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Abstract 1ii

Abstract

A synthetic neural network is a massively parallel array of computational units (neu-
rons) that captures some of the functionality and computational strengths of the brain.
The functions that it may have are the ability to consider many solutions simultane-
ously, the ability to work with corrupted or incomplete data without any form of error
correction and a natural fault tolerance, which is acquired from the parallelism and the
representation of knowledge in a distributed fashion giving rise to graceful degradation

as faults appear.

A neuron can be thought of, in engineering terms, as a state machine that signals its
"on" state by the presence of a voltage on its output and signals its "off" state by the
absence of a voltage. The level of excitation of the neuron is represented by its quan-
tity of activity. The activity is related to the neural state by an activation function,
which is usually the "sigmoid" or "S-shape” function. This function represents a smooth
switching of neural state from off to on as the activity increases through a threshold.
Direct stimulation of the neuron from outside the network and contributions from
other neurons in the network will change the level of activity. The levels of firing
from other neurons to a receiving neuron are weighted by interneural synaptic weights.
The weights represent the long term memory storage elements of network. By altering
the value of the weights, information is encoded or "learnt” by the network, which

adds to its store of knowledge.

There are three broad categories into which neural network research can be divided.
These are mathematical description and analysis of the dynamical learning properties
of the network, computer simulation of the mathematical models and the VLSI
hardware imblementation of neural functions or classes of neural networks. It is the

final category into which the main thrust of this thesis falls.

The research presented here implements a VLSI digital neural network as a neural
accelerator to speed up simulation times. The VLSI design incorporates a parallel array
of synapses. The synapses provide the connections between neurons. Each synapse
effectively "multiplies;' the neural state of the receiving neuron by the synaptic weight

between the sending neuron and the receiving neuron. The "multiplication” is achieved
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by ﬁsing reduced precision arithmetic that has a "staircase” activation function modelled
on the sigmoid activation function and allows the neuron to be in any one of five
states. Therefore, with little loss in precision, the reduced precision arithmetic avoids
using full multiplication, which is expensive in silicon area. The reduced arithmetic

synapse increases the number of synapses that can be implemented on a single die.

The VLSI neural network chips can be easily cascaded together to give a larger array
of synapses. Four cascaded chips resulted in 108 synapses in an array. However, this
size of array was too small to perform neural network learning simulations. Therefore
the synapse array has been configured in a paging architecture, that has traded off
some of the high speed of the chips (upto 20MHz) against increased network size.
The synapse array has been wired with support circuitry on to a board to give a neural
accelerator that is interfaced to a host Sun computer. The paging architecture of the
board allows a network of several hundred neurons to be simulated. The neural
accelerator is used with the delta learning rule algorithm and results show its increased

acceleration to be up to two orders of magnitude over equivalent software simulations.
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Introduction

A neural network can be viewed as large numbers of computational units (neurons)
operating in parallel arrays, the functionality of which is based loosely on what is
understood to be used in the nervous system. The brain’s neurons, which form the
basic computing elements, are several orders of magnitude slower than silicon logic
gates, but are organised so they are able to perform some computations many times
faster than the fastest digital computers now in existence. The brain appears to do this

via its massive parallelism. As there are huge numbers of neurons, the weak com-
puting powers of these many slow elements combine to form a powerful resultant com-
putational machine. The scientific desire to understand human behaviour and the
brain construction has motivated much of the past and present research into neural net-
works. Some of the properties a synthetic neural network may aspire to mimic are the
ability to consider many solutions simultaneously and the ability to work with cor-
rupted or incomplete data without explicit error correction. Neural networks also have
a natural fault tolerance, which arises from the parallelism and distributed knowledge

representation giving rise to graceful degradation as faults appear.

In engineering terms, a biological neuron is a unit that signals its state by the presence
("on") or absence ("off”) of a voltage on its output, or axon. It decides its state by
computing its activity, which represents the level of excitation of the neuron. The state
is related to the activity by an activation function. The activation function is generally
the “"sigmoid” or "S-shape” function which represents a smooth switch of neural state
from off to on (not firing to firing) as the activity increases through a threshold. The
level of activity can be altered by direct stimulation of the neuron from outside the net-
work and by contributions from other neurons in the network. The contributions from
other neurons are weighted by interneural synaptic weights, which are in effect, the
long term memory storage elements of the network. Information is encoded or "learnt”

by the network by altering the value of the weights to add to its store of knowledge.

The present research into neural networks falls into three broad categories. The first is
that of mathematical description and analysis of the dynamical and learning properties

of the networks. The second category, which is probably the largest, covers research
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using computer simulation based on, for example, array processor or other supercom-
puter architectures to model and extend the mathematical descriptions. The third group
of research, into which the thrust of this thesis falls, aims to implement either particu-

lar neural functions or classes of neural network in LSI/VLSI hardware.

The LSUVLSI neural network circuits at present use planar silicon technology,
although this technology is almost certainly not the ultimate medium in which neural
* networks will fully realize their power. Three dimensional materials are more suited to
the three dimensional form of a neural network, but there is no solution yet that would
enable ‘these materials to be a suitable medium for hardware circuits. However,
hardware neural networks can be easily designed and manufactured in silicon VLSI
and are able to make use of developments in network design and learning procedures

to solve real problems.

The approach in this thesis is to implement a VLSI neural network as a digital neural
accelerator to speed up network simulation times. This involves the design in VLSI of
a network consisting of a parallel array of synapses. The synapses provide connections
between neurons. Each synapse holds locally the synaptic weight between the sending
neuron and the receiving neuron and has a means of "multiplying” the weight by the
neural state of the receiving neuron. This generally involves the full multiplication of
the synaptic weight by the neural state, which can be expensive in silicon area, allow-
ing only a small number of synapses on a die. The reduced precision arithmetic
approach in this thesis uses a "staircase” activation function modelled on the sigmoid
activation function, that allows a neuron to bé any one of 5 states. It avoids the use of
full multiplication, thus reducing the size of a synapse and greatly increasing the

number of synapses that can be integrated on a single die.

Simulation in software of the 5-state activation function obtained from using the
reduced precision arithmetic showed that its performance was only degraded a little
compared to that of the sigmoid activation function and there was little loss in preci- '
sion in neural network pattern learning simulations. The simulation results justified the
design of a neural network using the reduced precision arithmetic. The nature of this
approach lends itself to a VLSI, bit-serial, digital design. A single phase clocking
scheme capable of speeds up to 20MHz was, at the time, being developed in the

department and was used in the integrated circuit design.
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The main attraction of the reduced precision arithmetic is that it provides a means of
building a fast, digital hardware neural network, that can be used as a hardware
accelerator to reduce the lengthy simulation times of equivalent simulations run totally
in software. The problem with software models is that neural networks with only tens
of neurons can take many hours to simulate. The main body of this thesis describes
how a significant speed-up is achieved by using a VLSI neural network operating in a

"neural accelerator board”.

The thesis, first of all, provides a brief overview of the function of biological neurons
in Chapter 1. The history and background of neural networks is given, frdm the origi-
nal ideas about perception and memory up to the present day knowledge, along with
the most well known learning algorithms and neural network models that are used
today. Chapter 2 explains the motivation behind VLSI implementations and gives an
account of the research into hardware neural networks. The research covers digital,

analogue, pulse-stream and optical aspects of implementation.

Chapter 3 describes the details of the reduced precision arithmetic and how the 5-state
activation function relates to the sigmoid activation function. The simulation procedure
that was used to compare the performance of thé two activation functions is described.
An analysis of the results shows the suitability of the reduced precision arithmetic to be

implemented in VLSL

The VLSI design of the synapse array in Chapter 4, reports two different design pro-
cedures. The first design uses a fully custom computer aided design layout tool with
3um CMOS technology and the second uses the the European Silicon Structures silicon
compiler, Solo, for the complete design and layout procedure in 2pm technology.

Simulation results of the fabricated devices for each manufacture are presented.

Chapter 5 specifies how the neural network chips can be cascaded together on a neural
board to achieve a larger array of synapses. It explains how the synapse array is config-
ured in a paging architecture, that trades off some of the fast operating speed of the

chips against network size to create an array of several hundred neurons.

The results reported in Chapter 6 compare the performance of the the hardware neural
accelerator in a program with a learning procedure, to an equivalent software 5-state

activation function network and a software sigmoid activation network. Finally,
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Chapter 7 draws conclusions about the design and performance of the hardware
accelerator board and suggests improvements than could be made to increase its speed

and efficiency.
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Chapter 1

Introduction to Neurons and Neural Networks

The human brain is one of most complex structures known. There has been much
research over the centuries by anatomists, physiologists and psychologists into its
development, structure, the electrical and chemical phenomena that take place in its
nerve cells, and into its unique behaviour. Until the beginning of the twentieth
century, the brain was believed to bé an exception to the basic biological principle, that
all tissues are made up of individual cells. Now it is thought to consist of 100 billion (
1011) individual neurons arranged in several hundred distinct groups, with 95% in the
cerebral cortex [1,2]. It is this massively parallel computational ability of the brain to

perform a wide range of tasks that has urged researchers to build intelligent machines.

This chapter gives a brief introduction to biological neurons and their function. Much
of the biological terminology is used in the description of synthetic neural network
models and although it is not essential to have a good understanding of the nervous

system, some familiarity with the jargon is useful.

An outline of the history of synthetic neural networks in the second part of the
chapter, shows how the understanding of the nervous system and brain function
“developed and inspired early researchers to develop mathematical neural models and

later in the 1950’s, to build physical models that could perform some sort of learning.

The last section gives an overview of synthetic neural network models and learning
procedures used today that are implemented either mathematically, in software or in

hardware.

1.1. The Neuron

A typical neuron [2,3] consists of a cell body containing the nucleus and a number of
fibres extending from it as shown in figure 1.1. The neuron transmits information to
other cells by sending its activity out through only one fibre, the axen. All the other
fibrous extensions from the cell body, the dendrites, receive information from other

neurons. An axon generally divides into a number of small fibres that end in terminals.
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Each terminal forms a synapse with a dendrite or the cell body of another neuron and
is the point where information is transmitted from one neuron to another. A small
space, the synaptic cleft, separates the axon terminal from the dendrite or cell body of

the other neuron with which it synapses.

1.1.1. The Axon

An axon has two essential functions in the neuron. One is to conduct information in
the form of the action potential, which is the process axons use to carry information
from the neuron’s cell body to the synaptic terminals, in order to trigger synaptic
transmission. The other function is to transport chemical substances from the cell body

to the synaptic terminals and backwards from the synaptic terminals to the cell body.

The resistance of the neuron’s cytoplasm is sufficiently high that signals cannot be
transmitted along the axon greater than 1 mm before their information is lost. For this
reason, the larger axons in the human brain are surrounded by a thin insulating sheath
called myelin. The myelin increases the speed of conduction of the action potential
along the axon by reducing the capacitance between the cytoplasm and the extra-
cellular fluid [4]. The sheaths are made up from non-neural cells called Schwann cells
which are approximately 1mm in length and in general, the larger the the diameter of
the axon, the thicker the myelin, up to a possible 100 layers. Gaps of lpm which
occur in the Schwann cells, are nodes of Ranvier These nodes act as repeater sites
where the signal is periodically restored. A single myelinated fibre can carry signals the
length of the longest axons, which may be a metre or greater. Although myelination is
the most important distinguishing feature of larger axons, axons of less than 1pm in

diameter are unmyelinated.

1.1.2. Dendrites and Synapses

Dendrites constitute all the fibres extending out from the neuron, excluding the axon
and serve to extend the neuron’s receptive surface. In the cerebral cortex, many of the
dendrites have dendritic spines which form synapses with axon terminals of other
neurons as in figure 1.2. The dendritic spine forms the postsynaptic part and the axon
terminal forms the presynapﬁc part of the synapse. They are separated by the synaptic

cleft which is about 20nm wide. The dendritic spine synapses are thought to be
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excitatory and synapses that cluster on the cell body are thought to be inhibitory.
When a synapse is active and transmits information, vesicles in the axon terminal fuse
with the presynaptic membrane and release neurotransmitter into the cleft. The
transmitter molecules diffuse across the narrow gap and attach to specific chemical
receptor molecules on the postsynaptic membrane, which activates the -postsynaptic

target cell.

1.1.3. Cell Membrane and Action Potential

The neuron cell membrane has properties that allow it to conduct and ‘transmit
information to other neurons. One of these properties is ion channels through the
membrane that allow sodium (Na™*), potassium (K *) and chloride (C!/~) ions to pass in
and out of the cell. The axon has a resting potential of about -70 mV. This is due
mainly to a large concentration of K* ions inside the cell and a smaller concentration
of K* ions outside the cell and involves a passive process of ions moving through
permanently open ion channels. The distribution of K™ ions is due in turn to
negatively charged proteins in the cell. The distribution of Na* and C!~ ions also

contributes to the resting potential, but is less importént than that of K* ions.

The action potential in a typical neuron begins at the point where the axon leaves the
cell body and travels to the axon’s terminal. The Na™* gates open for about 0.5ms and
Na* ions enter the cell increasing its potential to +50 mV relative to the outside as in
figure 1.3. The Na* gates then close and the potential goes back towards the resting
level. This growth and decay of the action potential is termed the absoluter refactory
period. During this period, the axon cannot be electrically stimulated to generate
another action potential. Meanwhile, the K* gates have opened, some of the K~
moves out and the membrane potential becomes even more negative ( =75 mV ) for a
few milliseconds. This is the after potential or relative refactory period. The axon
can be electrically activated in the period of the after potential, but it requires a

stronger than normal stimulus. This is the relative refactory period.

The activation of a single synapse on a neuron will not cause it to develop an action
potential. Enough synapses have to be activated together and exert their influence on
the receiving neuron. The activations of all the synapses are summed together. If they

are activated repeatedly at a fast enough rate, they will sum over time and generate a
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post synaptic potential large enough to make the cell fire. A normally functioning
neuron is continuously summing information over time and space and "deciding"

whether or not to fire.

1.2. The History of Neural Research

Research into neural and brain function has a long history starting from the
observations of Hippocrates at 500 BC and Plato and Aristotle at around 400 BC, who
associated memory with the sensory processes. The attempt to understand the neural
structure has captured the interest of philosophers, psychologists, mathematicians,
physicians and anatomists, but first major contributions providing an early conceptual
framework for the study of nerve net action were undertaken by Pavlov [5, 6], the
famous Russian psychologist, with his research on conditioned reflexes and Rashevsky
[7], with a mathematical description of biological processes. From then, neural

' research and understanding has been expanding right up to the present day.

1.2.1. Early Biological Research

The end of the Classic period during the 2nd century was marked by Galen, a Greek
physician, who proved that the brain was the seat of intelligence and memory [8]. The
increase in knowledge.from Hippocrates to Galen was considerable in detail, but there
were little changes in attitude. Galen coordinated all that was known in medicine and
science, which influenced thinking for the next fourteen centuries. Physiological
knowledge of the brain showed few significant advances until Descartes in 1596 first
recognised a conditioned reaction, "when one sees an object that has previously been at
the time an emotion has been experienced, it will induce that emotion .... there is a
connection between the stimulus and the response being made through a definite path;
this connection is the fundamental process of the nervous structures in the body". This
was the basis on which study of the nervous system was established. Over 300 years
later, Pavlov started his work on the conditioned reflex, the linking up of the action of
a new stimulus with an unconditioned (or inborn) reflex, using Descartes’ idea of the
nervous reflex. To show this Pavlov experimented with dogs. He used an
unconditioned signal of a brief electric shock in a dog’s paw to tell it that food was
about to appear. This signal was alien to food, but the animal soon learned to salivate

on receiving the shock and wanted to eat. Thus he had transformed apparent pain to
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overt pleasure.

Research into memory and brain function continued steadily through the 19th century.
Some of the main contributions were from James Mill (1773 - 1836) who wrote
"memory is nothing more than the fact of recall through association. It is the appearance
of a sensation that can be associated with the time and place it has been presented
previously”". Gall, a well known anatomist at the time, asserted that human "faculties”
were located in strictly localised areas of the brain [9] and in 1861, Paul Broca, a
French anatomist, localised for the first time a complex mental function to a particular

part of the brain.

The work of J. H. Jackson [10] in the 1870’s put forward the hypothesis that
connections in the brain were physical entities that could be changed and that it was
likely that a part of the brain’s network was prewired to deal with a certain processing
task. If ihat task became irrelevant, then that part of the network could be used for
something else. Jacksbn pointed out this view as a difficulty for strict localisationist
views that had become that popular at the time. Some of the earliest roots of the PDP
(Parallel Distributed Processing) approach came from Jackson [10] and Luria [11], the
Russian psychologist and neurologist. Luria put forward the idea of the dynamic
functional system. On this view every behavioural or cognitive process resulted from
the coordination of a large number of different components, each roughly localised in

different regions of the brain, but all working together in dynamic interaction.

In 1913 Henri Poincare [12], a French mathematician, attempted to explain neural
action from an atomical point of view and in 1938, Rashevsky [7] gave the first
mathematical description of the biological processes. Rashevsky showed how certain
logical operations might be carried out by simple nerve arrangements as in figure 1.4.
This shows how an exclusive-or function is mechanised by inhibitory and excitatory
connections. He also gave an explanation for short term memory by means of
recirculating neuron loops, in which an impulse, once initiated, would continue to
cycle indefinitely or until terminated by an inhibitory pulse. Another psychologist,
Thorndike [13] in his neural research found that "connections that words have in a
person’s experience produce modifications in his brain .... the modifications consist of

changes at the points where one neuron transmits to another”.
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The work of Lashley [14,15] may be seen as the beginnings of modern experimental
physiological psychology. He moved away from the Pavlovian reflex and worked on
the search for the engram [16] and the localisation of function in the rat’s brain. He
traced the representation of remembered events to the cerebral cortex and proved that
the degree of degradation of memory was roughly proportional to the area of cortex,
thus showing the distributed representation of memory. He concluded that there was
relatively little localization of function in the cerebral cortex. Lashley’s paper In search
of the Engram emphasised the diffuseness of neural mnenomic processes and insisted
that no special cells were reserved for special memories. He conceived brain operation
as large scale patterns of activation involving a great many active neurons leading to

other large patterns of activity.

Two hypotheses, which have become the basis of many nerve net models are the work
of Donald Hebb [17-19], who was a student of Lashley in the 1930s. Hebb postulated
that the synaptic junction was the site of permanent memory, that consisted of the
value of the attenuation (strength) of the junction and that memory of any event was
distributed within a network residing in the small changes in strength which occur as
the result of the event impinging upon a large number of synapses. He suggested the
following rule for the change in strength of a junction as the result of activity: "When

an axon of cell A is near enough to excite a cell B and repeatedly B takes part in firing
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it, some growth process or metabolic change takes place in one or both such that A’s
efficiency, as one of the cells firing B is increased”. Hebb also postulated the formation
of what he called "cell assemblies”, where there were interconnected, sclf-reinforcing
subsets of neurons that formed the representation of information in the nervous system.
Single cells might belong to more than one assembly, depending on the context.
Multiple cells could be active at once, corresponding to complex perceptions or
thoughts. He said there was a distributed representation at the functional level as well
as the anatomical level. Before Hebb’s work, it was believed that some physical change
must occur in a network to support learning, but it was not clear what this change
could be. Hebb’s ideas about the nervous system remained untested until it became

possible to build some form of simulated network to test learning theories.

1.3. Neural Network Modelling and Learning Procedures

One of the first neural models was introduced by McCulloch and Pitts [20] who, by
using Boolean Algebra showed how neural-like networks could compute. They used
the "all or none" character of nervous activity, with the activity of any inhibitory
synapse preventing the excitation at a given time and allowing only a fixed number of

synapses in any given period to excite the receiving neuron.

The neural model of A. E. Roy stored information in binary pulses and on being
presented with a section of a message stored previously, it would recall the rest of the

message. A discussion of the model can be found in [21-23].

1.3.1. The Perceptron Learning Theorem

The first attempt to build a simulated network was the learning machine of Edmonds
and Minsky in 1951, which consisted ‘of hundreds of tubes, motors and éutomatic
electric clutches, with its memory stored on 40 controls knobs. Details of the function
can be found in detail in [24]. Rosenblatt, an acquaintance of Minsky, achieved the
first neuron-like learning model with the perceptron [25]. He analysed his models
mathematically and ran digital simulations of the three-layered perceptron, its
environment and memory modification rules in a digital computer program.
Rosenblatt’s three-layered perceptron is a single transmission network containing 3

types of signal generating unit as in figure 1.5. This shows the basic organisation of
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Figure 1.5 Rosenblatt’s three-layered perceptron

the experimental system where the output of the perceptron is capable of modifying its
stimulus environment. It starts with an S - (sensory) unit (eg. a "retina”) which
projects to higher levels. The S - unit is a transducer responding to physical energy
and forms the first layer. This is connected to a second layer, an association area or A
- units, by random, localised connections with fixed synaptic weights. A number of
cells in the region of the S - units project onto a single A - unit in the higher layer.
The A - unit is a logical decision element, which generates an output signal if the
algebraic sum of its inputs is greater than a threshold quantity, 8 > 0. The association
layer is reciprocally connected to a third layer of R - (response) units. The R -
(response) unit emits the output:-
. +1 if X input signals > 0, and

r= { —1 if = input signals < 0. (1.1)
If the sum of the inputs is zero, the output is zero or indeterminate. The activation of
the appropriate R - unit for a given input pattern or class of input patterns is the
operation goal of the perceptron. During learning, the values (weights) stored in the

r.c.s. (reinforcement control system) are changed when they do not correspond to some
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arbitrary desired response r;, for the given input panerh. The perceptron uses an error
correcting system in that a correction is made in accordance with the rules of a
specified reinforcement system on the network only if an erroneous response is
obtained. When- it is necessary to correct a response, the strength of the weights
connected to that output change simultaneously. This will yield a solution to the input
stimulus within a finite time. Rosenblatt commented that the simple three-layered
perceptron is capable of learning any type of classification or associating any responses
to stimuli. Therefore for a multi-layered perceptron, ie. a perceptron with two or more
layers of association units, to offer any functional advantage over the three-layered

perceptron there would have to be an increase in efficiency of such responses.

Minsky and Papert undertook a careful mathematical analysis of the one layered
perceptron [26]. The machine they examined is in figure 1.6, which shows a set of

binary threshold units with fixed connections to a subset of units in the retina.

Binary
\ Threshold
Retina Units
* Decision
Unit

Y
P

A

Modifiable
Weights

Figure 1.6 Perceptron analysed by Minsky and Papert

From this analysis, Minsky and Papert showed which functions it could and could not
compute and demonstrated the importance of a mathematical approach to analysing
computational systems. They also argued that there was no indication how a learning
procedure could be applied to multi-layered networks. The analysis suggested that

perceptron like devices would have no future in artificial intelligence.
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Perceptrons and early related work had been in decline for several years before the
work of Minsky and Papert, as perceptrons had failed to achieve much beyond their
initial success. Practical results had failed to materialize and the Minsky and Papert
book "Perceptrons” [26] seemed to prove to the scientific community that there was
little future in neural networks. However, perceptron-like models can be successful at
modelling a number of aspects of perception and cognition. Multilayered networks
[19], which have input, output and hidden units can provide solutions to problems by
the internal representation in the hidden units and learning can be achieved by the

Generalised Delta Rule using back propagétion. This is described in section 1.3.3.

1.3.2. The Delta (Widrow-Hoff) Learning Algorithm.

Neural network models generally are networks of processing units that are connected
together in some way. An activation rule combines the inputs applied to a unit with
its current state to produce a new level of activation for that unit. A learning rule
modifies the existing patterns of connectivity between units through experience. These
rules are the bases for parallel distributed processing in that some of the models’ units
carry out their computations at the same time. Usually the units will be one of three
types: input, output and hidden units. Input units receive inputs from external sources,
which may be sensory or otherwise. Output units send signals directly out of the system
and hidden units have inputs and outputs from within the system with no external
connections. They are connected between the input and output units (sometimes in

layers), and are not "visible” to the outside world.

Many of the learning rules for these types of models are variants of Hebb’s Learning
rule given in section 1.2.1. This can be generalised to: A connection or synaptic weight,

w,., increases or decreases in proportion to a reinforcement signal, r, such that:-

wi(t+1) = w; (1) + nri (1) (1.2)

where m = reinforcement signal to synapse i, at time ¢ and determines the change in

connection weight.

The Widrow-Hoff or Standard Delta Rule [27,28] was based on this theory. The
Widrow-Hoff system used linear threshold units with random variable connection

strengths. Each linear threshold computed a weighted sum of activities of the inputs
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times the synaptic weight, plus a bias element. If the sum was greater than zero, the
output became +1. If it was equal to or less than zero, the output was —1. It then
compares this to a desired output or target vector. If there is no difference, no learning
takes place. Otherwise the weights are changed to reduce the difference. The rule for
changing the weights, w;;, between any two units / and j following the presentation of

an input/output pair s is given by:-
A: w; =T (t.r' - o.vj) i:i =m 8:}' i.n' (1'3)

where 1,; is the target input for the jth component of the output pattern for the pattern

s, o,; is the jth element of the actual output pattern produced by the presentation of
input pattern s, i,; is the value of the ith element of the input pattern, and A,w; isthe
change to be made to the weight from the ith to the jth unit following presentation of

input pattern s. This learning procedure applies only to models with no hidden units.

1.3.3. The Generalised Delta Rule

The Standard Delta Rule uses two layer associative systems, that have only input and
output units and no hidden units, and is useful in applications where similar input
patterns can be mapped to similar output patterns. Where the mappings are very
different, a network without the internal representation would be unable to perform

the necessary computation.

Minsky and Papert [26] in their analysis of conditions under which such systems are
capable of carrying out required mappings, showed that in a large number of cases,
networks of this kind were unable to solve problems. They also showed that if there is
a layer of simple perceptron-like hidden units as in figure 1.7, the input information to
the input units is recoded to an internal representation, which generates the
appropriate output pattern. The Generalised Delta Rule [19] allows learning to take
place in systems with hidden units. It uses a semi-linear activation function in which
the output of a unit is a non-decreasing and differentiable function of the net total

output, as in equation 1.4 below:-

3 1
% = TT el Swyon T )] (1.4)

The Generalised Delta Rule has the same form as the Standard Delta Rule in equation
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Figure 1.7 A Multilayer network with input, output and hidden units
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1.3. The weight on each line should be changed by an amount proportional to the
product of an error signal, 8, available to the unit receiving an input along that line
and the output of the unit sending activation along that line. The error signal, 3, for

an output unit is:-
83]' = (t:' - oxj)osj(l - osj) (15)
and the error for an arbitrary hidden unit, u;, is given by:-

8:;' = osj(l - oxj)zsskwkj (1.6)
k

Two stages of computation are involved in the Generalised Delta Rule. The first stage

is as follows:

1.  Present the input to the network and allow it to propagate through the network to

compute the output, o,;, for each unit.
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2. Compare the computed output, o,;, to the target output, ¢;, and calculate from

equation 1.5, the error signal, 8,; , for each output.
The second stage involves:

3. A backward pass through the network where the error signals are passed to the
units and the appropriate weight changes are made. The weight changes are first

calculated for all connections that feed into the final layer.

4. When this is done, the &’s for all the units in the penultimate layer are computed.

This propagates the error back one layer.
5. The same process is repeated for every layer.

The backward pass allows a recursive computation of 3. The learning rule used for

change in weights is calculated from:-
dw (n +1) = n (3,j0,) + @ dw; (n) (1.7)

where v is the learning rate and a« is a constant which determines the effect of past
weight changes on the current direction of movement in weight space. n is the

presentation number. This equation is a modified version of the Standard Delta Rule.

1.3.4. Hopfield Model

The Hopficld model can be regarded as a content addressable memory type [29] in
that the exact contents of the memory can be retrieved on the basis of sufficient partial
or partly erroneous information being presented to it. For example, the system has
locally stable points X, , X, , (ie. contents in memory). If the system then is presented
with (X = X, + A) it will proceed in time until X = X,, ie. (X, + A) represents a

partial knowledge of X, and the system then generates the total information X, .

The processing units in Hopfield’s original model are 2-state neurons, the state V, = 1
(“firing at maximum rate") and V, = 0 ("not firing"). The instantaneous state of the
system is specified by listing the N values of V; (i = 1.....N). Each neuron has a fixed

threshold U; such that:-

Vi -1 . J#Ei > Ui )
V. -0 if Swyvi < U, (1.8)

Each neuron evaluates randomly and asynchronously, whether it is above or below a
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certain threshold, and readjusts it accordingly. The states V, ... V; ... V, are the

stable states of system.

The model uses an information storage algorithm which allows the synaptic weights
between neurons to be set for the storage of any particular set of states V*, s = 1.....n.

This is:-

w; = 3 @vi-1)(2v;-1) (1.9)

The neurons are totally interconnected with w; = 0 and there are no hidden units.
From equation 1.9 it can be seen that if two adjacent states are excitatory, the synaptic
weight between them is increased. Using equation 1.9, a weights matrix can be formed

for states V;.

There are two limitations to this type of model. The first is that the number of states,
s, that a given set of neurons, N, can learn is limited to s = 0.15N, otherwise the
storage prescription fails. The second limitation is that if a start vector is chosen at
random or if it shares many bits in common with another start vector and is allowed to
iterate using the weights matrix, sometimes it may fail to "find" one of the stored states.

The state that it does finally iterate to is known as a local minima.

1.3.5. Wallace-Hopfield Training Algorithm

The problem of the Hopfield storage prescription becoming inexact at small values of
/N has been analysed by Wallace [30]. He has developed a simple iterative algorithm
for the Hopfield model which is guaranteed to store exactly any s vectors in a finite
number of steps, provided it is known that a solution is possible. Starting with the
storage prescription in equation 1.9, the approximate weights for the vectors, V*, to be
stored are calculated. All the vectors are tested to see if ihey have been stored correctly
by iterating equation 1.9 once. This enables an error mask to be calculated for each

V, such that:-

1 if V{ changes
€ T 10 if v¢is stable
{

The storage perscription is then reinforced for those weights wrongly stored, given by:-

(1.10)
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. :
Aw; = 3 ViVi(ef + €f) (1.11)
s=1

All the vectors, V*, are tested again with the new w; and the w;; are modified until

convergence has been achieved.

1.3.6. Competitive Learning

Competitive Learning [19] is another learning procedure. Individual units learn to
specialise on sets of patterns and thus become feature detectors or pattern classifiers.
The architecture of a competitive learning system uses a set of hierarchical layered
units in which each layer connects via excitatory connections with the layer
immediately above it. Within a layer, the units are broken into sets of inhibitory
clusters, in which all elements inhibit all other elements within the cluster. These
elements at one level, compete. with one another, to respond to the pattern appearing
on the layer below. The more strongly any particular unit responds to an incoming

stimulus, the more it shuts down the other members of the cluster.

A number of researchers have developed competitive learning models or variations on
models. Examples of these can be found in [31-35]. A general competitive learning
model has sets of clusters in a layer, which are of a winner takes all form, such that the
unit receiving the largest input achieves its maximum value while all the other units in
the cluster are pushed to their minimum value. In general, each unit in a cluster
receives inputs from all the units in the layer below and projects outputs to all units in
the next higher layer. A unit learns only if it wins the competition with other units in
the cluster. Each unit has a fixed amount of weight and learns by shifting weight from
the inactive to the active input lines. In von der Malsberg learning rule [31], if a unit
wins a competition, each of the input lines gives up some of its weight and the weight

is then evenly distributed among the active input lines.

1.3.7. Grossberg’s Network

Grossberg [36] has proposed a pair of equations that describe the dynamical behaviour
of a set of neurons and their synaptic weights. These equations have a level of
generality unmatched by other descriptions of synthetic neural networks and are based

on what is known to occur in the brain. The dynamic behaviour of the neurons is
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shown by:-

dx; j=n j=n _
j=1_ j=

where A, is the passive decay of the activity in the absence of both synaptic and direct
external input, w;; (W;) is the excitatory (inhibitory) weight and /; is a stimuli that can
force a state on the network.

The change of synaptic weight over time is given by:

SW,-- -
—82—] = —B,w; + D;jVu, (x:) (1.13)

B,

;; is the passive decay of the synaptic weight. D;; is the learning strength that allows
learning to be modulated for each synaptic link, V is a neural "learning signal” and u,
(x;) is a linear-threshold activation function. The speed of learning is controlled by
D,;, but the rate of change of synaptic weights must be much slower than that of the

neural states.

Grossberg uses a sigmoid activation function that represents the smooth switching of

the neural state V; from 0 to 1 as the neural activity x; increases through the threshold

value %, where T controls the sharpness of the transition, as in equation 1.14:-
Vv, = 1

(1.14)

Grossberg has developed a network using his Adaptive Resonance Theory, that forms
clusters and is trained without supervision [34,35]. A simplified diagram of the
network is in figﬁre 1.8. A binary input is presented to the lower nodes as an
exemplar for the first cluster. A second input is then presented and compared to the
first cluster exemplar. The dot product of the two exemplars is computed and divided
by the number of "1s" in the input. If the ratio is greater than a vigilance threshold, the
input will be clustered or "classified” with the first exemplar. If the ratio is less than the
threshold, the input is considered to be "different” from the first exemplar and is added
as a new exemplar. The vigilance threshold can be set between the range 0.0 and 1.0.
Inputs are presented sequentially to the network and compared to all stored exemplars

and classified in the same way. Each additional new exemplar requires one node and
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Figure 1.8 Major components of the Grossberg classifier net

2N connections to compute matching scores.

1.3.8. Other Neural Models

The above sections have given a general overview of the most well known neural
models and learning procedures. There are however, many other relevant types of
modelling that are discussed here briefly. Among these is the work of Anderson
[37,38] who has worked on distributed representation and neurally inspired models for
theories of concept learning and amnesia. Willshaw pursued distributed memory
models and analysis of the properties of distributed representative schemes [39].
Kohonen introduced self-organising feature map algorithms [40], which are modelled
on the organised mappings of the body surface on to the cortex such that the
organisation of neurons at higher levels is created during learning by algorithms which
promote self-organisation. Here, the essential mechanism of the scheme is to cause the
system to modify itself so that nearby units respond similarly. This is achieved by the
units responding randomly to a parameter of interest. When an input signal with some
value of the parameter is provided, one unit responds "best" to that input. This unit is
located, in order that its neighbours, ie. units in some region around it and the unit
itself have their synaptic weights changed, so the units now respond like the best unit

did.
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Hopfield’s contribution [29] of the idea that networks can be seen as seeking minima
in energy landscapes played a prominent role in the development of the Boltzmann
Machine [41]. The machine is composed of visible and hidden non-linear
computational units. Which are connected to each other by bi-directional weights. A
unit is either on or off and will adopt either state as a probabilistic function of the two
" states of its neighbouring units and the states between them. With the right
assumptions, units can be made to act so as to minimise global energy. If some of the
units are externally forced or "clamped” info particular states to represent a particular
input, the system will find the minimum energy configuration that is compatible with

that input. A Boltzmann distribution is used to find the global minimum.

The Hamming Net [42] is 2 maximum likelihood classifier using neural type units. The
model calculates the Hamming distance between binary inputs corrupted by noise and

the learned state and uses this to classify the input with the correct output.

This chapter has given a brief summary of' biological neurons and their function. The
history of the development of the understanding of the nervous system has been a
major influence in synthetic neural network modelling and learning algorithms. Much
of the current research evolves around software modelling of the networks and learning
algorithms given in this chapter, but an increasing minority of research work is now in
developing hardware implementations. The next chapter discusses how the various

types of models have been implemented in hardware.
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Chapter 2

Neural Network Implementation in VLSI

This chapter gives an account of the implementation of neural networks in hardware.
The majority of the hardware is in the form of VLSI ASICs (Application Specific
Integrated Circuits) in either analogue or digital forms or a combination of both, often
supported by memory and a host computer. Some VLSI circuits employ learning and
recall techniques, but generally they act as hardware accelerators in a "neural system”.

The vast majority of the work has been carried out in the last 3 - 4 years.

2.1. The Motivation For VLSI Networks

The most general neural model is based on computational units (neurons) that are
connected together in a totally interconnected array or in a layered network. The
connections are made via synaptic weights. The synapses have the effect of weighting
the response of any neuron to its inputs from all other neurons in the network so they
may be more or less excitatory to the receiving neuron and the total ‘'weighted sum
changes the level of activity of that neuron t. Each neuron receives activity from

other neurons in the network. The total activity, x;, of any neuron j [36] is given by:-
j=N
x = 2 T;V; (2.1)
j=1

where T,; is the weight between neuron i and neuron j and V; is the present state of
the neuron. Equation (2.1) is a simplified form of Grossberg’s equation (1.12) in

section 1.3.7. The activity is thresholded according to an activation function, F,:-

The neural activity may be thought of as the level of excitation of the neuron and the
activation function as the way it reacts (by altering its state V;) in response to a change
in activation. The activation is not bounded in the same way as V;. The magnitude of
V; can be changed by interactions from other neurons in the network, by a passive

decay of the weight over time and by an external stimulus.

t Anexcitatoryinputwilltendtommanmrononandaninhibitoryonewilltcndtommitoﬁ’.
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Figure 2.1 shows a selection of activation functions. These are the threshold function
(sometimes referred to as the "Hopfield" function), where the state is either 0 or 1, the
linear threshold function and the non-linear sigmoidal function, which represents a
smooth switch of state from 0 to 1 as the activity, x;, increases through a threshold
value x,. A parameter, T, (often termed “"temperature”) controls the sharpness of the

transition.

f(x)

Threshold Function
L

fx) =1fx>xt
f(x) = 0 x<xt
0 xt !
f(x)
Linear

-

Threshold Function

fix) =0fx<xt
fx) =x-xtifx>xt
0 xt !
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Non-Linear

Sigmoidal  Function

f(x) =§f(x
x

xt is threshold xt

Figure 2.1 Activation functions

The arithmetic operations in equations 2.1 and 2.2 both appear straightforward, but
synthetic neural networks consist of a parallel array of units calculating ZT;V;
synchronously. Therefore, if the number of units is large, the amount of computational
power required overwhelms even a supercomputer. Small networks consisting of tens

of units take many hours to simulate on computer, thus there is much incentive to
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build LSI/VLSI networks which will complete the same computation in milliseconds.
A VLSI network also offers the advantage of being cheaper to run after the initial
manufacture outlay, than hours of CPU time and it allows several tens or hundeds of

neurons to be fabricated on a die.

Although VLSI networks offer many attractions for neural implementation, the
majority of current research is aimed at algorithmic development using computer
simulation, often based on array processor or other supercomputer architectures to
simulate mathematical models and demonstrate their correctness and processing ability.
An example of this can be found in the work of Wallace [30,43]). Here an ICL
Distributed Array Processor (DAP) is used with 4096 bit-serial processing elements
hard wired in a 64 x 64 square array to develop algorithms to improve the storage
performance and content addressability of the Hopfield net for random patterns [29].
Numerical simulations were run to show how the number of perfectly stored vectors, p,
depends on the number of nodes N in the network. The storage prescription adopted
by Hopfield (equation 1.9) was used with different values of p and N to produce a
"signal plus interference” approximation to obtain an approximation for the perfect
- storage fraction in terms of p and N. The loss of memory capacity as the number of
nominal vectors was increased was analysed in terms of phase transitions in statistical
mechanics (ie. changes in minimum energy). The results of the simulations led to an
extension of the Wallace-Hopfield algorithm based on the Delta Rule in Chapter 1,

section 1.3.5.

Another such example is a ten processor, programmable systolic array computer which
has been used for back propagation simulations in work done by Pomerleau ez al [44].
Here, 60 fully interconnected hidden units perform one learning trial in 0.8ms, which
is approximately 17 million connections per second. This has proved to be the fastest
implementation of back propagation and most cost effective fof neural network

simulation.

2.2. Hardware Implementation

Hardware synthetic neural networks fall into two broad categories, digital and
analogue, with some of a hybrid digital/analogue form. The majority consists of

systems with a VLSI circuit specially designed to compute neural functions in some



Chapter 2 28

way and many are based on the Hopfield model. There has also been some
implementation using microprocessors and digital signal processing (DSP) integrated
circuits [30,43-45].

An early neural computing machine, the WISARD (Wilkie, Stonham and
Aleksander’s Recognition Device) [46,47], is an adaptive pattern recognition machine
based on neural principles. The observation that a binary neuron may be viewed as an
n-input - single output logic element is related to one column of RAM registers, where
cach value is set independently and represents the truthtable of a logic device with one
output. The WISARD architecture is shown in figure 2.2. The RAM network or
"Discriminator” consists of K x N-input RAMs with one output feeding to a summation
operator. A binary pattern or training set of KXN bits is input to a Discriminator and
a "1" is stored in each RAM. Unknown patterns representing a class are later presented
and the Discriminator measures the similarity of an unknown pattern to each of the
patterns in the training set. If two patterns are similar, the RAM outputs. a “1". The
"1s" are then summed to give the response, r, of the Discriminator. In a multi-class
problem, M Discriminators can be used to represent M classes as in figure 2.3. An
unknown pattern can then be "classified” to a particular Discriminator by the indication
of how close it is to one of the learned patterns. If an unknown pattern that is
completely different from any of the initial "learned" patterns were presented to a
Discriminator, no RAM would output a "1" and hence r=0 and the patterns would not
be classified to the Discriminator. The correct input on a RAM’s address line will
produce a "1" output. Adjusting the value stored at that location during training will

cause the Discriminator’s class to emerge, when unknown inputs are presented.

2.2.1. Digital Neural Networks

The neural equations 2.1 and 2.2 can be implemented using digital hardware, resulting
in fast and accurate neural network computation. DSP chips used as neural accelerators
fall in between the extremely fast computation time of a VLSI circuit and the relative
slowness of a computer simulation as has been shown by Penz et al [45]. In this work,
the TMS 32020 DSP chip is used to accelerate the matrix multiplication in the
network. A 256 square component matrix multiplying a 256 component vector

performing a single multiply/accumulate instruction showed to be 2.5 times faster than
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this is still many times slower than the same computation in VLSI which would be
about 0.02msin a device operating at 20MHz. Further acceleration can be achieved
using a parallel computer architecture as, for example, the Odyssey Board developed
by Texas Instruments, which consists of many DSP modules sharing a common bus to
provide the necessary computational power for advanced signal processing. Each
module contains a TMS 32020, 16 kbytes of program memory and 128 kbytes of data

memory that will store a 256 x 256 array of 16 bit numbers, ie.,,, T; for a 256 x 256



Chapter 2 30

problem. A board consists of 4 modules and is capable of 20 million arithmetic
operations per second. Again in comparison to the DEC VAX, the Odessey board will

compute a 1000 x 1000 matrix 40 times faster.

A DSP neural system is well suited to solving small groups of networks, but as the
numbers increase the time required for the solution increases accordingly. An
alternative solution to this has been developed by Garth [48-50] with the GRIFFIN
neural machine. It consists of a distributed array of autonomous neural network

simulators called NETSIM as in figure 2.4.
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’ ENGINE
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Figure 2.4 NETSIM card within the physical organisation of the GRIFFEN

Each NETSIM card comprises a local microprocessor, a solution integrated circuit (a
specialist co-processor to implement the neural network function at high speed, with
the weights and states stored in local DRAM) and a communications integrated circuit
to allow large numbers of NETSIMs to be connected to form the GRIFFIN. The
solution integrated circuit performs the multiply and sum operation required for

forward or backward propagation and multiply and update operations required for
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synaptic weight update according to the error propagation algorithm in chapter 1,
section 1.3.3. -‘The microprocessor computes other elements of the simulation,
including the non-linear function and the simulated interconnection. The resultant
information is then loaded into the communications integrated circuit for transmitting
to the relevant node in the system. For a 256 neuron network a full synaptic update
including forward and back propagation is calculated to be 350ms. A fully pipelined 5
x 5 x 5 NETSIM array computes in forward propagation 450 million synapses per
second and 90 million in backward propagation. A similar concept using a CMOS
special purpose primitive processing element afray to build a parallel MIMD

neurocomputer [51] is being persued at U. C. L..

An alternative solution for a digital neural network is the implementation of a VLSI
array with interconnected, synchronously operating multipliers as in figure 2.5 to
compute the neural function in equation 2.1. Each multiplier has a register for weight
storage and the activities for neurons are computed in parallel. Here, the
multiplication of a synaptic weight by a neural state is achieved by right-shifting the
weight. An add/subtract circuit at each multiplier stage allows excitatory and
inhibitory inputs to the neuron and computes the accumulating activity of the neuron.
The resulting staircase activation function, allows neurons to take intermediate states
between off and on. A simple Hopfield net is used and delta rule learning [27] is
computed off-chip. This approach forms the main thrust of this thesis and is described
in detail in chapters 3 and 4. An idea similar to this using a Hdpfield model with
multi-state neurons, where the states are {-3, -2, -1, 0, +1, +2, +3} can be found in

work by Potu ez al [52].

A VLSI Hopfield digital network that includes a learning algorithm on-chip is given in
[53]. The network has N identical neuron cells, each one with full arithmetic
capability for learning and updating and a local memory containing the relevant
column of the synaptic matrix. Neural states are stored in a N x 1 bit shift register
clocking at 20 MHz and a partial potential update in each neuron is performed at each
shift of the register. After 1 cycle, each neuron takes its decision. Other digital VLSI

hardware neural accelerator systems are given in [54-56].

Digital techniques offer several useful properties for neural implementations in that

weights can be easily stored and programmed, they have greater flexibility, high
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Figure 2.5 Interconnected network of synchronously operating multipliers

precision and clock rates in excess of 20 MHz. However, there is a major drawback in
that a large silicon area is required for the multiplication function allowing a maximum
of tens of neurons to be fabricated on an integrated circuit giving a small network.
Therefore, to obtain a large enough network that will perform useful simulations might

require several integrated circuits to be hardwired together to provide a larger system.

2.2.2. Analogue Neural Networks

The implementation of neural networks in analogue VLSI circuitry has taken several
forms. These include op-amp resistor networks [57-59], dynamic weight storage [59-
62], sub-threshold circuits [4], low-area arithmetic arrays [63-67] and pulse stream

networks [68-72]. The major problem within an analogue approach is the storage of
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the synaptic weights. Various methods have been developed including resistor arrays
[57-59], storing charge on “on-chip" capacitors [59-62,72], and by using MNOS [73]
and a-silicon technologies [74, 75].

The most straightforward form of an analogue neural network can be derived from the
digital architecture in figure 2.5, by using operational amplifiers instead of neurons and
a resistive input R;; at each synapse location. This approach has been used by Sivilotti
et al at Caltech [57]) and Graf er al at Bell Labs [ 58,59]. Sivilotti uses resistive
elements and achieves negative values for inhibitory connections by using 4 pass
transistors operating in their resistive regime. This gives a tri-flop cell allowing the 3
connection strengths of {-1, 0, +1}. The connections are also programmable, but have
a large hardware overhead in thaf a programmable synapse requires 41 transistors

instead of 16 required for an unprogrammable one.

The network developed at Bell Labs is given in figure 2.6. It consists of an array of 54
amplifiers with their inputs and outputs fully interconnected through a matrix of
resistive coupling elements. The input voltage to each amplifier is determined by
summing the contributions from the amplifiers to which it is connected. The outputs
are programmed to source or sink current into the input line of every other amplifier.
This is controlled by 2 memory cells. Figure 2.7 shows how the resistive elements can

be programmed to be excitatory or inhibitory.

The function of associative memory is achieved by simultaneous collective operation of
all the amplifiers. Each circuit state is described by a 54 component vector. A desired
set of states is made stable by proper choice of the connections in the coupling
network. After the circuit is initiated with an input vector, it evolves to the stable state
that most closely resembles the input. Data input and output are through a buffer in
which one memory cell is connected to each amplifier unit. From this buffer data can

be loaded into memory cells or used to initialise the circuit.

Dynamic Weight Storage

The storage of an analogue weight as charge on MOS capacitors or transistor gates
allows synapses to have a smaller number of transistors and hence a higher level of
integration on a chip. This can be subject to problems of leakage and data corruption

and needs refresh circuitry if long hold times are required. Capacitor circuits are used
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by Bell Labs [59-61] and a switched capacitor circuit is described in [62].

The Bell Lab circuit shown in figure 2.8 is of a synaptic connection.

Weight update and decay
by shifting charge

1 T T
I

Input Output

Output = w * input

Figure 2.8 Analogue synaptic connection represented by the difference in voltage
stored on two capacitors '

The connection strength is represented by the difference in voltages stored on 2 MOS
capacitors. The capacitors lose about 1% of their charge in 5 minutes at room
temperature, but the leakage rate can be reduced by lowering the temperature of the
device, e.g. by up to 5 orders of magnitude at —100 degrees C. The output is a
current proportional to the product of the input voltage and the connection strength.
The output currents are summed on a wire and sent "off-chip” to external amplifiers.
Connection strengths can be adjusted for learning by transferring charge between the

capacitors through a chain of transistors.

The switched capacitor implementation [61] uses MOS transistors as switches, which
are controlled by switch "phase” periodic waveforms. A totally interconnected neuron
network is used and charge is transferred from each neuron output to the neurons’
inputs by the switches. The total charge input to a neuron is collected and thresholded

according to the sigmoid activation function.
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A network implementing Kohonen’s self-organising feature map algorithm [40] that
uses charge stored on the gate of an MOS transistor as a synaptic weight is given in
[76]. An analogue input is represented by a voltage on the transistor drain and if the
gate voltage exceeds the maximum input voltage by an amount greater than the
transistor threshold voltage (so that the device is operating in the ohmic region), then
the current through the transistor is proportional to the product of the input and
weight voltages. The transistor constitutes the synaptic connections and by connecting

synapses to a single wire, current summing is performed to give the neural activity.

Goser [77,78] describes an associative network using a floating-gate transistor
technique for weight storage. The device acts as a non-volatile storage cell, where the
electrical charge on the floating-gate represents the information and is stored
independently from the power supply to the cell. This type of device does not store the
analogue value accurately, but the integration of a CCD (charge-coupled device) loop
connected to the floating-gate within a synapse cell can overcome the disadvantages of
low accuracy and long degradation time, although a large cell area is needed for this.
The number of CCD’s in the loop yields the accuracy of the connection weight and the
information stored in the loops can be read out by opening the loops. In this way,

adaptive weights can be written into the loops enhancing the learning procedure.

Technology Dependent Analogue Weights

A CCD/MNOS (metal-nitride-oxide-semiconductor) has been used by Sage et al in
their analogue neural network [73]. The design uses a totally interconnected array of
neurons with charge packets to represent the ahalogue information transmitted through
a synapse and MNOS device structures to store electrically changeable, non-volatile
synaptic weight values. A cross section of an MNOS device is in figure 2.9. The
structure is similar to an MOS device, except the main gate insulator is silicon nitride
with a very thin silicon oxide layer, so at gate voltages of = 35 volts, electrons and
holes move by quantum-mechanical tunnelling between the underlying silicon and long
lifetime traps in the nitride layer. A high voltage causes a shift in the charge stored in
the traps. If the gate voltage is kept below 10 volts the trapped charge becomes
permanent and makes the voltage on the gate appear to shift its switching threshold.

The apparent modulation of the gate voltage is used to control the size of the
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Figure 2.9 Cross section of an MNOS device

synaptically transferred charge packets. The total charge, N, for a neuron i, is

accumulated from the synaptic connections to it, using equation N, = 3T, V;, where

J

the state is either O or 1. The state V; = 1, allows the charge in the synapse to flow in
the gate and be added to the total, N;. If V; = 0, the charge is blocked. The total
charge is compared by a sense circuit to a threshold value to determine the neuron

state for the next cycle in the circuit.

Amorphous silicon ( «-Si ) has been used at Bell Labs [74,75] in order to achieve 256
neurons on a chip using a resistive network for weight storage and amplifiers with
inverting and non-inverting outputs for the neurons to make inhibitory and excitatory
connections. Synaptic resistor values are chosen to correspond with the desired
memories and the values are derived from an adaptive learning rule [79]. Current
summing is used to add together all the contributions to the input of an amplifier. As
there is in excess of 100,000 resistors on a chip, their size must be very small with a
resistance of a few mega-ohms to keep the power consumption low. High value «-Si is
used for this, however this approach does not allow the resistors to be changed once
fabrication is finished, hence giving a fixed set of stable states. Electron-beam direct

writing is used to pattern the resistors.

Research is taking place at CalTech [80,81] into how an electrically switchable,

resistive component with memory can be incorporated at each synaptic intersection in a
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matrix such as that described by Graf er al in the Dynamic Weight Storage section .
above [74,75]. The matrix could become a PROM, with a further possibility of
EEPROM, if the memory switch could be made reversible. Hydrogenated «-Si thin
film technology is a possible solution. Others include «a-Ge/alloys and

platinum/aluminium oxide films.

Thin film technology may be a solution for achieving hundreds of neurons integrated
on a single chip with a suitable programmable material. Otherwise, large networks are
restricted to being non-programmable with limited use for their implementation.
Alternatively, CCD techniques have been shown to be programmable, however, their
implementation on silicon results in a large area per device and hence a small number

of neurons per chip.

Imprecise, Low-area Arithmetic

One method to increase the level of neuron integration on a VLSI chip is to make use
of a neural networks natural fault tolerance towards imperfection in synaptic/neuron
detail. This is due to the nature of large parallel arrays and learning procedures by
using simple transistor circuits to approximate to the neural arithmetic i.e., the multiply

and add function [63-67].

The approach used by Akers et al at Arizona [63,64] uses a limited interconnect
analogue neural cell given in figure 2.10. Weights are stored dynamically on the gates
of transistors T1, T2 and T3 and the "multiplication” T;V; is performed as the drain
terminals of T7 - T9 are charged to voltages equal to the approximate T, voltage
minus the device threshold of T1 - T3. When the clock ¢1 is at a logic "1", the charge
accumulatiohs representing these voltages are summed via the analogue adder. V,,, is

then thresholded according to the inverter T16/T17. N-type current sources are used

to achieve small synapses.

The circuit shown in figure 2.11 is proposed by Verleysen er al [67]. Two values
stored in each synapse allow it to take the values {-1, 0 or +1}. Positive currents are
sourced on one line and negative currents on the other. The input to the neuron is the
sum of all the synaptic currents. The neuron compares the two currents i+ and i- and
will switch on if the total positive current is greater than the total negative current,

otherwise it will switch off. The use of only N-type transistors avoids the mismatch
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between P- and N-type current sources, due to their different mobilities. When the
mismatch is multiplied by the number of active synapses, it soon reaches the value of
one synaptic current and would therefore limit the number of neurons that could be

cascaded together.

Subthreshold Circuits

Neural network modelling using CMOS circuits operating at sub-threshold (weak
inversion) has been the work of Mead at CalTech [4]. Digital designs using MOSFETs
in saturation (strong inversion) require that V,, > V., but in sub-threshold operation
where V,, < Vp, I « e*"# + where K varies inversely with the amount of doping in
the CMOS process [4,82]. The advantage of this type of operation is that the power

dissipated in circuits is very low, usually in the region of 10712 to 10~ W. Also, drain
currents saturate in a few -kql- +1 allowing transistors: to operate as current sources

over most of the Vo]tage range from ground to Val. This property is shared with
bipolar transistors, thus allowing bipolar circuits to be adapted for MOS usage. The
problems of noise immunity in such circuits, caused partly by the mismatch of
transistors due to threshold differences may be lessened by the natural fault tolerance

due to the massive parallelism of neural networks.

Mead shows how many biological nerve functions can be translated to equivalent
electrical circuits and that the nerve membrane conductance is exponentially dependent
on the potential across the membrane, analogous to the I,, - V,, relation above. His
work also includes the implementation of some processing functions such as the retina
(chapter 15 [4,83], ), the cochlea (chapter 16 [4,84], ) and the problem of motion
detection (chapter 14 [ 4, 85], ).

2.2.3. Pulse stream Networks

The inspiration for the pulse stream technique [68-71] is its analogy to the
electrical/chemical pulse mechanism of biological neurons and the discovery that some

arithmetic operations such as multiplication can be implemented efficiently using pulse

t V, = gate-source voltage, /4, = drain-source voltage, V; = threshold voltage.
+t k = bolzman constant, ¢ = electronic charge on an electron.
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streams. The name "pulse stream” is derived from the signalling mechanism used in
that when a neuron is ON it fires a regular train of voltage spikes (at rate R/™ pulses
per second) on its output and when it is OFF it ceases to fire. The neuron circuitry is
given in figure 2.12. Excitatory and inhibitory pulses are signalled on separate lines
- and used to dump or remove charge packets from an acﬁvity capacitor. The resultant
varying analogue voltage, X;, is used to control a voltage controlled oscillator (VCO),
which outputs short pulses. The voltage based pulse stream synapse in shown in figure
2.13. Synaptic gating is achieved by using synchrounous "chopping clocks” to define
time intervals during which pulses may be passed or blocked. The clocks have mark-
space ratios of 1:1, 1:2, 1:4, etc. and are hsed in conjunction with synaptic weights
stored in digital RAM, to gate the appropriate portion of pulses to either the excitatory

or inhibitory column.

This network proved the viability of the pulse stream technique which has now
undergone some refinements involving the removal of the digitally stored weights, thé
pseudo-clocking scheme and separate signals for the excitatory and inhibitory signals.
Accordingly, a fully programmable, totally analogue synapse using dynamic weight
storage has been developed [70,72,86,87], which operates on individual pulses to
perform arithmetic. The activity capacitor has been distributed amongst the synapses,

reducing the neuron to a voltage controlled oscillator

The synapse circuit in figure 2.14 has the synaptic weight, T, , stored as a voltage on a
capacitor. At room temperature, refresh of dynamically stored values is necessary. The
viable storage time of the charge is determined by capacitor size, temperature of the
chip surface and leakage characteristics of the CMOS process used. Presynaptic input
pulses { V, } at a constant width D, and frequency determined by the state of neuron &
discharge the output of inverter T1/T2 linearly from V., to 0V as shown, and at the
end of a pulse, the capacitor recharges to its original voltage. The second inverter has
an output pulse proportional to the synaptic voltage T . Multiplication is only linear
over the range 1V = T, =< 3V, and by choosing suitable values for the aspect ratios of
T6/T7, it is possible to achieve excitation 2V = T, = 3V) and inhibition (1V = T,
= 2V).

This arrangement allows synapses to be cascadable as in figure 2.6, with the activity

capacitor on the drain connections of T6 and T7 aggregating the total activity x;, for
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Figure 2.14 An excitatory and inhibitory analogue synapse

any neuron i from all the other neurons connected to it. This circuit has been

implemented in 2um CMOS array of 100 synapses and functions correctly.

Further work is being done on analogue synapse circuits using only 3 N-type devices in

addition to the storage capacitor. Details of this will be published at a later date.

2.2.4. Optical Neural Networks

The vast majority of neural network implementations use VLSI technology, but optical
neural computing with its parallelism and speed offers an alternative to VLSI, however
there has been little in the way of neural computing optical devices. The first analogue
optoelectronic hardware implementation of neurél networks, introduced in 1985,
received attention for several reasons. The main one is that the optoelectronic
approach combines the massive interconnectivity and parallelism of optics and the
flexibility, high gain, and decision making capability offered by electronics. The
construction of large scale optoelectronic neurocomputers can solve optimisation
problems at potentially very high speeds by learning to perform mappings and

associations.

An example of one of the earliest optoelectronic neurocomputers consists of a totally

interconnected network and is shown in figure 2.15 [88]. To avoid interference
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effects, an incoherent light source is used, which also relaxes the stringent alignment
required in coherent light systems. An optical crossbar interconnect carries out the
vector-matrix multiplication {T; V;} required. The state vector is represented by a linear
light emitting array (LEA), the connectivity matrix {T;} is implemented in a
photographic transparency mask and the activation potential x;, is measured with a
photodiode array (PDA). Light from the LEA is smeared vertically onto the {r;}
mask. Light passing throug’h the rows of weights is focussed on the PDA. The
neuron threshold 8, and external input stimuli are injected optically with the aid of a
pair of LEAs, whose light is focussed on the PDA. A third PDA is used for the

injection of noise. This architecture has been successfully employed as a 32 neuron

network with associative memory.

To implement learning, the network needs to be partitioned into input, output and
hidden layers of neurons. An efficient way to do this is in figure 2.16 where the layers
are partially interconnected and the weight matrix is divided into an input group, Vj,
an output group, V, and hidden units, H. V, and V, are only connected via H. The
connection weights are programmably computer controlled by a spatial light modulator
(SLM). The architecture uses supervised learning and the weights are updated
according to a prescribed formula until all the training vectors evoke the correct
desired output. This network has also been used to demonstrate supervised stochastic
learning by simulated annealing. For this, the computer controller controls the
annealing profile, monitors the convergent state vectors and computes and executes the

weight modifications.

The use of neurocomputers in practical applications involving fast learning or the
solution of optimisation problems requires large networks that still have
‘programmability and flexibility as in the network described above. One method being
developed at the University of Pennsylvania [88] uses a "clusterable photonic neural
chip" concept. Here the architecture in figures 2.15 and 2.16 is modified to include
internal‘ optical feedback and "non-linear” reflection (optimstcction, amplification
and thresholding) on both sides of the connectivity matrix. Another ‘;pproach has been

to use a 2-D arrangement of neurons to increase packing density [89].

A Hopfield neural network using optical techniques has been developed at British

Aerospace [90]. Computer generated holograms are used to form fixed weighted



Chapter 2

sy

j
threshold 9“.‘—> yin
Threshold 8;— —7

v /III
< [l
. L R ] LEA
S —

LED Arrays

Figure 2.16 Partitioned fully interconnected network to implement learning

Threshold LED

Wi

Interconnectivity Mask

External input

ul = Wij S -O;4li + By

Computer Controller

45




Chapter 2 46

interconnections and a spatial light modulator enters the input image. The holographic
interconnections perform the vector-matrix multiplication and the resultant product is
thresholded and fed back into the matrix multiplier. There is a drawback however in
this type of network, in that material limitations severely limit the size of such a
machine and the weight connections are fixed. Despite this, a factor in favour of this
optical system is the ease in producing a complex hologram compared to an extensively
wired electronic system. The largest machine that could seriously be constructed using
this method is a 25 x 25 neuron array. Nevertheless, this still represents a powerful
processing capability which can be applied to less extensive networks such as edge

detection algorithms.

Optoelectronics offer advantages for the design and construction of a new generation
of analogue neurocomputers capable of performimg computational tasks at high speed.
The architectures of the present optical prototypes aim to demonstrate the best
attributes of optics and electronics and can be combined with programmable non-
volatile spatial light modulators and displays to form neural networks that include

associative storage and recall, self-organisation and adaptive learning.
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Chapter 3

A Digital, Reduced Arithmetic Neural Network

This chapter describes a digital bit-serial neural network, that uses a "reduced
arithmetic" multiplication function to implement the {T;V;} product. Software
simulation results using this computation style are given, showing comparisons of the

2-state, reduced arithmetic and sigmoid activation functions.

3.1. Digital verses Analogue Network

There are fundamentally two approaches to implementing any function in silicon -
digital and analogue. -Each approach has its advantages and disadvantages. These are
listed below along with the merits and demerits of bit-serial architectures in digital

(synchronous) systems.

The primary advantage of digital design for a synapse array is that digital memory is
well understood and can be incorporated easily for programmable synaptic weights.
Learning networks are therefore possible without recourse to unusual techniques or
technologies. Other strengths of a digital approach are that the design techniques are
more advanced, automated and easily amenable in VLSI implementation than their
analogue counterparts and noise immunity and computational speed can be high.
Unattractive features are that digital circuits of this complexity need to be synchronous
and all states and activities are quantised, while real neural networks are asynchronous
and unquantised. Furthermore, digital multipliers occupy a large silicon area and an n
neuron network requires n parallel multipliers, resulting in a low synapse count on a
single chip.

The advantages of analogue circuitry are that synchronous behaviour and smooth
neural activation are inherent. Ci}cuits elements can be small with faster settling than
digital ones, but noise immunity is relatively low and arbitrarily high precision is not
possible. However, a drawback of analogue networks until the last year, has been that
no reliable analogue non-volatile memory technology was readily available, but as
discussed in chapter 2, section 2.2.2, there are now several implementations using

analogue weight storage. For this reason, the first learning networks lent themselves
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more naturally to digital design and implementation.

3.2. Bit-Serial verses Bit-Parallel Network

Bit-serial arithmetic and communication can be efficient for computational processes. It
allows good communication within and between VLSI chips, with signals leaving and
entering the chips on single pins, an essential requirement for achieving the largest
possible number of synapses on a single device. Structures can be pipelined for
maximum efficiency, eg., each synapse in an interconnected array computes its partial
activity and passes it immediately to the next synapse in the column so that the
éccumulating activity of the neurons is being calculated every clock cycle. A bit-serial
strategy is ideal for neural networks as it minimises the interconnect requirement by
eliminating multi-wire busses. Although a bit-parallel design would have a lower
computational latency (delay between input and output), a bit-serial synaptic array
lends itself to pipelining and thus can make optimal use of the high bit rates possible in

serial systems and allows efficient use of silicon area.

3.3. Reduced Arithmetic

In a digital network each synaptic weight, T;;, is represented by a binary word. The
division of a binary number by 2, simply requires the right-shift of the number by 1
bit. For example, when 10110, (= 22,) is right-shifted, the word becomes 01011, (=
11,0). Since the synaptic function is {T;; X V;}, the right-shift of the weight by 1 bit is
equivalent to the multiplication of the weight by the state, V; =05. Similarly the right-
shifting of the weight by 2 bits, would be equivalent to multiplying the weight by V; =
025. Therefore a full multiplication and add function can be reduced to a "right-shift”
and add. The state V; = 1 only requires the synapse to add the weight to the total
activity, x;, of the receiving neuron and the state V; = 0 requires no weight to be
added to the total. By allowing V; < 0 and replacing the adder with a switchable
added/subtractor, gives the further states of —1, —0.5, —0.25, etc., which need only a
few extra transistors. The reduced arithmetic approach gives a staircase activation
function shown in figure 3.1. Five, seven, nine, etc. neural states are therefore feasible
with circuitry that is slightly more complex than a serial adder. For example, for a 5-

state activation function, the synapse function between neurons i and j now becomes:-
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Figure 3.1 Reduced arithmetic allows four, five, seven, etc., state activation functions

Vv, =1, add T;; to x;

v, = 0.5, right-shift and add T; to x;

v, = 0, add 0 to x;

V; = —0.5, right-shift and subtract T;; from x;
Vv, = -1, subtract T;; from x;

n
where x; = 3 TV, for neuron i
j=0

The activation function showing quantisation is given in figure 3.2. The sharpness of
the transition of the staircase is represented by the gradient of the sigmoid activation

function.

The use of a 5-state activation function instead of a sigmoid activation function allows
the size of a VLSI synapse to be greatly reduced. However software simulation
comparing the learning and recall capabilities of a network using the 5-state activation
function with those of the sigmoid is required to verify that the S-state activation

function performs adequately to justify its use in a VLSI implementation.
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3.4. Verification of the Reduced Arithmetic

Firstly, a relationship between the staircase function and a smooth sigmoid had to be
defined before a network of neurons using reduced arithmetic could be simulated. A
neuron with a sigmoid activation function has a neural state that can take on a

continuous value between 1 and 0. The state is described by the equation:-

V. = 1 (3.1)

J 1+ ]
exp | =

where x, is the neuron threshold and x is the neuron activity as given in figure 2.1,

chapter 2. T is the parameter "Temperature” that determines the slope of the function.
" The form of equation 3.1 is derived from the Fermi - Dirac statistics of electrons in
conductors, where the Fermi - Dirac distribution function, F(e,1) gives the probability
that an available energy state, e, will be occupied by an electroﬁ at absolute
temperature, . The Fermi - level is the energy state that has a probability of % of beiﬁg
occupied by an electron which is analogous to the threshold, x,, for a neuron. At a
"Temperature” T = 0, the function becomes the rectangular, 2-state threshold function
as used by Hopfield and there is no probability that an electron will occupy an energy
state above the Fermi level. As the temperature increases the gradient of the sigmoid
becomes lower and the probability that states above the Fermi level will be filled

increases.
Threshold limits were calculated by experiment for the thresholds x;, x;, x3 and x, in

the 5-state approximation given in figure 3.2, for any value of 7. The limits are

derived from equation 3.1 by obtaining the threshold, x,, in terms of V;, x and T.

These are:-

V;, = 1 when x, < x, x4 = x, + (T . log (8.00))
V; = 0.5 when x; < x = xy, x3=1x + (T.log(1.75))
V; = 0 when x, < x = x3, x, = x, — ( T.log (1.75))
V; = —0.5whenx; < x=x; x3=x —(T.log (8.00))
V;=—1 when x = x;.

As the "Temperature” increases, the threshold values become further apart on the x-

axis as the gradient of the sigmoid decreases.
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Neural
State, V

+1
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/

x1 x2 x3 x4 activation, x

Figure 3.2 The 5-state activation function

3.4.1. Simulated Performance of the Reduced Arithmetic

The simulated performance of the reduced arithmetic was work carried out by A. V.
W. Smith and is reported in [71]. A totally interconnected neural network with 64
neurons was chosen for the simulation. The network was restricted to this size due to
the lengthy computation time of larger networks. The Hopfield - Wallace Learning
Algorithm ( [30] and Chapter 1, section 1.3.5 ) was used to store 32 random patterns
using:

1.  2-state activation function, with the neural states —1 and +1.

2. 5 - state activation function, with the neural states —1, —0.5, 0, +0.5, +1.

3.  Sigmoid activation function, with the neural states in the continuous range from

-1 to+1.

In each case the network was iterated until each pattern being learned matched the
initial set-up pattern. The weights, T;;, were floating point, integer numbers and were
limited to the ranges —20=T,;=<+20, -30=<T;=+30, -40=T,;=+40,

—50=T,;=+50, —60=T;=+60, —70=T;= +70 in the simulations so the optimum

N. £y
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m
. 5)

'{ﬁ /g<




Chapter 3 52

range of weight mj]bt be found. As it was not possible to encode all patterns correctly

using the above restricted weights set, a maximum of 150 iterations was allowed.

Recall was then attempted with 12.5% noise introduced to the initial random patterns.
This was achieved by selecting 8 nodes at random and changing them from +1 to —1
or from —1 to +1. Each set of patterns was learned using each activation function and
then recalled by all three activation functions separately, giving nine possible
combinations of the activation functions for the learning and recall. The simulation of
each combination was repeated several times and the average nulnber of correct

recalled patterns for each was noted.

3.4.2. The Simulation Procedure

The simulation followed the succeeding steps.

Pattern Learning
1. Random pattern array: 32 random patterns were produced. Each was stored in a
64 (8 x 8) node array. The nodes were either +1 or —1.

2.  Network weight and state initialisation: Weights were initialised to a small

(almost zero) value and the states were initialised to the first random pattern.

3.  Network iteration: The network was iterated according to the equation:-

X = %Tijvj 3.2)
i=1
where T,; is the weight between nodé:s i and j, V; is the state of node j and x; is
- the new activity of node i.
4. New neural state calculation: The node activities were thresholded according to

the activation function with which the network was learning, to give the new

neural states and hence the new output pattern.

5. Error array calculation: The new output pattern was compared to the initial

random pattern to produce an error array such that:-

(3.3)

o 1 if VO #vQ
& = 0 otherwise

where r is the pattern number, V, is the new neural state, V,_, is the previous
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neural state of the same neuron i and e/ is the error of node i in pattern r.
The above 5 steps were repeated for each random pattern.

6. Weight update: When an error mask for each pattern had been calculated, the

weights were updated according to:
N
8T, = SVOVD () + ) (3.4)
ji=1 .

where V; and V; are the present states of nodes i and j in pattern r.

7. Iterate to update weights: The procedure in steps 1 - 6 was repeated. The
network was reset to each random pattern, the new neural states were calculated
and the weights updated accordingly. This was iterated 150 times maximum or

fewer if a pattern was stored correctly in under 150 iterations.

Steps 1 - 7 were repeated for 3 different "temperatures”.

Pattern Recall
The weight set was used to recall the random patterns corrupted with 12.5% noise.

1. Initialise network: The network was initialised to the first noise corrupted pattern
and equation 3.2 was iterated until the new neural states calculated were stable.
The states were compared to the initial uncorrupted pattern. If there was no

difference, the patterns had been recalled correctly.
2. Step 1 was repeated for each pattern in the array.
3. Steps 1 and 2 were repeated for each activation function.

4. Steps 1 - 3 were repeated for 3 different "temperatures”.

Learning with Fixed Weights

Updating the weights in the learning procedure can lead to weight saturation when a
fixed weight set is used. This happens when the weight grows above the maximum limit
allowed. Three methods to reduce the saturated weights to within the weight limit were

simulated, while still achieving the maximum learning capability of the network.

1. Renormalisation: The complete weight set was renormalised so the largest weight

was reduced to fit within the weight limit. Eg. if the maximum weight limit is +
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30 and a weight is updated to +36, then each weight is renormalised to % of it

original value. The majority of weights however, are small integer values.
Therefore a weight of +2 would become renormalised to +1. This introduces a
large error into the learning procedure. A typical example of a weight value

distribution is given in figure 3.3.

2. Forgetting: The inclusion of a decay or “forgetting” term can be introduced in the
learning cycle [36]. At each weight update a “"forgetting” term subtracts a
proportion of each weight to keep them within the weight limit. This can cause

the information that is learned at each iteration to be destroyed.

3. Clipping: Any weight that becomes saturated is set to the maximum allowed
weight value. Weights within the limits remain untouched. In the learning

procedure unclipped weights readjust for the clipped ones.

There have been other experiments, which have indicated that a Hopfield network can
"forget" in a different way, under learning control, giving preference to recently

acquired memories [91].

3.4.3. Simulation Results

The simulations showed how the properties of the different activation functions effect
the learning and recall capabilities of the network. Different weight limits and
temperatures also determine the number of iterations required to learn and recall

patterns.

Learning with Different Activation Functions

The number of iterations required to learn the 32 random patterns using the 3 different
activation functions with varying "Temperatures” and weights limits is presented in
figure 3.4. Integer weights with a dynamic range greater than * 30 were necessary to

preserve storage capability. The following conclusions can be drawn from the graphs:-

1. For all values of "Temperature” and weight limit, the 5-state activation function

required more iterations than the 2-state function to learn the random patterns.

2. A rise in "Temperature” from 10 to 20 showed a subsequent increase in the

number of iterations needed to learn using the 5-state function.
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3.

The sigmoid activation function exhibited the most efficient learning when the

weight limit was = =50 with a "temperature” of 10 and 20.

Effects of Weight Limits and Temperature on Learning

1.

Renormalisation: Renormalisation of the weights was unsuccessful, suggesting
that information distributed throughout the numerically small weights was being

destroyed. This led to no solution being found.

Forgetting: In the time available for experiments, a rate of decay could not be
"tuned” sufficiently well to confirm that including a "forgetting” term in the
learning cycle can produce the desired weight limiting property. As a result,
errors could not be reduced in the learning cycle and no patterns were stored

perfectly.

Clipping: Clipping proved to be a successful method as the learning algorithm
adjusted the weights over which it still had control to compensate for the
saturation effect in the upper weights. As the sigmoid function has more
intermediate states than the S-state function, it takes longer to readjust the non-
saturated weights. The results show that for high temperatures and small weight
limits (< 50). clipping occurs and the 5-state function learns faster than the
sigmoid. Clipping also occurred for weights with the values 7, = 50 - 70, but
network performance was not seriously degraded over that with an unrestricted

weight set.

Recall with Different Activation Functions

Patterns learned with the Sigmoid Function: Figure 3.6 shows the results of
patterns recalled using the 5-state and sigmoid activation functions, having first
been learned with the sigmoid function. The results are for patterns learned and
recalled at the same "Temperature”. For T,”* > 50, the recall ability of the
functions is approximately the same and up to 70% of the patterns were recalled.
However, at 7, and "temperature” = 20 and 30, the 5-state function recalled a
small number of patterns and the sigmoid function function recalled none. These
graphs suggest that the higher the weight limit and temperature, the greater the

number of recalled patterns.
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Figure 3.5 The graphs show the number of patterns recalled with the 5-state and
2-state activation functions. Learning was with the 5-state activation function.
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2.  Patterns learned with the S-state Function: Figure 3.5 shows the number of
patterns recalled with the 5-state and 2-state activation functions, which were first
learned the 5-state activation function. At each "Temperature”, the 5-state
function recalled more patterns than the 2-state function. The 5-state activation
function with a middle "Temperature” (T = 20) gives the best recall (38% of

patterns) with the weight limit, 7,7** = 40.

3.  Patterns learned with the 2-state Function: A low number of patterns were
recalled using the 2-state function to obtain a weight set. Hence the results do not

merit discussion.

3.5. Conclusions

The 5-state activation function required the most iterations to learn the 32 patterns and
the sigmoid required the least provided the "Temperature” was low. Both the 5-state
and the sigmoid function had faster learning as the "Temperature” was decreased.
Over the whole temperature range, the 2-state activation function exhibited the best
learning ability. The reason for this is that as the 2-state network learns, any neuron
has 50% chance of being in the wrong state, therefore on the next iteration the neuron
will be in its correct state. Neurons learning with the 5-state activation function have
80% chance of being in the wrong state at the start of learning and the network will

take longer to iterate through the 5 states until each neuron arrives at the correct state.

The S-state function had better recall ability than the 2-state function for patterns
learned using the 5-state function. For patterns learned with the sigmoid function, the
recall abilities of the S-state and the sigmoid were very similar for 7, > 30.
However, many more patterns were recalled with the 5-state function (70%), that were
first learned with the sigmoid, than were learned and then recalled with the 5-state

function (38%).

The simulations proved that learning and recall using the 3-state function were
significantly better than that using the 2-state. Full sigmoidal activation was better than
the 5-state, but the enhancement was not so great as that incurred by moving from the
2.state to the S-state. This suggests that the law of diminishing returns applies to the
addition of the levels to the neural states. This issue has been studied mathematically

[92], with results that agree qualitatively with those given above.
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The results of the S-state activation function simulations proved that the reduced
arithmetic approach was well worth pursuing for the synaptic function instead of full
multiplication, without degradation of the synapse performance. The succeeding

chapter gives details of how a reduced arithmetic synapse has been implemented in a

VLSI circuit.
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Chapter 4

VLSI Design of the Synapse Array

The previous chapter has shown how a "reduced arithmetic" approach can be used as a
compromise for the full multiplication required for the synaptic function {T; xV,}.
This chapter gives the design details and simulations of two bit-serial, digital integrated
synaptic array circuits using reduced arithmetic. The first integrated circuit was
designed and fabricated using a fully custom 3pm design, however, owing to a layout
error the integrated circuit did not function correctly. A second fabrication of the
design using the same process had 0% yield owing to problems with the metal layers.
Therefore a second integrated circuit was designed with the ES2 (European Silicon
devices

Structures) Solo 1400 silicon compiler as this process guaranteed working A and a

fabrication time of 8 weeks.

4.1. Synapse Requirements

The synapse array was designed to operate at maximum speed and efficiency with
minimum latency (bit delay between input and output) and full pipelining. The size of
the array was restricted by the area of silicon and the number of pins on the packages

available.

Each synapse required a programmable weight storage capability for T,;, a state
multiplexor to allow any of the 5-states representing the value V; to be selected and a
full adder/subtractor. The adding/subtracting of the activity at each synapse had also

to accommodate word growth for the total activity calculated in each column.

4.1.1. Weight Storage

The storage of a digital weight is straightforward as an n-bit shift register will hold an
n-bit weight. The simulation results of the learning and recall capabilities of the 5-state
activation function given in the previous chapter showed that the best performance is
achieved when the weights have a large dynamic range. The range used in simulation
was integer values up to =70 and therefore an 8-bit weight (ie. 27) was used for the

hardware as this gives integer values over the range —127 to +128. A 6-bit weight (ie.
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26) would, for example, only give the range —63 to +64 and hence is not large
enough. The dynamic range —127 to + 128 was suitable for this type of network and
the learning procedure used in the software simulation. As the same network is to be

used in hardware, an 8-bit weight was chosen.

A single phase clocking technique was implemented in preference to a two-phase
clocking technique. Single phase has advantages in that it allows a higher speed as it
does not suffer from overlapping clocks and race hazards that occur in two phase

systems.

An 8-bit shift register per synapse required one input pin to load the synaptic weight.
In order to integrate the maximum possible number of synapses on a die it was
imperative that the weight input pin count be kept to a minimum. This was achieved
by connecting each 8-bit shift register to form one long shift register through the array

as shown in figure 4.1.

8-bit weight

switch to load or shift weights
synapse \ n/

Tl B LN I i R R

R N A N A e R BN P=

Figure 4.1 The connection between synaptic weights in the array for loading purposes.

Synaptic weights are loaded sequentially through one pin until each weight has reached

the appropriate synapse. For example, a 10 synapse array would require 80 clock cycles
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for the LSB (least significant bit) of the synaptic weight furthest from the input pin to
reach its correct location. A "load/shift" multiplexor controls the synaptic weight
operation. The multiplexor allows each weight to be loaded and subsequently isolated
and shifted through the register so that it may be "multiplied” by the neural state.
During the {T,; XV;} computation, the weight is shifted around the the register. A
further complete shift cycle of the weight permits an 8-bit word growth allowing a 16-
bit activity word to be summed down the synapse column. The MSB (most significant
bit) of each weight is sign-extended for 8-bits during the second shift phase by a "sign-
extend” control signal. These control signals were easily incorporated within the logic

required to select the neural state.

4.1.2. Synapse Logic

The neural state multiplexor in the synapse controls whether the weight is right-shifted
(x £0.5), killed (x0), or its full value (X=*1). A positive state adds the 16-bit
{T;xV;} to the running total in the synapse column and a negative state subtracts it.v
Each neural state is signalled on a 3-bit bus that runs horizontally across the array, as
shown in figure 4.2. The signals are rs (right shift), kill and pm (plus/minus). The
sign extension of the neural state is controlled by two further signals, sel and se2. sel
sign extends the weight 8 bits when V; = =1 and se2 sign extends the weight 9 bits

when V; = £0.5 as the weight has already been right-shifted by 1 bit.

The adder/sqbtractor has two parts: The first is summing logic that adds the
accumulating activity from the previous synaptic computation in the neuron column to
the present {T;; XV;} along with any carry from the summation of the previous bits of
the synapses’ weights. The second part is carry logic that signals any carry that occurs

in the summation part.

Two’s complement arithmetic is used. In this representation, positive numbers are in
normal signed binary. The difference lies in the representation of negative numbers.
The one’s complement or inverse of the negative number is first computed and then one
is added, as shown in the following example, which gives the two’s complement

representation of —5.

+5, = 00000101
11111010

The one’s complement of + 544
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Figure 4.2 Synapse array structure, showing the 8-bit weight, 3-bit state multiplexor
and adder/subtractor.
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(adding 1) +1

Therefore, the two’s complement is 11111011
Hence, (+3) 00000011

(-5) +11111011

11111110

The result can be identified by computing the two’s complement

The one’s complement of 11111110 is 00000001
(adding 1) +1
Hence, the result (=+2,,) 00000010

Therefore, the result represented by /1111110 is correct.

It is possible to add or subtract signed numbers, with the significant advantage that a
carry generated by adding the MSBs is ignored in the value of the result. If this were

not the case, the result would have to be corrected for the sigp, each time.

A table giving the sum/carry logic output based on the equation 4.1 of a 16-bit word

being added/subtracted is given in table 4.1.

-~
]
z

0, then Sum = T;.V,., — T;V; — carry

Vi

4.1)

~
L
Z -

When pm = ;

T;4V;4 + T;V; + carry

1, then Sum = i Vi

~.
Il
—

\

A LSB signal is synchronised to the LSB of the accumulating activity word and clears
any carry that is generated at the addition/subtraction of the MSB of the previous

activity word to avoid it being added into the LSB of the present activity word.

4.1.3. Synapse Array Design

The synapse array architecture is also shown in figure 4.2. Each neural state is input
to the array on 3 pins and carried on a 3-bit bus. The first synapse in each column has
an external input that allows accumulating activities to be added in when the integrated

circuits are cascaded together. The last synapse in each column outputs the total
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pm ! =NT,-J- 4Vja  T;V; Carryin | Sum Carryout
j=1
0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 1 0 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 1 ! o
1 0 1 0 1 0
1 0 1 1 0 1
1 1 0 0 1 0
1 1 0 1 0 1
1 1 1 0 0 1
1 1 1 1 1 1

Table 4.1 Sum and carry output values calculated from equation 4.1.

activity. The three control signals are shifted in registers adjacent the array in order

that they coincide with the activity computation.

Once the functional requirements of the synapse were realised, the transistor level

design of the synapses could be begun.

4.2. Fully Custom Integrated Circuit Design

The main advantage of a fully custom design over a silicon compiled design, is that
designing circuits at transistor level enables the minimum number of transistors to
compute any particular logic function to be used, achieving optimum use of the silicon

area. The technology used was 3pm 2-metal P-well CMOS. The CAESAR CAD
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(computer aided design) tool was used to layout the complete circuit.

4.2.1. Weight Storage Shift Register

The single phase technique [93] used for the custom design was based on static logic
trees charging and discharging dynamic latches‘ (or shift registers). A logic tree is a
circuit of transistors that computes a required logic function. It effectively uses two
phases of the clock, the logic 1 (5 volts), referred to as the 17-phase and the logic 0 (0
volts), referred to as the u-phase. Figure 4.3 shows the shift register, with pre-charge
circuitry. On the 1 -phase, the input is passed by n-transistor T1 to node 2 and
inverted at node 3. Any input at logic /- will not be passed as a "good” logic 1 by
transistor T1, therefore when the clock goes low, p-transistors T4 and T5 pull node 2
up to a good logic . The value at node 3 is now passed by transistor T6 to node 7.
The two "pull-downtransistors T8 and T9 ensure that any logic 0 passed by transistor T6,
will be pulled downto a good logic © at node 7. When the clock returns low, the output
appears 1 clock cycle later at node 10. Eight shift registers in each synapse hold the
weight bit-serially.

The shift register had previously been fabricated on a 3um CMOS integrated circuit
[71] and the test results showed it functioned correctly up to 20 MHz. Tests were not

attempted above this frequency owing to the limitations of the test equipment.

4.2.2. Synapse Logic Tree Design

The logic trees in the synapse required the pre-charge circuitry and a shift register to
evaluate the correct output. Logic trees with the minimum number of transistors were
obtained from boolean type functions or logic level descriptions of the state
multiplexor, sum logic and carry logic by the MOSYN CAD Circuit Synthesis program
[94,95]. These descriptions,\c?r‘cuit function that give the minimum circuits generated

by MOSYN are given in Appendix A.

The minimum transistor logic trees are shown in figure 4.4. Each tree is joined to the
pre-charge circuitry given in figure 4.3. On the first (p.) phase of the clock cycle (logic
0), node 11 is "pulled up” to a logic 1, regardless of the inputs to the transistors in the
tree. During the mw-phase of the clock, the node 11 evaluates the correct output. The

inverter 112 allows node 11 to be "pulled down" to a good logic 0, if the transistor
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Figure 4.3 Single phase shift register.

inputs are such that there is a path to ground. The shift register outputs the correct
value one clock cycle later. The correct logic function of each tree was verified by the
RNL [96] timing logic simulator for digital MOS circuits. RNL is an event driven
simulator that uses a simple RC (resistance capacitance) model of the circuit to
estimate node transition times and to estimate the effects of charge sharing. Two
intermediate programs NETLIST and PRESIM are required to be run first using a
transistor netlist derived from the MOSYN netlist, to generate the correct binary netlist
input file.bin for RNL. The netlist, sum.net the input RNL logic data file, sum./ and the

output, sum.out generated by RNL for the sum logic tree are given in Appendix B.

A complete synapse required 170 transistors. Once this had been verified by RNL as

functioning correctly, the custom layout could proceed.

4.2.3. Synapse Array Layout and Simulation

The layout of a fully custom integrated ~circuit involves each transistor being
constructed from the nine layers available in the 2-metal CMOS process. First, the

synapse was designed to be as compact as possible. Each transistor had the minimum
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geometrical dimensions, ie. 4um long and 3um wide. As the 10 transistor shift register
had been previously designed [71] and shown to function correctly, the layout was used
in the synapse. The metal 2 layer was used to carry all signals from the pads to the
synapse array and for the Vdd (+5 Volts) and GND (O Volts) power lines. A layout
plot of a synapse is shown in figure 4.5. The area of silicon required for 1 synapse was
670m by 240pm and approximately one third of this was taken up by the 8-bit weight
storage shift register. The layout also required substrate contacts to be placed every
70m in the design. The CAESAR design rule checker LYRA, was employed at each
new stage in the design to ensure that the layout dimensions did not violate the

minimum geometries permitted for each layer.

Once the synapse design was completed a CIF (Caltech Intermediate Format) file was
created by CAESAR. CIF is a low level graphics language used for describing
integrated circuit layouts. The CIF file is then read by MEXTRA, a circuit extraction
tool for VLSI simulation, to create é circuit description file for use by PRESIM as
described in section 4.2.2. RNL was then run to verify that the layout was functioning
correctly. The flow diagram given in figure 4.6 shows the design procedure using the

CAD tools.

The second stage of the layout involved placing the maximum number of synapses in
the allowed silicon area to form an array. The array size was 3 by 9 synapses, as is
shown in a chip photograph in figure 4.7. The photograph in figure 4.8 shows a
synapse in the array. This can be compared to the layout plot of a synapse in figure
4.5. The area of the array including the control circuitry shift registers was 5.70 mm?
(2.49 x 2.29 mm) and accommodated 4958 transistors. The area of the chip including
pads was 16.61 mm? (4.27 X 3.89 mm). MEXTRA, PRESIM and RNL verified that the
layout was correct. The array was simulated as fully as possible by the CAD tools

before fabrication by MCE (Micro Circuit Engineering).

A design of this size pushes the design capabilities of CAESAR, RNL and the Vax to
their limits. Complete screen and paper layout plots took 2 to 3 hours and one column
of 9 synapses required approximately 9 man hours and several hundred CPU hours of

simulation. This makes the correction of errors a slow and tedious task.

The 3pum technology allowed 27 synapses to be fabricated in an area of § .70mm?. This

may appear to be a disappointingly low number, but it is favourable when compared to
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a full multiplier which would require approximately lmm X 1lmm area in 3pm
technology. However if a projection is made to a 1pm minimum feature design on a
10mm X 10mm die, based on the area required for 27 synapses, it would be possible

to achieve approximately a 58 neuron array (58 synapses).
For example,

If 27 synapses require 5.70mm? in 3pm technology, then 27 X 32 (=243)

synapses require 5.70mm? in 1pm technology.

If the available area of silicon on a 10mm X 10mm die is 81mm? (excluding pad

area), then the number of synapses = X 243 = 3400 = 58 neurons (582

81
5.70
synapses).

The size of this array is more suitable for learning and recall simulations.

4.2.4. Test procedure for the integrated circuits.

The manufactured integrated circuits were tested using a DAS (Digital Analysis
System). It allows patterns of logic 1s and Os that are generated by the user to be input
to the integrated circuit under test and reads back logic 1s and Os output from the

device. The DAS generates a clock pulse up to a maximum of SMHz.

The first test ensured the correct functioning of the 216-bit weight shift register, which
is loaded bit serially and the 3 control shift registers for the signals sel, se2 and Isb
described in section 4.1.2. The DAS timing'd‘iagram in figure 4.9 shows the registers
shifting the data correctly. For example, the data on line "DOUT" which is the output
from the weight shift register appears 216 clock cycles after the input on line "DATA"
and the data is then shifted around the 8-bit shift register once the "load” line has

returned to a logic 0.

The next test was to apply a neural state, V;, to each row of synapses and observe the 3
-outputs "sa out”, "sb out” and "sc out”, which should give the total activation in each

column, ie.:

where x, is the total activity in column a and T,; is the synaptic weight between

neurons a and j. However, each device had the "sum out” output pins held at a logic
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0, implying that a design or manufacturing error had been made, that was holding the
outputs to the GND line on the device. Careful examination of the layout plot of a
synapse showed that a "contact” had been omitted from the precharge circuitry of the
logic tree shift register. This had the effect of shorting the output of each logic tree to
GND. The circuit extractor MEXTRA does not extract substrate contacts into the

file.sim to be simulated by PRESIM. Hence the layout error was not detected. T

Once the substrate contact had been redesigned, the chip was manufactured by the
EMF (Edinburgh Microfabrication Facility), University of Edinburgh, as the process
was no longer available through MCE. Unfortunately, the resulting wafers had faulty
metal layers and had 0% yield. At this stage, as the time to complete the research was
running short, the only alternative route to achieve a fully working chip, was to
completely redesign the synapse array was using the ES2 Solo 1400 Compiler for
fabrication at ES2 (European Silicon Structures), as this process guaranteed working

devices and a fabrication time of 8 weeks.

4.3. ES2 Solo 1400 Design

The Solo 1400 silicon compiler is a software tool for designing custom integrated
circuits to manufactured in 2um 2-metal N-well CMOS. The fundamental building
blocks of the solo design are basic library parts. The parts are NAND, NOR, XOR,
buffer, flipflops etc., which are stored in the Base Library and are recognised by the
design subsystem. The Solo software provides facilities, which will guarantee a
"working" integrated circuit if they are used in the correct order. The Base Library
provided enough parts to design the neural accelerator chip. The following procedure

was used for the design.

1. Design Entry: This allowed circuits to be input to Solo as a gate level schematic
or in a text form using a Hardware Description Language (HDL) or in a

combination of both.

2.  Compilation: The Hardware Description Language (HDL) was compiled to
produce an Intermediate Design Language (IDL) file, which was used by the
simulation and physical design phases. At this stage the FANOUT of the design

was checked to ensure that it met the fanout restrictions on components.

+ The contact was between active area and metall in the inverter of the precharge circuitry, therefore the inverter
had no GND connection. As the contact was in the active area of a substrate contact, MEXTRA assumed that a con-
nection to GND existed. This meant the logic tree output was always pulled down to GND.
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3. Simulation: This was done at gate level and had to be carried out before the
physical design stage. The IDL file provided the input to the EXERT simulator.
After the physical design a "load" file was produced that contained data on circuit
capacitances. This allowed a second EXERT simulation file to check the
maximum and minimum gate delays and to check that the final integrated circuit

would work correctly for all operational conditions.

4. Physical Design: Circuit layout was performed by the PLACE, GATE, and
ROUTE programs. Transistor sizing was already preselected in the Base Library
and could not be changed. The only influence a user had in the PLACE program
was in the placing of the gates in the layout. This was not necessary in the neural

accelerator chip.

5. Validation and Production: Solo allowed the required package for the design to
be chosen and checked that all the programs required for a "working" integrated
circuit had been run in the predefined order. In this way, a correct functioning

manufactured design was virtually guaranteed.

4.3.1. Synapse Gate Level Design

The synapse array function and size were kept the same as that in the MCE 3um
design. The reason for this was that the neural board with the hardware support for the

accelerator chips had already been designed specifically for a 3 X 9 synapse array.

The boolean and logic descriptions for the state multiplexor, sum logic and carry logic
that were described in section 4.2.2 were used to represent the functions at gate level.
Figure 4.10 and 4.11 shows the Solo gate level design for this. The dynamic shift
register used for weight storage and logic tree evaluation in the previous design was
replaced by a static D-type flipflop. Each D-type consists of 10 gates (30 stages). Solo
defines a stage as "a single, equal size p and-n type transistor”. The complete synapse
circuit required 331 stages (662 transistors). This is approximately four times as many
as those needed for the CAESAR synapse. The reason for this is that Solo has
predefined parts consisting of logic gates that perform specific functions. The synapse
had to use the available parts wired together to perform the required logic function,
whereas the synapse designed with CAESAR, used the minimum possible number of

transistors to perform the logic function. At this point the synapse was simulated by
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the EXERT simulator to verify that it was adding, subtracting and shifting without

€rror.

4.3.2. Synapse Array Layout and Simulation

A 3 X 9 synapse array was constructed again at the gate level design and D-type
flipflops were used for the control circuitry shift registers. Figure 4.12 shows the Solo
interpretation of the synapse array. Each "part” represents the 3 synapses in each row
sharing the same neural state. The three "sum out" lines are adjoined to the adjacent
“part” to the right. The final "sums out” appear at the rightmost "part”, the ninth
synapse in each column. The 8-bit and 9-bit shift registers required for the Isb, sel and
se2 signals are below the synapse array. Once the EXERT simulator had verified the

function of the array, the design work for the accelerator chip was complete.

The layout procedure was performed entirely by the compiler using the PLACE,
GATE and ROUTE programs. EXERT was used again as a final check that the gate
delays and FANOUT were still within the set limits. As with the CAESAR, the
simulation on Solo, proved to be the slowest part of the design, taking approximately
the same man and CPU hours to achieve a full simulation of the array. For this, at
least 95% of the transistor nodes had to toggled as part of the design validation

process.

Another design validation constraint required that all metal track lengths must be less
than 10000 pwm. As neural network designs have a large number of interconnects
between parts, several long track lengths occurred in the routing around transistors.
Therefore buffers had to be added on all long track lengths. Figure 4.12 shows the
clock and load signals with buffers dividing up the lengths of track. The area of silicon
used for the array was 19.28 mm? (4.79 X 4.03 mm) made up from 9360 stages (18720

transistors) and the area of the array including pads was 29.13 mm? (5.78 X 5.04).

4.3.3. Test Procedure for the integrated circuit

The manufactured integrated circuit was tested using the Digital Analysis System with
the same data input programs generated for the MCE design test. The first test
showed that the 216 weight shift register and the 3 control shift registers had the

correct function. This is shown in figure 4.13. The second test applied a neural state to
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Figure 4.12 Solo interpretation of the synapse array
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each synapse row and allowed the chip to compute the total activity in each column

according to equation 4.1.
The following tests were done.

1. AlT; =0andalV; = 1, "sa in", "sb in" and "sc in", the sums at the top of

each synapse column were given 16-bit random words.

The integrated circuits gave the correct results of "sa in" = "sa out”, "sb in" = "sb out”

and "sc in" = "sc out”.

2. Positive and negative random values of T,, were input to the array and each
synapse row was given a known state. x,, x, and x, were calculated by hand and
then compared to the values calculated by the integrated circuit. The answers
were the same indicating that the array was computing in the correct way. These

results were obtained at SMHz, the maximum operating frequency of the DAS.

Once the integrated circuit function had been verified, four of the chips were mounted
with hardware support on a board. The hardware support consisted of memory to hold
the neural weights and states and control circuitry to supervise the calculations in and
out of the neural accelerator chips. The board was interfaced to a host Sun 3/110 Work

station and its function is described fully in Chapter 5.

4.4, Conclusions

The designs of the two synapse array integrated circuits using CAESAR and Solo 1400
CAD tools gave interesting comparisons between the tools. Although the two designs
had exactly the same function, major differences occurred in the design time, the

number of transistors used and the area of silicon used as shown in table 4.2.

Synapse Array Array Chip No. of No. of
Design transistor  transistor ~ area area weeks to  weeks to
count count in mm? in mm? design manufacture
CAESAR 170 4958 5.70 16.61 36 24
ES2 Solo 662 18720 19.28 29.13 8 6

Table 4.2 Comparisons between the MCE and Solo designs.
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The advantage of the layout facility of CAESAR was that it allowed a compact design
using the minimum number of transistors possible for the function. This was proved
by the large difference in the number of transistors per synapse. The ES2 design had
four times as many transistors and used five times as much silicon area, allowing for
the minimum geometry differences in the process. The disadvantage of CAESAR was

that the layout process was long and tedious and prone to errors.

The major advantage of Solo was the turnaround time from the initial design to
receiving working chips. This was 14 weeks for the neural accelerator chips compared
to 60 weeks for the CAESAR/MCE design. Solo was easy to learn and by its design

facilities guaranteed that the chip would function in hardware.

The software simulation times on both designs were approximately the same, although
the Solo simulation had rigorous design constraints that had to be adhered to, hence

the guarantee of working silicon.
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Chapter 5

Neural Network Accelerator Board

The neural network integrated circuit described in chapter 4 is a 3 X 9 synapse array

T, V

using a reduced arithmetic technique to compute the neural function x; = i Vi

N
e

where x; is the activity of neuron i, T;; is the synaptic weight between neurons i and j
and V; is the state of neuron j. The integrated circuit is to be used as a hardware
accelerator for simulations as, for example, described in chapter 3 for the learning and

recall of patterns.

The size of the synapse array on one integrated circuit alone was too small to be used
with a learning algorithm to perform learning and recall simulations. SPICE simulations
of the single-phase clocking technique showed that the neural accelerator would
operate upto 20MHz allowing each synaptic column to compute the activity in a
minimum time of 1.3ps and if the synaptic weight set were stored in supporting RAM
(random access memory) with an access time of 45ns, the weights for 27 synapses
could be loaded into an integrated circuit in 9.72us. Therefore, the projected
minimum total computation time for the three activities is 11.02us. This performance
of a hardware accelerator is much faster than speeds attainable in a natural neural
network. Hence, a paging architecture described in the following section has been

developed to "trade off" some of this excessive speed for increased network size.

5.1. "Meoving Patch" Paging Architecture

To increase the number of simultaneous synaptic calculations, 4 of the chips have been
cascaded to give a 12 x 9 array. The paging architecture uses this new array size to
give a virtual array size of 288 potentially totally interconnected neurons and acts as a
neural accelerator to a host Sun computer. The paging architecture can be visualised as
a "moving patéh" where the small "patch” (thé 12 X 9 array) simulates a small number
of synapses sliding across a much larger array. On each new simulation, the "patch”
moves down the synaptic column to the adjacent patch and the new synaptic weights

are loaded into it. A general architecture showing this is in figure 5.1.
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Figure 5.1 Paging architecture of passing a small synaptic "patch” over a larger synaptic
array.

Each "patch” computes the partial activity for each column of synapses. These
activities are subsequently held in memory until the next "patch” is ready to compute.
The partial activities are then fed into the top of the new "patch” to be added to the
new activities being computed. This ensures that each synaptic column receives a
contribution of activity from each synapse in it. A virtual array size of 288 neurons
and a "patch” size of 12 X 9 synapses gives 32 "patches” in a column and 24 columns
of "patches”. After 32 iterations the "patch” reaches the bottom of the first column, the
total activities for the first 12 neurons have been computed and are then stored in local
RAM. The "patch" then proceeds to iterate down the next column of "patches”, until
all 24 columns have been iterated. When all the activities have been computed, they
are downloaded to the host, which then thresholds them according to the 5-state
activation function to form the new set of neural states for the array. The host
computes the learning and the weight updating for the network. Details of the neural
accelerator functioning as a pattern associator using the delta learning rule are given in

Chapter 6.

5.1.2. Hardware Support for the Paging Architécture

The neural network accelerator board requires hardware support circuitry to perform

the paging operation described in the section above. The board runs as a SLAVE
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module, which responds to the data bus transfer (DBT) operations generated by the
MASTER, the host Sun processor.board. The neural accelerator board is interfaced to
the host Sun by the Sun’s VMEbus [97]. The VMEbus allows communication between
the MASTER and the accelerator board and in this case, it enables the weights and
states calculated by the host to be transferred to the on-SLAVE RAM. The
accelerator board runs independently from the host while it computes the neural
activities. Once this has been done, the board signals to the host to read and threshold

the activities.

One complete computation cycle requires the synaptic weights and neural states for
every patch to be unloaded from on-board RAM, the partial activities between
adjacent patch computations to be stored in shift registers and the total activities to be
stored in memory, until the "patch” has iterated across the whole board. Therefore, 3
separate RAMs are required to store the synaptic weights, present neuron states and
new neuron activities. Twelve 16-bit shift registers synchronise the partial activities of
the previous "patch” to be added correctly to the present "patch” computation and an
18-bit counter controls the "patch"” iteration across the array. Figure 5.2 shows the main

structure of the board.

These parts constitute the major components of the neural accelerator board, that
would be required regardless of the host and interface environment for the activity
thresholding and weight updating. However, the operation of the VMEbus interface
system influenced some of the details of the board design in ordér to tailor it to the
VMEDbus specification requirements for the transferring of data between the SLAVE
and MASTER. Hence the neural accelerator board is divided into 2 parts. The first
is buffering and control circuitry to allow the VMEbus to write to and read from the
SLAVE RAMs. The second part is buffering, control circuitry and a SLAVE address
system for the neural activity computation when the board is running independently.
Section 5.2 gives a brief description of the VMEbus and its implementation with
respect to the neural accelerator board requirement and section 5.3 gives the
subsequent design of the board. showing details of how the "patch” computation and

the "patch" iteration is achieved.
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Figure 5.2 Main structure of the neural accelerator board

5.2. VMEDbus Interface

The VMEbus is an interfacing system for use in interconnecting data processing, data
storage and peripheral data control devices in a closely coupled configuration. The
mechanical structure of the VMEbus is a backplane, which is a printed circuit (PC)
board with a pair of 96 pin connectors that provide the bus signal paths to the SLAVE
module. The VMEbus interface system consists of backplane interface logic that takes
into account the characteristics of the backplane (its signal impedance, propagation
time, terminal values, etc.), four groups of signal lines called "buses” and a collection
of “functional modules” that can be configured as required to interface devices to the
buses. The fpnctional modules communicate with one another by means of bus signal

lines provided by the backplane.

The interface functions of the VMEbus are divided into 4 areas. Each functional area
consists of a bus and associated functional modules which work together to perform
specific duties within the interface system. The only area used by the neural

accelerator and therefore discussed here is that of "Data Transfer". Details of the other
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three areas - Data Transfer Bus Arbitration, Priority Interrupt and Utilities can be
found in [97-99].

The Data Transfer bus (DTB) contains the data and address pathways and associated
control signals. In this area, functional modules called "DTB Masters” and "DTB
Slaves" use the DTB to transfer data between each other. The VMEbus MASTER
allows 32-bit (long word), 16-bit or 8-bit (short word) data transfers and 32-bit, 24-bit
or 16-bit addresses. The neural accelerator board requires a 32-bit data bus as the
neural states for one neural accelerator chip are signalled on a 27-bit and a 24-bit
address bus. The SUN processor board allocates specific areas of its memory for the
different sizes of VME data and address buses [99,100]. The area of memory in the
24-bit VMEbus Address Space Allocation reserved for “"small user devices” has
sufficient memory space for the data which is to be transferréd to the neural
accelerator board. The physical (hexadecimal) address range of this area is 0xD0000O -
0xDF0000 representing the addresses Ay; - Agg, Ay - Aje, Ags - Aya, Agy - Ag, Ag - Ay

and A, - A,. Address lines A ,; - Ay, are permanently at address 0xD ( 1011,).

5.2.1. Slave Interface to the VMEbus

The 3 neural accelerator board RAMs are addressed by the VMEbus. The weight
RAM requires 12 data lines (as 12 RAM chips are required to store the weights for
288 neurons) and the neural state RAMs require 27 data lines to load the states (the
maximum number of data lines is 32), therefore the physical address range in the
VMEvbus address space allocation is split up so that each of the 3 RAMs is addressed
individually, as is shown in table 5.1. The sectioning of the Address Space Allocation
éllows the address line A,9—A (ie. the lines signalling address 3,4,5 or 6 to determine
the accessing of the RAMs) to be gated to form the "chip select” and "read/write”
control signals to each RAM. Figure 5.3 shows the SLAVE interfacing to the VMEbus

and how the address lines have been used for the various control signals.

When the neural accelerator board runs independently of the MASTER while it is
computing the neural activities, all the VMEbus data and address lines must be
buffered to allow them to be switched off. The address lines use uni-directional buffers
and the data lines use bi-directional buffers as data is written to and read from the

SLAVE. Table 5.1 shows that data is written only over the VMEbus address range
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y Address RAM
Dé6xxxx "RUN" signal to SLAVE to compute activities
DSFFFF
to Address and read from “activity” RAM
D50000
D4FFEF
to Address and write to "neural state” RAM
D40000

| D3FFFF ‘

to Address and write to "synaptic weight” RAM
D00000

Table 5.1 VMEDbus address space allocation to the SLAVE RAMs

0xD00000 - 0xD4FFFF. Over the range 0xD50000 to OxDSFFFF the activities are read
back from the SLAVE. In figure 5.3, the signal "read” is active low on address
0xDSFFFF, which sets the data buffer direction so that data may be read from the
board only at VMEbus address 0xXDSXXXX. The VMEbus has its own control lines
for the Data Transfer Bus which are used in the SLAVE interface design. These are

given in Appendix C.

Once the MASTER has written the weights and states to the neural accelerator Soard,
the VMEbus address is set to 0xD60000, which sets the signal "run” shown in figure
5.3 to "active low", to enable the ‘accelerator board to compute independently. The
"run” signal is gated to the interface buffers so that they becorﬁe disabled at this
address. When all the activities are computed, the VMEbus switches to address

0xD50000 to read back the new values.

5.3. Neural Accelerator Board Architecfure

The VMEbus address 0xD60000 allows the SLAVE operation to be controlled
completely by an 18-bit counter. The frequency of the counter is determined by a
quartz oscillator. The counter controls the paging architecture of the "patch” giving the
288 neuron array. It also provides the address lines, chip select and read/write lines to

the RAMs and the control signals necessary for the neural accelerator chips. Table 5.2
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shows how the counter controls the "patch” iteration.

Address Line

Function 5 MSBs count the Next 5 bits count 8 LSBs count 1
number of columns the number of complete "patch”
of 32 "patches” "patches” in a of 12 X 9 synapses
(ie. 0-23) to column (ie. 0 - 31) computation
give 288 neurons to give 288 ( 0 - 255 clks)

synapses per column

Count or ApAsAisAunAn ApApn Ay Ay, A;AgAsA A3 A A Ay

Example: /I o 01 1, 1 01 1 0 X X X X X X X X

Table 5.2 The function of the SLAVE 18-bit counter

The example in table 5.2 gives addresses A, - Ag as 10110, = 22,, and addresses A,; -
Ay as 10011, = 19;¢. Therefore, this address implies that the 23rd patch in the 20th
column is computing the 23rd partial sum of the 20th neuron. Address A, - A, counts
through the patch computation. The paging architecture of the "patch” is given in

greater detail in section 5.3.2.

5.3.1. "Patch” Computation

A "patch” uses the 8 LSBs of the board counter (ie. clocks 0 - 255 ) to compute the
partial activity, with the remaining 11 bits of the counter being used to count the
iteration of the "patch" over the whole array, as is described in the section above, to
achieve 288 neurons. Figure 5.4 gives a flow diagram explaining the "patch” operation.
The first 216 clock cycles require that the 8-bit weights for the 27 synapses are loaded
bit-serially into each accelerator chip. The ﬁeural states are applied to the accelerator
chips on clock cycles 216 - 241 while the activity is being calculated. The shift
registers are active on clock cycles 217 - 232 to allow the previous partial activity of the
adjacent "patch" above to be added to the present "patch” partial activity. The LSB of
the present partial activity exits the accelerator chip on clock cycle 226 and the partial

activity is loaded to the shift register over the clock cycles 226 - 241, where it is held
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Figure 5.4 Flow diagram explaining the "patch” operation
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until it is required for the next adjacent "patch” in the column. There is, therefore, an
overlap of 7 clock cycles (226 - 232) while the shift registers are unloading the previous
partial activities and simultaneously loading the new partial activities. If the "patch” is
the last one in a column, the activities computed will be the total activities for that
column and hence will be loaded directly to the activity RAM, instead of the shift
register, to be read back later by the VMEDbus. The shift registers are then cleared for
the start of the next column as the first "patch” in each column does not have any

previous partial activity to be added in.

A detailed schematic of the neural board is shown in figure 5.5. The weight RAM
requires 12 - 64K x 1 data bit RAMs, the state RAM requires 4 - 2K x 8 data bit
RAMs for 27 state lines (3 lines per state) and the activity RAM requires 2 - 2K x 8
data bit RAMs for 12 activity lines per "patch”. The weight and state RAMs are
written to and addressed by the VMEbus, and read on being addressed by the board
counter. The activity RAM is written to on being addressed by the board counter and
read from, when addressed by the VMEbus. Buffering is therefore required to separate
the board data and address lines from the VME data and address lines to avoid
contention. The maximum operating speed of all the RAMs is 45ns. The partial
activities are stored in 12 16-bit shift registers (2 each X 8-bit shift registers). The
control circuitry is made up of separate integrated circuits which include 2, 3 or 4
input NOR, NAND, OR, AND and inverter gates.'This provides the signals "load",
"Isb”, "sel", "se2" for the accelerator chips as described in Chapter 4, along with the

shift register clock signal and the "chip select”,"read/write” and "output enable” signals
for the weight, state and activity RAMs. The "load” signal allows the synaptic weights
to be loaded into the accelerator chips and is active "high" for the clock cycles 0 - 215.
When the "load" signal is "low" on clock cycles 216 - 255, it allows the weights to be
shifted around its 8-bit shift register during the activity computation. A waveform

diagram showing the board control signals is given in figure 5.6.

5.3.2. Array Computation

As described earlier in the chapter, the 288 neuron array is achieved by iterating the
"patch” 32 times down a column across 24 columns. The "patches” in a column are
counted by the board addresses A, - Ag and the number of columns is counted by the

addresses A;; - A3 as is shown in figure 5.7. The 12 x 9 synapse array of the "patch”
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fitted conveniently into a 288 neuron array and could be counted easily with an 18-bit

counter.

With each "patch” iteration down a column, the counter address given by A, - A4
increments by 1, until it reaches the address 11111, = 31,, at the bottom of a column.
This address then signals to the activity RAM to read in the total activity values and to

clear the partial activity shift registers ready for the 1st "patch” in the next column.

Each column computes the activity for 12 neurons and is iterated 24 times counted by
the address A,, - A;;. Hence, 10111, = 23, is the last column in the array. Address
Ay - Az and A, - Ag = 1011111111, signals the final 12 activities of the array are
ready to be loaded to the activity RAM. The next address 1 1 00000000 has Ay,
and A, both equal to 1, which is used to signal to the VMEbus that the board has
completed its calculations and is ready to unload its activities to the host Sun. This is

the signal "END" shown in figures 5.3 and 5.5.

The maximum RAM speed of 45ns would allow the board to run at a maximum speed
of 22.2 MHz. However, with the control circuitry and buffers incorporated in the
board level design to support the accelerator chip computation, delays were introduced
which allowed the circuit to operate at only 8 MHz. Although this speed is slower
than was originally anticipated, it did not greatly affect the array computation time
with respect to the speed of operation of the software. This is because the computing
and loading of the new neural states takes, by far, the majority of time in a complete
board run cycle of loading weights and states via the VMEbus, computing new
activities, thresholding the activities to the new states of the network and subsequently

calculating the new weight set for board updating.

Figure 5.8 shows a photo of the neural board and figure 5.9 shows the neural board

interfaced to the host Sun workstation.

5.4. Software to Control the VMEbus

Software controls the function of the VMEbus and transfer of data between the host
Sun and the neural board. The program in Appendix D shows how this is done. The
declaration "addr= VME24d32(VME_BASE,VME_SIZE ,&fd)" maps the 32 bit data,

24 bit address VMEbus memory area in the host directly to the addressing on the
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board.

The program reads weights from a file "weight_in" and writes them in parallel to the
appropriate address locations in the 12 integrated circuits of the weight RAM on the
board. It then readsthe states from a file “state_in" and writes them to the state RAM.
Line 64, "addr[RUN]=0", signals to the board to start running and line 66,
"check=addr[RUN]", reads back from the board to chec}( if A;; and A4 are both at a
logic "1". When this condition is satisfied, the neural activities are read back to the

host.

At this point the board was verified as operating correctly, with all weights in the input
file identical + and the states for each "patch" identical (states were changed between
adjacent “patches”). The file "weight_in" was in the form of 3-bit hexadecimal
numbers (ie. D 4, - D), the state file was 7-bit hexadecimal numbers (ie. Dy - Dg) and
the activities were read back as 3-bit hexadecimal numbers. This is the form in which
the VMEbus handles data. This level of format of the input and output data is
suitable for a low level test of the board. Ideally, the weight file has each weight as an
8-bit two’s complement number in a 288 x 288 byte array with indices corresponding to
the 288 x 288 synapse array and the state file has each state as +1 or -1 in a 288 bit
array corresponding to the 288 neural states. In this form, the data is much easier to
handle for neural learning simulations. The activities also need reorganising from 24
blocks of 12 16-bit binary numbers to a decimal number that can be thresholded to one
" of the 5 neural states. Chapter 6 gives details of this along with simulation results of

the board operating as a pattern associator.

t Although all the weights in the input file were identical, the weights in each row of synapses in a “patch” be-
come shifted. During computation the weights are shifted around the shift register. Therefore, row 1 has no shifts,
row 2 has 1 shift, row 3 has 2 shifts...... , row 8 has 7 shifts and row 9 has 8 shifts (ie. no change) before the weight
is involved in the "multiplication”. Avoidance of this shifting of weights should have been taken into account during
the integrated circuit design.
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Chapter 6

Simulations using the Neural Accelerator Board

The testing of the neural board described in Chapter 5 verified that it computed the
‘neural function 2§’ T;V; successfully and loaded the new activities back to ‘the host
i,j=0
Sun for thresholding to new neural states. At this stage, identical weights and states
were used for each "patch” to make the testing easier. However, this level of testing
proved only that the board was loading and unloading data to and from the RAMs
and shifting and calculating data on the correct clock cycles. Further software was
required, that incorporated a learning algorithm with the board computing > T;; Vi to
verify that the 5-state activation function hardware implementation could learn and
recall patterns. A second software program was required for the same size network as
the hardware and the same learning algorithm, but which computed 37V, in

software, in order that the hardware and software versions of the S-state activation

could be compared.

6.1. Software Requirement for the Neural Board

There are four main requirements for the software to enable simulations using the

neural accelerator board.

1. The nine neural states for each "patch” are passed by the VMEbus in a 7-bit
hexadecimal word. To make the handling of the simulations more user friendly,
the neural states should be written as +1,, or —1,o for each state. Therefore,
software was needed to convert the nine states for each "patch”, written as +1,,
of —1,y, into a 7-bit hexadecimal number. For example, if each neural state for a
"patch” = —1, the hexadecimal number would be 0x2492492, ie., the least
significant number, 2,4 represents 0010,, which represents in turn the values for
rs2, pml, killl, and rsl. Therefore, if the neural state is —1, then rs1=0,
killl=1, pm1=0 and rs2=0. The second least significant number, 9,4 = 1001,,

gives the values for kill3, rs3. pm2 and kill2 respectively etc..
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2. The weights are calculated in software using floating point numbers. The
accelerator chips, however, require that the weights are two’s complement
numbers. Therefore, each weight must be converted from a floating point number
to a two’s complement number. Furthermore, the precision of the 8-bit weight
allows the weight to be in the range —127 to + 128 so weights outside this range

must be clipped [101] to the permitted maximum and minimum values.

The weights must also be loaded in the correct order into the accelerator chips.
Each accelerator chip is a 3 x 9 array, so for example, the 1st chip in "patch” 1
uses the weights Tgo—Tog, T19—T15 and T,¢—T,4, the 2nd chip in "patch” 1 uses
weights T30—T35, T40—T4g and Tso—Tsg and the 1st chip in "patch” 2 uses
weights To9—Tgo17, T19—T137 and T,o—T,,, etc.. If the new weights are
computed in a 288 x 288 array, ie., 1st column is Tgo—T 287, 2nd column is
T10—T1.287 €tc., then the appropriate weights must be taken from the array in the

correct order for each "patch” and loaded bit-serially into the accelerator chips.

3. The total activities are also 16-bit two’s complement numbers, which are loaded
to the host Sun in that form. The software is required to convert these to floating
point numbers, which can then be thresholded according to the 5-state activation

function to give the new states of the network.

4. The final part of the software is a learning algorithm that uses the new states of
the network to update the weights. Details of the learning algorithm are given in

the next section.

6.2. Neural Accelerator Board as a Pattern Associator

The Pattern Associator Model

The simulations run to verify the 5-state hardware learning capabilities used the
network configured as a pattern associator. This is where a set of input to the units
will cause a certain pattern on a set of outputs from the units, whenever the input is
applied. Pattern associators can be implemented as a set of units causing a pattern of
activation over another set of units without any intervening units. They have been
widely used in distributed memory modelling with the Hebb rule and the delia rule. A

pattern associator has a set of input units connected to a set of output units by a single
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layer of modifiable connections (weights) that are suitable for training with the Hebb
and the delta rule. It would, for example, be capable of associating a pattern of
activation of one set of units corresponding to the appearance of an object with a
pattern on another set corresponding to the aroma of the object, so that when an
object is presented visually, causing its visual pattern to become active, the model

produces the pattern corresponding to its aroma.

Single layer pattern associators, have several properties that make them attractive as
models of learning and memory. They can learn to act as content addressable
memories and can generalise the responses they make to novel inputs. Hence, if a new
pattern on the input units to the network is similar to one of the old ones, it will tend
to have similar effects and as learning of the interconnections occurs in small
increments, similar patterns reinforce the strengths of the links they share in common
with other patterns. Therefore, if the same pair of patterns is presented again and
again, but each time a small percentage of random noise is added to each pair, the
system will automatically learn to associate the similarities of the two patterns and will
learn to ignore the noise. Effectively, an average of the two patterns will be stored with
the slight variations removed. Conversely, if the network is presented with completely
uncorrelated patterns, they do not interact with each other. Another property of
pattern associators is their pattern retrieval performance degrades gracefully with
damage and noise, in that they do not require a perfect copy of the input to produce

the correct output, although its strength will be weaker in this case.

The Delta Rule

The learning algorithm implemented in the simulations was the delta rule. The delta
rule involves the presentation of a set of input and target output patterns. The network
uses the input pattern to produce its own output pattern and then compares this to the
desired output, or target. It is the difference between the rarger pattern and the
obtained pattern that drives learning. If there is no difference, no learning takes place,
otherwise the weights are changed to reduce the difference. The rule for changing

weights following the presentation of input/output pair n is given by:-

A,w; = N(tpi —0pi IVaj (6.1)

where m is the learning rate. z,, is the target the the ith component of the output
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pattern for pattern n, o,; is the ith element of the actual output pattern produced by
the presentation of input pattern n, v,; is the jth element of the input pattern and
A,w,; is the change to be made to the weight from the jth to the ith unit following

presentation of pattern n.

The delta rule also requires that the pattern sum of squares, pss, is measured [102]. The
pattern sum of squares is the sum of the squared error over all output units, where the
error for each output unit is the difference between the target and the obtained state of

the neuron, ie., for an N neuron network:-

pss = ﬁo(tn,. o )? (6.2)
This quantity is calculated for each patt;;n processed to give the total sum of squares,
tss, where:-
N
Iss = ’zopss,, (6.3)‘

The total measure of all patterns, tss, gives the error between the target and the actual
output states. Therefore, on the first iteration, zss will be large (tss>>0). As the
connections between the input and the output are learned, tss—-0. When 2ss=0, the
actual output equals the target output and the pattern associator can be deemed to

have learned the mapping between the input and the output.

The software for implementing the delta rule is straightforward in that it only requires
input and target pattern pairs to be read from files, calculation of the actual output
from the network activation and calculation of A,w; from equation 6.1. Optimum
values for the learning rate, m, and "Temperature”, T, for the network were found by
trial and error using a 36 neuron software model with the 5-state activation function.
The combination of 7 and m that gave the least number of iterations to learn sets of
patterns was used. The learning rate is a constant of proportionality that dictates how
fast the network will learn, and the "Temperature” controls the sharpness of the

transition of the S-state activation function between the states —1 to +1.

6.2.1. Performance of the Accelerator Board

Three programs were used to obtain results to show the performance of the 5-state

activation function in hardware. The first, given in appendix E, incorporates running
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the neural accelerator board in a pattern associator network. The main four sections
described in section 6.1 can be seen. The function "boardrun”, declared on line 61
and called on line 140, allows the board to compute. The length of computation time
taken by the board to compute can be measured by using the prof command in unix.
prof (display - profile data) produces an execution profile of the program, which gives

the number of milliseconds spent on a call to a function.

The second program in Appendix F has the same number of synapses, weight size and
activation function as the first, but executes the neural activation computation in
software with the weights and activations as floating point numbers. The function
"Actsum”, declared on line 19 and called on line 65, computes in software the
equivalent task of the neural board. Therefore, by using the display - profile data
command, the run time for the function "Actsum” could be found. The values given

for "boardrun” and "Actsum" showed the comparative speeds of the hardware and the
. n-=1
software for the computation 3 7,;V; for an n-neuron network.
ij=0
The third program is identical to the second, but used a sigmoidal activation function
instead of the 5-state activation function. The three programs allowed a comparison of
performance between the S5-state hardware, the 5-state software and the sigmoid

software activation functions. Comparisons were done on the time to compute

-1
S T,;V; and the number of iterations each took to learn the requisite sets of input
i,j=0

and target patterns. The expected results from these comparisons should show the
sigmoid activation function to learn patterns using the least number of iterations of the
three programms. The 5-state activation function in hardware and software should

learn with the same number of iterations.

The size of the network chosen to run the simulations was 36 x 36 synapses (36
neurons). Although the board computes the activation for a 288 neuron network,
simulation to judge the performance of the three networks alone can be run with
equivalent results on a smaller network. The main reasons for using a smaller network

were:
1.  Software simulations of the 288 neuron network were intolerably lengthy.

2. Formatting the input files input for a 288 neuron network was also a long and
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tedious task.

The ordering and loading of the weights of the 288 neuron network was slow on
the host Sun 3/110. The Sun’s own memory was not large enough to hold the
array sizes required for the weights and therefore the Sun had to access the file
server for extra memory. The process of swapping data to and from the file server
slows down the iteration time of the hardware simulations. This slowness could be

alleviated by the Sun having more memory of its own.

Simulation Procedure

The simulation procedure for each of the 5-state hardware, 5-state software and

sigmoid software activation function networks was as follows:-

1.

2.

Six sets of 20 random input and target pair patterns were generated.
Each of the networks learned each set of patterns in turn.

The number of iterations taken by each network to learn each set of patterns was

noted.

35
The time taken for each network to compute 3 T;V; was taken for each set of
ij=0

patterns (to find the average time over 6 sets).

For the hardware network only, noise was added to the input patterns and the

noise on the corresponding degraded output patterns was measured and compared

to the target.

For each network simulation:

Each input and target pattern pair had 36 elements set either to +1 or —1,
"Temperature”, T = 50,

Learning rate, n = S.

6.2.2. Results

The results comparing the performance of the 5-state hardware, 5-state software and

the sigmoid software activation functions are given in table 6.1. The results give the

times and iterations for each set of 20 patterns and the average values over the six sets.

A discussion of the results falls into 3 categories.
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5-state Hardware 5-state Software Sigmoid Software
number tzisrgle for number tgxsne for number tglsne for | number of
of > T;V; of > T;V; of > T;V; of
pattern set i'ji=r;’ ms iterations uijf ms iterations i'ji=1;) ms iterations
1 25.11 7 - 331 5 34.5 4
2 24.00 11 34.0 7 34.43 7
3 25.26 10 34.67 6 33.2 5
4 25.00 7 33.75 4 33.75 4
5 25.00 8 33.98 6 33.6 5
6 24.17 4 33.75 4 33.67 3
average 24.76 7.8 33.89 5.3 33.86 4.7
over 6 sets

Table 6.1 Results comparing the performance of the 5-state hardware, S-state software
and sigmoid software activation functions ‘

1. Activity Computation Times

The results give the average time for the sigmoid and S5-state software activation

35

functions to compute 3 T;V; to be 33.86ms and 33.89ms. The results for the

i,j=0

287 _ _
hardware give the time to compute > T;V;, since the design of the board is such that

i,j=0
it will run for only that size of network. A 36 neuron network is obtained by using a
36 X 36 synapse array and setting the unused weights and states to 0. From the board
run times of the 288 neuron network, the times for a 36 neuron network to run can be
calculated, which can then be compared to the sigmoid and S-state software results.
Table 6.2 gives the measured time to compute the activity for 288 neurons at different

clock frequencies. The results agree with the theoretical ones calculated for the board

run time.

The calculation is as follows:

Time to compute the activity for 288 neurons at clock frequency, f.

= clock cycles per patchX no. of columnsX no. of rowsx 1

f

256><32><24><]17
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Neural board run times
frequency | actual time | theoretical time
in MHz in ms in ms
6.0 33.11 32.77
7.5 26.82 26.21
8.0 24.86 24.58
20.0 - 9.83

111

Table 6.2 Time to compute the activity for 288 neurons at varying clock frequencies

196608
f

The time taken to compute the activity for 36 neurons

= clock cycles per patchXno. of columnsXno. of rowsX

1
= 256X3%X4X —
f
_ 3072
f

Hence, if frequency = 8MHz, time taken

_ 3072
8x 108

=0.38ms

Therefore, theoretical time to compute a 36 neuron network

From table 6.1, actual time for a 36 neuron network

f

0.38ms
3072
196608 X 24.76
1
7y X 24.76
0.39ms

This shows an 87 times acceleration using the hardware. Although the board-run

times should be the same, the prof command gives varying times for the execution

of the "boardrun” function. This is due to other processes running in the Sun’s

central processing unit, that will vary the run times of the function.

These results are accurate enough to show that the board run time at 20MH:z

would be within 2.5% of the theoretical time. This is the maximum difference
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between the actual and theoretical times in table 6.2. A frequency of 20MHz
would have given a 220 times acceleration in hardware. A frequency of 20MHz
was not obtainable owing to timing delays occurring in the board level design.

These slowed down the maximum clock frequency to 8MHz.

2. Comparison of Iterations

The sigmoid activation function required the smallest number of iterations to learn
the sets of patterns, followed closely by the 5-state software activation function.
The hardware 5-state activation function takes on average 2.5 more iterations than

the equivalent software. There are two reasons for this.

The first reason is due to floating point weights being truncated to integer
numbers in the conversion to two’s complement numbers. For example if a
floating point weight = 7.75, this becomes truncated to 7 (integer), giving a
10.7% loss in accuracy. The larger the modulus of the weight the smaller the loss

in accuracy.

The second reason is a small change in the value of odd number weights if they

are right-shifted to be multiplied by 0.5. For example,

00000111, = T
right-shift by 1-bit 00000011, = 350 (instead of 3.5)
= 14.3% change
01100111, = 103y
right-shift by 1-bit 00110011, = 51y (instead of 51.5)

= 1.0% change

This change effects small weights more than the large ones, as shown in the

example, a weight of 3.5 is rounded to 3.

This implies that the overall effect of a truncated, right-shifted weight will have a
considerable loss in accuracy. From the examples above, a weight of 7.75 is
truncated and right-shifted to 3, where its true value should be 3.875, this

represents a 29% error in the final weight value.
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3. Degradation of Input

To observe the robustness of the neural board in a pattern associator network
under degraded input patterns, the number of degraded elements per output
pattern was measured, along with the maximum deviation of any element in the
output from the equivalent element in the target. The results for one set of
patterns are given in table 6.3. The region where the majority of the numbers of

degraded elements per pattern fall is also given.

Number of bits | Percent [ Max. no. of bits Majority of Maximum
changed per noise degraded in output | degraded bits | deviation
input pattern K per pattern per pattern per pattern

0 0 0 0

1 2.8 0-11 0-4 0.5
2 5.6 0-16 2-8 1.0
3 8.3 2-18 4-12 1.5
4 11.1 2-19 5-14 2.0
5 13.8 2-20 6-15 2.0

Table 6.3 Table showing degradation in the output patterns with degradation in
the input patterns

The results show that for 1 element change per pattern in the input, the majority
of the changes in the output patterns are between O and 4 elements and the
maximum deviation of any output element from the target was 0.5. "Change"
means either +1 becomes —1 or —1 becomes +1. As the noise increases in the
input patterns, the number of elements degraded in the output patterns and the
maximum deviation of output elements from the target increases correspondingly.
Therefore, the strength of the output pattern becomes weaker with the rise in
noise in the input. The results vary slightly if different elements in the patterns

are changed or if different sets of patterns are used.

6.3. Conclusions

The neural board operated successfully as a pattern associator network and

accelerated the speed of the activity calculation by 87 times at a derated frequency
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of 8MHz over an equivalent software calculation. The hardware took, on average,
2.5 more iterations (ie. 47% more iterations) to learn the weight set for a 36
neuron network than the software. This was owing to the loss of resolution in the
weights when they were converted from a floating point number to a two's
complement number. Finally, the pattern retrieval performance degraded

gradually with increasing noise added to the input patterns.
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Chapter 7

Conclusions and Discussion

This final chapter draws together the results from the previous sections regarding
the design, construction and demonstration of the chip set and accelerator board.
In particular, the successes and the shortcomings of the work are highlighted and

recommendations are made for future improvements.

7.1. Conclusions about the Accelerator Board

The S5-state activation function has been shown to operate correctly as
implemented by the accelerator chips. The neural board that incorporates the
. accelerator chips has also proved that it can be used as a hardware accelerator in a

simple pattern associator network for the learning and recall of random patterns.

n -1

The neural board accelerated the calculation Y T,;V; by amost two orders of

ij=0

magnitude over that possible in equivalent software simulations. The board also
recalled patterns with the level of degradation in the output following the level of
degradation in the input. A minor drawback resulted from the inaccuracy of
changing floating point‘weights to two’s complement weights, which is caused by
the computer’s software rather than the board implementation. The inaccuracy
was incurred by the "multiplication” of a binary number by 2 (right-shifting the
number by one bit), as in the examples in Chapter 6, section 6.2.2, is a peculiarity
of the 5-state activation function. Integer ari.thmetic would have avoided the
truncation from floating point to integer numbers, decreasing the total error, but
an inaccuracy would still occur in right-shifting an odd two’s complement number.

This, for example, would be 14% for the number 111, (7,o) and 1% for 110011,
(5110)-

Even though the board accelerated the calculation of the activation, the design of
both the accelerator chip and the hardware support for the chip is now seen to be
non-optimal, so that the advantage of the increased speed was lost by the time

taken to run the software to support the accelerator board. The following successes
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and shortcomings summarize the operation of the neural board as a hardware

accelerator.

Successes

1. The neural board accelerated the calculation time of the activity to 87 times

that of the software.

2. There was no marked loss in performance using the hardware S-state

activation function compared to equivalent software models.

3.  The neural board can be used with any learning algorithm.

4.  Any size of neural network can be used up to a maximum of 288 neurons.
Shortcomings
1. The inaccuracy occurring in small weights due to the conversion of floating

point numbers to two’s complement numbers and in the right-shifting of odd

two’s complement numbers.

2. The time taken for the software to run the neural board, which is increased

by the the calculation and reordering of the weights.

3. The run time of the neural board is always that for a 288 neuron network

regardless of the the actual network size.

4., The maximum operating frequency of the board is 8 MHz, although the

accelerator chips should operate upto 20MHz.

The major disadvantage is the speed of the software. This is incurred by the
reordering of the weights, so that they are input in the correct order to the neural
board weight RAM. Some redesign to the synapse array at the chip level would
help minimise the software required. Extra circuitry in the integrated circuit would
also reduce the quantity of support hardware required at the board level. This
would increase the overail speed of the neural board. Details of this are given in

the next two sections.

7.2. Improvements to the Accelerator Chip Design

There are three areas in the design of the accelerator chip where improvements

could be made to increase the speed and improve the overall efficiency of the
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neural accelerator board. These are: changes to the array structure; alterations to
the weight shift register in the synapse to reduce the software required for weight
ordering and the addition of extra circuitry on the integrated circuit (separate
from the synapse array to reduce the complexity and quantity of hardware

required for the board level design).

1. Array Structure

The simplest design of the neural board and the software support required to run
it, would be achieved if an accelerator chip contained only one column of
synapses. For example, if 30 synapses formed part of a column of synapses for one
neuron, and if 5 chips were cascaded, a 30X 5 synapse array would form a "patch”,
allowing the ordering and loading of weights to be much simpler. However, this

structure loses the parallelism made possible by a VLSI design.

There are not likely to be optimal array dimensions that will enable é more
efficient operation of the "patch” in the paging architecture. The best size of the
array will to some extent depend on the number of chips that are to be cascadedc
to form a "patch”. The "patch” size, in turn, will depend on the number of neurons
to be implemented in the network. It was fortunate with the present 9x3
accelerator chip, that one "patch” could be computed in 256 (27) clock cycles, with
only the last 12 clock cycles unused. These 12 clock cycles per "patch” represent an
overall redundancy of 4.5% of the total computation time. The design of the
integrated circuit would be more efficient if all the clock cycles were used during

the board computation.

A useful addition to the synaptic weight as it stands, would be to provide a
synaptic weight input pin per column of synapses. This would require 2 extra pins,
which does not create a significant problem, as ‘only 53 of the 68 pins in the
package are used in the design. This alteration would trade off some of the
advantages of a bit-serial approach, in order that the loading of the neural weights
from the RAMs would be faster and would also necessitate less software for the

ordering of weights.

2. Alterations to the synaptic weight storage
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As described in the footnote in chapter 5, section 5.4, the synaptic weights are
shifted around the weight shift registers while computation proceeds down the
synaptic columns. This shifting was not taken into account during the integrated
circuit design and therefore software was used to ensure the bits in each weight
were in the correct order, ie., while the weights were shifted during computation,
the LSB of the weight about to be multiplied by the neural state was correctly in
the LSB of the shift register. This could be overcome by simply tapping off the
LSB of the weight from the bit in the shift register where it has been shifted to, as

drawn in figure 7.1, instead of tapping off each weight at the LSB of the shift

register.
LSB
“row 1, O shifts (sl7]lels[4]3]2]1]
: to sfate
LSB -
it
row2, 1shift [el7[eElalalz] mPexer
e
LSB
row 3, 2 shifts (2]118]7]e]5]4]3]
-
LSB
row 4, 3 shifts [3T2]1]e]7]els]4]
\ V iss
row 8, 7 shifts [7]el514]3]2]1]8]
LSB
row 9, 8 shifts (8l7le]sf4[3]2]1]

Figure 7.1 Alterations to the synaptic weight shift register

3. Extra Circuitry

The extra circuitry that could be implemented in the integrated circuit design, but
separate from the synapse array, would reduce the number of standard small scale
integrated (SSI) circuits required for the support hardware for the accelerator
chips. The SSI circuits form, effectively, "glue” logic that enables the functioning

of the accelerator chips in a neural network system. The circuitry falls into two
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sections. The first is the inclusion of a 16 bit shift register for each synaptic
column to hold the partial activation of the neuron before it is required for the
adjacent "patch” computation in the column. This would increase the area of
silicon required, but it would reduce by 24, the number of SSI circuits in the
support hardware. One extra pin on the accelerator chip would be used to control

the shifting of the registers.

The second section of extra circuitry would be the addition of the control circuitry
for the signals load, Isb, sel and se2. At present, the signals are derived by
connecting NAND, NOR, AND and OR gates to give the desired signal.
However, each gate incurs a delay and with several gates wired together in series,
delays became large enough to miss the change time allowed to ensure steady data
for the single phase clocking scheme, ie., the data must be held steady on the low
to high transition of the clock. This introduces timing problems in the board
design and provides one of the reasons for the slower than anticipated operating
speed for the neural board. The inclusion of the control circuitry would require 8
extra input pins for the address lines A;—A,, but the present input pins for the
signals load, Isb, sel and se2 would no longer be required (however, it is
recommended that the signal are connected to test pins so the correct timing of the

signals can be checked).

It is estimated, based on the fully custom 3pm CMOS integrated circuit design,
that the partial activation shift registers, the control circuitry and the 3X9 synapse
array would take up approximately double the silicon area that is presently used,
which is 5.7mm?, for the 3X9 synapse array alone. A 1lpm design would,
therefore, reduce this area by a factor of 9. Nine extra pins would be needed, but
there are already fifteen pins unused on the package. On the current board design,
43 of the 110 SSI circuits used would no longer be required, reducing the total by
39%.

7.3. Improvements to the Neural Board Design

The neural board design and size could be considerably reduced by including the
shift registers and control circuitry on the accelerator chip, thus leaving only

RAMs and buffers in the support hardware. This is the ideal solution, but the
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control circuitry would add complexity to the integrated circuit design. An
alternative to this would be to use a PLA (programmable logic array) for the
control, which could then also include the chip select and read/write control logic

for the weight, state and activity RAMs.

Larger RAMs than the present weight RAMs (64k each) are now more readily
available than when the board was designed. Each accelerator chip requires 0.2
megabits of RAM, therefore a RAM of this size to supply each accelerator chip
could be used instead of the the present system of multiplexing 3 RAMs for each
chip. Also, reorganisation of the VMEbus data lines to the weight RAMs would

make the design more efficient and simplify the software.

7.4 Concluding Remarks

The design stages of the neural accelerator board were done separately in that the
accelerator chip design took place without anticipating a paging architecture board
using a VMEDbus. The board design took place without full knowledge of how to
implement a learning algorithm program using the neural board as a neural
hardware accelerator. With hindsight, a substantially revised design for the
integrated circuit, to remove the stress from the board and software development
can be proposed. This would be to keep the present (or approximately the same)
array size (or a slightly larger array if a smaller design feature size were available)
with alterations to improve the neural board efficiency and speed. These

alterations are summarised in the following points:-

1. Inclusion of partial activation shift registers in the integrated circuit.
2. Inclusion of the control logic in the intégrated circuit.

3.  One weight input pin per synapse column in the integrated circuit.

4. Alterations to the synapse weight shift register to avoid weight ordering in

software.
5.  Larger weight RAMs at the board level design to avoid multiplexing.
6. Better organisation of the VMEbus data lines to the weight RAMs

7. A large reduction in software after implementation of the above 6 points.
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A conclusion of this nature is inevitable when the length of time for the VLSI
design, fabrication, testing and board building, testing and- — implementing in a
learning algorithm is so long. Effectively, major decisions about the chip design

had to be made three years ago and their consequences endured through the -~

later board design stages.
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Carry tree input

; Input for Carry Tree

*function carryout

CH: major(not(xor(sigjml,pm)),b,and(c1,lsb))
else CO

Sum tree input

; Input for Sum Tree

*function sigout

CH: not(xor(xor(not(xor(sigjml,pm)),b,and(c1,not(Isb))),pm))
else CO

Sign-extend tree input

; Input for Sign Extend

;Sign extension with RS

*function SIGNEXT

*input FB SE1 SE2 TL TLP1 RS

CO0: 000000 000001 000010 000101 001000 001001 001010 001011 001101 001111
010000 010001 010010 010100 010101 010110 011000 011001 011010 011011
011100 011101 011110 011111 100000 100001 100010 100101 101000 101010
110001 110101 _

CH: 100011 100100 100110 100111 101001 101011 101100 101101 101110 101111
110000 110010 110011 110100 110110 110111 111000 111001 111010 111011
111100 111101 111110 111111 001100 001110 010011 010111 000011 000100
000110 000111
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RNL Netlist file, sum.net

(load "atchlib.net")
(node top bot intnode out sigjml pm b c1 Isb clk N2 N4 N6 N7 N8)
(ptrans sigjm1 top N4 4 3)

(etrans sigjm1 top N2 4 3)

(ptrans b N4 N8 4 3)

(etrans b N4 N6 4 3)

(ptrans c1 N8 bot 4 3)

(etrans Isb N8 bot 4 3)

(etrans c1 N6 N7 4 3)

(ptrans Isb N7 bot 4 3)

(ptrans b N2 N6 4 3)

(etrans b N2 N8 4 3)

(mu intnode top bot clk)

(pisolo out intnode clk)

)

RNL logic data input file, sum.l

(load "uwstd.l")

(load "icstd.1")

(read-network “sum_mp.bin")

(setq inc 100)

(log-file "sum_mp.out")

V clk  lhlhihlhlhlhihihihlhlhlhlhlhiblh

V sigjm1 llhhilhhllhhllhhllhhilhhilbhithh

Vb Hilhhhhlllihhhhlilthhhhlillhhhh

V¢l lliihhbhhhhhhllllilthhhhhhhh

Visb  llNlhhhhhhhhhhhhhhhh .
wclk sigiml clisb clk top bot intnode out N2 N4 N6 N8 N9
sim-init

R

132
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Appendix B

RNL output file, sum.out

RNL simulation results : SWITCH LEVEL

clk sigjm1 c1 Isb clk top bot intnode out N2 N4 N6 N8

TIME

OOOXOX01011XXXX1110X0X01010X0X0
coo ™ AR’ N o me X oM T MM XX
000X011XX11XX1OX010X011XX10X011XX
000l1X010X010XX11XX11X010XX11X010
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Appendix C

1. Address strobe (AS®): On its falling edge, AS® informs the SLAVE that the
address is stable and can be captured.

2. Data strobes (DS0°, DS1°): Both DS0* and DS1° are required for a long word
(32-bit) data transfer. The first data strobe falling edge indicates when the MAS-
TER has placed valid data on the data bus.

3. Long word (LW*): LW" is active when a long word data transfer is in operation.

4. Write': Write® is used by the MASTER to indicate the direction of data transfer
operations. When write” is low, the data transfer is from the MASTER to the
SLAVE. When write® is high, the data transfer direction is from the SLAVE to
the MASTER. :

5. Data acknowledge (DTACK"): The SLAVE drives DTACK" low to indicate that
it has successfully received the data on a write cycle. On a read cycle, the
SLAVE drives DTACK"® low to indicate that it has placed data on the data bus.
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Appendix D

1 #include "def.h"

2 #define VME_BASE 0xD00000
3 #define VME_SIZE 0x80000

4 #define Tij_syn 0x0001C/4

5 #define Tij_patchend 0x00360/4

6 #define Tij_colend  0x07C00/4

7 #define Tij_8colend 0x38000/4

8 #define STATE _start  0x40060/4
9 #define STATE_end 0x400C4/4
10 #define STATE_colend 0x01F00/4
11 #define SUM_startcol 0x50000/4
12 #define SUM_endcol ~ 0x50B80/4
13 #define SUM_startpatch 0x50008/4
14 #define SUM_endpatch 0x50048/4

15 #define RUN 0x60000/4
16

17 extern longword *VME24d32();
18 main()

19 begin

20 int p,q,r,t,u,v,w,X,a;

21 int fd,weight,state,check;
22 longword *addr,l,y,activity;
23 FILE *fp,*fpl;

24

25 addr= VME24d32(VME_BASE,VME_SIZE, &fd);

26

27 /* This section calculates weight address for each synapse and loads weight */
28

29 fp=fopen("weight_in","r");

30 p=0;

31 for(w=1; w<=8; ++w) begin /* No of columns/RAM1 chip */
32 q=0; /* reset patch count at col top */

33 for (v=1; v<=32; + +v) begin /* no of patches/column */

34 r=0x340/4; /* reset synapse count at patch start */
35 for (u=1; u<=27; ++u) begin /* synapse count per patch */

36 t=0; /* resets weight bit count */

37 for (x=0; x<8; + +x) begin /* counts bits per weight */

38 fscanf(fp,"%X",&weight);

39 y=p+q+r+t; /* calulates address */

40 addr[y]= weight;

41 t=t+0x1;

42 end

43 r=r-0x20/4; /* counts synapses per patch */

44 end

45 q=q+ 0x400/4; /* counts patches per column */

46 end

47 p=p+0x8000/4; /* counts columns */

48 end

49

50 /* This section calculates the state address and loads it to state RAM */

51
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52 fp=fopen(“state_in","r");

53 for (v=0; v< =STATE_colend; v=v+0x100/4) begin

54 fscanf(fp,"%X",&state);

55 for (a=STATE_start; a<=STATE_end; + +a) begin /* Load States to RAM 2 */

56 addr[a+ v]=state;
57 end
58 end

59 fclose(fp);
60 fclose(fpl);

61

62 /* Board is now loaded and is set to RUN */

63

64 addr[RUN]=0; /* Set to D6 for Board Run */
65 do begin

66 check=addr[RUN];

67 end while ((1&0x10000000)!=0x10000000); /* Ends board run on A17 = A16 = 1 */
68 '

69 /* Board has ended and activies are read back to the Sun */

70

71 fp=fopen(“activity.out”,"w");

72  for (a=SUM_startcol; a<=SUM_endcol; a=a+0x20) begin

73 for (b=0x0008/4; b< =0x0044/4; + +b) begin

74 activity=addr{a+b]; /* reads activities from board */
75 end
76 end

77 fclose(fp);

78 munmap(addr);
79 close(fd);

80 end

81
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Appendix E

1 #include "def.h"

2 #include <math.h>

3 #define VME_BASE 0xD00000

4 #define VME_SIZE 0x80000

5 #define WEIGHTS_end 0x3FFFF/4

6 #define STATE start  0x40060/4

7 #define STATE_end 0x400C4/4

8 #define STATE_colend 0x00300/4

9 #define SUM_startcol 0x50000/4

10 #define SUM_endcol  0x50100/4

11 #define SUM_startpatch 0x50008/4

12 #define SUM_endpatch  0x50048/4

13 #define RUN 0x60000/4

14

15 extern longword *VME24d32();

16 int sum[12],totalsum;

17 int getweight[36][36][8],order[216];

18 int statenum[}={2,3,0,7,6};

19 float status[]={-1.0,-0.5,0.0,0.5,1.0};  /* status is assigned to any of the 5-states */
20 float temperature;
21 double x1,x2,x3,x4,xmid=0;

22 float targetstate[720];

23 float newstate[720]; /* thresholded activities */
24 float stateval[720]; /* state input value */
25 float delta[720};

26 float deltaweight[36][36];

27 float newweight{36]{36];
28 int trunweight[36][36];

29int orderweight{36][36][8];

30

31 void Threshold(xmid,temperature) /* computes the threshold values */
32 float temperature; /* to threshold activities */

33 double xmid;

34 begin

35 x1 = xmid - (temperature* log(8.0));
36 x2 = xmid - (temperature* log(1.75));
37 x3 = xmid + (temperature* log(1.75));
38 x4 = xmid + (temperature* log(8.0));

39 end

40

41 int Get_state(data) /* works out which state has been */
42 float data; /* read from "state_in" and returns */
43 begin /* t=1 -> 4 for state -1 -> +1 */
44 register int t;

45 t=0;

46 while (data != status[t])

47 t+ +;

48 return(t);

49 end

50

51 int Power(base, sup)
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52 int base, sup;

53 begin
54 int i,j;
55 j=1,

56 for (i=1; i<=sup; + +i)

57 j=j*base;

58 return(j);

59 end

60 /* FUNCTION ALLOWS BOARD TO RUN */
61 void boardrun(addr)

62 longword *addr;

63 begin

64 longword I;

65 addr[RUN]=0; /* Set to D6 for Board Run */
66 do begin :

67 1=addr[RUN];

68 end while ((1&0x10000000)!=0x10000000);

69 end

70

71 main()

72 begm

73 intv,a,b,c,d,f,g,h,i,j,k,n,readweight,counter,index1,index2;
74 int a_col,a_patch,a_syn,a_bit,patchcount,pattcount,count,icount,jcount,syncount;
75  int result,pattno,pattmax,pp,MSB,ord,ordcount,nop;
76 float lrate,state_result,stateinfo,x,m,ptss,tss;

77 longword *addr,le,y;

78 int fd;

79 void Threshold();

80 FILE *fp.*fpl,*fp2.*fp3,*fp4,*fp5,*fp6.*ip7;

81

82 addr= VME24d32(VME_BASE,VME_SIZE ,&f{d);
83 fp=fopen("new_weight","w");

84 fpl=fopen('state_in","r");

85 fp2=fopen("target_in","r");

86 fp3=fopen("temp”,"r");

87 fp4=fopen("learn”,"r");

88 fp5=fopen(“pattern_no","r");

89 fscanf(fp3,"%f",&ternperature);

90 fscanf(fp4,"%f" ,&Irate);

91 fscanf(fp5,"%d",&pattmax);

92 Threshold(xmid,temperature);

93 a_col=0; /* lines 93 - 102 initialise weights */

94 for (g=0; g<=7; g++) begin /* No of columns/RAM1 chip */
95 a_patch=0; /* reset patch count at col top */

96 for (n=0; n<=31; n+ +) begin /* no of patches/column */

97 for (a_syn= 0x340/4 a_syn>=0; a_syn=a_syn-0x20/4) begin /* 27 synapses */
98 for ( a_bit=0; a_bit<=7; a b1t++) begin

99 y=a_col+ a_patch+a_syn+a_bit;

100 addr[y]=0;

101 end

102 end

103 a_patch= a_patch+ 0x400/4; /* counts patches per column */

104 patchcount=(g*4)+n+1,
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105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147

148
149
150
151
152
153
154
155

end /* end n */

a_col=a_col+ 0x8000/4; /* counts columns */
end
pattcount=1;
count=1;
do begin

tss=0;

for (pattno=0; pattno< = pattmax; pattno+ +) begin

ptss=0;

pp=pattno*36;

if (pattno==0)
{ fseek(fp1,0,0);
fseek(fp2,0,0);

}
/* SECTION TO READ INPUT STATES */
/* Statenum gets the statenumber computed by Get_state then */
/* * (8 to power i (for i=0 -> 8)) to get the 9 states to  */

/* input to VMEDbus */
for (v=0; v<=STATE_colend; v=v+0x100/4) begin /* count 4 patches in a column
result=0;
for (i=0; i<=8; i+ +) begin /* want 9 states of patt pattno */
fscanf(fpl,"%f",&stateinfo); /* reads in a state */
result=result+ (statenum[Get_state(stateinfo)]* Power(8,i));
counter= pp+(c*9)+i; /* counts total no of states */
stateval[counter]=stateinfo;
end
for (a=STATE_start; a<=STATE_end; + +a) begin /* Load States to RAM 2 *
addr[a+ v]=result; ‘ /* 26 clks for state */
end
end

for (v=0x0400/4; v<=0x1F00/4; v=v+0x100/4) begin
for (a=STATE_start; a<=STATE_end; + +a) begin /* Load States to RAM 2°
addr[a+Vv]=0;
end
end
boardrun(addr); /* accelerator board runs */
/* SECTION READS STATES BACK FROM BOARD */
for (a=SUM_startcol; a<=SUM_endcol; a=a+0x20) begin
for (i=0; i<=11; i+ +) begin

sumli]=0;

end

for (b=0x0008/4; b<=0x0044/4; b+ +) begin
e=addr[a+b]; /* Unload 16bit activities from RAM3 */
g=e&0x00000FFF; /* makes 3 LSB bits only valid */

/* SECTION COVERTS HEX TO FLOATING POINT ACTIVITIES */
for (i=0; i<=11; i+ +) begin
sum(i]= (!!(g&(Power(2, 11-i)))*Power(2,c))+sum(i];
end
for (i=0; i<=11; i+ +) begin
MSB=!!(sum[i]&Power(2,15));
if ( MSB>0 )

{
sum[i]= ("sum[i]+ 1)&0x0000FFFF;
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156 sum(i]=-1*sumli];
157 }
158 end
159 ‘end
/* SECTION THRESHOLDS ACTIVITIES */
160 for (i=0; i<=11; i+ +) begin
161 x=sum|[11-i];
162 if (x < x1) state_result = -1.0;
163 if ((x < x2) and (x >= x1)) state_result = -0.5;
164 if ((x < x3) and (x >= x2)) state_result = 0.0;
165 if ((x < x4) and (x >= x3)) state_result = 0.5;
166 if (x >= x4) state_result = 1.0;
167 newstate[pp+ ((d-1)*12+i)]=state_result;
168 end :
169 end /* end a=sum_col */
/* SECTION IMPLEMENTS DELTA RULE */
170 for (i=0; i<=35; + +1i) begin
171 fscanf(fp2,"%f",&targetstate[pp+i]);
172 delta[pp+ i]=targetstate[pp+i]-newstate[pp+i];
173 ptss= ptss+ delta[pp+i}*delta[pp+i]; /* partial sum sq’s for pattno */
174 for (j=0; j<=35; )+ +) begin
175 deltaweight[i][j]= Irate*delta[pp+i] *stateval[pp+ j];
/* computes weight change */
176 newweight[i][j]= newweight[i][j] + deltaweight[i][j]; /* updates weight */
177 if (newweight[i][j] > 127) newweight[i][j]=127; /* weight max */
178 if (newweight[i][j] <-127) newweight[i][j]=-127; /* weight min */
179 trunweight{i][j]=newweight[i][j]; /* set weight to int */
180 for (h=0; h<=7; h++) begin /* set weight to binary */
181 getweight[i][j]{h]= !!(trunweight[i}[j]&Power(2,h)); /* 2’s comp */
182 end
183 end /* end j */

/* SECTION ORDERS AND LOADS WEIGHTS BACK TO BOARD */
184 ord=0;

185 for (nop=0; nop<=3; nop+ +) begin

186 ordcount=0;

187 for (j=ord; j<=ord+8; j+ +) begin

188 for (h=0; h<=7; h+ +) begin

189 if (h-ordcount>=0)

190 orderweight[i][j][h] = getweight[i][j][h-ordcount];

191 if (h-ordcount<0)

192 orderweight[i][j][h}= getweight{i][j]{8+ h-ordcount];

193 end

194 ordcount=ordcount+1;

195 end

196 ord=ord+9;

197 end

198 end /* end i*/

199 tss= tss+ ptss; /* total sum sq’s for all patterns */
200 a_col=0;

201 a=0;

202 patchcount=0;

203 for (g=0; g<=2; g+ +) begin /* No of columns/RAM1 chip */

204 a_patch=0; /* reset patch count at col top */
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205 b=0;

206 for (n=0; n<=3; n+ +) begin /* no of patches/column */
207 for (i=0; i<=215; i+ +) begin /* no of patches/column */
208 order[i]=0;

209 end

210 for (k=0; k<=3; k++) begin

211 jcount=0;

212 for (j=b; j<=Db+8; j++) begin  /* synapse count per patch */
213 icount=0;

214 for (i=a;i<=a+2; i+ +) begin

215 for (h=0; h<=7; h++) begin /* counts bits per weight */
216 order[(24*jcount)+ (8*icount)+h]=

217 orderweight[i][j][h]*Power(2,3*k)+

218 order{(24*jcount)+ (8*icount)+ h];

219 end /* reads weights from weight */
220 icount=icount+1; /* matrix */

221 end

222 jecount= jcount+1;

223 end /* end j */

224 a=a+3;

225 end " /*end k */

226 a=a-12;

227 b=b+9;

228 syncount=0;

229 for (a_syn=0x340/4; a_syn>=0; a_syn=a_syn-0x20/4) begin

230 for ( a_bit=0; a_bit<=7; a_bit++) begin

231 y=a_col+ a_patch+a_syn+a_bit;

232 addr[y]=order[(8*syncount)+ a_bit];

233 end

234 syncount=syncount+1;

235 end

236 a_patch=a_patch+ 0x400/4; /* counts patches per column */
237 patchcount=(g*4)+n+1;

238 end /* end n */

239 a=a+12;

240 a_col=a_col+0x8000/4; /* counts columns */

241 end /* end g */

242 . end /* end pattno */

243 printf("%d %f0,count,tss);
244 count=count+1;

245 end while (tss>0);

246 for (i=0;i<=35; i+ +) begin
247 for (j=0; j<=35; j++) begin

248 for (h=0; h<=7; h++) begin

249 fprintf(fp,"%d ",orderweight[i][j][h]);
250 end

251 fprintf(fp,"0);

252 end

253 end

254 fclose(fp);

255 fclose(fpl);
256 fclose(fp2);
257 fclose(fp3);



Appendix E 142

258 fclose(fp4);

259 munmap(addr);
260 close(fd);
261end
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Appendix F

1 #include "def.h"

2 #include <math.h>

3 float weight[36][36],deltaweight[36][36] ,newweight[36][36];
4 float stateval[720],target[720] recstateval[720],newstate[720] ,sum([36];
5 float state_result,tss,ptss;

6 float x1,x2,x3,x4;

7 float Irate,xmid=0,temperature;

8 int pattno;

9

10 void Threshold(xmid,temperature)

11 float temperature,xmid;

12 begin

13 x1=xmid-(temperature*log(8.0));

14 x2=xmid-(temperature*log(1.75));

15 x3=xmid+ (temperature*log(1.75));

16 x4=xmid+ (temperature*log(8.0));

17 end

18

19 void Actsum(weight,stateval,sum,pattno) /* Computes neural activity */
20 float stateval[72],weight[36][36],sum[36];
21 begin
22 int i,);
23  for (i=0;i<=35;i+ +) begin

24 sum([i]=0;
25 for (j=0; j<=35; j+ +) begin

26 sum(i]= sum[i]+ stateval[pattno+ j]*weight[i][j];
27 end

28 end

29 end

30

31 main()

32 begin

33

34 inti,},k,]l,count;

35 float x,v;

36 void Threshold();

37 void Actsum();

38 FILE *fp0,*fpS,*fp,*fpl,*fp2,*fp3,*fp4,*fp6,*{p8;
39 fp0=fopen("learn”,"r");

40 fp5=fopen("temp”,"r");

41 fp=fopen("new_weight”,"w");

42 fpl=fopen("state_in","r");

43 fp2=fopen("target_in","r");

44 fscanf(fp0,"%f" &Irate);

45 fscanf(fpS,"%f" ,&temperature);

46 Threshold(xmid,temperature);

47

48 for (i=0; i<=35; i+ +) begin

49 for (j=0; j<=35; j+ +) begin

50 weight[i][j]=0;  /* sets weights to 0 */
51 end
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
- 82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

end
for (i=0; i<=19; i+ +) begin
for (j=0; j<=35; j++) begin
fscanf(fpl,"%f",&stateval[36*i+j]); /* reads input patterns */
fscanf(fp2,"%f",&target{36*i+]]); /* reads target patterns */
end
end
count=1;
do begin
tss=0;
for (k=0; k<=19; k+ +) begin
pattno=36*k;
ptss=0;
Actsum(weight,stateval,sum,pattno);
for (i=0; i<=35; i+ +) begin /* thresholds activities */
x=suml[i};
if (x < x1) state_result = -1.0;
if ((x < x2) and (x >= x1)) state_result = -0.5;
if ((x < x3) and (x >= x2)) state_result = 0.0;
if ((x < x4) and (x >= x3)) state_result = 0.5;
if (x >= x4) state_result = 1.0;
newstate[pattno+ i]=state_result;
v=target[pattno+i]-newstate[pattno+i];
for (j=0; j<=35; j+ +) begin  /* for loop calculates new weights */
deltaweight{i][j]=Irate*v*stateval[pattno+ j];
weight[i][j]= deltaweight[i][j]+ weight[i][j];
if (weight[i][j] > 127) weight[i][j]=127;
if (weight[i][j] < -127) weight[i][j]=-127;
end
ptss=ptss+(v*v);  /* calculates error in output patern */
end
tss=tss+ ptss;
end
printf("%d %f£0,count,tss);
count=count+1;
end while (tss>0);
for (i=0; i<=35; i+ +) begin
for (j=0; j<=35; j+ +) begin
fprintf(fp,"%f0,weight[i][j]);
~end
end
fclose(fp);
fclose(fpl);
fclose(fp2);
fclose(fp3);
fclose(fpS);
fclose(fp0);

99 end
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BIT - SERIAL NEURAL NETWORKS

Alan F. Murray, Anthony V. W. Smith and Zoe F. Butler.
Department of Electrical Engineering, University of Edinburgh,
The King’s Buildings, Mayfield Road, Edinburgh,
Scotland, EH9 3JL.

ABSTRACT

A bit - serial VLSI neural network is described from an initial architecture for a
synapse array through to silicon layout and board design. The issues surrounding bit
- serial computation, and analog/digital arithmetic are discussed and the paraliel
development of a hybrid analog/digital neural network is outlined. Learning and
recall capabilities are reported for the bit - serial network along with a projected
specification for a 64 - neuron, bit - serial board operating at 20 MHz. This tech-
nique is extended to a 256 (256* synapses) network with an update time of 3ms,
using a "paging” technique to time - multiplex calculations through the synapse
array.

1. INTRODUCTION

The functions a synthetic neural network may aspire to mimic are the ability to con-
sider many solutions simultaneously, an ability to work with' corrupted data and a
natural fault tolerance. This arises from the parallelism and distributed knowledge
representation which gives rise to gentle degradation as faults appear. These func-
tions are attractive to implementation in VLSI and WSI. For example, the natural
fault - tolerance could be useful in silicon wafers with imperfect yield, where the
network degradation is approximately proportional to the non-functioning silicon
area.

To cast neural networks in engineering language, a neuron is a state machine that is
either "on" or "off’, which in general assumes intermediate states as it switches
smoothly between these extrema. The synapses weighting the signals from a
transmitting neuron such that it is more or less excitatory or inhibitory to the receiv-
ing neuron. The set of synaptlc weights determines the stable states and represents
the learned information in a system.

The neural state, V,, is related to the total neural activity stimulated by inputs to
the neuron through an activation funcnon F. Neural actxvxty is the level of excita-
tion of the neuron and the activation is the way it reacts in a response to a change
in activation. The neural output state at time t, V/, is related to x! by

= F(x)) (1)

The activation function is a scjuashmg" function ensuring that (say) V; is 1 when
x; is large and -1 when x; is small. The neural update function is therefore straight-
forward:

j=n-=1

x*r=x o +5 2 T; V] (2)

where 8 represents the rate of change of neural activity, T, is the synaptic weight
and n is the number of terms giving an n - neuron array [1].

Although the neural functlon is simple enough in a totally interconnected n - neu-
ron network there are n? synapses requiring n? multiplications and summations and



a large number of interconnects. The challenge in VLSI is therefore to design a sim-
ple, compact synapse that can be repeated to build a VLSI neural network with
manageable interconnect. In a network with fixed functionality, this is relatively
straightforward. If the network is to be able to learn, however, the synaptic weights
must be programmable, and therefore more complicated.

2. DESIGNING A NEURAL NETWORK IN VLSI

There are fundamentally two approaches to implementing any function in silicon -
digital and analog. Each technique has its advantages and disadvantages, and these
are listed below, along with the merits and demerits of bit - serial architectures in
digital (synchronous) systems.

Digital vs. analog: The primary advantage of digital design for a synapse array is
that digital memory is well understood, and can be incorporated easily. Learning
networks are therefore possible without recourse to unusual techniques or technolo-
gies. Other strengths of a digital approach are that design techniques are advanced,

automated and well understood and noise immunity and computational speed can

be high. Unattractive features are that digital circuits of this complexity need to be
synchronous and all states and activities are quantised, while real neural networks
are asynchronous and unquantised. Furthermore, digital multipliers occupy a large
silicon area, giving a low synapse count on a single chip. ,
The advantages of analog circuitry are that asynchronous behaviour and smooth
neural activation are automatic. Circuit elements can be small, but noise immunity
is relatively low and arbitrarily high precision is not possible. Most importantly, no
reliable analog, non - volatile memory technology is as yet readily available. For
this reason, learning networks lend themselves more naturally to digital design and
implementation.

Several groups are developing neural chips and boards, and the following listing
does not pretend to be exhaustive. It is included, rather, to indicate the spread of
activity in this field. Analog techniques have been used to build resistor / opera-
tional amplifier networks [2, 3] similar to those proposed by Hopfield and Tank [4].
A large group at Caltech is developing networks implementing early vision and
auditory processing functions using the intrinsic nonlinearities of MOS transistors in
the subthreshold regime [5,6]. The problem of implementing analog networks with
electrically programmable synapses has been addressed using CCD/MNOS technol-
ogy [7]. Finally, Garth [8] is developing a digital neural accelerator board ("Net-
sim") that is effectively a fast SIMD processor with supporting memory and com-
munications chips. ' _
Bit - serial vs. bit - parallel: Bit - serial arithmetic and communication is efficient
for computational processes, allowing good communication within and between
VLSI chips and tightly pipelined arithmetic structures. It is ideal for neural net-
works as it minimises the interconnect requirement by eliminating multi - wire
busses. Although a bit - parallel design would be free from computational latency
(delay between input and output), pipelining makes optimal use of the high bit -
rates possible in serial systems, and makes for efficient circuit usage.

2.1 An asynchronous pulse stream VLSI neural network:
In addition to the digital system that forms the substance of this paper, we are
developing a hybrid analog/digital network family. This work is outlined here, and

has been reported in greater detail elsewhere [9,10,11]. The generic (logical and
layout) architecture of a single network of n totally interconnected neurons is shown



schematically in figure 1. Neurons are represented by circles, which signal their
states, V; upward into a matrix of synaptic operators. The state signals are con-
nected to a n - bit horizontal bus running through the synaptic array, with a con-
nection to each synaptic operator in every column. All columns have n operators
(denoted by squares) and each operator adds its synaptic contribution, T,;V;, to the
running total of activity for the neuron i at the foot of the column. The synaptic
function is therefore to multiply the signalling neuron state, V;, by the synaptic

weight, T;, and to add this product to the running total. This architecture is com-
mon to both the bit - serial and pulse - stream networks.
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Figure 1. Generic architecture for a network of n totally interconnected neurons.

This type of architecture has many attractions for implementation in 2 - dimensional

j=n-

silicon as the summation ¥ T,V; is distributed in space. The interconnect
<

requirement (n inputs to eacjh neuron) is therefore distributed through a column,
reducing the need for long - range wiring. The architecture is modular, regular and
can be easily expanded.

In the hybrid analog/digital system, the circuitry uses a "pulse stream" signalling
method similar to that in a natural neural system. Neurons indicate their state by
the presence or absence of pulses on their outputs, and synaptic weighting is
achieved by time - chopping the presynaptic pulse stream prior to adding it to the
postsynaptic activity summation. It is therefore asynchronous and imposes no fun-
damental limitations on the activation or neural state. Figure 2 shows the pulse
stream mechanism in more detail. The synaptic weight is stored in digital memory
local to the operator. Each synaptic operator has an excitatory and inhibitory pulse
stream input and output. The resultant product of a synaptic operation, T,;V;, is
added to the running total propagating down either the excitatory or inhibitory
channel. One binary bit (the MSBit) of the stored T,; determines whether the con-
tribution is excitatory or inhibitory.

The incoming excitatory and inhibitory pulse stream inputs to a neuron are
integrated to give a neural activation potential that varies smoothly from 0 to 5 V.
This potential controls a feedback loop with an odd number of logic inversions and
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Figure 2. Pulse stream arithmetic. Neurons are denoted by O and synaptic operators
by D.

thus forms a switched "ring - oscillator". If the inhibitory input dominates, the feed-
back loop is broken. If excitatory spikes subsequently dominate at the input, the
neural activity rises to SV and the feedback loop oscillates with a period determined
by a delay around the loop. The resultant periodic waveform is then converted to a
series of voltage spikes, whose pulse rate represents the neural state, V,. Interest-
ingly, a not dissimilar technique is reported elsewhere in this volume, although the
synapse function is executed differently [12].

3. A5 - STATE BIT - SERIAL NEURAL NETWORK

The overall architecture of the 5 - state bit - serial neural network is identical to
that of the pulse stream network. It is an array of n? interconnected synchronous
synaptic operators, and whereas the pulse stream method allowed V; to assume all
values between "off" and "on", the S - state network V; is constrained to 0, 0.5 or
*1. The resultant activation function is shown in Figure 3. Full digital multiplica-
tion is costly in silicon area, but multiplication of T; by V; = 0.5 merely requires
the synaptic weight to be right - shifted by 1 bit. Similarly, multiplication by 0.25
involves a further right - shift of T;;, and multiplication by 0.0 is trivially easy. V;
< 0 is not problematic, as a switchable adder/subtractor is not much more complex
than an adder. Five neural states are therefore feasible with circuitry that is only
slightly more complex than a simple serial adder. The neural state expands from a 1
bit to a 3 bit (5 - state) representation, where the bits represent “add/subtract?”,
"shift?" and "multiply by 0?".

Figure 4 shows part of the synaptic array. Each synaptic operator includes an 8 bit
shift register memory block holding the synaptic weight, T;. A 3 bit bus for the §
neural states runs horizontally above each synaptic row. Single phase dynamic
CMOS has been used with a clock frequency in excess of 20 MHz [13]. Details of
a synaptic operator are shown in figure 5. The synaptic weight T,; cycles around the
shift register and the neural state V; is present on the state bus. During the first
clock cycle, the synaptic weight is multiplied by the neural state and during the
second, the most significant bit (MSBit) of the resultant T;V; is sign - extended for
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Figure 4. Section of the synaptic array of the S - state activation function neural net-
work.

8 bits to allow for word growth in the running summation. A least significant bit
(LSBit) signal running down the synaptic columns indicates the arrival of the LSBit
of the x; running total. If the neural state is £0.5 the synaptic weight is right
shifted by 1 bit and then added to or subtracted from the running total. A multipli-
cation of =1 adds or subtracts the weight from the total and multiplication by 0
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Figure S. The synaptic operator with a 5 - state activation function.

does not alter the running summation.

The final summation at the foot of the column is thresholded externally according
to the 5 - state activation function in figure 3. As the neuron activity x;, increases
through a threshold value x,, ideal sigmoidal activation represents a smooth switch
of neural state from -1 to 1. The 5 - state "staircase” function gives a superficially
much better approximation to the sigmoid form than a (much simpler to imple-
ment) threshold function. The sharpness of the transition can be controlled to
“tune” the neural dynamics for learning and computation. The control parameter is
referred to as temperature by analogy with statistical functions with this sigmoidal
form. High "temperature” gives a smoother staircase and sigmoid, while a tempera-
ture of O reduces both to the "Hopfield" - like threshold function. The effects of
temperature on both learning and recall for the threshold and 5 - state activation
options are discussed in section 4.

4. LEARNING AND RECALL WITH VLSI CONSTRAINTS

Before implementing the reduced - arithmetic network in VLSI, simulation experi-
ments were conducted to verify that the S - state model represented a worthwhile
enhancement over simple threshold activation. The "benchmark” problem was
chosen for its ubiquitousness, rather than for its intrinsic value. The implications
for learning and recall of the 5 - state model, the threshold (2 - state) model and
smooth sigmoidal activation ( ® - state) were compared at varying temperatures
with a restricted dynamic range for the weights T;. In each simulation a totally
interconnected 64 node network attempted to learn 32 random patterns using the
delta rule learning algorithm (see for example [14]). Each pattern was then cor-
rupted with 25% noise and recall attempted to probe the content addressable
memory properties under the three different activation options. '

During learning, individual weights can become large (positive or negative). When
weights are "driven” beyond the maximum value in a hardware implementation,



which is determined by the size of the synaptic weight blocks, some limiting
mechanism must be introduced. For example, with eight bit weight registers, the
limitation is -128 =< T;; < 127. With integer weights, this can be seen to be a prob-
lem of dynamic range, where it is the relationship between the smallest possible
weight (=1) and the largest (+127/-128) that is the issue.

Results: Fig. 6 shows examples of the results obtained, studying learning using S -
state activation at different temperatures, and recall using both 5 - state and thres-
hold activation. At temperature T=0, the 5 - state and threshold models are
degenerate, and the results identical. Increasing smoothness of activation (tempera-
ture) during learning improves the qualiry of learning regardless of the activation
function used in recall, as more patterns are recognised successfully. Using 5 - state
activation in recall is more effective than simple threshold activation. The effect of
dynamic range restrictions can be assessed from the horizontal axis, where T,»= is
shown. The results from these and many other experiments may be summarised as
follows:-

§ - State activation vs. threshold:

1) Learning with 5 - state activation was protracted over the threshold activation,
as binary patterns were being learnt, and the inclusion of intermediate values
added extra degrees of freedom.

2) Weight sets learnt using the 5 - state activation function were "better” than
those learnt via threshold activation, as the recall properties of both 5 - state
and threshold networks using such a weight set were more robust against
noise.

3) Full sigmoidal activation was better than 5 - state, but the enhancement was
less significant than that incurred by moving from threshold ~ 5 - state. This
suggests that the law of diminishing returns applies to addition of levels to the
neural state V;. This issue has been studied mathematically [15], with results
that agree qualitatively with ours.

Weight Saturation:

Three methods were tried to deal with weight saturation. Firstly, inclusion of a

decay, or "forgetting” term was included in the learning cycle [1]. It is our view
that this technique can produce the desired weight limiting property, but in the time
available for experiments, we were unable to "tune” the rate of decay sufficiently
well to confirm it. Renormalisation of the weights (division to bring large weights
back into the dynamic range) was very unsuccessful, suggesting that information
distributed throughout the numerically small weights was being destroyed. Finally,
the weights were allowed to “clip” (ie any weight outside the dynamic range was set
to the maximum allowed value). This method proved very successful, as the learn-
ing algorithm adjusted the weights over which it still had control to compensate for
the saturation effect. It is interesting to note that other experiments have indicated
that Hopfield nets can "forget” in a different way, under different learning control,
giving preference to recently acquired memories [16]. The results from the satura-
tion experiments were:-

1) For the 32 pattern/64 node problem, integer weights with a dynamic range
greater than *+ 30 were necessary to give enough storage capability.

2) For weights with maximum values T = 50-70, "clipping" occurs, but net-

work performance is not seriously degraded over that with an unrestricted
weight set.
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Figure 6. Recall of patterns learned with the 5 - state activation function and subse-
quently restored using the 5-state and the hard - threshold activation functions.

T is the “temperature", or smoothness of the activation function, and "limit" the value
of T,

These results showed that the 5 - state model was worthy of implementation as a
VLSI neural board, and suggested that 8 - bit weights were sufficient.

5. PROJECTED SPECIFICATION OF A HARDWARE NEURAL BOARD

The specification of a 64 neuron board is given here, using a 5 - state bit - serial 64
x 64 synapse array with a derated clock speed of 20 MHz. The synaptic weights are
8 bit words and the word length of the running summation x; is 16 bits to allow for
growth. A 64 synapse column has a computational latency of 80 clock cycles or
bits, giving an update time of 4ps for the network. The time to load the weights
into the array is limited to 60us by the supporting RAM, with an access time of
120ns. These load and update times mean that the network is executing 1 x 10°
operations/second, where one operation is * T,;V;. This is much faster than a
natural neural network, and much faster than is necessary in a hardware accelera-
tor. We have therefore developed a "paging” architecture, that effectively "trades -
off” some of this excessive speed against increased network size.

A "moving --patch” neural board: An array of the 5 - state synapses is currently
being fabricated as a VLSI integrated circuit. The shift registers and the
adder/subtractor for each synapse occupy a disappointingly large silicon area, allow-
ing only a 3 x 9 synaptic array. To achieve a suitable size neural network from this
array, several chips need to be included on a board with memory and control circu-
itry. The "moving patch” concept is shown in figure 7, where a small array of
synapses is passed over a much larger n x n synaptic array.

Each time the array is "moved” to represent another set of synapses, new weights

must be loaded into it. For example, the first set of weights will be Ty, ... T; ...Ty
... Ty; to T;;, the second set T;.,, to T,, etc.. The final weight to be loaded will be
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Figure 7. The "moving patch” concept, passing a small synaptic "patch” over a larger
nxn synapse array. )

T,,. Static, off - the - shelf RAM is used to store the weights and the whole opera-
tion is pipelined for maximum efficiency. Figure 8 shows the board level design for
the network.
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Figure 8. A "moving patch” neural network board.

The small "patch” that moves around the array to give n neurons comprises 4 VLSI
synaptic accelerator chips to give a 6 x 18 synaptic array. The number of neurons to
be simulated is 256 and the weights for these are stored in 0.5 Mb of RAM with a
load time of 8ms. For each “"patch” movement, the partial running summation, X,



calculated for each column, is stored in a separate RAM until it'is required to be
added into the next appropriate summation. The update time for the board is 3ms
giving 2 x 107 operations/second. This is slower than the 64 neuron specification,
but the network is 16 times larger, as the arithmetic elements are being used more
efficiently. To achieve a network of greater than 256 neurons, more RAM is
required to store the weights. The network is then slower unless a larger number of
accelerator chips is used to give a larger moving "patch”.

6. CONCLUSIONS

A strategy and design method has been given for the construction of bit - serial
VLSI neural network chips and circuit boards. Bit - serial arithmetic, coupled to a
reduced arithmetic style, enhances the level of integration possible beyond more
conventional digital, bit - parallel schemes. The restrictions imposed on both synap-
tic weight size and arithmetic precision by VLSI constraints have been examined
and shown to be tolerable, using the associative memory problem as a test.

While we believe our digital approach to represent a good compromise between
arithmetic accuracy and circuit complexity, we acknowledge that the level of
integration is disappointingly low. It is our belief that, while digital approaches
may be interesting and useful in the medium term, essentially as hardware accelera-
tors for neural simulations, analog techniques represent the best ultimate option in 2
- dimensional silicon. To this end, we are currently pursuing techniques for analog
pseudo - static memory, using standard CMOS technology. In any event, the full
development of a nonvolatile analog memory technology, such as the MNOS tech-
nique [7], is key to the long - term future of VLSI neural nets that can learn.
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NEURAL NETWORKS

Murray, Z. F. Butler and A. V. W. Smith

TRODUCTION

etic neurons are simple computational units operating in massively parallel arrays, that capture
of the functionality and computational strengths of the brain. In engineering terms, a biological
n (for example, member i of a network of n neurons) is a unit that signals its state V;, by the
nce ("on") or absence ("off") of voltage pulses on its output, or axon. Neuron i decides its state
mputing its activity x; , which can be altered by direct stimulation of the neuron from outside the
ork and by contributions from other neurons in the network. The neuron state, V;, is related to
an activation function, f. Neural activity is the level of excitation of the neuron and the activa-
function describes its response to a change in activation. The contributions from other neurons
)eighted by interneural synaptic weights {T;;}. The state of neuron i in a n - neuron array [1] is
given by:-

j=n=1

Vi =f(xi)=f(]§o Tn‘jVj + 1) ¢y

activation function f (x;) defines the range and resolution of V;, and the smoothness with which
iron moves between the "off” and "on" states and ensures that (say) V; is 1 when x; is large and
len x; is small. I; is a direct input that may be arbitrarily strong to force a value on V;. Synaptic
ts {T,;} may be positive (excitatory) or negative (inhibitory) and any neuron may tend to turn
er neuron "on" or "off" respectively. Information is encoded in or "learnt” by the network by
ng the long term memory storage elements {T;}. Recall or computation is performed as the net-
moves around the n - dimensional space defined by the {V;} with the {T;} constant. This is
yalent to a recursive and asynchronous evaluation of eqn. (1) until equilibrium is reached. The
al function is straightforward, but in a totally interconnected n - neuron array, eqn. (1) requires
ultiplications and a large number of interconnections for each network update cycle. Therefore,
hallenge in VLSI is to design a simple, compact synapse with minimal inter-synapse connections
can be easily implemented in silicon. This is relatively simple for a network with fixed functional-
However if the network is to be able to learn, it becomes more complicated as the synaptic
hts must be programmable.

EURAL NETWORK ARCHITECTURE

e are fundamentally two approaches to implementing any function in silicon - digital and analo-
The two neural systems designed here use a hybrid analogue/digital method and a bit-serial digi-
iethod. The general architecture (logical and layout), used by both designs is shown schemati-
in figure 1. This is a single network of n totally interconnected neurons. Neurons are
sented by circles, that signal their states, V; upward into a matrix of synaptic operators. The state
Is are connected to a n bit horizontal bus running across the synaptic array, with a connection to
1aptic operator in every column. Each column has n operators (denoted by squares) that add
synaptic contribution T;V;, to the running total of activity for the neuron i at the end of the
nn. The synaptic function is therefore to multiply the signalling neuron state, V;, by the synaptic
ht, T;; and to add this product to the running total.

type of architecture has many attractions for implementation in 2 - dimensional silicon as the
nation is distributed in space. The interconnect requirement is distributed through a column,
cing the need for long-range wiring. The architecture is modular, regular and easily expanded.

hybrid analogue/digital system: This uses a "pulse stream”™ method similar to that in a natural
m. Neurons indicate their state by the presence or absence of pulses on their outputs and synaptic
hting is achieved by time-chopping the presynaptic pulse stream prior to adding it to the post
ptic activity summation. It is therefore asynchronous and imposes no fundamental limitations on
ctivation or neural state. Figure 2 shows the pulse stream mechanism in more detail. The synap-
eight is stored in digital memory local to the synapse. Each synaptic operator has an excitatory



hibitory pulse stream output. The resultant product of the operation, T;V;, is added to the run-
otal propagating down either the excitatory or the inhibitory channel. One binary bit (the
) of the stored T,; determines whether the contribution is excitatory or inhibitory. The incom-
citatory and inhibitory pulse stream inputs to a neuron are integrated to give a neural activation
ial that varies smoothly from 0 to 5 V. This potential controls a feedback loop with an odd
er of logic inversions and thus forms a switched "ring-oscillator”. If the inhibitory input dom-
. the feedback loop is broken. If excitatory spikes subsequently dominate at the input, the neural
y rises to 5 V and the feedback loop oscillates with a period determined by a delay around the
The resultant periodic waveform is then converted to a series of voltage spikes, whose pulse rate
ents the neural state, V,. A 64 synapse array using this method has been fabricated in 3p
S technology. The work outlined here has been reported in greater detail elsewhere [2,3,4].
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otally interconnected neurons. denoted by O and synaptic operators by D.

sit-serial digital system: This system again comprises an array of n? interconnected synchronous
tic operators. The major difference between the two, is that the pulse stream method allows V;
sume all values between "off" and "on", whereas the bit-serial network is constrained to 5S-states
y are V; = 0, = 0.5 or = 1. The resultant activation functions for the pulse stream and 5-state
rks are shown in figure 3. Multiplication of T;; by {V; = 0.5} simply requires that T;; be right-
d by 1 bit and multiplication by 0 requires the product to be set to 0. V; < 0 is implemented in
chable adder/subtractor. Figure 4 shows details of synaptic operators in the array. Each operator
n 8-bit shift register memory block holding the synaptic weight, which is "multiplied” by the
1 state, V;, signalled on a 3-bit bus. The running summation T;;V; is 16 bits to allow for word
h down the column. A least significant bit (LSBit) signal running down the synaptic columns
ates the arrival of the LSBit of the x;. running total.

inal value of the activity arriving at the neuron in each column is thresholded externally accord-
) the S-state activation function in figure 3. As the neuron activity increases through a threshold
x,, the ideal activation represents a smooth switch of neural state from -1 to +1. The 5-state
-ase” function gives a superficially much better approximation to the form than the (simpler to
ment) threshold function. The sharpness of the transition affects the neural ability for learning
omputation. The control parameter is referred to as "temperature” by analogy to statistical func-
with this form. High temperature gives a smoother staircase and sigmoid and zero temperature
es the sigmoid to the threshold function. '

ARNING AND RECALL CAPABILITIES WITH VLSI CONSTRAINTS

1ing and recall capabilities of the 5-state function were simulated in software against those of the
e threshold model and the sigmoidal activation, at varying temperatures with a restricted
nic range for the weights, 7,;. In each simulation a totally interconnected 64 node network
pted to learn 32 patterns using the delta rule algorithm [5]. Each pattern was then corrupted
25 % noise. The results showed that weight sets learnt using the 5-state activation function were
r" than those learnt via the threshold activation. Recall of the patterns was also more effective
the 5-state model. Full sigmoid activation was superior to the 5-state, but the enhancement was
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ignificant than that incurred by moving from threshold to 5-state. The best method to deal with
1t saturation during learning was to permit any weight outside the dynamic range to be set to its
mum allowed value. These results showed that the S-state model was worthy of fabrication at a
[ level and implementation on a neural board. A full discussion of the results can be found in [6].

HARDWARE NEURAL BOARD

ecification has been calculated for a 64 neuron board using a 5-state bit-serial 64 x 64 synapse
. The weight set is stored in supporting RAM with an access time of 120 ns. This limits the
ht loading time to the RAM to 60 ps. These load and access times enable the network to operate
x 10° operations/second, where one operation is = T,V;. This is much faster than a natural
al network and faster than is necessary in a hardware accelerator. A "paging” architecture has
fore been developed to "trade-off” some of this excessive speed for increased network size.

oving-patch” neural board: An array of the 5 - state synapses is currently being fabricated as a
[ integrated circuit using singe phase 3p CMOS technology. [7]. The full custom layout for each
bse occupies a disappointingly large silicon area, allowing only a 3 x 9 synaptic array. To achieve
table size neural network from this array, several chips need to be included on a board with
ory and control circuitry. The "moving patch” concept is shown in figure 5, where a small array
napses is passed over a much larger n x n synaptic array. Each time the array is "moved” to
sent another set of synapses, new weights must be loaded into it. For example, the first set of
hts will be Ty ... T; ... Ty ... Ty; to T;, the second set T;,,; to T,, etc.. The final weight to be
:d will be T,,. Static, off-the-shelf RAM is used to store the weights and the whole operation is
ined for maximum efficiency. Figure 6 shows the board level design for the network. The small
h" that moves around the array comprises four VLSI synaptic accelerator chips to give a 6 x 18
otic array. The number of neurons to be simulated is 256 and the weights for these are stored in
vib of RAM with a load time of 8ms. For each "patch"” movement, the partial running summa-
X;, calculated for each column, is stored in a separate RAM until it is required to be added into
next appropriate summation. The update time for the board is 3ms giving 2 x 10’
ations/second. This is slower than the 64 neuron specification, but the network is 16 times larger,
e arithmetic elements are being used more efficiently. To achieve a network of greater than 256
ons, more RAM is required to store the weights. The network is then slower unless a larger
ver of accelerator chips is used to give a larger moving "patch”.

ONCLUSIONS

egies and design methods have been given for the construction of a hybrid analogue/digital VLSI
al network chip and a bit-serial VLSI network and board. Bit-serial and "reduced-style” arith-
> enhances the level of integration beyond more conventional digital, bit-parallel schemes. The
ctions imposed on both synaptic weight size and arithmetic precision by VLSI constraints have
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examined and shown to be tolerable, using the associative memory problem as a test.

e we believe our digital approach to represent a good compromise between arithmetic accuracy
circuit complexity, we acknowledge that the level of integration is disappointingly low. It is our
f that, while digital approaches may be interesting and useful in the medium term, essentially as
ware accelerators for neural simulations, analogue techniques represent the best ultimate option
- dimensional silicon. To this end, we are currently pursuing techniques for analogue pseudo -
. memory, using standard CMOS technology. In any event, the full development of a nonvolatile
»gue memory technology, such as the MNOS technique [8], is key to the long - term future of
[ neural nets that can learn.

authors acknowledge the support of the Science and Engineering Research Council (UK) in the
stion of this work.
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VLSI BIT - SERIAL NEURAL NETWORKS

Zoe F. Butler, Alan F. Murray and Anthony V.W. Smith

INTRODUCTION

A synthetic neural network can be viewed as a large parallel array of n? synaptic
operators, (for n neurons) that is able to model some of the brain’s characteristics.
The VLSI neural network described, functions with bit-serial, two’s complement
arithmetic and uses a single phase clocking technique operating at a minimum of 20
MHz (McGregor et al 1987).

A synthetic neuron is a state machine that is either “on" or "off’, assuming inter-
mediate states as it switches smoothly between these extrema. A synapse weights the
signal from a transmitting neuron such that it is more or less excitatory or inhibitory
to the receiving neuron. The total level of activation of a neuron is represented by
its acrivity, x;. This is related to the state of the receiving neuron by an activation
function, f, that describes its response to a change in activation. Biologically, this
function is sigmoidal, but in our synthetic network it is simplified so that v, = 1
when x; is large and -1 when x; is small, with 3 states in between. The interneural
synaptic weights, T,;. are the contributions from other neurons, that are weighted by
the receiving neuron. Therefore, the state of neuron i in an n - neuron array is
given by:-

j=n-=1

Vi=f(x)=f( 20 Tijvj + I;) (1)

Synaptic weights may be positive (excitatory) or negative (inhibitory) and any neu-
ron may tend to turn any other neuron “on” or "off” respectively. I, is a direct input
that may be arbitrarily strong to force some value on V,. The synaptic weights,
determine the stable states and represent the information learned by the network.
Learning is therefore, a controlled modification of the {7} to adjust the stable states.
Recall or computation is performed as the network moves around the n - dimen-
sional space defined by the neural states v;, with the {T;;} constant.

The neural architecture is based on eqn. (1). It involves »? digital multiplications and
summations in an array of n totally interconnected neurons. This is relatively
straight forward in a network with fixed functionality. However, if the network is to
be able to learn patterns, the synaptic weights must be programmable, thus making it
more complicated. '



NETWORK COMPUTATION AND DESIGN

An advantage of bit-serial arithmetic in a neural network is it minimises the inter-
connect requirement by eliminating multi-wire busses. Pipelining makes optimal use
of the high bit-rates possible in serial systems allowing good communication within
and between VLSI chips. The primary advantage of using digital CMOS circuitry is
that on-chip digital memory design is more easy to implement than any analogue
counterpart and can be easily incorporated for the programming and storage of the
synaptic weights. Design techniques are advanced, automated and well understood,
and noise immunity and computational speed can be high.

Architecture

The general neural architecture in figure 1 shows a single network of n totally inter-
connected neurons. A neuron is represented by a circle, with its column of n
synapses (shown by squares) communicating with all other neurons in the array.
Each synaptic operator adds the weighted contributions from other neurons down the
column. When the total summation reaches the foot of the column, the neuron
thresholds it according to the 5-state activation function shown in figure 2. The new
state of the neuron is then signalled back to the array. The state signals are con-
nected to a n bit bus running across the synaptic array, with a connection to a
synaptic operator in every column. Therefore, the two functions of a synaptic opera-
tor are to multiply the signalling neuron state V;, by the synaptic weight, T;, and to
add the product to the running total of activity. For example, in figure 1, neuron 3
signals its state V,, to neuron 1 along the dark path shown, and the product T,,V, is
added to the running total in column 1.

e

T“
1 1 i 1

Tys
1 ¥ !
Synapse Neural States { V; }
{ ) { 1 )| 1
) .
1 ] 1 1 ] /
Too
Neurons

Figure 1 Generic Architecture for a totally interconnected
n - neuron network.
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Reduced Arithmetic

Full digital multiplication can be expensive in silicon area, but the 5-state activation
function allows reduced arithmetic to be used. Hence, multiplication of a synaptic
weight by V; = 0.5 simply requires the synaptic weight to be right-shifted by 1 bit.
Likewise, multiplication by 0.25 involves two right-shifts of { 7; }, and multiplication
oy 0.0 is easy. A negative (inhibitory) neuron state is not problematic, as a switch-
ible adder/subtractor is only slightly more complicated than than an adder. Hence, 3
ieural states can be easily obtained from circuitry a little more complex than the
imple adder required for 2 states (Hopfield, 1982). The neural state bus expands
Tom a 1 bit to a 3 bit representation, where the 3 control bits are add/subtract?,
hift? and multiply by zero? :

Details of a synaptic operator are given in figure 3. Each operator has an 8 bit
hift register memory holding its synaptic weight. During computation, the synaptic
veight cycles round the register while the neural state is signalled on the 3 bit bus
unning horizontally above each synaptic row. A complete synapse computation
equires two complete shift register cycles (16 clock cycles). During, the first cycle
he synaptic weight is multiplied by the neural state and during the second, the
ISBit of the resultant T,V is sign-extended for the remainder of the shift register
ycle. This allows a maximum 8 bit word growth in the running summation. The

SBit of each neuron’s running summation is indicated by an LSBit signal running
lown the synaptic column.

The final 16 bit summation at the foot of the column is thresholded according
O its activation function. As the neuron activity x;, increases through threshold
alue x, (figure 2), the ideal activation represents a smooth switch of neural state
rom -1 to +1. The 5-state "staircase” function gives a better approximation to this
han the 2-state threshold function. Control of the sharpness of this transition can
tune” the neural dynamics for learning and computation. The control parameter is
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eferred to as temperature by analogy to statistical functions with this form. Higher
emperatures give the staircase and sigmoid a lower gradient.

LEARNING AND RECALL OF THE ACTIVATION FUNCTIONS

software simulations of learning and recall capabilities of the S-state model were
“ompared with those of the 2-state and sigmoid activation functions at varying tem-
>eratures with a restricted dynamic range for the synaptic weights. A 64 node net-
vork in each simulation attempted to learn 32 patterns using the delta rule algorithm
Rumelhart 1986). Results showed that the 5-state activation function learned the
veight sets "better” than the 2-state activation function. The sigmoid activation was
till superior to the 5-state, but the discrepancy was noticeablv less than between the
-state and the 2-state activations. The best method to deal with weight saturation
luring- learning was to permit any weight outside the dynamic range to be set to its
naximum value. A full discussion of these results can be found in Murray et al,
1987.

JARDWARE NEURAL BOARD

A 5-state synaptic operator array is being fabricated in 3um CMOS technology. Full
ustom layout allowed a 12 x 9 synaptic array in a 64 pin package and figure 4 shows
art of the design. Several chips, therefore, need to be wired together with memory
Cs and control circuitry to achieve a suitable size network for simulations.

Neural Paging Architecture

A neural board has been designed with 4 synaptic chips wired together giving a 12 x
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Figure 4 Silicon Layout of a Synapse in the Array.

9 synaptic array. The small array will be used in a paging architecture to give a net-
work of 256 neurons that will act as a neural accelerator to a host computer. The
paging architecture can be thought of as a moving patch”, where the small array or
patch will simulate a small number of synapses in a large array, and then pass onto
the adjacent patch to repeat the computation until all 256 synapses have been simu-
lated. This idea is shown in figure 5. Each time the array is moved to represent
another set of synapses, the weights for that patch must be loaded into it. For exam-
ple, the first set of weights to be loaded will be T, ;...Ty15...T23...T212...T9y 10 Ty 1z,
the second set to be loaded will be Tyq;...T1012----- Tys, t0 Tygy,. The final weight to
be loaded is T,s6,5 €tc.. The memory requxred for 256 neurons is 0.5 Mbits of static
RAM. A RAM speed of 70ns will allow the weights to be loaded in 9ms. A larger
number of neurons can be simulated by simply loading the extra synaptic weights
into more memory.

The "patch” will move down the 1st set of 12 columns to cornpute the complete
running activities. It will then compute the 2nd set, 3rd set etc., until each set has
been computed. For each “patch” simulation in the-array, the emerging partial run-
ning summations of the 12 partial column blocks, are synchronised to coincide with
the top of the running summation of the new patch. This ensures that each column
has a contribution (excitatory or inhibitory) from each synapse. As the total sum-
mations occur for each block, they are stored in an on - board static RAM as indi-
cated in the board design in figure 6.

When the total summation has been completed in each column, the neurons’
activities are thresholded off - board according to the 5 - state activation function.
The new neural states are signalled back to the synaptic accelerator chips for the next
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array computation. Once the states become stable, the synaptic weights are adjusted
accordingly until learning is complete.



Control Circuitry

Microcode control circuitry operates all RAM loading and accessing and control sig-
nals to the synaptic accelerators. The flow diagram in figure 7 shows the small con-
rol overhead required, along with the timing of all operations for a complete update
of 256 neurons. The calculated update time for the board is 1ms giving 6 x 10’
operations/second. The number of synaptic accelerators determines the operating
speed. A faster speed or more neurons and the same speed would require more
accelerators. Hence, the design is versatile in that any specification for network size
and speed can be met easily.

load synaptic weights and
neural states to RAMs.

|

for each new patch, Clock cycle
—=1 load 27 weights to each
synaptic accelerator 1

1

set controls signals, LSB
sign extend and 3-bit neu-
ral state for accelerators 217
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partial sum to RAM 228
partial sum
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Figure 7 Flow Diagram of the Control Operation.



"ONCLUSIONS

[he design method has been given for the construction of a VLSI neural hardware
iccelerator and its implementation in a neural board. Bit-serial, reduced arithmetic
mproved the level of integration compared to more conventional digital, bit-parallel
chemes. The restrictions on synaptic weight size and arithmetic precision by VLSI
-onstraints have been examined and proved to be tolerable, using the associative
memory problem as a test. :

The digital design gives a good compromise between arithmetic accuracy and
ircuit complexity, but the level of integration is disappointingly low. This has been
somewhat overcome by the paging architecture of the neural board. to enable the
simulation of a large number of neurons. It is our belief that, while digital
approaches are useful in the medium term, especially as hardware accelerators,
analogue techniques represent the best ultimate option in 2 - dimensional silicon.

The authors acknowledge the support of the Science and Engineering Research
Council (UK) in the execution of this work.
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