol; a< = SUM_endcol; a= a+ 0x20) begin

	

142 	for (i=0; i<=11; i++) begin

	

143 	sum[i]0;

	

144 	end

	

145 	for (b= 0x0008/4; b<=0x0044/4; b+ +) begin

	

146 	e=addr[a+b]; 	/* Unload 16bit activities from RAM3 *1

	

147 	g= e&Ox00000FFF; 	 /* makes 3 LSB bits only valid *1

/* SECTION COVERTS HEX TO FLOATING POINT ACTIVITIES *1

	

148 	for (i=0; i<=11; i++) begin

	

149 	 sum[i] = (!!(g&(Power(2, 11-i))) *power(2,c)) + sum[i];

150 	end

	

151 	for (i=0; i<=11; i++) begin
152 	 MSB= !!(sum[i]&Power(2,15));
153 	 if (MSB>0)
154 	 {
155 	 sum[i]= (sum[i]+ 1)&0x0000FFFF;

Appendix E
	

140

sum[i] = -1 * sum[i];
}

end
• end

/* SECTION THRESHOLDS ACTIVITIES *1

for (i=0;i<=ll;i++) begin
x= sum[11-i];
if (x < xl) state_result = -1.0;
if ((x < x2) and (x >= xl)) state-result = -0.5;
if ((x < x3) and (x > = x2)) state-result = 0.0;
if ((x < x4) and (x >= x3)) state-result = 0.5;
if (x >= x4) state,-result = 1.0;
newstate[pp+ ((d-1) * 12+ i)] = state-result;

end
end 	 /* end a= sum-col /

/* SECTION IMPLEMENTS DELTA RULE /
for (i=0; i<=35; ++i) begin

fscanf(fp2 ,"%f',&targetstate[pp+ i]);
delta[pp+ i]= targetstate[pp+ i]-newstate[pp+ i];
ptss= ptss+ delta[pp+ i] *d elta[pp+ i]; /* partial sum sq's for pattno *1

for (j=0; j<=35; j++) begin
deltaweight[i][j] = l rate* delta[pp+ i] *stateval[pp+ j];

1* computes weight change /
newweight[i] [j] = newweight[i] [j] + deltaweight[i][j]; /* updates weight */
if (newweight[i][j] > 127) newweight[i][j]= 127; /* weight max */
if (newweight[i][j] <-127) newweight[i][j]-127; /* weight mm *,
trunweight[i][j] newweight[i][j]; 	 /* set weight to mt *
for (h=0; h<=7; h++) begin 	 1* set weight to binary */

getweight[i][j][h] = ! ! (trunweight[i][j]&Power(2 ,h)); /* 2's comp /
end

end 	 /* end j /
/* SECTION ORDERS AND LOADS WEIGHTS BACK TO BOARD */

ord=0;
for (nop=0; nop<3; nop++) begin

ordcount= 0;
for (j=ord; j<=ord+8; j++) begin

for (h=0; h<=7; h++) begin
if (h-ordcount> = 0)

orderweight[i][j] [h] = getweight[i] [j] [h-ordcount];
if (h-ordcount<0)

orderweight[i][j][h] = getweight[i] [j] [8 + h-ordcount];
end
ordcount= ordcount+ 1;

end
ord = ord +9;

end
end
tss= tss+ ptss;
a_col = 0;
a=0;
patchcount = 0;
for (g=0; g<=2; g++) begin

a_patch0;

156
157
158
159

160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175

176
177
178
179
180
181
182
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

/* end i/
/* total sum sq's for all patterns *1

/* No of columns/RAMI chip /
1* reset patch count at col top /

Appendix E
	 141

b=0;
for (n=0; n<=3; n+ +) begin 	/ no of patches/column *1

for (i=0; i<=215; i++) begin 	/ no of patches/column */
order[i] = 0;

end
for (k=0; k<=3; k++) begin

jcount= 0;
for (j=b; j<=b+8; j++) begin 	1* synapse count per patch /

icount= 0;
for (i= a; i<=a+2; i++) begin

for (h=0; h<=7; h+ +) begin /* counts bits per weight /
order[(24 * jcount) + (8*icount)+ h]
orderweight[i] [j][h] * Power(2 ,3 *k) +
order[(24 * jcount) + (8*icount)+ h];

end 	 1* reads weights from weight */
icount= icount+ 1; 	/* matrix *1

end
jcount= jcount+ 1;

end 	 /* end j /
a=a+3;

end
a=a-12;
b=b+9;
syncount= 0;
for (a_syn= 0x340/4; a_syn> = 0; a_syn a_syn-0x20/4) begin

for (a_bit= 0; a_bit< = 7; a_bit+ +) begin
y= a_col+ a_patch+ a_syn+ a_bit;
addr[y] = order[(8* syncount) + a_bit];

end
syncount = syncount+ 1;

end
a_patch= a_patch+ 0x400/4; 	 /* counts patches per column /
patchcount (g*4) + n+ 1;

end 	 /* end n *1

a=a+12;
a_col=a_col+Ox8000/4; 	 1* counts columns *1

end 	 /* end g /
end 	 /* end pattno *1

printf("%d %fO,count,tss);
count= count+ 1;

end while (tss>0);
for (i=0; i<=35; i++) begin

for (j=0; j<=35; j++) begin
for (h=0; h<=7; h++) begin

fprintf(fp,"%d ",orderweight[i][j][h]);
end
fprintf(fp,'O);

end
end
fclose(fp);
fclose(fpl);
fclose(fp2);
fclose(fp3);

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

Appendix E
	 142

258 fclose(fp4);
259 munmap(addr);
260 close(fd);
26lend

143 Appendix F

Appendix F

1 #include def.h"
2 #include <niath.h>
3 float weight[36][36] ,deltaweight[36] [36] ,newweight[36] [36];
4 float stateval[720] ,target[720] ,recstateval[72O] ,newstate[720] ,sum[36];
5 float state_result,tss,ptss;
6 float xl,x2,x3,x4;
7 float lrate,xmid=0,temperature;
8 mt pattno;
9

10 void Threshold(xmid,temperatUre)
11 float temperature,xmid;
12 begin
13 xl =xmid(temperature*log(8.0));
14 x2= xmid(temperature*log(1 .75));
15 0 = xmid ± (temperature*log(1 .75));
16 x4=xmid+ (tempera ture *log(8.0));
17 end
18
19 void Actsum(weight,stateval,sum,pattflO) /* Computes neural activity /
20 float stateval[72] ,weight[36][36] ,sum[36];
21 begin
22 	mt i,j;
23 for (i=0; i<=35; i++) begin
24 	sum[i]0;
25 	for (j=0; j<=35; j++) begin
26 	sum[i] = sum[i] + stateval[pattno+ j] *weight[i][j];
27 	end
28 end
29 end
30
31 main()
32 begin
33
34 	mt i,j,k,l,count;
35 float x,v;
36 void ThresholdQ;
37 void ActsumQ;
38 FILE *fpo,*fp5,*fp,*fpl,*fp2,*fp3,*fp4,*fp6,*fp8;

39 fpO= fopen("learn","r");
40 fp5= fopen('temp","r');
41 fp= fopen("new_weight',"w");
42 fpl = fopen("state_in",'r");
43 fp2= fopen("target_in","r");
44 fscanf(fpO ,"%f',&lrate);
45 fscanf(fp5 ,"%f,&temperature);
46 Threshold (xmid ,temperature);
47
48 for (i=0; i<=35; i++) begin
49 	for (j=0;j<35;j++) begin
50 	weight[i][j]0; 	/* sets weights to 0 /
51 	end

Appendix F
	

144

52 end
53 for (i=0;i<=19;i++) begin
54 	for (j=0; j<=35; j++) begin
55 	fscanf(fp1 , %f,&stateval[36*i+j]); 1* reads input patterns *1

56 	fscanf(fp2 ,"%f' ,&target[36* j + j]); 	/ reads target patterns *1

57 	end
58 end
59 count= 1;
60 do begin
61 	tss=0;
62 	for (k0; k<19; k++) begin
63 	pattno=36*k;
64 	ptss=0;
65 	Actsum(weight,stateval,sum,pattflo);
66 	for (i=0; i<=35; i+ +) begin 	/* thresholds activities *1

67 	x=sum[i];
68 	if (x < xl) state—result = -1.0;
69 	if ((x < x2) and (x > = xl)) state—result = -0.5;
70 	if ((x < x3) and (x > = x2)) state—result = 0.0;
71 	if ((x < x4) and (x >= x3)) state—result = 0.5;
72 	if (x > = x4) state—result = 1.0;
73 	newstate[pattno+ i] = state—result;
74 	v= target[pattno+ i]-newstate[pattno+ i];
75 	for (j= 0; j< = 35; j+ +) begin 	/* for loop calculates new weights /
76 	deltaweight[i][j] = Irate* v* stateval[pattno + fl;
77 	weight[i][j] = deltaweight[i][j] + weight[i][j];
78 	if (weight[i][j] > 127) weight[i][j] 127;
79 	if (weight[i][j] < -127) weight[i][j]-127;
80 	end
81 	ptss= ptss+ (v*v); 	/* calculates error in output patern I

82 	end
83 	tss=tss+ptss;
84 	end
85 	printf("%d %fO,count,tss);
86 	countcount+1;
87 end while (tss>O);
88 for (i=O;i<35;i++) begin
89 	for (j=0;j<35;j++) begin
90 	fprintf(fp, "%fO ,weight[i] [j]);
91 	end
92 end
93 fclose(fp);
94 fclose(fpl);
95 fclose(fp2);
96 fclose(fp3);
97 fclose(fp5);
98 fclose(fp0);
99 end

Appendix G
	

145

Appendix G

Published Papers

Murray A. F., Smith A. V. W., and Butler Z. F., "Bit - Serial Neural Networks," in
Proc. AlP Conf. on Neural Infomation Processing Systems - Natural and Synthetic,
pp.573 - 583, 1987.

Murray A. F., Butler Z. F., and Smith A. V. W., "VLSI Neural Networks," lEE Col-
loquium on Parallel Processing, February, 1988.

Butler Z. F., Murray A. F., and Smith A. V. W., "VLSI Bit - Serial Neural Net-
works," in VLSI for Al, Kluwer Academic Press, UK, pp. 201 - 208, 1988.

BIT - SERIAL NEURAL NETWORKS

Alan F. Murray, Anthony V. W. Smith and Zoe F. Butler.
Department of Electrical Engineering, University of Edinburgh,

The King's Buildings, Màyfield Road, Edinburgh,
Scotland, EH9 3JL.

ABSTRACT

A bit - serial VLSI neural network is described from an initial architecture for a
synapse array through to silicon layout and board design. The issues surrounding bit
- serial computation, and analog/digital arithmetic are discussed and the parallel
development of a hybrid analog/digital neural network is outlined. Learning and
recall capabilities are reported for the bit - serial network along with a projected
specification for a 64 - neuron, bit - serial board operating at 20 MHz. This tech-
nique is extended to a 256 (2562 synapses) network with an update time of 3ms,
using a "paging" technique to time - multiplex calculations through the synapse
array.

1. INTRODUCTION
The functions a synthetic neural network may aspire to mimic are the ability to con-
sider many solutions simultaneously, an ability to work with corrupted data and a
natural fault tolerance. This arises from the parallelism and distributed knowledge
representation which gives rise to gentle degradation as faults appear. These func-
tions are attractive to implementation in VLSI and WSL For example, the natural
fault - tolerance could be useful in silicon wafers with imperfect yield, where the
network degradation is approximately proportional to the non-functioning silicon
area.

To cast neural networks in engineering language, a neuron is a state machine that is
either "on" or "off', which in general assumes intermediate statas as it switches
smoothly between these extrema. The synapses weighting the signals from a
transmitting neuron such that it is more or less excitatory or inhibitory to the. receiv-
ing neuron. The set of synaptic weights determines the stable states and represents
the learned information in a system.
The neural state, V,, is related to the total neural activity stimulated by inputs to
the neuron through an activation function, F. Neural activity is the level of excita-
tion of the neuron and the activation is the way it reacts in a response to a change
in activation. The neural output state at time t, VJ, is related to x' by

v: = F(x) 	 (1)

The activation function is a "squashing" function ensuring that (say) V 1 is 1 when
x1 is large and -1 when x, is small. The neural update function is therefore straight-
forward:

jn-1

xi, ' = X, + 6 	7', VJ 	 (2)
j =0

where & represents the rate of change of neural activity, Tq is the synaptic weight
and n is the number of terms giving an n - neuron array [1].
Although the neural function is simple enough, in a totally interconnected n - neu-
ron network there are n 2 synapses requiring n 2 multiplications and summations and

a large number of interconnects. The challenge in VLSI is therefore to design a sim-
ple, compact synapse that can be repeated to build a VLSI neural network with
manageable interconnect. In a network with fixed functionality, this is relatively
straightforward. If the network is to be able to learn, however, the synaptic weights
must be programmable, and therefore more complicated.

2. DESIGNING A NEURAL NETWORK IN VLSI
There are fundamentally two approaches to implementing any function in silicon -
digital and analog. Each technique has its advantages and disadvantages, and these
are listed below, along with the merits and demerits of bit - serial architectures in
digital (synchronous) systems.

Digital vs. analog: The primary advantage of digital design for a synapse array is
that digital memory is well understood, and can be incorporated easily. Learning
networks are therefore possible without recourse to unusual techniques or technolo-
gies. Other strengths of a digital approach are that design techniques are advanced,
automated and well understood and noise immunity and computational speed can
be high. Unattractive features are that digital circuits of this complexity need to be
synchronous and all states and activities are quantised, while real neural networks
are asynchronous and unquantised. Furthermore, digital multipliers occupy a large
silicon area, giving a low synapse count on a single chip.
The advantages of analog circuitry are that asynchronous behaviour and smooth
neural activation are automatic. Circuit elements can be small, but noise immunity
is relatively low and arbitrarily high precision is not possible. Most importantly, no
reliable analog, non - volatile memory technology is as yet readily available. For
this reason, learning networks lend themselves more naturally to digital design and
implementation.

Several groups are developing neural chips and boards, and the following listing
does not pretend to be exhaustive. It is included, rather, to indicate the spread of
activity in this field. Analog techniques have been used to build resistor I opera-
tional amplifier networks [2,3] similar to those proposed by Hopfleld and Tank [4].
A large group at Caltech is developing networks implementing early vision and
auditory processing functions using the intrinsic nonlinearities of MOS transistors in
the subthreshold regime [5,6]. The problem of implementing analog networks with
electrically programmable synapses has been addressed using CCD!MNOS technol-
ogy [7]. Finally, Garth [8] is developing a digital neural accelerator board ("Net-
sim") that is effectively a fast SIMD processor with supporting memory and com-
munications chips.
Bit - serial vs. bit - parallel: Bit - serial arithmetic and communication is efficient
for computational processes, allowing good communication within and between
VLSI chips and tightly pipelined arithmetic structures. It is ideal for neural net-
works as it minimises the interconnect requirement by eliminating multi - wire
busses. Although a bit - parallel design would be free from computational latency
(delay between input and output), pipelining makes optimal use of the high bit -
rates possible in serial systems, and makes for efficient circuit usage.
2.1 An asynchronous pulse stream VLSI neural network:
In addition to the digital system that forms the substance of this paper, we are
developing a hybrid analog/digital network family. This work is outlined here, and
has been reported in greater detail elsewhere [9, 10, 11]. The generic (logical and
layout) architecture of a single network of n totally interconnected neurons is shown

schematically in figure 1. Neurons are represented by circles, which signal their
states, V, upward into a matrix of synaptic operators. The state signals are con-
nected to a n - bit horizontal bus running through the synaptic array, with a con-
nection to each synaptic operator in every column. All columns have 11 operators
(denoted by squares) and each operator adds its synaptic contribution, T1 V1 , to the
running total of activity for the neuron i at the foot of the column. The synaptic
function is therefore to multiply the signalling neuron state, V, by the synaptic
weight, T1 ,, and to add this product to the running total. This architecture is com-
mon to both the bit - serial and pulse - stream networks.

Synaps

States {V,}

irons

Figure 1. Generic architecture for a network of n totally interconnected neurons.

This type of architecture has many attractions for implementation in 2 - dimensional
j =n —1

silicon as the summation 7, T j V, is distributed in space. The interconnect
j=0

requirement (n inputs to each neuron) is therefore distributed through a column,
reducing the need for long - range wiring. The architecture is modular, regular and
can be easily expanded.
In the hybrid analog/digital system, the circuitry uses a "pulse stream" signalling
method similar to that in a natural neural system. Neurons indicate their state by
the presence or absence of pulses on their outputs, and synaptic weighting is
achieved by time - chopping the presynaptic pulse stream prior to adding it to the
postsynaptic activity summation. It is therefore asynchronous and imposes no fun-
damental limitations on the activation or neural state. Figure 2 shows the pulse
stream mechanism in more detail. The synaptic weight is stored in digital memory
local to the operator. Each synaptic operator has an excitatory and inhibitory pulse
stream input and output. The resultant product of a synaptic operation, T11 V, is
added to the running total propagating down either the excitatory or inhibitory
channel. One binary bit (the MSBit) of the stored T11 determines whether the con-
tribution is excitatory or inhibitory.

The incoming excitatory and inhibitory pulse stream inputs to a neuron are
integrated to give a neural activation potential that varies smoothly from 0 to 5 V.
This potential controls a feedback loop with an odd number of logic inversions and

Exc. lnh. 	Exc. 	lnh.
1I,II 	I I I I 	 I I I ________

Figure 2. Pulse stream arithmetic. Neurons are denoted by 0 and synaptic operators
by 0.

thus forms a switched "ring - oscillator". If the inhibitory input dominates, the feed-
back loop is broken. If excitatory spikes subsequently dominate at the input, the
neural activity rises to 5V and the feedback loop oscillates with a period determined
by a delay around the loop. The resultant periodic waveform is then converted to a
series of voltage spikes, whose pulse rate represents the neural state, V 1 . Interest-
ingly, a not dissimilar technique is reported elsewhere in this volume, although the
synapse function is executed differently [12].

3. A 5 - STATE BIT - SERIAL NEURAL NETWORK

The overall architecture of the 5 - state bit - serial neural network is identical to
that of the pulse stream network. It is an array of n 2 interconnected synchronous
synaptic operators, and whereas the pulse stream method allowed V1 to assume all
values between "off" and "on", the 5 - state network V1 is constrained to 0, ±0.5 or
±1. The resultant activation function is shown in Figure 3. Full digital multiplica-
tion is costly in silicon area, but multiplication of T,1 by V1 = 0.5 merely requires
the synaptic weight to be right - shifted by 1 bit. Similarly, multiplication by 0.25
involves a further right - shift of T1 , and multiplication by 0.0 is trivially easy. V1
< 0 is not problematic, as a switchable adder/subtractor is not much more complex
than an adder. Five neural states are therefore feasible with circuitry that is only
slightly more complex than a simple serial adder. The neural state expands from a 1
bit to a 3 bit (5 - state) representation, where the bits represent "add/subtract?",
"shift?" and "multiply by 0?".

Figure 4 shows part of the synaptic array. Each synaptic operator includes an 8 bit
shift register memory block holding the synaptic weight, T,. A 3 bit bus for the 5
neural states runs horizontally above each synaptic row. Single phase dynamic
CMOS has been used with a clock frequency in excess of 20 MHz [13]. Details of
a synaptic operator are shown in figure 5. The synaptic weight Tq cycles around the
shift register and the neural state V is present on the state bus. During the first
clock cycle, the synaptic weight is multiplied, by the neural state and during the
second, the most significant bit (MSBit) of the resultant Tq V1 is sign - extended for

THRESHOLD
State Vi

Activity z
XI

State V

State V

"Sharper"

"Smoother"

livity ij

it
	 Activity Xj

Figure 3. "Hard - threshold", 5 - state and sigmoid activation functions.

j= n-i

,io

:4

Figure 4. Section of the synaptic array of the 5 - state activation function neural net-
work.

8 bits to allow for word growth in the running summation. A least significant bit
(LSBit) signal running down the synaptic columns indicates the arrival of the LSBit
of the x running total. If the neural state is ± 0.5 the synaptic weight is right
shifted by 1 bit and then added to or subtracted from the running total. A multipli-
cation of ±1 adds or subtracts the weight from the total and multiplication by 0

xoo\\ 	
I 	TV

xO.5 	 I j-.-1

IJ'.pI

Add/Subtract
T1,

Add!

Subtract 	I
Carry

TuVj
J=P

Figure 5. The synaptic operator with a 5 - state activation function.

does not alter the running summation.

The final summation at the foot of the column is thresholded externally according
to the 5 - state activation function in figure 3. As the neuron activity x,, increases
through a threshold value x,, ideal sigmoidal activation represents a smooth switch
of neural state from -1 to 1. The 5 - state "staircase" function gives a superficially
much better approximation to the sigmoid form than a (much simpler to imple-
ment) threshold function. The sharpness of the transition can be controlled to
"tune" the neural dynamics for learning and computation. The control parameter is
referred to as temperature by analogy with statistical functions with this sigmoidal
form. High "temperature" gives a smoother staircase and sigmoid, while a tempera-
ture of 0 reduces both to the "Hopfleld' - like threshold function. The effects of
temperature on both learning and recall for the threshold and 5 - state activation
options are discussed in section 4.

4. LEARNING AND RECALL WITH VLSI CONSTRAINTS

Before implementing the reduced - arithmetic network in VLSI, simulation experi-
ments were conducted to verify that the S - state model represented a worthwhile
enhancement over simple threshold activation. The "benchmark" problem was
chosen for its ubiquitousness, rather than for its intrinsic value. The implications
for learning and recall of the 5 - state model, the threshold (2 - state) model and
smooth sigmoidal activation

(
oo - state) were compared at varying temperatures

with a restricted dynamic range for the weights Tq . In each simulation a totally
interconnected 64 node network attempted to learn 32 random patterns using the
delta rule learning algorithm (see for example [14]). Each pattern was then cor-
rupted with 25% noise and recall attempted to probe the content addressable
memory properties under the three different activation options.

During learning, individual weights can become large (positive or negative). When
weights are "driven" beyond the maximum value in a hardware implementation,

which is determined by the size of the synaptic weight blocks, some limiting
mechanism must be introduced. For example, with eight bit weight registers, the
limitation is -128 f=- 127. With integer weights, this can be seen to be a prob-
lem of dynamic range, where it is the relationship between the smallest possible
weight (±1) and the largest (+ 127/-128) that is the issue.

Results: Fig. 6 shows examples of the results obtained, studying learning using 5 -
state activation at different temperatures, and recall using both 5 - state and thres-
hold activation. At temperature T=O, the 5 - state and threshold models are
degenerate, and the results identical. Increasing smoothness of activation (tempera-
ture) during learning improves the quality of learning regardless of the activation
function used in recall, as more patterns are recognised successfully. Using 5 - state
activation in recall is more effective than simple threshold activation. The effect of
dynamic range restrictions can be assessed from the horizontal axis, where Tfn is
shown. The results from these and many other experiments may be summarised as
follows:-

S - State activation vs. threshold:
Learning with 5 - state activation was protracted over the threshold activation,
as binary patterns were being learnt, and the inclusion of intermediate values
added extra degrees of freedom.
Weight sets learnt using the 5 - state activation function were 'better" than
those learnt via threshold activation, as the recall properties of both 5 - state
and threshold networks using such a weight set were more robust against
noise.
Full sigmoidal activation was better than 5 - state, but the enhancement was
less significant than that incurred by moving from threshold - 5 - state. This
suggests that the law of diminishing returns applies to addition of levels to the
neural state V. This issue has been studied mathematically [15], with results
that agree qualitatively with ours.

Weight Saturation:
Three methods were tried to deal with weight saturation. Firstly, inclusion of a
decay, or "forgetting" term was included in the learning cycle [1]. It is our view
that this technique can produce the desired weight limiting property, but in the time
available for experiments, we were unable to "tune" the rate of decay sufficiently
well to confirm it. Renormalisation of the weights (division to bring large weights
back into the dynamic range) was very unsuccessful, suggesting that information
distributed throughout the numerically small weights was being destroyed. Finally,
the weights were allowed to "clip" (ie any weight outside the dynamic range was set
to the maximum allowed value). This method proved very successful, as the learn-
ing algorithm adjusted the weights over which it still had control to compensate for
the saturation effect. It is interesting to note that other experiments have indicated
that Hopfield nets can "forget" in a different way, under different learning control,
giving preference to recently acquired memories [16]. The results from the satura-
tion experiments were:-

For the 32 pattern/64 node problem, integer weights with a dynamic range
greater than ±30 were necessary to give enough storage capability.
For weights with maximum values Tijl = 50-70, "clipping" occurs, but net-
work performance is not seriously degraded over that with an unrestricted
weight set.

15

U0
I - ._.4.

/ 	-..

/ !
I

I

I
I

I
I

I

0 20 30 40 50 60 70

Limit

5 -.state activation function recall

	

is 	 T=30

T=20
T=10

	

10 	 T=0

0

/

1
0

	

0 	20 30 40 50 60 70

Limit

"Hopficld" activation function recall

Figure 6. Recall of patterns learned with the 5 - state activation function and subse-
quently restored using the 5-state and the hard - threshold activation functions.
T is the "temperature", or smoothness of the activation function, and "limit" the value
of T8 '.

These results showed that the 5 - state model was worthy of implementation as a
VLSI neural board, and suggested that 8 - bit weights were sufficient.

5. PROJECTED SPECIFICATION OF A HARDWARE NEURAL BOARD

The specification of a 64 neuron board is given here, using a 5 - state bit - serial 64
x 64 synapse array with a derated clock speed of 20 MHz. The synaptic weights are
8 bit words and the word length of the running summation x1 is 16 bits to allow for
growth. A 64 synapse column has a computational latency of 80 clock cycles or
bits, giving an update time of 4p.s for the network. The time to load the weights
into the array is limited to 60s by the supporting RAM, with an access time of
120ns. These load and update times mean that the network is executing 1 x iO
operations/second, where one operation is ± Taj Vj . This is much faster than a
natural neural network, and much faster than is necessary in a hardware accelera-
tor. We have therefore developed a "paging" architecture, that effectively "trades -
off' some of this excessive speed against increased network size.
A "moving -- patch" neural board: An array of the 5 - state synapses is currently
being fabricated as a VLSI integrated circuit. The shift registers and the
adder/subtractor for each synapse occupy a disappointingly large silicon area, allow-
ing only a 3 x 9 synaptic array. To achieve a suitable size neural network from this
array, several chips need to be included on a board with memory and control circu-
itry. The "moving patch" concept is shown in figure 7, where a small array of
synapses is passed over a much larger n x n synaptic array.

Each time the array is "moved" to represent another set of synapses, new weights
must be loaded into it. For example, the first set of weights will be T 11 ... T,, ... T 21

T2 to T1 , the second set T111 to T,, etc.. The final weight to be loaded will be

•J1?JL!'il!'Jl
.](.](I][.][.

.ir.ir.ir.ir.
Smaller 'Patch"

n neurons -. nxn synaptic array
moves over array

Figure 7. The "moving patch" concept, passing a small synaptic "patch" over a larger
nxn synapse array. 	 -

T. Static, off - the - shelf RAM is used to store the weights and the whole opera-
tion is pipelined for maximum efficiency. Figure 8 shows the board level design for
the network.

{Tu}RAM fX 	Icontrol

Synaptic Accelerator Chips

{V}
Partial
Sum

Bus interface
	

RAM

HOST

Figure 8. A "moving patch" neural network board.

The small "patch" that moves around the array to give n neurons comprises 4 VLSI
synaptic accelerator chips to give a 6 x 18 synaptic array. The number of neurons to
be simulated is 256 and the weights for these are stored in 0.5 Mb of RAM with a
load time of 8ms. For each "patch" movement, the partial running summation, i1,

calculated for each column, is stored in a separate RAM until it is required to be
added into the next appropriate summation. The update time for the board is 3ms
giving 2 x iO operations/second. This is slower than the 64 neuron specification,
but the network is 16 times larger, as the arithmetic elements are being used more
efficiently. To achieve a network of greater than 256 neurons, more RAM is
required to store the weights. The network is then slower unless a larger number of
accelerator chips is used to give a larger moving "patch".

6. CONCLUSIONS

A strategy and design method has been given for the construction of bit - serial
VLSI neural network chips and circuit boards. Bit - serial arithmetic, coupled to a
reduced arithmetic style, enhances the level of integration possible beyond more
conventional digital, bit - parallel schemes. The restrictions imposed on both synap-
tic weight size and arithmetic precision by VLSI constraints have been examined
and shown to be tolerable, using the associative memory problem as a test.
While we believe our digital approach to represent a good compromise between
arithmetic accuracy and circuit complexity, we acknowledge that the level of
integration is disappointingly low. It is our belief that, while digital approaches
may be interesting and useful in the medium term, essentially as hardware accelera-
tors for neural simulations, analog techniques represent the best ultimate option in 2
- dimensional silicon. To this end, we are currently pursuing techniques for analog
pseudo - static memory, using standard CMOS technology. In any event, the full
development of a nonvolatile analog memory technology, such as the MNOS tech-
nique [7], is key to the long - term future of VLSI neural nets that can learn.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the Science and Engineering Research
Council (UK) in the execution of this work.

References

S. Grossberg, "Some Physiological and Biochemical Consequences of Psycho-
logical Postulates," Proc. Nail. Acad. Sci. USA, vol. 60, pp. 758 - 765, 1968.

H. P. Graf, L. D. Jackel, R. E. Howard, B. Straughn, J. S. Denker, W.
Hubbard, D. M. Tennant, and D. Schwartz, "VLSI Implementation of a
Neural Network Memory with Several Hundreds of Neurons," Proc. AlP
Conference on Neural Networks for Computing, Snowbird, pp. 182 - 187, 1986.
W. S. Mackie, H. P. Graf, and J. S. Denker, "Microelectronic Implementa-
tion of Connectionist Neural Network Models," IEEE Conference on Neural
Information Processing Systems, Denver, 1987.

J. J. Hopfield and D. W. Tank, "Neural" Computation of Decisions in Optim-
isation Problems," Biol. Cybern., vol. 52, pp. 141 - 152, 1985.
M. A. Sivilotti, M. A. Mahowald, and C. A. Mead, Real - Time Visual Com-
putations Using Analog CMOS Processing Arrays, 1987. To be published

C. A. Mead, "Networks for Real - Time Sensory Processing," IEEE Confer-
ence on Neural information Processing Systems, Denver, 1987.

J. P. Sage, K. Thompson, and R. S. Withers, "An Artificial Neural Network
Integrated Circuit Based on MNOS/CCD Principles," Proc. AlP Conference on
Neural Networks for Computing, Snowbird, pp. 381 - 385, 1986.
S. C. J. Garth, "A Chipset for High Speed Simulation of Neural Network Sys-
tems," IEEE Conference on Neural Networks, San Diego, 1987.
A. F. Murray and A. V. W. Smith, "A Novel Computational and Signalling
Method for VLSI Neural Networks," European Solid State Circuits Conference

1987.

A. F. Murray and A. J. W. Smith, "Asynchronous Arithmetic for VLSI
Neural Systems," Electronics Letters, vol. 23, no. 12, p. 642, June, 1987.
A. F. Murray and A. V. W. Smith, "Asynchronous VLSI Neural Networks
using Pulse Stream Arithmetic," IEEE Journal of Solid-State Circuits and Sys-
tems, 1988. To be published

M. E. Gaspar, "Pulsed Neural Networks : Hardware, Software and the Hop-
field AID Converter Example," IEEE Conference on Neural Information Pro-
cessing Systems, Denver, 1987.

M. S. McGregor, P. B. Denyer, and A. F. Murray, "A Single - Phase Clock-
ing Scheme for CMOS VLSI," Advanced Research in VLSI Proceedings of the
1987 Stanford Conference, 1987.

D. E. Rumeihart, G. E. Hinton, and R. J. Williams, "Learning Internal
Representations by Error Propagation," Parallel Distributed Processing
Explorations in the Microstructure of Cognition, vol. 1, pp. 318 - 362, 1986.
M. Fleisher and E. Levin, "The Hopfiled Model with Multilevel Neurons
Models," IEEE Conference on Neural Information Processing Systems, Denver,
1987.

G. Parisi, "A Memory that Forgets," J. Phys. A : Math. Gen., vol. 19, pp.
L617 - L620, 1986.

NEURAL NETWORKS.

Murray, Z. F. Butler and A. V. W. Smith

TRODUCTION

Letic neurons are simple computational units operating in massively parallel arrays, that capture
of the functionality and computational strengths of the brain. In engineering terms, a biological

)fl (for example, member i of a network of n neurons) is a unit that signals its state V., by the
nce ("on") or absence ("off") of voltage pulses on its output, or axon. Neuron i decides its state
imputing its activity x•, which can be altered by direct stimulation of the neuron from outside the
Drk and by contributions from other neurons in the network. The neuron state, V 1 , is related to
an activation function, f. Neural activity is the level of excitation of the neuron and the activa-

function describes its response to a change in activation. The contributions from other neurons
ieighted by interneural synaptic weights {T}. The state of neuron i in a n - neuron array [1] is
given by:-
 j =11-1

V1 = f (x,) = f (I T, V + J) 	 (1)
j=o

activation function f (x1) defines the range and resolution of V1 , and the smoothness with which
iron moves between the "off" and "on" states and ensures that (say) V1 is 1 when xi is large and
ien x, is small. I is a direct input that may be arbitrarily strong to force a value on V 1 . Synaptic
ts {T,} may be positive (excitatory) or negative (inhibitory) and any neuron may tend to turn
er neuron "on" or "off' respectively. Information is encoded in or "learnt" by the network by

.ng the long term memory storage elements {T q }. Recall or computation is performed as the net-
moves around the n - dimensional space defined by the {V,} with the {T, 1 } constant. This is

Went to a recursive and asynchronous evaluation of eqn. (1) until equilibrium is reached. The
al function is straightforward, but in a totally interconnected n - neuron array, eqn. (1) requires
ultiplications and a large number of interconnections for each network update cycle. Therefore,
hallenge in VLSI is to design a simple, compact synapse with minimal inter-synapse connections
can be easily implemented in silicon. This is relatively simple for a network with fixed functional-
However if the network is to be able to learn, it becomes more complicated as the synaptic
hts must be programmable.

EURAL NETWORK ARCHITECTURE

e are fundamentally two approaches to implementing any function in silicon - digital and analo-
The two neural systems designed here use a hybrid analogue/digital method and a bit-serial digi-
iethod. The general architecture (logical and layout), used by both designs is shown schemati-
in figure 1. This is a single network of a totally interconnected neurons. Neurons are

sented by circles, that signal their states, V. upward into a matrix of synaptic operators. The state
Is are connected to a a bit horizontal bus running across the synaptic array, with a connection to
laptic operator in every column. Each column has n operators (denoted by squares) that add
synaptic contribution Tq V1 , to the running total of activity for the neuron i at the end of the

nn. The synaptic function is therefore to mu1tipv the signalling neuron state, V1 , by the synaptic
ht, T,1 and to add this product to the running total.

type of architecture has many attractions for implementation in 2 - dimensional silicon as the
nation is distributed in space. The interconnect requirement is distributed through a column,
cing the need for long-range wiring. The architecture is modular, regular and easily expanded.

hybrid analogue/digital system: This uses a "pulse stream" method similar to that in a natural
in. Neurons indicate their state by the presence or absence of pulses on their outputs and synaptic
hting is achieved by time-chopping the presynaptic pulse stream prior to adding it to the post
ptic activity summation. It is therefore asynchronous and imposes no fundamental limitations on
ictivation or neural state. Figure 2 shows the pulse stream mechanism in more detail. The synap-
eight is stored in digital memory local to the synapse. Each synaptic operator has an excitatory

thibitory pulse stream output. The resultant product of the operation, T1, V, is added to the run-
total propagating down either the excitatory or the inhibitory channel. One binary bit (the
:) of the stored Tq determines whether the contribution is excitatory or inhibitory. The incom-
citatory and inhibitory pulse stream inputs to a neuron are integrated to give a neural activation
ial that varies smoothly from 0 to 5 V. This potential controls a feedback loop with an odd
er of logic inversions and thus forms a switched "ring-oscillator". If the inhibitory input dom-

the feedback loop is broken. If excitatory spikes subsequently dominate at the input, the neural
y rises to 5 V and the feedback loop oscillates with a period determined by a delay around the
The resultant periodic waveform is then converted to a series of voltage spikes, whose pulse rate
ents the neural state, V. A 64 synapse array using this method has been fabricated in 311.
S technology. The work outlined here has been reported in greater detail elsewhere [2, 3, 4].

Exc. 	Inh. 	Exc. 	Inh.
..., 	___J -UXUWIL

yua

Neus

e 1. Generic architecture for a network 	Figure 2. Pulse stream arithmetic. Neurons are

wally interconnected neurons. 	 denoted by 0 and synaptic operators by 0.

)it-serial digital system: This system again comprises an array of a 2 interconnected synchronous
tic operators. The major difference between the two, is that the pulse stream method allows V
;ume all values between "off' and "on", whereas the bit-serial network is constrained to 5-states
i are V = 0, ± 0.5 or ± 1. The resultant activation functions for the pulse stream and 5-state
)rks are shown in figure 3. Multiplication of T1 by {V = 0.5} simply requires that T1 be right-
d by 1 bit and multiplication by 0 requires the product to be set to 0. V < 0 is implemented in
tchable adder/subtractor. Figure 4 shows details of synaptic operators in the array. Each operator
n 8-bit shift register memory block holding the synaptic weight, which is "multiplied" by the
I state, V, signalled on a 3-bit bus. The running summation T1 V is 16 bits to allow for word
:h down the column. A least significant bit (LSBit) signal running down the synaptic columns
ites the arrival of the LSBit of the x 1 . running total.

inal value of the activity arriving at the neuron in each column is thresholded externally accord-
the 5-state activation function in figure 3. As the neuron activity increases through a threshold

x,, the ideal activation represents a smooth switch of neural state from -1 to + 1. The 5-state
ase" function gives a superficially much better approximation to the form than the (simpler to

ment) threshold function. The sharpness of the transition affects the neural ability for learning
omputation. The control parameter is referred to as "temperature" by analogy to statistical func-
with this form. High temperature gives a smoother staircase and sigmoid and zero temperature
es the sigmoid to the threshold function.

EARNING AND RECALL CAPABILITIES WITH VLSI CONSTRAINTS

iing and recall capabilities of the 5-state function were simulated in software against those of the
e threshold model and the sigmoidal activation, at varying temperatures with a restricted
mc range for the weights, T,. In each simulation a totally interconnected 64 node network
•pted to learn 32 patterns using the delta rule algorithm [5]. Each pattern was then corrupted
25 % noise. The results showed that weight sets learnt using the 5-state activation function were
r" than those learnt via the threshold activation. Recall of the patterns was also more effective
the 5-state model. Full sigmoid activation was superior to the 5-state, but the enhancement was

THRESHOLD
e

	

Vj 	

- Activity Xi
Xt

	

:e V 	
" STATEJJ 	

> "Sharper"

"Smoother"

x' 	/7 	
CtIVItyX3

SIGM011D/D.1
eV

Activity x•
x 	 3

re 3. "Hard - threshold", 5 - stare and
roid activation functions.

i:

Figure 4. Section of the synaptic array of the

5 - state activation function neural network.

ignificant than that incurred by moving from threshold to 5-state. The best method to deal with
it saturation during learning was to permit any weight outside the dynamic range to be set to its
mum allowed value. These results showed that the 5-state model was worthy of fabrication at a
[level and implementation on a neural board. A full discussion of the results can be found in [6].

HARDWARE NEURAL BOARD

ecification has been calculated for a 64 neuron board using a 5-state bit-serial 64 x 64 synapse
The weight set is stored in supporting RAM with an access time of 120 ns. This limits the

it loading time to the RAM to 60 u.s. These load and access times enable the network to operate
x iO operations/second, where one operation is ± T. V. This is much faster than a natural
al network and faster than is necessary in a hardware accelerator. A "paging" architecture has
fore been developed to "trade-off' some of this excessive speed for increased network size.

wving-patch" neural board: An array of the 5 - state synapses is currently being fabricated as a
[integrated circuit using singe phase 3i CMOS technology. [7]. The full custom layout for each
se occupies a disappointingly large silicon area, allowing only a 3 x 9 synaptic array. To achieve
table size neural network from this array, several chips need to be included on a board with
ory and control circuitry. The "moving patch" concept is shown in figure 5, where a small array
-napses is passed over a much larger n x n synaptic array. Each time the array is "moved" to
sent another set of synapses, new weights must be loaded into it. For example, the first set of
[its will be T 11 T 21 ... T 21 to T11 , the second set T11 , 1 to T,5 etc.. The final weight to be
d will be 	Static, off-the-shelf RAM is used to store the weights and the whole operation is
med for maximum efficiency. Figure 6 shows the board level design for the network. The small
:h" that moves around the array comprises four VLSI synaptic accelerator chips to give a 6 x 18
tic array. The number of neurons to be simulated is 256 and the weights for these are stored in

v[b of RAM with a load time of 8ms. For each "patch" movement, the partial running summa-
i, calculated for each column, is stored in a separate RAM until it is required to be added into
next appropriate summation. The update time for the board is 3ms giving 2 x iø
itions/second. This is slower than the 64 neuron specification, but the network is 16 times larger,
e arithmetic elements are being used more efficiently. To achieve a network of greater than 256
Dns, more RAM is required to store the weights. The network is then slower unless a larger
)er of accelerator chips is used to give a larger moving "patch".

DNCLUSIONS

egies and design methods have been given for the construction of a hybrid analogue/digital VLSI
al network chip and a bit-serial VLSI network and board. Bit-serial and "reduced-style" arith-

enhances the level of integration beyond more conventional digital, bit-parallel schemes. The
ctions imposed on both synaptic weight size and arithmetic precision by VLSI constraints have

Synaptic Accelerator Chips

•JLJLJl
• (.]ElI]E.]E.

Eml ER • r.i. . •

n neurons - nxn synaptic array 	I moves over

array

re 5. The "moving patch" concept, passing a
synaptic "patch" over a larger nxn synapse array.

HOST

Figure 6. A "moving patch" neural network

board.

examined and shown to be tolerable, using the associative memory problem as a test.
e we believe our digital approach to represent a good compromise between arithmetic accuracy
circuit complexity, we acknowledge that the level of integration is disappointingly low. It is our
f that, while digital approaches may be interesting and useful in the medium term, essentially as
ware accelerators for neural simulations, analogue techniques represent the best ultimate option
- dimensional silicon. To this end, we are currently pursuing techniques for analogue pseudo -
memory, using standard CMOS technology. In any event, the full development of a nonvolatile
gue memory technology, such as the MNOS technique [8], is key to the long - term future of

I neural nets that can learn.
authors acknowledge the support of the Science and Engineering Research Council (UK) in the
Lition of this work.

rences

S. Grossberg, "Some Physiological and Biochemical Consequences of Psychological Postulates,"
Proc. Nail. Acad. Sci. USA, vol. 60, pp. 758 - 765, 1968.
A. F. Murray and A. V. W. Smith, "A Novel Computational and Signalling Method for VLSI
Neural Networks," European Solid State Circuits Conference , 1987.

A. F. Murray and A. J. W. Smith, "Asynchronous Arithmetic for VLSI Neural Systems," Elec-

tronics Letters, vol. 23, no. 12, p. 642, June, 1987.
A. F. Murray and A. V. W. Smith, "Asynchronous VLSI Neural Networks using Pulse Stream
Arithmetic," IEEE Journal of Solid-State Circuits and Systems, 1988. To be published

D. E. Rumeihart, G. E. Hinton, and R. J. Williams, "Learning Internal Representations by
Error Propagation," Parallel Distributed Processing Explorations in the Microstructure of Cogni-

tion, vol. 1, pp. 318 - 362, 1986.
A. F. Murray, A. V. W. Smith, and Z. F. Butler, "Bit - Serial Neural Networks," IEEE Confer-
ence on Neural Information Processing Systems - Natural and Synthetic, Denver, 1987. To be
published.
M. S. McGregor, P. B. Denyer, and A. F. Murray, "A Single - Phase Clocking Scheme for
CMOS VLSI," Advanced Research in VLSI Proceedings of the 1987 Stanford Conference, 1987.

J. P. Sage, K. Thompson, and R. S. Withers, "An Artificial Neural Network Integrated Circuit
Based on MNOS/CCD Principles," Proc. AlP Conference on Neural Networks for Computing,
Snowbird, pp. 381 - 385, 1986.

VLSI BIT - SERIAL NEURAL NETWORKS

Zoe F. Butler, Alan F. Murray and Anthony V.W. Smith

INTRODUCTION

A synthetic neural network can be viewed as a large parallel array of n 2 synaptic
operators, (for n neurons) that is able to model some of the brain's characteristics.
The VLSI neural network described, functions with bit-serial, two's complement
arithmetic and uses a single phase clocking technique operating at a minimum of 20
MHz (McGregor et a! 1987).
A synthetic neuron is a state machine that is either "on" or "off', assuming inter -
mediate states as it switches smoothly between these extrema. A synapse weights the
signal from a transmitting neuron such that it is more or less excitatory or inhibitory
to the receiving neuron. The total level of activation of a neuron is represented by
its activity, x1 . This is related to the state of the receiving neuron by an activation
function, f, that describes its response to a change in activation. Biologically, this
function is sigmoidal, but in our synthetic network it is simplified so that V, = 1
when x 1 is large and -1 when x, is small, with 3 states in between. The interneural
synaptic weights, T. 1 . are the contributions from other neurons, that are weighted by
the receiving neuron. Therefore, the state of neuron i in an n - neuron array is
given by:-

1=" -1 	-

V, 	f (x1) = f (T 1 V1 + 1.) 	 (1)
jO

Synaptic weights may be positive (excitatory) or negative (inhibitory) and any neu-
ron may tend to turn any other neuron "on" or "off' respectively. i is a direct input
that may be arbitrarily strong to force some value on V.. The synaptic weights,
determine the stable states and represent the information learned by the network.
Learning is therefore, a controlled modification of the {T, } to adjust the stable states.
Recall or computation is performed as the network moves around the n - dimen-
sional space defined by the neural states v,, with the {T, 1 } constant.
The neural architecture is based on eqn. (1). It involves n 2 digital multiplications and
summations in an array of n totally interconnected neurons. This is relatively
straight forward in a network with fixed functionality. However, if the network is to
be able to learn patterns, the synaptic weights must be programmable, thus making it
more complicated.

Syna

Neurons

NETWORK COMPUTATION AND DESIGN

An advantage of bit-serial arithmetic in a neural network is it minimises the inter-
connect requirement by eliminating multi-wire busses. Pipelining makes optimal use
of the high bit-rates possible in serial systems allowing good communication within
and between VLSI chips. The primary advantage of using digital CMOS circuitry is
that on-chip digital memory design is more easy to implement than any analogue
counterpart and can be easily incorporated for the programming and storage of the
synaptic weights. Design techniques are advanced, automated and well understood,
and noise immunity and computational speed can be high.
Architecture
The general neural architecture in figure 1 shows a single network of a totally inter-
connected neurons. A neuron is represented by a circle, with its column of n
synapses (shown by squares) communicating with all other neurons in the array.
Each synaptic operator adds the weighted contributions from other neurons down the
column. When the total summation reaches the foot of the column, the neuron
thresholds it according to the 5-state activation function shown in figure 2. The new
state of the neuron is then signalled back to the array. The state signals are con-
nected to a a bit bus running across the synaptic array, with a connection to a
synaptic operator in every column. Therefore, the two functions of a synaptic opera-
tor are to multiply the signalling neuron state V, by the synaptic weight, T, and to
add the product to the running total of activity. For example, in figure 1, neuron 3
signals its state v 3 , to neuron 1 along the dark path shown, and the product T 1 , 3 V 3 is
added to the running total in column 1.

Neural States {
V }

/ V4

Figure 1 Generic Architecture for a totally interconnected
n - neuron network.

State VTHRESHOLD

- Activitvx
xt

"5 STATE"
State V3 	

rT.J. 	
"Sharper"

"Smoother"

xt 	 Activitvx3

SIGMOID 	-- -
State V 	- - -

Activity
xi

Figure 2 The 5-state, sigmoid and 2-state activation functions.

Reduced Arithmetic

Full digital multiplication can be expensive in silicon area, but the 5-state activation
function allows reduced arithmetic to be used. Hence, multiplication of a synaptic
weight by v = 0.5 simply requires the synaptic weight to be right-shifted by 1 bit.
Likewise, multiplication by 0.25 involves two right-shifts of { T11 }, and multiplication
)y 0.0 is easy. A negative (inhibitory) neuron state is not problematic, as a switch-
thie adder/subtractor is only slightly more complicated than than an adder. Hence, 5
ieural states can be easily obtained from circuitry a little more complex than the
;imple adder required for 2 states (Hopfield, 1982). The neural state bus expands
rom a 1 bit to a 3 bit representation, where the 3 control bits are add/subtract?,
;hift? and multiply by zero?

Details of a synaptic operator are given in figure 3. Each operator has an 8 bit
hift register memory holding its synaptic weight. During computation, the synaptic
veight cycles round the register while the neural state is signalled on the 3 bit bus
tinning horizontally above each synaptic row. A complete synapse computation
equires two complete shift register cycles (16 clock cycles). During, the first cycle
he synaptic weight is multiplied by the neural state and during the second, the
vISBit of the resultant T4 V, is sign-extended for the remainder of the shift register
ycle. This allows a maximum 8 bit word growth in the running summation. The
£Bit of each neuron's running summation is indicated by an LSBit signal running
[own the synaptic column.

The final 16 bit summation at the foot of the column is thresholded according
D its activation function. As the neuron activity x,, increases through threshold
alue x, (figure 2), the ideal activation represents a smooth switch of neural state
rom -1 to +1. The 5-state "staircase" function gives a better approximation to this
an the 2-state threshold function. Control of the sharpness of this transition can

tune" the neural dynamics for learning and computation. The control parameter is

Figure 3 Synaptic Operator with a 5-state activation function.

eferred to as temperature by analogy to statistical functions with this form. Higher
:emperatures give the staircase and sigmoid a lower gradient.

LEARNING AND RECALL OF THE ACTIVATION FUNCTIONS

oftware simulations of learning and recall capabilities of the 5-state model were
ompared with those of the 2-state and sigmoid activation functions at varying tern-
eratures with a restricted dynamic range for the synaptic weights. A 64 node net-
vork in each simulation attempted to learn 32 patterns using the delta rule algorithm
:Rumelhai-t 1986). Results showed that the 5-state activation function learned the
'eight sets "better" than the 2-state activation function. The sigrnoid activation was

;till superior to the 5-state, but the discrepancy was noticeably less than between the
5-state and the 2-state activations. The best method to deal with weight saturation
luring learning was to permit any weight outside the dynamic range to be set to its
naximum value. A full discussion of these results can be found in Murray et al,
1987.

IARDWARE NEURAL BOARD

. 5-state synaptic operator array is being fabricated in 3pm CMOS technology. Full
ustom layout allowed a 12 x 9 synaptic array in a 64 pin package and figure 4 shows
)art of the design. Several chips, therefore, need to be wired together with memory
Cs and control circuitry to achieve a suitable size network for simulations.

eural Paging Architecture

neural board has been designed with 4 synaptic chips wired together giving a 12 x

8 bit shift register 	neural state tree 	sum/carry tree

Figure 4 Silicon Layout of a Synapse in the Array.

9 synaptic array. The small array will be used in a paging architecture to give a net-
work of 256 neurons that will act as a neural accelerator to a host computer. The
paging architecture can be thought of as a "moving patch", where the small array or
patch will simulate a small number of synapses in a large array, and then pass onto
the adjacent patch to repeat the computation until all 256 synapses have been simu-
lated. This idea is shown in figure 5. Each time the array is moved to represent
another set of synapses, the weights for that patch must be loaded into it. For exam-
ple, the first set of weights to be loaded will be T 1 , 1 . . . T 1 , 12 . . . T 2 , 1 . . . T 2 , 12 .. .T 9 , 1 to T 9 , 12 ,

the second set to be loaded will be T 10 , 1 . . . T 10 , 12T 18 , 1 to T 18 , 12 . The final weight to
be loaded is r2566 etc.. The memory required for 256 neurons is 0.5 Mbits of static
RAM. A RAM speed of 70ns will allow the weights to be loaded in 9ms. A larger
number of neurons can be simulated by simply loading the extra synaptic weights
into more memory.

The "patch" will move down the 1st set of 12 columns to compute the complete
running activities. It will then compute the 2nd set, 3rd set etc., until each set has
been computed. For each "patch" simulation in the array, the emerging partial run-
ning summations of the 12 partial column blocks, are synchronised to coincide with
the top of the running summation of the new patch. This ensures that each column
has a contribution (excitatory or inhibitory) from each synapse. As the total sum-
mations occur for each block, they are stored in an on - board static RAM as indi-
cated in the board design in figure 6.

When the total summation has been completed in each column, the neurons'
activities are thresholded off - board according to the 5 - state activation function.
The new neural states are signalled back to the synaptic accelerator chips for the next

do

• neurons —
I I 	Smaller "Patch"

• x n synaptic array
moves over array

Figure 5 'Paging Architecture" of passing a small synaptic "patch"
over a larger n x n synaptic array.

	

V 	(-: {T 1 }

M

	

E 	 RAM

T1 J4_4
I 1 	I 	11111

	

Synaptic 	V
Accelerator

	

Chips 	 To VME Bus

Control

	

{V 1
 } I 	

lum

{ Neural 	 xI
State 	I 	 Partial

	

RAM I 	 RA

Figure 6 'Paging Architecture" for a Neural Network Board.

array computation. Once the states become stable, the synaptic weights are adjusted
ccordingIy until learning is complete.

Control Circuitry

vIicrocode control circuitry operates all RAM loading and accessing and control sig-
lals to the synaptic accelerators. The flow diagram in figure 7 shows the small con-
trol overhead required, along with the timing of all operations for a complete update
Df 256 neurons. The calculated update time for the board is ims giving 6 x iO
Dperations/second. The number of synaptic accelerators determines the operating
;peed. A faster speed or more neurons and the same speed would require more
accelerators. Hence, the design is versatile in that any specification for network size
and speed can be met easily.

load synaptic weights and
neural states to RAMs.

for each new patch, 	Clock cycle
load 27 weights to each
svnaDtic accelerator

set controls signals, LSB
sign extend and 3-bit neu-
ral state for accelerators 	217

insert previous partial
sums from RAM to top
of accelerator 	1 	217

start computation I 	218

new partial sum LSB
exit from accelerators 	228
(count = 10)

start load of new
partial sum to RAM 	228

parriai sum
computation end 	234
(count = 6)

Figure 7 Flow Diagram of the Control Operation.

ONCLUSIONS

[he design method has been given for the construction of a VLSI neural hardware
iccelerator and its implementation in a neural board. Bit-serial, reduced arithmetic
mproved the level of integration compared to more conventional digital, bit-parallel
chemes. The restrictions on synaptic weight size and arithmetic precision by VLSI
onstraints have been examined and proved to be tolerable, using the associative

memory problem as a test.
The digital design gives a good compromise between arithmetic accuracy and

circuit complexity, but the level of integration is disappointingly low. This has been
somewhat overcome by the paging architecture of the neural board. to enable the
simulation of a large number of neurons. It is our belief that, while digital
approaches are useful in the medium term, especially as hardware accelerators,
analogue techniques represent the best ultimate option in 2 - dimensional silicon.

The authors acknowledge the support of the Science and Engineering Research
Council (UK) in the execution of this work.

References

Hopfield, J. J., "Neural Networks with Emergent Collective Computational
Abilities", Proceedings of the National Academy of Science, USA, vol. 79, pp.
2554-2558, 1982.

McGregor, M.S., Denyer, P.B. and Murray, A.F., "A Single - Phase Clocking
Scheme for CMOS VLSI," Advanced Research in VLSI Proceedings of the 1987
Stanford Conference, 1987.

Murray, A.F., Smith, A.V.W. and Butler, Z. F., "Bit-serial Neural Networks,"
IEEE Conf. on Neural Infomation Processing Systems - Natural and Synthetic,
Denver, 1987.

Rumeihart, D.E., Hinton, G.E. and Williams, R.J., 'teaming Internal
Representations by Error Propagations", Parallel Distributed Processing :
Explorations in the Microstructure of Cognition, vol. 1, pp. 318-362, 1986.

S77tf

--nY iAJc To
MIMI NEYWC'K OF 7H

WW iYa4) (i?/cw 41 La

4]

('7v4rr 7u,. (TELL lol, r
VF 074 fyE1\1)/icI'E.

