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Abstract 

A synthetic neural network is a massively parallel array of computational units (neu-

rons) that captures some of the functionality and computational strengths of the brain. 

The functions that it may have are the ability to consider many solutions simultane-

ously, the ability to work with corrupted or incomplete data without any form of error 

correction and a natural fault tolerance, which is acquired from the parallelism and the 

representation of knowledge in a distributed fashion giving rise to graceful degradation 

as faults appear. 

A neuron can be thought of, in engineering terms, as a state machine that signals its 

"on" state by the presence of a voltage on its output and signals its "off' state by the 

absence of a voltage. The level of excitation of the neuron is represented by its quan-

tity of activity. The activity is related to the neural state by an activation function, 

which is usually the "sigmoid" or "S-shape" function. This function represents a smooth 

switching of neural state from off to on as the activity increases through a threshold. 

Direct stimulation of the neuron from outside the network and contributions from 

other neurons in the network will change the level of activity. The levels of firing 

from other neurons to a receiving neuron are weighted by interneural synaptic weights. 

The weights represent the long term memory storage elements of network. By altering 

the value of the weights, information is encoded or 'learnt" by the network, which 

adds to its store of knowledge. 

There are three broad categories into which neural network research can be divided. 

These are mathematical description and analysis of the dynamical learning properties 

of the network, computer simulation of the mathematical models and the VLSI 

hardware implementation of neural functions or classes of neural networks. It is the 

final category into which the main thrust of this thesis falls. 

The research presented here implements a VLSI digital neural network as a neural 

accelerator to speed up simulation times. The VLSI design incorporates a parallel array 

of synapses. The synapses provide the connections between neurons. Each synapse 

effectively "multiplies" the neural state of the receiving neuron by the synaptic weight 

between the sending neuron and the receiving neuron. The "multiplication" is achieved 
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by using reduced precision arithmetic that has a 'staircase" activation function modelled 

on the sigmoid activation function and allows the neuron to be in any one of five 

states. Therefore, with little loss in precision, the reduced precision arithmetic avoids 

using full multiplication, which is expensive in silicon area. The reduced arithmetic 

synapse increases the number of synapses that can be implemented on a single die. 

The VLSI neural network chips can be easily cascaded together to give a larger array 

of synapses. Four cascaded chips resulted in 108 synapses in an array. However, this 

size of array was too small to perform neural network learning simulations. Therefore 

the synapse array has been configured in a paging architecture, that has traded off 

some of the high speed of the chips (upto 20MHz) against increased network size. 

The synapse array has been wired with support circuitry on to a board to give a neural 

accelerator that is interfaced to a host Sun computer. The paging architecture of the 

board allows a network of several hundred neurons to be simulated. The neural 

accelerator is used with the delta learning rule algorithm and results show its increased 

acceleration to be up to two orders of magnitude over equivalent software simulations. 
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Introduction 

A neural network can be viewed as large numbers of computational units (neurons) 

operating in parallel arrays, the functionality of which is based loosely on what is 

understood to be used in the nervous system. The brain's neurons, which form the 

basic computing elements, are several orders of magnitude slower than silicon logic 

gates, but are organised so they are able to perform some computations many times 

faster than the fastest digital computers now in existence. The brain appears to do this 

via its massive parallelism. As there are huge numbers of neurons, the weak com-

puting powers of these many slow elements combine to form a powerful resultant com-

putational machine. The scientific desire to understand human behaviour and the 

brain construction has motivated much of the past and present research into neural net-

works. Some of the properties a synthetic neural network may aspire to mimic are the 

ability to consider many solutions simultaneously and the ability to work with cor-

rupted or incomplete data without explicit error correction. Neural networks also have 

a natural fault tolerance, which arises from the parallelism and distributed knowledge 

representation giving rise to graceful degradation as faults appear. 

In engineering terms, a biological neuron is a unit that signals its state by the presence 

("on") or absence ("off') of a voltage on its output, or axon. It decides its state by 

computing its activity, which represents the level of excitation of the neuron. The state 

is related to the activity by an activation function. The activation function is generally 

the "sigmoid" or "S-shape" function which represents a smooth switch of neural state 

from off to on (not firing to firing) as the activity increases through a threshold. The 

level of activity can be altered by direct stimulation of the neuron from outside the net-

work and by contributions from other neurons in the network.. The contributions from 

other neurons are weighted by interneural synaptic weights, which are in effect, the 

long term memory storage elements of the network. Information is encoded or "learnt" 

by the network by altering the value of the weights to add to its store of knowledge. 

The present research into neural networks falls into three broad categories. The first is 

that of mathematical description and analysis of the dynamical and learning properties 

of the networks. The second category, which is probably the largest, covers research 
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using computer simulation based on, for example, array processor or other supercom-

puter architectures to model and extend the mathematical descriptions. The third group 

of research, into which the thrust of this thesis falls, aims to implement either particu-

lar neural functions or classes of neural network in LSJJVLSI hardware. 

The LSIIVLSI neural network circuits at present use planar silicon technology, 

although this technology is almost certainly not the ultimate medium in which neural 

networks will fully realize their power. Three dimensional materials are more suited to 

the three dimensional form of a neural network, but there is no solution yet that would 

enable these materials to be a suitable medium for hardware circuits. However, 

hardware neural networks can be easily designed and manufactured in silicon VLSI 

and are able to make use of developments in network design and learning procedures 

to solve real problems. 

The approach in this thesis is to implement a VLSI neural network as a digital neural 

accelerator to speed up network simulation times. This involves the design in VLSI of 

a network consisting of a parallel array of synapses. The synapses provide connections 

between neurons. Each synapse holds locally the synaptic weight between the sending 

neuron and the receiving neuron and has a means of "multiplying" the weight by the 

neural state of the receiving neuron. This generally involves the full multiplication of 

the synaptic weight by the neural state, which can be expensive in silicon area, allow-

ing only a small number of synapses on a die. The reduced precision arithmetic 

approach in this thesis uses a "staircase" activation function modelled on the sigmoid 

activation function, that allows a neuron to be any one of 5 states. It avoids the use of 

full multiplication, thus reducing the size of a synapse and greatly increasing the 

number of synapses that can be integrated on a single die. 

Simulation in software of the 5-state activation function obtained from using the 

reduced precision arithmetic showed that its performance was only degraded a little 

compared to that of the sigmoid activation function and there was little loss in preci-

sion in neural network pattern learning simulations. The simulation results justified the 

design of a neural network using the reduced precision arithmetic. The nature of this 

approach lends itself to a VLSI, bit-serial, digital design. A single phase clocking 

scheme capable of speeds up to 20MHz was, at the time, being developed in the 

department and was used in the integrated circuit design. 
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The main attraction of the reduced precision arithmetic is that it provides a means of 

building a fast, digital hardware neural network, that can be used as a hardware 

accelerator to reduce the lengthy simulation times of equivalent simulations run totally 

in software. The problem with software models is that neural networks with only tens 

of neurons can take many hours to simulate. The main body of this thesis describes 

how a significant speed-up is achieved by using a VLSI neural network operating in a 

"neural accelerator board". 

The thesis, first of all, provides a brief overview of the function of biological neurons 

in Chapter 1. The history and background of neural networks is given, from the origi-

nal ideas about perception and memory up to the present day knowledge, along with 

the most well known learning algorithms and neural network models that are used 

today. Chapter 2 explains the motivation behind VLSI implementations and gives an 

account of the research into hardware neural networks. The research covers digital, 

analogue, pulse-stream and optical aspects of implementation. 

Chapter 3 describes the details of the reduced precision arithmetic and how the 5-state 

activation function relates to the sigmoid activation function. The simulation procedure 

that was used to compare the performance of the two activation functions is described. 

An analysis of the results shows the suitability of the reduced precision arithmetic to be 

implemented in VLSI. 

The VLSI design of the synapse array in Chapter 4 7  reports two different design pro-

cedures. The first design use a fully custom computer aided design layout tool with 

3p.m CMOS technology and the second uses the the European Silicon Structures silicon 

compiler, Solo, for the complete design and layout procedure in 2pm technology. 

Simulation results of the fabricated devices for each manufacture are presented. 

Chapter 5 specifies how the neural network chips can be cascaded together on a neural 

board to achieve a larger array of synapses. It explains how the synapse array is config-

ured in a paging architecture, that trades off some of the fast operating speed of the 

chips against network size to create an array of several hundred neurons. 

The results reported in Chapter 6 compare the performance of the the hardware neural 

accelerator in a program with a learning procedure, to an equivalent software 5-state 

activation function network and a software sigmoid activation network. Finally, 
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Chapter 7 draws conclusions about the design and performance of the hardware 

accelerator board and suggests improvements than could be made to increase its speed 

and efficiency. 
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Chapter 1 

Introduction to Neurons and Neural Networks 

The human brain is one of most complex structures known. There has been much 

research over the centuries by anatomists, physiologists and psychologists into its 

development, structure, the electrical and chemical phenomena that take place in its 

nerve cells, and into its unique behaviour. Until the beginning of the twentieth 

century, the brain was believed to be an exception to the basic biological principle, that 

all tissues are made up of individual cells. Now it is thought to consist of 100 billion ( 

1011 ) individual neurons arranged in several hundred distinct groups, with 95% in the 

cerebral cortex [1, 2]. It is this massively parallel computational ability of the brain to 

perform a wide range of tasks that has urged researchers to build intelligent machines. 

This chapter gives a brief introduction to biological neurons and their function. Much 

of the biological terminology is used in the description of synthetic neural network 

models and although it is not essential to have a good understanding of the nervous 

system, some familiarity with the jargon is useful. 

An outline of the history of synthetic neural networks in the second part of the 

chapter, shows how the understanding of the nervous system and brain function 

developed and inspired early researchers to develop mathematical neural models and 

later in the 1950's, to build physical models that could perform some sort of learning. 

The last section gives an overview of synthetic neural network models and learning 

procedures used today that are implemented either mathematically, in software or in 

hardware. 

1.1. The Neuron 

A typical neuron [2,3] consists of a cell body containing the nucleus and a number of 

fibres extending from it as shown in figure 1.1. The neuron transmits information to 

other cells by sending its activity out through only one fibre, the axon. All the other 

fibrous extensions from the cell body, the dendrites, receive information from other 

neurons. An axon generally divides into a number of small fibres that end in terminals. 
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Each terminal forms a synapse with a dendrite or the cell body of another neuron and 

is the point where information is transmitted from one neuron to another. A small 

space, the synaptic cleft, separates the axon terminal from the dendrite or cell body of 

the other neuron with which it synapses. 

1.1.1. The Axon 

An axon has two essential functions in the neuron. One is to conduct information in 

the form of the action potential, which is the process axons use to carry information 

from the neuron's cell body to the synaptic terminals, in order to trigger synaptic 

transmission. The other function is to transport chemical substances from the cell body 

to the synaptic terminals and backwards from the synaptic terminals to the cell body. 

The resistance of the neuron's cytoplasm is sufficiently high that signals cannot be 

transmitted along the axon greater than 1 mm before their information is lost. For this 

reason, the larger axons in the human brain are surrounded by a thin insulating sheath 

called myelin. The myelin increases the speed of conduction of the action potential 

along the axon by reducing the capacitance between the cytoplasm and the extra-

cellular fluid [4]. The sheaths are made up from non-neural cells called Schwann cells 

which are approximately 1mm in length and in general, the larger the the diameter of 

the axon, the thicker the myelin, up to a possible 100 layers. Gaps of lp.m which 

occur in the Schwann cells, are nodes of Ranvier These nodes act as repeater sites 

where the signal is periodically restored. A single myelinated fibre can carry signals the 

length of the longest axons, which may be a metre or greater. Although myelination is 

the most important distinguishing feature of larger axons, axons of less than lfJ.m in 

diameter are unmyelinated. 

1.1.2. Dendrites and Synapses 

Dendrites constitute all the fibres extending out from the neuron, excluding the axon 

and serve to extend the neuron's receptive surface. In the cerebral cortex, many of the 

dendrites have dendritic spines which form synapses with axon terminals of other 

neurons as in figure 1.2. The dendritic spine forms the postsynaptic part and the axon 

terminal forms the presynaptic part of the synapse. They are separated by the synaptic 

cleft which is about 20nm wide. The dendritic spine synapses are thought to be 
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excitatory and synapses that cluster on the cell body are thought to be inhibitory. 

When a synapse is active and transmits information, vesicles in the axon terminal fuse 

with the presynaptic membrane and release neurotransmitter into the cleft. The 

transmitter molecules diffuse across the narrow gap and attach to specific chemical 

receptor molecules on the postsynaptic membrane, which activates the postsynaptic 

target cell. 

1.1.3. Cell Membrane and Action Potential 

The neuron cell membrane has properties that allow it to conduct and transmit 

information to other neurons. One of these properties is ion channels through the 

membrane that allow sodium (Na), potassium (K) and chloride (C1) ions to pass in 

and out of the cell. The axon has a resting potential of about -70 mV. This is due 

mainly to a large concentration of K + ions inside the cell and a smaller concentration 

of K '  ions outside the cell and involves a passive process of ions moving through 

permanently open ion channels. The distribution of K ions is due in turn to 

negatively charged proteins in the cell. The distribution of Na + and C1 ions also 

contributes to the resting potential, but is less important than that of K '  ions. 

The action potential in a typical neuron begins at the point where the axon leaves the 

cell body and travels to the axon's terminal. The Na + gates open for about 0.5ms and 

Na + ions enter the cell increasing its potential to + 50 mV relative to the outside as in 

figure 1.3. The Na + gates then close and the potential goes back towards the resting 

level. This growth and decay of the action potential is termed the absolute refactory 

period. During this period, the axon cannot be electrically stimulated to generate 

another action potential. Meanwhile, the K gates have opened, some of the K 

moves out and the membrane potential becomes even more negative ( —75 mV) for a 

few milliseconds. This is the after potential or relative refactory period. The axon 

can be electrically activated in the period of the after potential, but it requires a 

stronger than normal stimulus. This is the relative refactory period. 

The activation of a single synapse on a neuron will not cause it to develop an action 

potential. Enough synapses have to be activated together and exert their influence on 

the receiving neuron. The activations of all the synapses are summed together. If they 

are activated repeatedly at a fast enough rate, they will sum over time and generate a 
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post synaptic potential large enough to make the cell fire. A normally functioning 

neuron is continuously summing information over time and space and "deciding" 

whether or not to fire. 

1.2. The History of Neural Research 

Research into neural and brain function has a long history starting from the 

observations of Hippocrates at 500 BC and Plato and Aristotle at around 400 BC, who 

associated memory with the sensory processes. The attempt to understand the neural 

structure has captured the interest of philosophers, psychologists, mathematicians, 

physicians and anatomists, but first major contributions providing an early conceptual 

framework for the study of nerve net action were undertaken by Pavlov [5, 6], the 

famous Russian psychologist, with his research on conditioned reflexes and Rashevsky 

[7], with a mathematical description of biological processes. From then, neural 

research and understanding has been expanding right up to the present day. 

1.2.1. Early Biological Research 

The end of the Classic period during the 2nd century was marked by Galen, a Greek 

physician, who proved that the brain was the seat of intelligence and memory [8]. The 

increase in knowledge from Hippocrates to Galen was considerable in detail, but there 

were little changes in attitude. Galen coordinated all that was known in medicine and 

science, which influenced thinking for the next fourteen centuries. Physiological 

knowledge of the brain showed few significant advances until Descartes in 1596 first 

recognised a conditioned reaction, "when one sees an object that has previously been at 

the time an emotion has been experienced, it will induce that emotion .... there is a 

connection between the stimulus and the response being made through a definite path; 

this connection is the fundamental process of the nervous structures in the body". This 

was the basis on which study of the nervous system was established. Over 300 years 

later, Pavlov started his work on the conditioned reflex, the linking up of the action of 

a new stimulus with an unconditioned (or inborn) reflex, using Descartes' idea of the 

nervous reflex. To show this Pavlov experimented with dogs. He used an 

unconditioned signal of a brief electric shock in a dog's paw to tell it that food was 

about to appear. This signal was alien to food, but the animal soon learned to salivate 

on receiving the shock and wanted to eat. Thus he had transformed apparent pain to 
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overt pleasure. 

Research into memory and brain function continued steadily through the 19th century. 

Some of the main contributions were from James Mill (1773 - 1836) who wrote 

'memory is nothing more than the fact of recall through association. Jr is the appearance 

of a sensation that can be associated with the time and place it has been presented 

previously". Gall, a well known anatomist at the time, asserted that human "faculties" 

were located in strictly localised areas of the brain [9] and in 1861, Paul Broca, a 

French anatomist, localised for the first time a complex mental function to a particular 

part of the brain. 

The work of J. H. Jackson [10] in the 1870's put forward the hypothesis that 

connections in the brain were physical entities that could be changed and that it was 

likely that a part of the brain's network was prewired to deal with a certain processing 

task. If that task became irrelevant, then that part of the network could be used for 

something else. Jackson pointed out this view as a difficulty for strict localisationist 

views that had become that popular at the time. Some of the earliest roots of the PDP 

(Parallel Distributed Processing) approach came from Jackson [10] and Luria [11], the 

Russian psychologist and neurologist. Luria put forward the idea of the dynamic 

functional system. On this view every behavioural or cognitive process resulted from 

the coordination of a large number of different components, each roughly localised in 

different regions of the brain, but all working together in dynamic interaction. 

In 1913 Henri Poincare [12], a French mathematician, attempted to explain neural 

action from an atomical point of view and in 1938, Rashevsky [7] gave the first 

mathematical description of the biological processes. Rashevsky showed how certain 

logical operations might be carried out by simple nerve arrangements as in figure 1.4. 

This shows how an exclusive-or function is mechanised by inhibitory and excitatory 

connections. He also gave an explanation for short term memory by means of 

recirculating neuron loops, in which an impulse, once initiated, would continue to 

cycle indefinitely or until terminated by an inhibitory pulse. Another psychologist, 

Thorndike [13] in his neural research found that "connections that words have in a 

person's experience produce modifications in his brain .... the modifications consist of 

changes at the points where one neuron transmits to another". 
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B > 
Figure 1.4 Rashevesky's exclusive-OR network using excitatory and inhibitory connec-
tions 

The work of Lashley [14,15] may be seen as the beginnings of modern experimental 

physiological psychology. He moved away from the Pavlovian reflex and worked on 

the search for the engram [16] and the localisation of function in the rat's brain. He 

traced the representation of remembered events to the cerebral cortex and proved that 

the degree of degradation of memory was roughly proportional to the area of cortex, 

thus showing the distributed representation of memory. He concluded that there was 

relatively little localization of function in the cerebral cortex. Lashley's paper In search 

of the Engram emphasised the diffuseness of neural mnenomic processes and insisted 

that no special cells were reserved for special memories. He conceived brain operation 

as large scale patterns of activation involving a great many active neurons leading to 

other large patterns of activity. 

Two hypotheses, which have become the basis of many nerve net models are the work 

of Donald Hebb [17-19], who was a student of Lashley in the 1930s. Hebb postulated 

that the synaptic junction was the site of permanent memory, that consisted of the 

value of the attenuation (strength) of the junction and that memory of any event was 

distributed within a network residing in the small changes in strength which occur as 

the result of the event impinging upon a large number of synapses. He suggested the 

following rule for the change in strength of a junction as the result of activity: "When 

an axon of cell A is near enough to excite a cell B and repeatedly B takes part in firing 
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it, some growth process or metabolic change takes place in one or both such that A's 

efficiency, as one of the cells firing B is increased". Hebb also postulated the formation 

of what he called "cell assemblies", where there were interconnected, self-reinforcing 

subsets of neurons that formed the representation of information in the nervous system. 

Single cells might belong to more than one assembly, depending on the context. 

Multiple cells could be active at once, corresponding to complex perceptions or 

thoughts. He said there was a distributed representation at the functional level as well 

as the anatomical level. Before Hebb's work, it was believed that some physical change 

must occur in a network to support learning, but it was not clear what this change 

could be. Hebb's ideas about the nervous system remained untested until it became 

possible to build some form of simulated network to test learning theories. 

1.3. Neural Network Modelling and Learning Procedures 

One of the first neural models was introduced by McCulloch and Pitts [20] who, by 

using Boolean Algebra showed how neural-like networks could compute. They used 

the "all or none" character of nervous activity, with the activity of any inhibitory 

synapse preventing the excitation at a given time and allowing only a fixed number of 

synapses in any given period to excite the receiving neuron. 

The neural model of A. E. Roy stored information in binary pulses and on being 

presented with a section of a message stored previously, it would recall the rest of the 

message. A discussion of the model can be found in [21-23]. 

1.3.1. The Perceptron Learning Theorem 

The first attempt to build a simulated network was the learning machine of Edmonds 

and Minsky in 1951, which consisted of hundreds of tubes, motors and automatic 

electric clutches, with its memory stored on 40 controls knobs. Details of the function 

can be found in detail in [24]. Rosenblatt, an acquaintance of Minsky, achieved the 

first neuron-like learning model with the perceptron [25]. He analysed his models 

mathematically and ran digital simulations of the three-layered perceptron, its 

environment and memory modification rules in a digital computer program. 

Rosenblatt's three-layered perceptron is a single transmission network containing 3 

types of signal generating unit as in figure 1.5. This shows the basic organisation of 
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Figure 15 Rosenblatt's three-layered perceptron 

the experimental system where the output of the perceptron is capable of modifying its 

stimulus environment. It starts with an S - (sensory) unit (eg. a "retina') which 

projects to higher levels. The S - unit is a transducer responding to physical energy 

and forms the first layer. This is connected to a second layer, an association area or A 

- units, by random, localised connections with fixed synaptic weights. A number of 

cells in the region of the S - units project onto a single A - unit in the higher layer. 

The A - unit is a logical decision element, which generates an output signal if the 

algebraic sum of its inputs is greater than a threshold quantity, 0 > 0. The association 

layer is reciprocally connected to a third layer of R - (response) units. The R - 

(response) unit emits the output:- 

• - f + 
1 if I input signals> 0, and 

r 	—1 if 7, input signals < 0. 
 

If the sum of the inputs is zero, the output is zero or indeterminate. The activation of 

the appropriate R - unit for a given input pattern or class of input patterns is the 

operation goal of the perceptron. During learning, the values (weights) stored in the 

r.c.s. (reinforcement control system) are changed when they do not correspond to some 
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arbitrary desired response Ti , 
for the given input pattern. The perceptron uses an error 

correcting system in that a correction is made in accordance with the rules of a 

specified reinforcement system on the network only if an erroneous response is 

obtained. When it is necessary to correct a response, the strength of the weights 

connected to that output change simultaneously. This will yield a solution to the input 

stimulus within a finite time. Rosenblatt commented that the simple three-layered 

perceptron is capable of learning any type of classification or associating any responses 

to stimuli. Therefore for a multi-layered perceptron, ie. a perceptron with two or more 

layers of association units, to offer any functional advantage over the three-layered 

perceptron there would have to be an increase in efficiency of such responses. 

Minsky and Papert undertook a careful mathematical analysis of the one layered 

perceptron [26]. The machine they examined is in figure 1.6, which shows a set of 

binary threshold units with fixed connections to a subset of units in the retina. 

Binary 

Figure 1.6 Perceptron analysed by Minsky and Papert 

From this analysis, Minsky and Papert showed which functions it could and could not 

compute and demonstrated the importance of a mathematical approach to analysing 

computational systems. They also argued that there was no indication how a learning 

procedure could be applied to multi-layered networks. The analysis suggested that 

perceptron like devices would have no future in artificial intelligence. 



Chapter 1 	 16 

Perceptrons and early related work had been in decline for several years before the 

work of Minsky and Papert, as perceptrons had failed to achieve much beyond their 

initial success. Practical results had failed to materialize and the Minsky and Papert 

book "Perceptrons" [26] seemed to prove to the scientific community that there was 

little future in neural networks. However, perceptron-like models can be successful at 

modelling a number of aspects of perception and cognition. Multilayered networks 

[19], which have input, output and hidden units can provide solutions to problems by 

the internal representation in the hidden units and learning can be achieved by the 

Generalised Delta Rule using back propagation. This is described in section 1.3.3. 

1.3.2. The Delta (Widrow-Hoff) Learning Algorithm. 

Neural network models generally are networks of processing units that are connected 

together in some way. An activation rule combines the inputs applied to a unit with 

its current state to produce a new level of activation for that unit. A learning rule 

modifies the existing patterns of connectivity between units through experience. These 

rules are the bases for parallel distributed processing in that some of the models' units 

carry out their computations at the same time. Usually the units will be one of three 

types: input, output and hidden units. Input units receive inputs from external sources, 

which may be sensory or otherwise. Output units send signals directly out of the system 

and hidden units have inputs and outputs from within the system with no external 

connections. They are connected between the input and output units (sometimes in 

layers), and are not "visible" to the outside world. 

Many of the learning rules for these types of models are variants of Hebb's Learning 

rule given in section 1.2.1. This can be generalised to: A connection or synaptic weight, 

w, increases or decreases in proportion to a reinforcement signal, r, such that:- 

w.3 (t+1) = w,1 (i) + ir1 (z) 	 (1.2) 

where q = reinforcement signal to synapse i, at time t and determines the change in 

connection weight. 

The Widrow-Hoff or Standard Delta Rule [27,28] was based on this theory. The 

Widrow-Hoff system used linear threshold units with random variable connection 

strengths. Each linear threshold computed a weighted sum of activities of the inputs 
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times the synaptic weight, plus a bias element. If the sum was greater than zero, the 

output became +1. If it was equal to or less than zero, the output was —1. It then 

compares this to a desired output or target vector. If there is no difference, no learning 

takes place. Otherwise the weights are changed to reduce the difference. The rule for 

changing the weights, w11 , between any two units i and j following the presentation of 

an input/output pair s is given by:- 

, wii = i (t, - 00 ii 	r b, ii  

where t,, is the target input for the jth component of the output pattern for the pattern 

S, o, is the jth element of the actual output pattern produced by the presentation of 

input pattern s, i,, is the value of the ith element of the input pattern, and i, w 1  is the 

change to be made to the weight from the ith to the jth unit following presentation of 

input pattern s. This learning procedure applies only to models with no hidden units. 

1.3.3. The Generalised Delta Rule 

The Standard Delta Rule uses two layer associative systems, that have only input and 

output units and no hidden units, and is useful in applications where similar input 

patterns can be mapped to similar output patterns. Where the mappings are very 

different, a network without the internal representation would be unable to perform 

the necessary computation. 

Minsky and Papert [26] in their analysis of conditions under which such systems are 

capable of carrying out required mappings, showed that in a large number of cases, 

networks of this kind were unable to solve problems. They also showed that if there is 

a layer of simple perceptron-like hidden units as in figure 1.7, the input information to 

the input units is recoded to an internal representation, which generates the 

appropriate output pattern. The Generalised Delta Rule [19] allows learning to take 

place in systems with hidden units. It uses a semi-linear activation function in which 

the output of a unit is a non-decreasing and differentiable function of the net total 

output, as in equation 1.4 below:- 

1 
Os) = 

1 + exp [ —(w 1  o,1  + ø) I 
(1.4) 

The Generalised Delta Rule has the same form as the Standard Delta Rule in equation 
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Figure 1.7 A Multilayer network with input, output and hidden units 

1.3. The weight on each line should be changed by an amount proportional to the 

product of an error signal, 8, available to the unit receiving an input along that line 

and the output of the unit sending activation along that line. The error signal, B j , for 

an output unit is:- 

= (r - o,, )o (1 - 0'j  ) 	 (1.5) 

and the error for an arbitrary hidden unit, u, is given by:- 

= o3 (1 - 03J)8 5k w kJ 	 (1.6) 

Two stages of computation are involved in the Generalised Delta Rule. The first stage 

is as follows: 

1. 	Present the input to the network and allow it to propagate through the network to 

compute the output, o,, for each unit. 
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Compare the computed output, ok,, to the target output, t,, and calculate from 

equation 1.5, the error signal, 8, , for each output. 

The second stage involves: 

A backward pass through the network where the error signals are passed to the 

units and the appropriate weight changes are made. The weight changes are first 

calculated for all connections that feed into the final layer. 

When this is done, the B's for all the units in the penultimate layer are computed. 

This propagates the error back one layer. 

The same process is repeated for every layer. 

The backward pass allows a recursive computation of 8. The learning rule used for 

change in weights is calculated from:- 

bw 1 (n+l) = 'q (b,o51 ) + a 8w 1 (n) 	 (1.7) 

where 	is the learning rate and a is a constant which determines the effect of past 

weight changes on the current direction of movement in weight space. n is the 

presentation number. This equation is a modified version of the Standard Delta Rule. 

1.3.4. Hoptield Model 

The Hopfield model can be regarded as a content addressable memory type [29] in 

that the exact contents of the memory can be retrieved on the basis of sufficient partial 

or partly erroneous information being presented to it. For example, the system has 

locally stable points X, Xb, (ie. contents in memory). If the system then is presented 

with (X = X. + ) it will proceed in time until X = Xa , ie. (X a  + ) represents a 

partial knowledge of X. and the system then generates the total information X a . 

The processing units in Hopfield's original model are 2-state neurons, the state V 1  = 1 

("firing at maximum rate") and V. = 0 ("not firing"). The instantaneous state of the 

system is specified by listing the N values of V 1  (i = 1.....N). Each neuron has a fixed 

threshold U1  such that:- 

: : 	
{if 	 : 	 (1.8) 

Each neuron evaluates randomly and asynchronously, whether it is above or below a 
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certain threshold, and readjusts it accordingly. The states V 1  ... V. ... VN are the 

stable states of system. 

The model uses an information storage algorithm which allows the synaptic weights 

between neurons to be set for the storage of any particular set of states V', s = 1.....n. 

This is:- 

w. = 	(2V;-1)(2V7-1) 
	

(1.9) 
S 

The neurons are totally interconnected with w 1  = 0 and there are no hidden units. 

From equation 1.9 it can be seen that if two adjacent states are excitatory, the synaptic 

weight between them is increased. Using equation 1.9, a weights matrix can be formed 

for states V. 

There are two limitations to this type of model. The first is that the number of states, 

s, that a given set of neurons, N, can learn is limited to s = 0.15N, otherwise the 

storage prescription fails. The second limitation is that if a start vector is chosen at 

random or if it shares many bits in common with another start vector and is allowed to 

iterate using the weights matrix, sometimes it may fail to "find" one of the stored states. 

The state that it does finally iterate to is known as a local minima. 

1.3.5. Wallace-Hopfield Training Algorithm 

The problem of the Hopfield storage prescription becoming inexact at small values of 

s/N has been analysed by Wallace [30]. He has developed a simple iterative algorithm 

for the Hopfield model which is guaranteed to store exactly any s vectors in a finite 

number of steps, provided it is known that a solution is possible. Starting with the 

storage prescription in equation 1.9, the approximate weights for the vectors, V', to be 

stored are calculated. All the vectors are tested to see if they have been stored correctly 

by iterating equation 1.9 once. This enables an error mask to be calculated for each 

V1  such that:- 

( 

I 1 	if Vi' changes 
r - I 	 (1.10) 

- 1 0 if Vf is stable 

I'  

The storage perscription is then reinforced for those weights wrongly stored, given by:- 
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N 

Awii  = I VfVJ  (€f + €7)  
3=1 

All the vectors, V 3 , are tested again with the new w and the w.1  are modified until 

convergence has been achieved. 

1.3.6. Competitive Learning 

Competitive Learning [19] is another learning procedure. Individual units learn to 

specialise on sets of patterns and thus become feature detectors or pattern classifiers. 

The architecture of a competitive learning system uses a set of hierarchical layered 

units in which each layer connects via excitatory connections with the layer 

immediately above it. Within a layer, the units are broken into sets of inhibitory 

clusters, in which all elements inhibit all other elements within the cluster. These 

elements at one level, compete. with one another, to respond to the pattern appearing 

on the layer below. The more strongly any particular unit responds to an incoming 

stimulus, the more it shuts down the other members of the cluster. 

A number of researchers have developed competitive learning models or variations on 

models. Examples of these can be found in [31-35]. A general competitive learning 

model has sets of clusters in a layer, which are of a winner takes all form, such that the 

unit receiving the largest input achieves its maximum value while all the other units in 

the cluster are pushed to their minimum value. In general, each unit in a cluster 

receives inputs from all the units in the layer below and projects outputs to all units in 

the next higher layer. A unit learns only if it wins the competition with other units in 

the cluster. Each unit has a fixed amount of weight and learns by shifting weight from 

the inactive to the active input lines. In von der Malsberg learning rule [31], if a unit 

wins a competition, each of the input lines gives up some of its weight and the weight 

is then evenly distributed among the active input lines. 

1.3.7. Grossberg's Network 

Grossberg [36] has proposed a pair of equations that describe the dynamical behaviour 

of a set of neurons and their synaptic weights. These equations have a level of 

generality unmatched by other descriptions of synthetic neural networks and are based 

on what is known to occur in the brain. The dynamic behaviour of the neurons is 



Chapter 1 	 22 

shown by:- 

xi 	 j=n 	1=" 

-s-- = —A,x, + 	- 	+ 11 (1) 	 (1.12)  Dilij Vi 
j=1 

where A i  is the passive decay of the activity in the absence of both synaptic and direct 

external input, w 1 
 ( ) 

is the excitatory (inhibitory) weight and I. is a stimuli that can 

force a state on the network. 

The change of synaptic weight over time is given by: 

bwij  = 
—B 1 w j  + D VU q  (x 1 ) 	 (1.13) 

B, is the passive decay of the synaptic weight. D. is the learning strength that allows 

learning to be modulated for each synaptic link, V is a neural "learning signal' and Uq  

(x1 ) is a linear-threshold activation function. The speed of learning is controlled by 

D., but the rate of change of synaptic weights must be much slower than that of the 

neural states. 

Grossberg uses a sigmoid activation function that represents the smooth switching of 

the neural state V from 0 to 1 as the neural activity x 1  increases through the threshold 

value 1, where T controls the sharpness of the transition, as in equation 1.14:- 

vi  = 1 

+ exp[ 
(i _X1 ) ]  

1  
T 

(1.14) 

Grossberg has developed a network using his Adaptive Resonance Theory, that forms 

clusters and is trained without supervision [34,35]. A simplified diagram of the 

network is in figure 1.8. A binary input is presented to the lower nodes as an 

exemplar for the first cluster. A second input is then presented and compared to the 

first cluster exemplar. The dot product of the two exemplars is computed and divided 

by the number of "is" in the input. if the ratio is greater than a vigilance threshold, the 

input will be clustered or "classified" with the first exemplar. If the ratio is less than the 

threshold, the input is considered to be "different" from the first exemplar and is added 

as a new exemplar. The vigilance threshold can be set between the range 0.0 and 1.0. 

Inputs are presented sequentially to the network and compared to all stored exemplars 

and classified in the same way. Each additional new exemplar requires one node and 
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Figure 1.8 Major components of the Grossberg classifier net 

2N connections to compute matching scores. 

1.3.8. Other Neural Models 

The above sections have given a general overview of the most well known neural 

models and learning procedures. There are however, many other relevant types of 

modelling that are discussed here briefly. Among these is the work of Anderson 

[37, 38] who has worked on distributed representation and neurally inspired models for 

theories of concept learning and amnesia. Wilishaw pursued distributed memory 

models and analysis of the properties of distributed representative schemes [39]. 

Kohonen introduced self-organising feature map algorithms [40], which are modelled 

on the organised mappings of the body surface on to the cortex such that the 

organisation of neurons at higher levels is created during learning by algorithms which 

promote self-organisation. Here, the essential mechanism of the scheme is to cause the 

system to modify itself so that nearby units respond similarly. This is achieved by the 

units responding randomly to a parameter of interest. When an input signal with some 

value of the parameter is provided, one unit responds 'best" to that input. This unit is 

located, in order that its neighbours, ie. units in some region around it and the unit 

itself have their synaptic weights changed, so the units now respond like the best unit 

did. 
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Hopfield's contribution [29] of the idea that networks can be seen as seeking minima 

in energy landscapes played a prominent role in the development of the Boltzmann 

Machine [41]. The machine is composed of visible and hidden non-linear 

computational units. Which are connected to each other by bi-directional weights. A 

unit is either on or off and will adopt either state as a probabilistic function of the two 

states of its neighbouring units and the states between them. With the right 

assumptions, units can be made to act so as to minimise global energy. If some of the 

units are externally forced or "clamped" into particular states to represent a particular 

input, the system will find the minimum energy configuration that is compatible with 

that input. A Boltzmann distribution is used to find the global minimum. 

The Hamming Net [42] is a maximum likelihood classifier using neural type units. The 

model calculates the Hamming distance between binary inputs corrupted by noise and 

the learned state and uses this to classify the input with the correct output. 

This chapter has given a brief summary of biological neurons and their function. The 

history of the development of the understanding of the nervous system has been a 

major influence in synthetic neural network modelling and learning algorithms. Much 

of the current research evolves around software modelling of the networks and learning 

algorithms given in this chapter, but an increasing minority of research work is now in 

developing hardware implementations. The next chapter discusses how the various 

types of models have been implemented in hardware. 
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Chapter 2 

Neural Network Implementation in VLSI 

This chapter gives an account of the implementation of neural networks in hardware. 

The majority of the hardware is in the form of VLSI ASICs (Application Specific 

Integrated Circuits) in either analogue or digital forms or a combination of both, often 

supported by memory and a host computer. Some VLSI circuits employ learning and 

recall techniques, but generally they act as hardware accelerators in a "neural system'. 

The vast majority of the work has been carried out in the last 3 - 4 years. 

2.1. The Motivation For VLSI Networks 

The most general neural model is based on computational units (neurons) that are 

connected together in a totally interconnected array or in a layered network. The 

connections are made via synaptic weights. The synapses have the effect of weighting 

the response of any neuron to its inputs from all other neurons in the network so they 

may be more or less excitatory to the receiving neuron and the total weighted sum 

changes the level of activity of that neuron t. Each neuron receives activity from 

other neurons in the network. The total activity, x, of any neuron j [36] is given by:- 

j =N 

x = 	 (2.1) 
j=1 

where T is the weight between neuron i and neuron j and V1  is the present state of 

the neuron. Equation (2.1) is a simplified form of Grossberg's equation (1.12) in 

section 1.3.7. The activity is thresholded according to an activation function, F,:- 

Vj  = F(x,) 	 (2.2) 

The neural activity may be thought of as the level of excitation of the neuron and the 

activation function as the way it reacts (by altering its state V) in response to a change 

in activation. The activation is not bounded in the same way as V1 . The magnitude of 

V can be changed by interactions from other neurons in the network, by a passive 

decay of the weight over time and by an external stimulus. 

t An excitatory input will tend to turn a neuron on and an inhibitory one will tend to turn it off. 
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Figure 2.1 shows a selection of activation functions. These are the threshold function 

(sometimes referred to as the "Hopfield" function), where the state is either 0 or 1, the 

linear threshold function and the non-linear sigmoidal function, which represents a 

smooth switch of state from 0 to 1 as the activity, x, increases through a threshold 

value x. A parameter, T, (often termed "temperature") controls the sharpness of the 

transition. 

1(x) 

Threshold Function 	I 
-U 

f(x)=llfx>xt 

f(x)=Olfx<xt 	 c 

1(x) 
Linear 
Threshold Function 

1(x) =Off x<xt 

f(x)=x-xtlfx>xt 	C 

1(x) 
Non-Linear 

Sigmoidal Function 

1(x)  Eux. 	 C 
xt Is threshold 

Figure 2.1 Activation functions 

The arithmetic operations in equations 2.1 and 2.2 both appear straightforward, but 

synthetic neural networks consist of a parallel array of units calculating F Tij Vj  

synchronously. Therefore, if the number of units is large, the amount of computational 

power required overwhelms even a supercomputer. Small networks consisting of tens 

of units take many hours to simulate on computer, thus there is much incentive to 
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build LSIJVLSI networks which will complete the same computation in milliseconds. 

A VLSI network also offers the advantage of being cheaper to run after the initial 

manufacture outlay, than hours of CPU time and it allows several tens or hundeds of 

neurons to be fabricated on a die. 

Although VLSI networks offer many attractions for neural implementation, the 

majority of current research is aimed at algorithmic development using computer 

simulation, often based on array processor or other supercomputer architectures to 

simulate mathematical models and demonstrate their correctness and processing ability. 

An example of this can be found in the work of Wallace [30,43]. Here an ICL 

Distributed Array Processor (DAP) is used with 4096 bit-serial processing elements 

hard wired in a 64 x 64 square array to develop algorithms to improve the storage 

performance and content addressability of the Hopfield net for random patterns [29]. 

Numerical simulations were run to show how the number of perfectly stored vectors, p, 

depends on the number of nodes N in the network. The storage prescription adopted 

by Hopfield (equation 1.9) was used with different values of p and N to produce a 

"signal plus interference" approximation to obtain an approximation for the perfect 

storage fraction in terms of p and N. The loss of memory capacity as the number of 

nominal vectors was increased was analysed in terms of phase transitions in statistical 

mechanics (ie. changes in minimum energy). The results of the simulations led to an 

extension of the Wallace-Hopfield algorithm based on the Delta Rule in Chapter 1, 

section 1.3.5. 

Another such example is a ten processor, programmable systolic array computer which 

has been used for back propagation simulations in work done by Pomerleau et at [44]. 

Here, 60 fully interconnected hidden units perform one learning trial in 0.8ms, which 

is approximately 17 million connections per second. This has proved to be the fastest 

implementation of back propagation and most cost effective for neural network 

simulation. 

2.2. Hardware Implementation 

Hardware synthetic neural networks fall into two broad categories, digital and 

analogue, with some of a hybrid digital/analogue form. The majority consists of 

systems with a VLSI circuit specially designed to compute neural functions in some 
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way and many are based on the Hopfield model. There has also been some 

implementation using microprocessors and digital signal processing (DSP) integrated 

circuits [30,43-45]. 

An early neural computing machine, the WISARD (Wilkie, Stonham and 

Aleksander's Recognition Device) [46,47], is an adaptive pattern recognition machine 

based on neural principles. The observation that a binary neuron may be viewed as an 

n-input - single output logic element is related to one column of RAM registers, where 

each value is set independently and represents the truthtable of a logic device with one 

output. The WISARD architecture is shown in figure 2.2. The RAM network or 

"Discriminator" consists of K x N-input RAMs with one output feeding to a summation 

operator. A binary pattern or training set of K  N bits is input to a Discriminator and 

a "1" is stored in each RAM. Unknown patterns representing a class are later presented 

and the Discriminator measures the similarity of an unknown pattern to each of the 

patterns in the training set. If two patterns are similar, the RAM outputs, a "1". The 

"is" are then summed to give the response, r, of the Discriminator. In a multi-class 

problem, M Discriminators can be used to represent M classes as in figure 2.3. An 

unknown pattern can then be "classified" to a particular Discriminator by the indication 

of how close it is to one of the learned patterns. If an unknown pattern that is 

completely different from any of the initial "learned" patterns were presented to a 

Discriminator, no RAM would output a "1" and hence r=0 and the patterns would not 

be classified to the Discriminator. The correct input on a RAM's address line will 

produce a "1" output. Adjusting the value stored at that location during training will 

cause the Discriminator's class to emerge, when unknown inputs are presented. 

2.2.1. Digital Neural Networks 

The neural equations 2.1 and 2.2 can be implemented using digital hardware, resulting 

in fast and accurate neural network computation. DSP chips used as neural accelerators 

fall in between the extremely fast computation time of a VLSI circuit and the relative 

slowness of a computer simulation as has been shown by Penz et a! [45]. In this work, 

the TMS 32020 DSP chip is used to accelerate the matrix multiplication in the 

network. A 256 square component matrix multiplying a 256 component vector 

performing a single multiply/accumulate instruction showed to be 2.5 times faster than 
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256 

the 	DEC VAX 8600 The time taken to perform one 2 T, V 1  is 39ms, but 
1= 1  

this is still many times slower than the same computation in VLSI which would be 

about 0.02msin a device operating at 20MHz. Further acceleration can be achieved 

using a parallel computer architecture as, for example, the Odyssey Board developed 

by Texas Instruments, which consists of many DSP modules sharing a common bus to 

provide the necessary computational power for advanced signal processing. Each 

module contains a TMS 32020, 16 kbytes of program memory and 128 kbytes of data 

memory that will store a 256 x 256 array of 16 bit numbers, ie.,,. T. for a 256 x 256 
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problem. A board consists of 4 modules and is capable of 20 million arithmetic 

operations per second. Again in comparison to the DEC VAX, the Odessey board will 

compute a 1000 x 1000 matrix 40 times faster. 

A DSP neural system is well suited to solving small groups of networks, but as the 

numbers increase the time required for the solution increases accordingly. An 

alternative solution to this has been developed by Garth [48-50] with the GRIFFIN 

neural machine. It consists of a distributed array of autonomous neural network 

simulators called NETSIM as in figure 2.4. 

COMMUNICATIONS 	
SOLUTION 
ENGINE 

 INTEL 
80188 

8k eprom j J MICROPROCESSOR 	

U 

I 	SYNAPSE 
MEMORY 

PROGRAM MEMORY 	 lMxl6 DRAM 

32K SRAM 	I 	I 

NETM I 	 I NETSM 

NETSIM I 	- I 	I NETSIM 

!'r 	 ~M ra  - m  7 "' colm 
Figure 2.4 NETSIM card within the physical organisation of the GRIFFEN 

Each NETSIM card comprises a local microprocessor, a solution integrated circuit (a 

specialist co-processor to implement the neural network function at high speed, with 

the weights and states stored in local DRAM) and a communications integrated circuit 

to allow large numbers of NETSIMs to be connected to form the GRIFFIN. The 

solution integrated circuit performs the multiply and sum operation required for 

forward or backward propagation and multiply and update operations required for 
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synaptic weight update according to the error propagation algorithm in chapter 1, 

section 1.3.3. The microprocessor computes other elements of the simulation, 

including the non-linear function and the simulated interconnection. The resultant 

information is then loaded into the communications integrated circuit for transmitting 

to the relevant node in the system. For a 256 neuron network a full synaptic update 

including forward and back propagation is calculated to be 350ms. A fully pipelined 5 

x 5 x 5 NETSIM array computes in forward propagation 450 million synapses per 

second and 90 million in backward propagation. A similar concept using a CMOS 

special purpose primitive processing element array to build a parallel MIMD 

neurocomputer [51] is being persued at U. C. L.. 

An alternative solution for a digital neural network is the implementation of a VLSI 

array with interconnected, synchronously operating multipliers as in figure 2.5 to 

compute the neural function in equation 2.1. Each multiplier has a register for weight 

storage and the activities for neurons are computed in parallel. Here, the 

multiplication of a synaptic weight by a neural state is achieved by right-shifting the 

weight. An add/subtract circuit at each multiplier stage allows excitatory and 

inhibitory inputs to the neuron and computes the accumulating activity of the neuron. 

The resulting staircase activation function, allows neurons to take intermediate states 

between off and on. A simple Hopfield net is used and delta rule learning [27] is 

computed off-chip. This approach forms the main thrust of this thesis and is described 

in detail in chapters 3 and 4. An idea similar to this using a Hopfield model with 

multi-state neurons, where the states are {-3, -2, -1, 0, +1, +2, +31 can be found in 

work by Potu et at [52]. 

A VLSI Hopfield digital network that includes a learning algorithm on-chip is given in 

[53]. The network has N identical neuron cells, each one with full arithmetic 

capability for learning and updating and a local memory containing the relevant 

column of the synaptic matrix. Neural states are stored in a N x 1 bit shift register 

clocking at 20 MHz and a partial potential update in each neuron is performed at each 

shift of the register. After 1 cycle, each neuron takes its decision. Other digital VLSI 

hardware neural accelerator systems are given in [54-56]. 

Digital techniques offer several useful properties for neural implementations in that 

weights can be easily stored and programmed, they have greater flexibility, high 
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precision and clock rates in excess of 20 MHz. However, there is a major drawback in 

that a large silicon area is required for the multiplication function allowing a maximum 

of tens of neurons to be fabricated on an integrated circuit giving a small network. 

Therefore, to obtain a large enough network that will perform useful simulations might 

require several integrated circuits to be hardwired together to provide a larger system. 

2.2.2. Analogue Neural Networks 

The implementation of neural networks in analogue VLSI circuitry has taken several 

forms. These include op-amp resistor networks [57-59], dynamic weight storage [59-

62], sub-threshold circuits [4], low-area arithmetic arrays [63-67] and pulse stream 

networks [68-72]. The major problem within an analogue approach is the storage of 
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the synaptic weights. Various methods have been developed including resistor arrays 

[57-59], storing charge on 'on-chip' capacitors [59-62,72], and by using MNOS [73] 

and a-silicon technologies [74,75]. 

The most straightforward form of an analogue neural network can be derived from the 

digital architecture in figure 2.5, by using operational amplifiers instead of neurons and 

a resistive input R ij  at each synapse location. This approach has been used by Sivilotti 

et at at Caltech [57] and Graf et at at Bell Labs [ 58,59]. Sivilotti uses resistive 

elements and achieves negative values for inhibitory connections by using 4 pass 

transistors operating in their resistive regime. This gives a tn-flop cell allowing the 3 

connection strengths of 1-1, 0, + 11. The connections are also programmable, but have 

a large hardware overhead in that a programmable synapse requires 41 transistors 

instead of 16 required for an unprogrammable one. 

The network developed at Bell Labs is given in figure 2.6. It consists of an array of 54 

amplifiers with their inputs and outputs fully interconnected through a matrix of 

resistive coupling elements. The input voltage to each amplifier is determined by 

summing the contributions from the amplifiers to which it is connected. The outputs 

are programmed to source or sink current into the input line of every other amplifier. 

This is controlled by 2 memory cells. Figure 2.7 shows how the resistive elements can 

be programmed to be excitatory or inhibitory. 

The function of associative memory is achieved by simultaneous collective operation of 

all the amplifiers. Each circuit state is described by a 54 component vector. A desired 

set of states is made stable by proper choice of the connections in the coupling 

network. After the circuit is initiated with an input vector, it evolves to the stable state 

that most closely resembles the input. Data input and output are through a buffer in 

which one memory cell is connected to each amplifier unit. From this buffer data can 

be loaded into memory cells or used to initialise the circuit. 

Dynamic Weight Storage 

The storage of an analogue weight as charge on MOS capacitors or transistor gates 

allows synapses to have a smaller number of transistors and hence a higher level of 

integration on a chip. This can be subject to problems of leakage and data corruption 

and needs refresh circuitry if long hold times are required. Capacitor circuits are used 
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by Bell Labs [59-61] and a switched capacitor circuit is described in [621. 

The Bell Lab circuit shown in figure 2.8 is of a synaptic connection. 

Weight update and decay 

by shifting charge 

I 	I 	I 

Output = w * input 

Figure 2.8 Analogue synaptic connection represented by the difference in voltage 
stored on two capacitors 

The connection strength is represented by the difference in voltages stored on 2 MOS 

capacitors. The capacitors lose about 1% of their charge in 5 minutes at room 

temperature, but the leakage rate can be reduced by lowering the temperature of the 

device, e.g. by up to 5 orders of magnitude at —100 degrees C. The output is a 

current proportional to the product of the input voltage and the connection strength. 

The output currents are summed on a wire and sent "off-chip" to external amplifiers. 

Connection strengths can be adjusted for learning by transferring charge between the 

capacitors through a chain of transistors. 

The switched capacitor implementation [61] uses MOS transistors as switches, which 

are controlled by switch "phase" periodic waveforms. A totally interconnected neuron 

network is used and charge is transferred from each neuron output to the neurons' 

inputs by the switches. The total charge input to a neuron is collected and thresholded 

according to the sigmoid activation function. 



Chapter 2 	 36 

A network implementing Kohonen's self-organising feature map algorithm [40] that 

uses charge stored on the gate of an MOS transistor as a synaptic weight is given in 

[76]. An analogue input is represented by a voltage on the transistor drain and if the 

gate voltage exceeds the maximum input voltage by an amount greater than the 

transistor threshold voltage (so that the device is operating in the ohmic region), then 

the current through the transistor is proportional to the product of the input and 

weight voltages. The transistor constitutes the synaptic connections and by connecting 

synapses to a single wire, current summing is performed to give the neural activity. 

Goser [77,78] describes an associative network using a floating-gate transistor 

technique for weight storage. The device acts as a non-volatile storage cell, where the 

electrical charge on the floating-gate represents the information and is stored 

independently from the power supply to the cell. This type of device does not store the 

analogue value accurately, but the integration of a CCD (charge-coupled device) loop 

connected to the floating-gate within a synapse cell can overcome the disadvantages of 

low accuracy and long degradation time, although a large cell area is needed for this. 

The number of CCD's in the loop yields the accuracy of the connection weight and the 

information stored in the loops can be read out by opening the loops. In this way, 

adaptive weights can be written into the loops enhancing the learning procedure. 

Technology Dependent Analogue Weights 

A CCD/MNOS (metal-nitride-oxide-semiconductor) has been used by Sage et al in 

their analogue neural network [73]. The design uses a totally interconnected array of 

neurons with charge packets to represent the analogue information transmitted through 

a synapse and MNOS device structures to store electrically changeable, non-volatile 

synaptic weight values. A cross section of an MNOS device is in figure 2.9. The 

structure is similar to an MOS device, except the main gate insulator is silicon nitride 

with a very thin silicon oxide layer, so at gate voltages of ± 35 volts, electrons and 

holes move by quantum-mechanical tunnelling between the underlying silicon and long 

lifetime traps in the nitride layer. A high voltage causes a shift in the charge stored in 

the traps. If the gate voltage is kept below 10 volts the trapped charge becomes 

permanent and makes the voltage on the gate appear to shift its switching threshold. 

The apparent modulation of the gate voltage is used to control the size of the 
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Figure 2.9 Cross section of an MNOS device 

synaptically transferred charge packets. The total charge, Ni  for a neuron i, is 

accumulated from the synaptic connections to it, using equation Ni  = T1  V1 , where 

the state is either 0 or 1. The state V = 1, allows the charge in the synapse to flow in 

the gate and be added to the total, Ni . If V = 0, the charge is blocked. The total 

charge is compared by a sense circuit to a threshold value to determine the neuron 

state for the next cycle in the circuit. 

Amorphous silicon ( a-Si  ) has been used at Bell Labs [74,75] in order to achieve 256 

neurons on a chip using a resistive network for weight storage and amplifiers with 

inverting and non-inverting outputs for the neurons to make inhibitory and excitatory 

connections. Synaptic resistor values are chosen to correspond with the desired 

memories and the values are derived from an adaptive learning rule [79]. Current 

summing is used to add together all the contributions to the input of an amplifier. As 

there is in excess of 100,000 resistors on a chip, their size must be very small with a 

resistance of a few mega-ohms to keep the power consumption low. High value a-Si is 

used for this, however this approach does not allow the resistors to be changed once 

fabrication is finished, hence giving a fixed set of stable states. Electron-beam direct 

writing is used to pattern the resistors. 

Research is taking place at CalTech [80, 811 into how an electrically switchable, 

resistive component with memory can be incorporated at each synaptic intersection in a 
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matrix such as that described by Graf et at in the Dynamic Weight Storage section 

above [74,75]. The matrix could become a PROM, with a further possibility of 

EEPROM, if the memory switch could be made reversible. Hydrogenated a-Si thin 

film technology is a possible solution. Others include a-Ge/alloys and 

platinum/aluminium oxide films. 

Thin film technology may be a solution for achieving hundreds of neurons integrated 

on a single chip with a suitable programmable material. Otherwise, large networks are 

restricted to being non-programmable with limited use for their implementation. 

Alternatively, CCD techniques have been shown to be programmable, however, their 

implementation on silicon results in a large area per device and hence a small number 

of neurons per chip. 

Imprecise, Low-area Arithmetic 

One method to increase the level of neuron integration on a VLSI chip is to make use 

of a neural networks natural fault tolerance towards imperfection in synaptic/neuron 

detail. This is due to the nature of large parallel arrays and learning procedures by 

using simple transistor circuits to approximate to the neural arithmetic i.e., the multiply 

and add function [63-67]. 

The approach used by Akers et at at Arizona [63,64] uses a limited interconnect 

analogue neural cell given in figure 2.10. Weights are stored dynamically on the gates 

of transistors Ti, T2 and T3 and the 'multiplication" T. V is performed as the drain 

terminals of 77 - T9 are charged to voltages equal to the approximate T ij  voltage 

minus the device threshold of Ti - T3. When the clock 01 is at a logic "1", the charge 

accumulations representing these voltages are summed via the analogue adder. V 0,,, is 

then thresholded according to the inverter T16/T17. N-type current sources are used 

to achieve small synapses. 

The circuit shown in figure 2.11 is proposed by Verleysen et at [67]. Two values 

stored in each synapse allow it to take the values {-i, 0 or + 11. Positive currents are 

sourced on one line and negative currents on the other. The input to the neuron is the 

sum of all the synaptic currents. The neuron compares the two currents 1+ and i- and 

will switch on if the total positive current is greater than the total negative current, 

otherwise it will switch off. The use of only N-type transistors avoids the mismatch 
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between P- and N-type current sources, due to their different mobilities. When the 

mismatch is multiplied by the number of active synapses, it soon reaches the value of 

one synaptic current and would therefore limit the number of neurons that could be 

cascaded together. 

Subthreshold Circuits 

Neural network modelling using CMOS circuits operating at sub-threshold (weak 

inversion) has been the work of Mead at CalTech [4]. Digital designs using MOSFETs 

in saturation (strong inversion) require that V, > V., but in sub-threshold operation 

where 1/ 3  < VT, Id, QZ  e '' ,t where K varies inversely with the amount of doping in 

the CMOS process [4,82]. The advantage of this type of operation is that the power 

dissipated in circuits is very low, usually in the region of 10-12  to 10 W. Also, drain 

	

currents saturate in a few 	- tt allowing transistors-- to operate as current sources  

over most of the voltage range from ground to Vdd I. This property is shared with 

bipolar transistors, thus allowing bipolar circuits to be adapted for MOS usage. The 

problems of noise immunity in such circuits, caused partly by the mismatch of 

transistors due to threshold differences may be lessened by the natural fault tolerance 

due to the massive parallelism of neural networks. 

Mead shows how many biological nerve functions can be translated to equivIent 

electrical circuits and that the nerve membrane conductance is exponentially dependent 

on the potential across the membrane, analogous to the 'ds - v83  relation above. His 

work also includes the implementation of some processing functions such as the retina 

(chapter 15 [4,83], ), the cochlea (chapter 16 [4,84], ) and the problem of motion 

detection (chapter 14 [ 4, 85], ). 

2.2.3. Pulse stream Networks 

The inspiration for the pulse stream technique [68-71] is its analogy to the 

electrical/chemical pulse mechanism of biological neurons and the discovery that some 

arithmetic operations such as multiplication can be implemented efficiently using pulse 

	

t V83  = gate-source voltage, / 	drain-source voltage, VT = threshold voltage. 

tt k = bolwnan constant, q = electronic charge on an electron. 
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streams. The name 'pulse stream" is derived from the signalling mechanism used in 

that when a neuron is ON it fires a regular train of voltage spikes (at rate R, pulses 

per second) on its output and when it is OFF it ceases to fire. The neuron circuitry is 

given in figure 2.12. Excitatory and inhibitory pulses are signalled on separate lines 

and used to dump or remove charge packets from an activity capacitor. The resultant 

varying analogue voltage, X 1 , is used to control a voltage controlled oscillator (VCO), 

which outputs short pulses. The voltage based pulse stream synapse in shown in figure 

2.13. Synaptic gating is achieved by using synchrounous "chopping clocks" to define 

time intervals during which pulses may be passed or blocked. The clocks have mark-

space ratios of 1:1, 1:2, 1:4, etc. and are used in conjunction with synaptic weights 

stored in digital RAM, to gate the appropriate portion of pulses to either the excitatory 

or inhibitory column. 

This network proved the viability of the pulse stream technique which has now 

undergone some refinements involving the removal of the digitally stored weights, the 

pseudo-clocking scheme and separate signals for the excitatory and inhibitory signals. 

Accordingly, a fully programmable, totally analogue synapse using dynamic weight 

storage has been developed [70,72, 86, 87], which operates on individual pulses to 

perform arithmetic. The activity capacitor has been distributed amongst the synapses, 

reducing the neuron to a voltage controlled oscillator 

The synapse circuit in figure 2.14 has the synaptic weight, Tk, stored as a voltage on a 

capacitor. At room temperature, refresh of dynamically stored values is necessary. The 

viable storage time of the charge is determined by capacitor size, temperature of the 

chip surface and leakage characteristics of the CMOS process used. Presynaptic input 

pulses { VK } at a constant width D, and frequency determined by the state of neuron k 

discharge the output of inverter T1/T2 linearly from V,,,,,,, to OV as shown, and at the 

end of a pulse, the capacitor recharges to its original voltage. The second inverter has 

an output pulse proportional to the synaptic voltage TIk. Multiplication is only linear 

over the range 1V 5 T,,, 5 3V, and by choosing suitable values for the aspect ratios of 

T6/T7, it is possible to achieve excitation (2V 5 T 3V) and inhibition (1V s T,k 

s2V). 

This arrangement allows synapses to be cascadable as in figure 2.6, with the activity 

capacitor on the drain connections of T6 and T7 aggregating the total activity x, for 
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any neuron i from all the other neurons connected to it. This circuit has been 

implemented in 2i.m CMOS array of 100 synapses and functions correctly. 

Further work is being done on analogue synapse circuits using only 3 N-type devices in 

addition to the storage capacitor. Details of this will be published at a later date. 

2.2.4. Optical Neural Networks 

The vast majority of neural network implementations use VLSI technology, but optical 

neural computing with its parallelism and speed offers an alternative to VLSI, however 

there has been little in the way of neural computing optical devices. The first analogue 

optoelectronic hardware implementation of neural networks, introduced in 1985, 

received attention for several reasons. The main one is that the optoelectronic 

approach combines the massive interconnectivity and parallelism of optics and the 

flexibility, high gain, and decision making capability offered by electronics. The 

construction of large scale optoelectronic neurocomputers can solve optimisation 

problems at potentially very high speeds by learning to perform mappings and 

associations. 

An example of one of the earliest optoelectronic neurocomputers consists of a totally 

interconnected network and is shown in figure 2.15 [88]. To avoid interference 
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effects, an incoherent light source is used, which also relaxes the stringent alignmeni 

required in coherent light systems. An optical crossbar interconnect carries out the 

vector-matrix multiplication {T 1 V} required. The state vector is represented by a linear 

light emitting array (LEA), the connectivity matrix {T 1 } is implemented in a 

photographic transparency mask and the activation potential x1 , is measured with a 

photodiode array (PDA). Light from the LEA is smeared vertically onto the {T 1 } 

mask. Light passing through the rows of weights is focussed on the PDA. The 

neuron threshold O i  and external input stimuli are injected optically with the aid of a 

pair of LEAs, whose light is focussed on the PDA. A third PDA is used for the 

injection of noise. This architecture has been successfully employed as a 32 neuron 

network with associative memory. 

To implement learning, the network needs to be partitioned into input, output and 

hidden layers of neurons. An efficient way to do this is in figure 2.16 where the layers 

are partially interconnected and the weight matrix is divided into an input group, V 1 , 

an output group, V 2  and hidden units, H. V 1  and V 2  are only connected via H. The 

connection weights are programmably computer controlled by a spatial light modulator 

(SLM). The architecture uses supervised learning and the weights are updated 

according to a prescribed formula until all the training vectors evoke the correct 

desired output. This network has also been used to demonstrate supervised stochastic 

learning by simulated annealing. For this, the computer controller controls the 

annealing profile, monitors the convergent state vectors and computes and executes the 

weight modifications. 

The use of neurocomputers in practical applications involving fast learning or the 

solution of optimisation problems requires large networks that still have 

programmability and flexibility as in the network described above. One method being 

developed at the University of Pennsylvania [88] uses a "clusterable photonic neural 

chip" concept. Here the architecture in figures 2.15 and 2.16 is modified to include 

internal optical feedback and "non-linear' reflection (opti lIstction, amplification 

and thresholding) on both sides of the connectivity matrix. Another approach has been 

to use a 2-D arrangement of neurons to increase packing density [89]. 

A Hopfietd neural network using optical techniques has been developed at British 

Aerospace [90]. Computer generated holograms are used to form fixed weighted 
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interconnections and a spatial light modulator enters the input image. The holographic 

interconnections perform the vector-matrix multiplication and the resultant product is 

thresholded and fed back into the matrix multiplier. There is a drawback however in 

this type of network, in that material limitations severely limit the size of such a 

machine and the weight connections are fixed. Despite this, a factor in favour of this 

optical system is the ease in producing a complex hologram compared to an extensively 

wired electronic system. The largest machine that could seriously be constructed using 

this method is a 25 x 25 neuron array. Nevertheless, this still represents a powerful 

processing capability which can be applied to less extensive networks such as edge 

detection algorithms. 

Optoelectronics offer advantages for the design and construction of a new generation 

of analogue neurocomputers capable of performimg computational tasks at high speed. 

The architectures of the present optical prototypes aim to demonstrate the best 

attributes of optics and electronics and can be combined with programmable non-

volatile spatial light modulators and displays to form neural networks that include 

associative storage and recall, self-organisation and adaptive learning. 
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Chapter 3 

A Digital, Reduced Arithmetic Neural Network 

This chapter describes a digital bit-serial neural network, that uses a "reduced 

arithmetic' multiplication function to implement the {T 1  V } product. Software 

simulation results using this computation style are given, showing comparisons of the 

2-state, reduced arithmetic and sigmoid activation functions. 

3.1. Digital verses Analogue Network 

There are fundamentally two approaches to implementing any function in silicon - 

digital and analogue. .Each approach has its advantages and disadvantages. These are 

listed below along with the merits and demerits of bit-serial architectures in digital 

(synchronous) systems. 

The primary advantage of digital design for a synapse array is that digital memory is 

well understood and can be incorporated easily for programmable synaptic weights. 

Learning networks are therefore possible without recourse to unusual techniques or 

technologies. Other strengths of a digital approach are that the design techniques are 

more advanced, automated and easily amenable in VLSI implementation than their 

analogue counterparts and noise immunity and computational speed can be high. 

Unattractive features are that digital circuits of this complexity need to be synchronous 

and all states and activities are quantised, while real neural networks are asynchronous 

and unquantised. Furthermore, digital multipliers occupy a large silicon area and an n 

neuron network requires n parallel multipliers, resulting in a low synapse count on a 

single chip. 

The advantages of analogue circuitry are that synchronous behaviour and smooth 

neural activation are inherent. Circuits elements can be small with faster settling than 

digital ones, but noise immunity is relatively low and arbitrarily high precision is not 

possible. However, a drawback of analogue networks until the last year, has been that 

no reliable analogue non-volatile memory technology was readily available, but as 

discussed in chapter 2, section 2.2.2, there are now several implementations using 

analogue weight storage. For this reason, the first learning networks lent themselves 
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more naturally to digital design and implementation. 

3.2. Bit-Serial verses Bit-Parallel Network 

Bit-serial arithmetic and communication can be efficient for computational processes. It 

allows good communication within and between VLSI chips, with signals leaving and 

entering the chips on single pins, an essential requirement for achieving the largest 

possible number of synapses on a single device. Structures can be pipelined for 

maximum efficiency, eg., each synapse in an interconnected array computes its partial 

activity and passes it immediately to the next synapse in the column so that the 

accumulating activity of the neurons is being calculated every clock cycle. A bit-serial 

strategy is ideal for neural networks as it minimises the interconnect requirement by 

eliminating multi-wire busses. Although a bit-parallel design would have a lower 

computational latency (delay between input and output), a bit-serial synaptic array 

lends itself to pipelining and thus can make optimal use of the high bit rates possible in 

serial systems and allows efficient use of silicon area. 

3.3. Reduced Arithmetic 

In a digital network each synaptic weight, Tq , is represented by a binary word. The 

division of a binary number by 2, simply requires the right-shift of the number by 1 

bit. For example, when 10110 2  (= 22) is right-shifted, the word becomes 01011 2  (= 

11). Since the synaptic function is {T x V1 }, the right-shift of the weight by 1 bit is 

equivalent to the multiplication of the weight by the state, V1  =0.5. Similarly the right-

shifting of the weight by 2 bits, would be equivalent to multiplying the weight by V = 

025. Therefore a full multiplication and add function can be reduced to a "right-shift" 

and add. The state V = 1 only requires the synapse to add the weight to the total 

activity, x,, of the receiving neuron and the state V = 0 requires no weight to be 

added to the total. By allowing V < 0 and replacing the adder with a switchable 

added/subtractor, gives the further states of —1, —0.5, —0.25, etc., which need only a 

few extra transistors. The reduced arithmetic approach gives a staircase activation 

function shown in figure 3.1. Five, seven, nine, etc. neural states are therefore feasible 

with circuitry that is slightly more complex than a serial adder. For example, for a 5-

state activation function, the synapse function between neurons i and j now becomes:- 
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Figure 3.1 Reduced arithmetic allows four, five, seven, etc., state activation functions 

V)  = 1, 	add T11  to xi  

V1  = 0.5, 	right-shift and add T,1  to x1  

vi. 	add Otox1  

V1  = — 0.5, 	right-shift and subtract T, from x 

V1  = —1, 	subtract T.1  from x, 

where x1 = >TIJ V1  for neuron i 

The activation function showing quantisation is given in figure 3.2. The sharpness of 

the transition of the staircase is represented by the gradient of the sigmoid activation 

function. 

The use of a 5-state activation function instead of a sigmoid activation function allows 

the size of a VLSI synapse to be greatly reduced. However software simulation 

comparing the learning and recall capabilities of a network using the 5-state activation 

function with those of the sigmoid is required to verify that the 5-state activation 

function performs adequately to justify its use in a VLSI implementation. 
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3.4. Verification of the Reduced Arithmetic 

Firstly, a relationship between the staircase function and a smooth sigmoid had to be 

defined before a network of neurons using reduced arithmetic could be simulated. A 

neuron with a sigmoid activation function has a neural state that can take on a 

continuous value between 1 and 0. The state is described by the equation:- 

Vi = 	
1 (3.1) 

1+exp1 
T J 

where x, is the neuron threshold and x is the neuron activity as given in figure 2.1, 

chapter 2. T is the parameter "Temperature" that determines the slope of the function. 

The form of equation 3.1 is derived from the Fermi - Dirac statistics of electrons in 

conductors, where the Fermi - Dirac distribution function, F(e,r) gives the probability 

that an available energy state, €, will be occupied by an electron at absolute 

temperature, t. The Fermi - level is the energy state that has a probability of % of being 

occupied by an electron which is analogous to the threshold, x1 , for a neuron. At a 

'Temperature" T = 0, the function becomes the rectangular, 2-state threshold function 

as used by Hopfield and there is no probability that an electron will occupy an energy 

state above the Fermi level. As the temperature increases the gradient of the sigmoid 

becomes lower and the probability that states above the Fermi level will be filled 

increases. 

Threshold limits were calculated by experiment for the thresholds x 1 , x 2 , x 3  and x 4  in 

the 5-state approximation given in figure 3.2, for any value of T. The limits are 

derived from equation 3.1 by obtaining the threshold, x,, in terms of V1 , x and T. 

These are:- 

Vi  = 1 when x 4  < x, 

V = 0.5 when x 3  < x 	x4, 

Vi  = O when x2<xf:-:x3, 

Vi  = —0.S when x 1 <xSx 2 , 

V = —1 when x 	x 1 . 

X4 = x, + ( T. log (8.00)) 

X3 = x + ( T. log (1.75)) 

X2 = x, - (T . log (1.75)) 

x 1  = x1  - ( T . log (8.00)) 

As the 'Temperature" increases, the threshold values become further apart on the x-

axis as the gradient of the sigmoid decreases. 
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Figure 3.2 The 5-state activation function 

3.4.1. Simulated Performance of the Reduced Arithmetic 

The simulated performance of the reduced arithmetic was work carried out by A. V. 

W. Smith and is reported in [71]. A totally interconnected neural network with 64 

neurons was chosen for the simulation. The network was restricted to this size due to 

the lengthy computation time of larger networks. The Hopfield - Wallace Learning 

Algorithm ([30] and Chapter 1, section 1.3.5 
) 

was used to store 32 random patterns 

using: 

2-state activation function, with the neural states -1 and +1. 

5 - state activation function, with the neural states -1, -0.5, 0, +0.5, +1. 

Sigmoid activation function, with the neural states in the continuous range from 

-1 to +1. 

In each case the network was iterated until each pattern being learned matched the 

initial set-up pattern. The weights, T1 , were floating point, integer numbers and were 

limited to the ranges -20T 1 +20, -30:5T:5+30, -40_T11 +40, 

-50_T11 _+50, -60!~-T11 +60, -70:5T1 :5:-+70 in the simulations so the optimum 
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range of weight myht be found. As it was not possible to encode all patterns correctly 

using the above restricted weights set, a maximum of 150 iterations was allowed. 

Recall was then attempted with 12.5% noise introduced to the initial random patterns. 

This was achieved by selecting 8 nodes at random and changing them from +1 to —1 

or from —1 to +1. Each set of patterns was learned using each activation function and 

then recalled by all three activation functions separately, giving nine possible 

combinations of the activation functions for the learning and recall. The simulation of 

each combination was repeated several times and the average number of correct 

recalled patterns for each was noted. 

3.4.2. The Simulation Procedure 

The simulation followed the succeeding steps. 

Pattern Learning 

Random pattern array: 32 random patterns were produced. Each was stored in a 

64 (8 x 8) node array. The nodes were either + 1 or —1. 

Network weight and state initialisation: Weights were initialised to a small 

(almost zero) value and the states were initialised to the first random pattern. 

Network iteration: The network was iterated according to the equation:- 

N 

	

X, = 	T J VJ 	 (3.2) 
j= 1  

where T, is the weight between nodes i and j, V3  is the state of node j and x is 

the new activity of node i. 

New neural state calculation: The node activities were thresholded according to 

the activation function with which the network was learning, to give the new 

neural states and hence the new output pattern. 

Error array calculation: The new output pattern was compared to the initial 

random pattern to produce an error array such that:- 

	

( 1 	if V, (r) # 

= 	
0 otherwise 	

(3.3) 

where r is the pattern number, V 1  is the new neural state, V,_ 1  is the previous 
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neural state of the same neuron i and 	is the error of node i in pattern r. 

The above 5 steps were repeated for each random pattern. 

Weight update: When an error mask for each pattern had been calculated, the 

weights were updated according to: 

= E V 1(r)V(') (e 1 (' )  + 	 (3.4) 

where V1  and V are the present states of nodes i and j in pattern r. 

Iterate to update weights: The procedure in steps 1 - 6 was repeated. The 

network was reset to each random pattern, the new neural states were calculated 

and the weights updated accordingly. This was iterated 150 times maximum or 

fewer if a pattern was stored correctly in under 150 iterations. 

Steps 1 - 7 were repeated for 3 different "temperatures'. 

Pattern Recall 

The weight set was used to recall the random patterns corrupted with 12.5% noise. 

Initialise network: The network was initialised to the first noise corrupted pattern 

and equation 3.2 was iterated until the new neural states calculated were stable. 

The states were compared to the initial uncorrupted pattern. If there was no 

difference, the patterns had been recalled correctly. 

Step 1 was repeated for each pattern in the array. 

Steps 1 and 2 were repeated for each activation function. 

Steps 1 - 3 were repeated for 3 different 'temperatures". 

Learning with Fixed Weights 

Updating the weights in the learning procedure can lead to weight saturation when a 

fixed weight set is used. This happens when the weight grows above the maximum limit 

allowed. Three methods to reduce the saturated weights to within the weight limit were 

simulated, while still achieving the maximum learning capability of the network. 

1. 	Renormalisation: The complete weight set was renormalised so the largest weight 

was reduced to fit within the weight limit. Eg. if the maximum weight limit is ± 
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30 
30 and a weight is updated to + 36, then each weight is renormalised to 	of it 

original value. The majority of weights however, are small integer values. 

Therefore a weight of + 2 would become renormalised to +1. This introduces a 

large error into the learning procedure. A typical example of a weight value 

distribution is given in figure 3.3. 

Forgetting: The inclusion of a decay or "forgetting" term can be introduced in the 

learning cycle [36]. At each weight update a "forgetting" term subtracts a 

proportion of each weight to keep them within the weight limit. This can cause 

the information that is learned at each iteration to be destroyed. 

Clipping: Any weight that becomes saturated is set to the maximum allowed 

weight value. Weights within the limits remain untouched. In the learning 

procedure unclipped weights readjust for the clipped ones. 

There have been other experiments, which have indicated that a Hopfield network can 

"forget" in a different way, under learning control, giving preference to recently 

acquired memories [91]. 

3.4.3. Simulation Results 

The simulations showed how the properties of the different activation functions effect 

the learning and recall capabilities of the network. Different weight limits and 

temperatures also determine the number of iterations required to learn and recall 

patterns. 

Learning with Different Activation Functions 

The number of iterations required to learn the 32 random patterns using the 3 different 

activation functions with varying 'Temperatures" and weights limits is presented in 

figure 3.4. Integer weights with a dynamic range greater than ± 30 were necessary to 

preserve storage capability. The following conclusions can be drawn from the graphs:- 

For all values of 'Temperature" and weight limit, the 5-state activation function 

required more iterations than the 2-state function to learn the random patterns. 

A rise in 'Temperature" from 10 to 20 showed a subsequent increase in the 

number of iterations needed to learn using the 5-state function. 
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Figure 3.4 The graphs show the number iterations required to learn 32 random pat- 
terns using the 3 activation functions with varying 'Temperatures" and weight size lim- 
its. 
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3. 	The sigmoid activation function exhibited the most efficient learning when the 

weight limit was 	±50 with a "temperature" of 10 and 20. 

Effects of Weight Limits and Temperature on Learning 

Renormatisation: Renormalisation of the weights was unsuccessful, suggesting 

that information distributed throughout the numerically small weights was being 

destroyed. This led to no solution being found. 

Forgetting: In the time available for experiments, a rate of decay could not be 

"tuned" sufficiently well to confirm that including a "forgetting" term in the 

learning cycle can produce the desired weight limiting property. As a result, 

errors could not be reduced in the learning cycle and no patterns were stored 

perfectly. 

Clipping: Clipping proved to be a successful method as the learning algorithm 

adjusted the weights over which it still had control to compensate for the 

saturation effect in the upper weights. As the sigmoid function has more 

intermediate states thai the 5-state function, it takes longer to readjust the non-

saturated weights. The results show that for high temperatures and small weight 

limits (< 50), clipping occurs and the 5-state function learns faster than the 

sigmoid. Clipping also occurred for weights with the values T.7IaX = 50 - 70, but 

network performance was not seriously degraded over that with an unrestricted 

weight set. 

Recall with Different Activation Functions 

1. 	Patterns learned with the Sigmoid Function: Figure 3.6 shows the results of 

patterns recalled using the 5-state and sigmoid activation functions, having first 

been learned with the sigmoid function. The results are for patterns learned and 

recalled at the same 'Temperature". For TiTax > 50, the recall ability of the 

functions is approximately the same and up to 70% of the patterns were recalled. 

However, at Tj and "temperature" = 20 and 30, the 5-state function recalled a 

small number of patterns and the sigmoid function function recalled none. These 

graphs suggest that the higher the weight limit and temperature, the greater the 

number of recalled patterns. 
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Figure 3.5 The graphs show the number of patterns recalled with the 5-state and 
2-state activation functions. Learning was with the 5-state activation function. 



Chapter 3 
	 59 

Patterns learned with the 5-state Function: Figure 3.5 shows the number of 

patterns recalled with the 5-state and 2-state activation functions, which were first 

learned the 5-state activation function. At each 'Temperature", the 5-state 

function recalled more patterns than the 2-state function. The 5-state activation 

function with a middle 'Temperature" (T = 20) gives the best recall (38% of 

patterns) with the weight limit, TI7' ~! 40. 

Patterns learned with the 2-state Function: A low number of patterns were 

recalled using the 2-state function to obtain a weight set. Hence the results do not 

merit discussion. 

3.5. Conclusions 

The 5-state activation function required the most iterations to learn the 32 patterns and 

the sigmoid required the least provided the 'Temperature" was low. Both the 5-state 

and the sigmoid function had faster learning as the "Temperature" was decreased. 

Over the whole temperature range, the 2-state activation function exhibited the best 

learning ability. The reason for this is that as the 2-state network learns, any neuron 

has 50% chance of being in the wrong state, therefore on the next iteration the neuron 

will be in its correct state. Neurons learning with the 5-state activation function have 

80% chance of being in the wrong state at the start of learning and the network will 

take longer to iterate through the 5 states until each neuron arrives at the correct state. 

The 5-state function had better recall ability than the 2-state function for patterns 

learned using the 5-state function. For patterns learned with the sigmoid function, the 

recall abilities of the 5-state and the sigmoid were very similar for T17 > 30. 

However, many more patterns were recalled with the 5-state function (70%), that were 

first learned with the sigmoid, than were learned and then recalled with the 5-state 

function (38%). 

The simulations proved that learning and recall using the 5-state function were 

significantly better than that using the 2-state. Full sigmoidal activation was better than 

the 5-state, but the enhancement was not so great as that incurred by moving from the 

2-state to the 5-state. This suggests that the law of diminishing returns applies to the 

addition of the levels to the neural states. This issue has been studied mathematically 

[92], with results that agree qualitatively with those given above. 
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Figure 3.6 The graphs show the number of patterns recalled with the 5-state and 
sigmoid activation functions. Learning was with the sigmoid activation function. 
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The results of the 5-state activation function simulations proved that the reduced 

arithmetic approach was well worth pursuing for the synaptic function instead of full 

multiplication, without degradation of the synapse performance. The succeeding 

chapter gives details of how a reduced arithmetic synapse has been implemented in a 

VLSI circuit. 
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Chapter 4 

VLSI Design of the Synapse Array 

The previous chapter has shown how a "reduced arithmetic" approach can be used as a 

compromise for the full multiplication required for the synaptic function {T x V1 }. 

This chapter gives the design details and simulations of two bit-serial, digital integrated 

synaptic array circuits using reduced arithmetic. The first integrated circuit was 

designed and fabricated using a fully custom 3iim design, however, owing to a layout 

error the integrated circuit did not function correctly. A second fabrication of the 

design using the same process had 0% yield owing to problems with the metal layers. 

Therefore a second integrated circuit was designed with the ES2 (European Silicon 
devices i 

Structures) Solo 1400 silicon compiler as this process guaranteed workingi A 
 and •a 

fabrication time of 8 weeks. 

4.1. Synapse Requirements 

The synapse array was designed to operate at maximum speed and efficiency with 

minimum latency (bit delay between input and output) and full pipelining. The size of 

the array was restricted by the area of silicon and the number of pins on the packages 

available. 

Each synapse required a programmable weight storage capability for T,,, a state 

multiplexor to allow any of the 5-states representing the value V to be selected and a 

full adder/subtractor. The adding/subtracting of the activity at each synapse had also 

to accommodate word growth for the total activity calculated in each column. 

4.1.1. Weight Storage 

The storage of a digital weight is straightforward as an n-bit shift register will hold an 

n-bit weight. The simulation results of the learning and recall capabilities of the 5-state 

activation function given in the previous chapter showed that the best performance is 

achieved when the weights have a large dynamic range. The range used in simulation 

was integer values up to ±70 and therefore an 8-bit weight (ie. 2) was used for the 

hardware as this gives integer values over the range —127 to + 128. A 6-bit weight (ie. 
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26) would, for example, only give the range —63 to +64 and hence is not large 

enough. The dynamic range —127 to + 128 was suitable for this type of network and 

the learning procedure used in the software simulation. As the same network is to be 

used in hardware, an 8-bit weight was chosen. 

A single phase clocking technique was implemented in preference to a two-phase 

clocking technique. Single phase has advantages in that it allows a higher speed as it 

does not suffer from overlapping clocks and race hazards that occur in two phase 

systems. 

An 8-bit shift register per synapse required one input pin to load the synaptic weight. 

In order to integrate the maximum possible number of synapses on a die it was 

imperative that the weight input pin count be kept to a minimum. This was achieved 

by connecting each 8-bit shift register to form one long shift register through the array 

as shown in figure 4.1. 

Figure 4.1 The connection between synaptic weights in the array for loading purposes. 

Synaptic weights are loaded sequentially through one pin until each weight has reached 

the appropriate synapse. For example, a 10 synapse array would require 80 clock cycles 
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for the LSB (least significant bit) of the synaptic weight furthest from the input pin to 

reach its correct location. A 'load/shift" multiplexor controls the synaptic weight 

operation. The multiplexor allows each weight to be loaded and subsequently isolated 

and shifted through the register so that it may be "multiplied' by the neural state. 

During the {T 1, x V 1  } computation, the weight is shifted around the the register. A 

further complete shift cycle of the weight permits an 8-bit word growth allowing a 16-

bit activity word to be summed down the synapse column. The MSB (most significant 

bit) of each weight is sign-extended for 8-bits during the second shift phase by a "sign-

extend" control signal. These control signals were easily incorporated within the logic 

required to select the neural state. 

4.1.2. Synapse Logic 

The neural state multiplexor in the synapse controls whether the weight is right-shifted 

(x ±0.5), killed (xO), or its full value (x ±1). A positive state adds the 16-bit 

JTjj  x V } to the running total in the synapse column and a negative state subtracts it. 

Each neural state is signalled on a 3-bit bus that runs horizontally across the array, as 

shown in figure 4.2. The signals are rs (right shift), kill and pm (plus/minus). The 

sign extension of the neural state is controlled by two further signals, sel and se2. sel 

sign extends the weight 8 bits when V = ±1 and se2 sign extends the weight 9 bits 

when V = ± 0.5 as the weight has already been right-shifted by 1 bit. 

The adder/subtractor has two parts: The first is summing logic that adds the 

accumulating activity from the previous synaptic computation in the neuron column to 

the present {T 1  x V, ) along with any carry from the summation of the previous bits of 

the synapses' weights. The second part is carry logic that signals any carry that occurs 

in the summation part. 

Two's complement arithmetic is used. In this representation, positive numbers are in 

normal signed binary. The difference lies in the representation of negative numbers. 

The one's complement or inverse of the negative number is first computed and then one 

is added, as shown in the following example, which gives the two's complement 

representation of —5. 

= 00000101 

The one's complement of +510 = 11111010 
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Figure 4.2 Synapse array structure, showing the 8-bit weight, 3-bit state multiplexor 
and adder/subtractor. 
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(adding 1) 	 +1 

	

Therefore, the two's complement is 	11111011 

	

Hence, (+3) 	00000011 

	

(-5) 	+ 11111011 

11111110 

The result can be identified by computing the two's complement 

The one's complement of 11111110 is 00000001 

	

(adding 	1) 	+ 1 

Hence, the result (= + 2) 00000010 

Therefore, the result represented by 11111110 is correct. 

It is possible to add or subtract signed numbers, with the significant advantage that a 

carry generated by adding the MSBs is ignored in the value of the result. If this were 

not the case, the result would have to be corrected for the sign, each time. 

A table giving the sum/carry logic output based on the equation 4.1 of a 16-bit word 

being added/subtracted is given in table 4.1. 

j =N 

0, then Sum= f T,_ 1 V_ 1  - T1 V - carry 

	

When pm 	 j=N 	 (4.1) 

	

- 	1, then Sum =T, T, 	V 	+Tij Vj  + carry 
j= 1  

A LSB signal is synchronised to the LSB of the accumulating activity word and clears 

any carry that is generated at the addition/subtraction of the MSB of the previous 

activity word to avoid it being added into the LSB of the present activity word. 

4.1.3. Synapse Array Design 

The synapse array architecture is also shown in figure 4.2. Each neural state is input 

to the array on 3 pins and carried on a 3-bit bus. The first synapse in each column has 

an external input that allows accumulating activities to be added in when the integrated 

circuits are cascaded together. The last synapse in each column outputs the total 
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pm 
j =N I T3_1V_1  
j= 1  

Tij  V1  Carryin Sum Carryout 

o 0 0 0 0 0 

o 0 0 1 1 1 

o 0 1 0 1 1 

o 0 1 1 0 1 

o 1 0 0 1 0 

o 1 0 1 0 0 

0 1 1 0 0 0 

o 1 1 1 1 1 

1 0 0 0 0 0 

1 0 0 1 I 0 

1 0 1 0 1 0 

1 0 1 1 0 1 

1 1 0 0 1 0 

1 1 0 1 0 1 

1 1 1 0 0 1 

1 1 1 1 1 1 

Table 4.1 Sum and carry output values calculated from equation 4.1. 

activity. The three control signals are shifted in registers adjacent the array in order 

that they coincide with the activity computation. 

Once the functional requirements of the synapse were realised, the transistor level 

design of the synapses could be begun. 

4.2. Fully Custom Integrated Circuit Design 

The main advantage of a fully custom design over a silicon compiled design, is that 

designing circuits at transistor level enables the minimum number of transistors to 

compute any particular logic function to be used, achieving optimum use of the silicon 

area. The technology used was 3p.m 2-metal P-well CMOS. The CAESAR CAD 
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(computer aided design) tool was used to layout the complete circuit. 

4.2.1. Weight Storage Shift Register 

The single phase technique [93] used for the custom design was based on static logic 

trees charging and discharging dynamic latched (or shift registers). A logic tree is a 

circuit of transistors that computes a required logic function. It effectively uses two 

phases of the clock, the logic 1 (5 volts), referred to as the i1'-phase and the logic 0 (0 

volts), referred to as the AL-phase. Figure 4.3 shows the shift register, with pre-charge 

circuitry. On the TV -phase, the input is passed by i'.-transistor Ti to node 2 and 

inverted at node 3. Any input at logic 1 will not be passed as a "good" logic I by 

transistor Ti, therefore when the clock goes low, p-transistors T4 and T5 pull node 2 

Lolp to a good logic 1. The value at node 3 is now passed by transistor T6 to node 7. 

The two "pull-.ktransistors T8 and T9 ensure that any logic 0 passed by transistor T6, 

will be pulled 4o.uo a good logic 0 at node 7. When the clock returns low, the output 

appears 1 clock cycle later at node 10. Eight shift registers in each synapse hold the 

weight bit-serially. 

The shift register had previously been fabricated on a 3pm CMOS integrated circuit 

[71] and the test results showed it functioned correctly up to 20 MHz. Tests were not 

attempted above this frequency owing to the limitations of the test equipment. 

4.2.2. Synapse Logic Tree Design 

The logic trees in the synapse required the pre-charge circuitry and a shift register to 

evaluate the correct output. Logic trees with the minimum number of transistors were 

obtained from boolean type functions or logic level descriptions of the state 

multiplexor, sum logic and carry logic by the MOSYN CAD Circuit Synthesis program 
oJfd. 

[94, 95]. These descriptionsAcircuit function that give the minimum circuits generated 

by MOSYN are given in Appendix A. 

The minimum transistor logic trees are shown in figure 4.4. Each tree is joined to the 

pre-charge circuitry given in figure 4.3. On the first (p.) phase of the clock cycle (logic 

0), node 11 is "pulled up" to a logic 1, regardless of the inputs to the transistors in the 

tree. During the ir-phase of the clock, the node ii evaluates the correct output. The 

inverter 112 allows node 11 to be "pulled down" to a good logic 0, if the transistor 
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Figure 4.3 Single phase shift register. 

inputs are such that there is a path to ground. The shift register outputs the correct 

value one clock cycle later. The correct logic function of each tree was verified by the 

RNL [96] timing logic simulator for digital MOS circuits. RNL is an event driven 

simulator that uses a simple RC (resistance capacitance) model of the circuit to 

estimate node transition times and to estimate the effects of charge sharing. Two 

intermediate programs NETLIST and PRESIM are required to be run first using a 

transistor netlist derived from the MOSYN netlist, to generate the correct binary netlist 

input file. bin for RNL. The netlist, sum. net  the input RNL logic data file, sum.1 and the 

output, su,n.out generated by RNL for the sum logic tree are given in Appendix B. 

A complete synapse required 170 transistors. Once this had been verified by RNL as 

functioning correctly, the custom layout could proceed. 

4.2.3. Synapse Array Layout and Simulation 

The layout of a fully custom integrated circuit involves each transistor being 

constructed from the nine layers available in the 2-metal CMOS process. First, the 

synapse was designed to be as compact as possible. Each transistor had the minimum 



BE 

connects to 
top and 
bottom on 
shift register 
precharge 
circuitry 

sel 

Chapter 4 
	

70 

bottom 

State logic tree 

sum in 	 top 

muxout 

carry in 

1T 

Sum logic tree 

i-I-Il 

Carry logic tree 

Figure 4.4 Transistor logic trees for the synapse. 

plus/mi 

muxout 

lsb 

carry in 



Chapter 4 	 - 	71 

geometrical dimensions, ie. 4iim long and 3m wide. As the 10 transistor shift register 

had been previously designed [71] and shown to function correctly, the layout was used 

in the synapse. The metal 2 layer was used to carry all signals from the pads to the 

synapse array and for the Vdd (+ 5 Volts) and GND (0 Volts) power lines. A layout 

plot of a synapse is shown in figure 4.5. The area of silicon required for 1 synapse was 

670m by 240m and approximately one third of this was taken up by the 8-bit weight 

storage shift register. The layout also required substrate contacts to be placed every 

70i.m in the design. The CAESAR design rule checker LYRA, was employed at each 

new stage in the design to ensure that the layout dimensions did not violate the 

minimum geometries permitted for each layer. 

Once the synapse design was completed a CIF (Caltech Intermediate Format) file was 

created by CAESAR. CIF is a low level graphics language used for describing 

integrated circuit layouts. The CIF file is then read by MEXTRA, a circuit extraction 

tool for VLSI simulation, to create a circuit description file for use by PRESIM as 

described in section 4.2.2. RNL was then run to verify that the layout was functioning 

correctly. The flow diagram given in figure 4.6 shows the design procedure using the 

CAD tools. 

The second stage of the layout involved placing the maximum number of synapses in 

the allowed silicon area to form an array. The array size was 3 by 9 synapses, as is 

shown in a chip photograph in figure 4.7. The photograph in figure 4.8 shows a 

synapse in the array. This can be compared to the layout plot of a synapse in figure 

4.5. The area of the array including the control circuitry shift registers was 5.70 mm  

(2.49 x 2.29 mm) and accommodated 4958 transistors. The area of the chip including 

pads was 16.61 mm' (4.27 x 3.89 mm). MEXTRA, PRESIM and RNL verified that the 

layout was correct. The array was simulated as fully as possible by the CAD tools 

before fabrication by MCE (Micro Circuit Engineering). 

A design of this size pushes the design capabilities of CAESAR, RNL and the Vax to 

their limits. Complete screen and paper layout plots took 2 to 3 hours and one column 

of 9 synapses required approximately 9 man hours and several hundred CPU hours of 

simulation. This makes the correction of errors a slow and tedious task. 

The 3j.m technology allowed 27 synapses to be fabricated in an area of 5.70mm 2 . This 

may appear to be a disappointingly low number, but it is favourable when compared to 
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a full multiplier which would require approximately 1mm X 1mm area in 3i.m 

technology. However if a projection is made to a him minimum feature design on a 

10mm x 10mm die, based on the area required for 27 synapses, it would be possible 

to achieve approximately a 58 neuron array (582  synapses). 

For example, 

If 27 synapses require 5.70mm 2  in 3im technology, then 27 x 3 (=243) 

synapses require 5.70mm 2  in 1pm technology. 

If the available area of silicon on a 10mm X 10mm die is 81mm2  (excluding pad

81 
area), then the number of synapses = 

570 
x 243 = 3400 == 58 neurons (582  

synapses). 

The size of this array is more suitable for learning and recall simulations. 

4.2.4. Test procedure for the integrated circuits. 

The manufactured integrated circuits were tested using a DAS (Digital Analysis 

System). It allows patterns of logic is and Os that are generated by the user to be input 

to the integrated circuit under test and reads back logic is and Os output from the 

device. The DAS generates a clock pulse up to a maximum of 5MHz. 

The first test ensured the correct functioning of the 216-bit weight shift register, which 

is loaded bit serially and the 3 control shift registers for the signals sel, se2 and lsb 

described in section 4.1.2. The DAS timing diagram in figure 4.9 shows the registers 

shifting the data correctly. For example, the data on line "DOUT" which is the output 

from the weight shift register appears 216 clock cycles after the input on line 'DATA" 

and the data is then shifted around the 8-bit shift register once the "load" line has 

returned to a logic 0. 

The next test was to apply a neural state, V, to each row of synapses and observe the 3 

outputs "sa out", "sb out" and "sc out", which should give the total activation in each 

column, ie.: 

9 

j=1  

where x0  is the total activity in column a and 	is the synaptic weight between 

neurons a and j. However, each device had the "sum out" output pins held at a logic 
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0, implying that a design or manufacturing error had been made, that was holding the 

outputs to the OND line on the device. Careful examination of the layout plot of a 

synapse showed that a "contact" had been omitted from the precharge circuitry of the 

logic tree shift register. This had the effect of shorting the output of each logic tree to 

GND. The circuit extractor MEXTRA does not extract substrate contacts into the 

file.sim to be simulated by PRESIM. Hence the layout error was not d etected.t 

Once the substrate contact had been redesigned, the chip was manufactured by the 

EMF (Edinburgh Microfabrication Facility), University of Edinburgh, as the process 

was no longer available through MCE. Unfortunately, the resulting wafers had faulty 

metal layers and had 0% yield. At this stage, as the time to complete the research was 

running short, the only alternative route to achieve a fully working chip, was to 

completely redesign the synapse array was using the ES2 Solo 1400 Compiler for 

fabrication at ES2 (European Silicon Structures), as this process guaranteed working 

devices and a fabrication time of 8 weeks. 

4.3. ES2 Solo 1400 Design 

The Solo 1400 silicon compiler is a software tool for designing custom integrated 

circuits to manufactured in 2p.m 2-metal N-well CMOS. The fundamental building 

blocks of the solo design are basic library parts. The parts are NAND, NOR, XOR, 

buffer, flipflops etc., which are stored in the Base Library and are recognised by the 

design subsystem. The Solo software provides facilities, which will guarantee a 

"working" integrated circuit if they are used in the correct order. The Base Library 

provided enough parts to design the neural accelerator chip. The following procedure 

was used for the design. 

Design Entry: This allowed circuits to be input to Solo as a gate level schematic 

or in a text form using a Hardware Description Language (HDL) or in a 

combination of both. 

Compilation: The Hardware Description Language (HDL) was compiled to 

produce an Intermediate Design Language (DL) file, which was used by the 

simulation and physical design phases. At this stage the FANOUT of the design 

was checked to ensure that it met the fanout restrictions on components. 

t The contact was between active area and metall in the inverter of the precharge circuitry, therefore the inverter 

had no GND connection. As the contact was in the active area of a substrate contact, MEXTRA assumed that a con-

nection to GND existed. This meant the logic tree output was always pulled down to GND. 
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Simulation: This was done at gate level and had to be carried out before the 

physical design stage. The DL file provided the input to the EXERT simulator. 

After the physical design a "load" file was produced that contained data on circuit 

capacitances. This allowed a second EXERT simulation file to check the 

maximum and minimum gate delays and to check that the final integrated circuit 

would work correctly for all operational conditions. 

Physical Design: Circuit layout was performed by the PLACE, GATE, and 

ROUTE programs. Transistor sizing was already preselected in the Base Library 

and could not be changed. The only influence a user had in the PLACE program 

was in the placing of the gates in the layout. This was not necessary in the neural 

accelerator chip. 

Validation and Production: Solo allowed the required package for the design to 

be chosen and checked that all the programs required for a "working" integrated 

circuit had been run in the predefined order. In this way, a correct functioning 

manufactured design was virtually guaranteed. 

4.3.1. Synapse Gate Level Design 

The synapse array function and size were kept the same as that in the MCE 3ji.m 

design. The reason for this was that the neural board with the hardware support for the 

accelerator chips had already been designed specifically for a 3 x 9 synapse array. 

The boolean and logic descriptions for the state multiplexor, sum logic and carry logic 

that were described in section 4.2.2 were used to represent the functions at gate level. 

Figure 4.10 and 4.11 shows the Solo gate level design for this. The dynamic shift 

register used for weight storage and logic tree evaluation in the previous design was 

replaced by a static D-type flipflop. Each D-type consists of 10 gates (30 stages). Solo 

defines a stage as "a single, equal size p and n type transistor". The complete synapse 

circuit required 331 stages (662 transistors). This is approximately four times as many 

as those needed for the CAESAR synapse. The reason for this is that Solo has 

predefined parts consisting of logic gates that perform specific functions. The synapse 

had to use the available parts wired together to perform the required logic function, 

whereas the synapse designed with CAESAR, used the minimum possible number of 

transistors to perform the logic function. At this point the synapse was simulated by 
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the EXERT simulator to verify that it was adding, subtracting and shifting without 

error. 

4.3.2. Synapse Array Layout and Simulation 

A 3 X 9 synapse array was constructed again at the gate level design and D-type 

flipflops were used for the control circuitry shift registers. Figure 4.12 shows the Solo 

interpretation of the synapse array. Each "part" represents the 3 synapses in each row 

sharing the same neural state. The three "sum out" lines are adjoined to the adjacent 

"part" to the right. The final "sums out" appear at the rightmost "part", the ninth 

synapse in each column. The 8-bit and 9-bit shift registers required for the lsb, sel and 

se2 signals are below the synapse array. Once the EXERT simulator had verified the 

function of the array, the design work for the accelerator chip was complete. 

The layout procedure was performed entirely by the compiler using the PLACE, 

GATE and ROUTE programs. EXERT was used again as a final check that the gate 

delays and FANOUT were still within the set limits. As with the CAESAR, the 

simulation on Solo, proved to be the slowest part of the design, taking approximately 

the same man and CPU hours to achieve a full simulation of the array. For this, at 

least 95% of the transistor nodes had to toggled as part of the design validation 

process. 

Another design validation constraint required that all metal track lengths must be less 

than 10000 p.m. As neural network designs have a large number of interconnects 

between parts, several long track lengths occurred in the routing around transistors. 

Therefore buffers had to be added on all long track lengths. Figure 4.12 shows the 

clock and load signals with buffers dividing up the lengths of track. The area of silicon 

used for the array was 19.28 mm' (4.79 x 4.03 mm) made up from 9360 stages (18720 

transistors) and the area of the array including pads was 29.13 mm' (5.78 x 5.04). 

4.3.3. Test Procedure for the integrated circuit 

The manufactured integrated circuit was tested using the Digital Analysis System with 

the same data input programs generated for the NICE design test. The first test 

showed that the 216 weight shift register and the 3 control shift registers had the 

correct function. This is shown in figure 4.13. The second test applied a neural state to 
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each synapse row and allowed the chip to compute the total activity in each column 

according to equation 4.1. 

The following tests were done. 

All Tij  = 0 and all V = 1, "sa in", "sb in" and 'sc in", the sums at the top of 

each synapse column were given 16-bit random words. 

The integrated circuits gave the correct results of 'sa in" = "sa out', "sb in" = "sb out" 

and "sc in" = "scout". 

Positive and negative random values of T were input to the array and each 

synapse row was given a known state. x, Xb and x were calculated by hand and 

then compared to the values calculated by the integrated circuit. The answers 

were the same indicating that the array was computing in the correct way. These 

results were obtained at 5MHz, the maximum operating frequency of the DAS. 

Once the integrated circuit function had been verified, four of the chips were mounted 

with hardware support on a board. The hardware support consisted of memory to hold 

the neural weights and states and control circuitry to supervise the calculations in and 

out of the neural accelerator chips. The board was interfaced to a host Sun 3/110 Work 

station and its function is described fully in Chapter 5. 

4.4, Conclusions 

The designs of the two synapse array integrated circuits using CAESAR and Solo 1400 

CAD tools gave interesting comparisons between the tools. Although the two designs 

had exactly the same function, major differences occurred in the design time, the 

number of transistors used and the area of silicon used as shown in table 4.2. 

Synapse Array Array Chip No. of No. of 

Design 	transistor transistor area area weeks to weeks to 

count count in mm2  in mm  design manufacture 

CAESAR 	170 4958 5.70 16.61 36 24 

ES2 Solo 	662 18720 19.28 29.13 8 6 

Table 4.2 Comparisons between the MCE and Solo designs. 
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The advantage of the layout facility of CAESAR was that it allowed a compact design 

using the minimum number of transistors possible for the function. This was proved 

by the large difference in the number of transistors per synapse. The ES2 design had 

four times as many transistors and used five times as much silicon area, allowing for 

the minimum geometry differences in the process. The disadvantage of CAESAR was 

that the layout process was long and tedious and prone to errors. 

The major advantage of Solo was the turnaround time from the initial design to 

receiving working chips. This was 14 weeks for the neural accelerator chips compared 

to 60 weeks for the CAESAR/MCE design. Solo was easy to learn and by its design 

facilities guaranteed that the chip would function in hardware. 

The software simulation times on both designs were approximately the same, although 

the Solo simulation had rigorous design constraints that had to be adhered to, hence 

the guarantee of working silicon. 
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Chapter 5 

Neural Network Accelerator Board 

The neural network integrated circuit described in chapter 4 is a 3 x 9 synapse array 

using a reduced arithmetic technique to compute the neural function x1  = 	T1  V, 

where x1  is the activity of neuron i, T. is the synaptic weight between neurons i and j 

and V is the state of neuron j. The integrated circuit is to be used as a hardware 

accelerator for simulations as, for example, described in chapter 3 for the learning and 

recall of patterns. 

The size of the synapse array on one integrated circuit alone was too small to be used 

with a learning algorithm to perform learning and recall simulations. SPICE simulations 

of the single-phase clocking technique showed that the neural accelerator would 

operate upto 20MHz allowing each synaptic column to compute the activity in a 

minimum time of 1.3s and if the synaptic weight set were stored in supporting RAM 

(random access memory) with an access time of 45ns, the weights for 27 synapses 

could be loaded into an integrated circuit in 9.72s. Therefore, the projected 

minimum total computation time for the three activities is 11.02i.s. This performance 

of a hardware accelerator is much faster than speeds attainable in a natural neural 

network. Hence, a paging architecture described in the following section has been 

developed to "trade off" some of this excessive speed for increased network size. 

5.1. "Moving Patch" Paging Architecture 

To increase the number of simultaneous synaptic calculations, 4 of the chips have been 

cascaded to give a 12 x 9 array. The paging architecture uses this new array size to 

give a virtual array size of 288 potentially totally interconnected neurons and acts as a 

neural accelerator to a host Sun computer. The paging architecture can be visualised as 

a "moving patch" where the small "patch" (the 12 X 9 array) simulates a small number 

of synapses sliding across a much larger array. On each new simulation, the "patch" 

moves down the synaptic column to the adjacent patch and the new synaptic weights 

are loaded into it. A general architecture showing this is in figure 5.1. 
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Figure 5.1 Paging architecture of passing a small synaptic "patch" over a larger synaptic 
array. 

Each "patch" computes the partial activity for each column of synapses. These 

activities are subsequently held in memory until the next "patch" is ready to compute. 

The partial activities are then fed into the top of the new "patch" to be added to the 

new activities being computed. This ensures that each synaptic column receives a 

contribution of activity from each synapse in it. A virtual array size of 288 neurons 

and a "patch" size of 12 X 9 synapses gives 32 "patches" in a column and 24 columns 

of "patches". After 32 iterations the "patch" reaches the bottom of the first column, the 

total activities for the first 12 neurons have been computed and are then stored in local 

RAM. The "patch" then proceeds to iterate down the next column of "patches", until 

all 24 columns have been iterated. When all the activities have been computed, they 

are downloaded to the host, which then thresholds them according to the 5-state 

activation function to form the new set of neural states for the array. The host 

computes the learning and the weight updating for the network. Details of the neural 

accelerator functioning as a pattern associator using the delta learning rule are given in 

Chapter 6. 

5.1.2. Hardware Support for the Paging Architecture 

The neural network accelerator board requires hardware support circuitry to perform 

the paging operation described in the section above. The board runs as a SLAVE 
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module, which responds to the data bus transfer (DBT) operations generated by the 

MASTER, the host Sun processor. board. The neural accelerator board is interfaced to 

the host Sun by the Sun's VMEbus [97]. The VMEbus allows communication between 

the MASTER and the accelerator board and in this case, it enables the weights and 

states calculated by the host to be transferred to the on-SLAVE RAM. The 

accelerator board runs independently from the host while it computes the neural 

activities. Once this has been done, the board signals to the host to read and threshold 

the activities. 

One complete computation cycle requires the synaptic weights and neural states for 

every patch to be unloaded from on-board RAM, the partial activities between 

adjacent patch computations to be stored in shift registers and the total activities to be 

stored in memory, until the "patch" has iterated across the whole board. Therefore, 3 

separate RAMs are required to store the synaptic weights, present neuron states and 

new neuron activities. Twelve 16-bit shift registers synchronise the partial activities of 

the previous "patch" to be added correctly to the present "patch" computation and an 

18-bit counter controls the "patch" iteration across the array. Figure 5.2 shows the main 

structure of the board. 

These parts constitute the major components of the neural accelerator board, that 

would be required regardless of the host and interface environment for the activity 

thresholding and weight updating. However, the operation of the VMEbus interface 

system influenced some of the details of the board design in order to tailor it to the 

VMEbus specification requirements for the transferring of data between the SLAVE 

and MASTER. Hence the neural accelerator board is divided into 2 parts. The first 

is buffering and control circuitry to allow the VMEbus to write to and read from the 

SLAVE RAMs. The second part is buffering, control circuitry and a SLAVE address 

system for the neural activity computation when the board is running independently. 

Section 5.2 gives a brief description of the VMEbus and its implementation with 

respect to the neural accelerator board requirement and section 5.3 gives the 

subsequent design of the board, showing details of how the "patch" computation and 

the "patch" iteration is achieved. 
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Figure 5.2 Main structure of the neural accelerator board 

5.2. VMEbus Interface 

The VMEbus is an interfacing system for use in interconnecting data processing, data 

storage and peripheral data control devices in a closely coupled configuration. The 

mechanical structure of the VMEbus is a backplane, which is a printed circuit (PC) 

board with a pair of 96 pin connectors that provide the bus signal paths to the SLAVE 

module. The VMEbus interface system consists of backplane interface logic that takes 

into account the characteristics of the backplane (its signal impedance, propagation 

time, terminal values, etc.), four groups of signal lines called "buses" and a collection 

of "functional modules" that can be configured as required to interface devices to the 

buses. The functional modules communicate with one another by means of bus signal 

lines provided by the backplane. 

The interface functions of the VMEbus are divided into 4 areas. Each functional area 

consists of a bus and associated functional modules which work together to perform 

specific duties within the interface system. The only area used by the neural 

accelerator and therefore discussed here is that of 'Data Transfer". Details of the other 
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three areas - Data Transfer Bus Arbitration, Priority Interrupt and Utilities can be 

found in [97-99]. 

The Data Transfer bus (DTB) contains the data and address pathways and associated 

control signals. In this area, functional modules called 'DTB Masters" and 'DTB 

Slaves" use the DTB to transfer data between each other. The VMEbus MASTER 

allows 32-bit (long word), 16-bit or 8-bit (short word) data transfers and 32-bit, 24-bit 

or 16-bit addresses. The neural accelerator board requires a 32-bit data bus as the 

neural states for one neural accelerator chip are signalled on a 27-bit and a 24-bit 

address bus. The SUN processor board allocates specific areas of its memory for the 

different sizes of VME data and address buses [99, 100]. The area of memory in the 

24-bit VMEbus Address Space Allocation reserved for "small user devices" has 

sufficient memory space for the data which is to be transferred to the neural 

accelerator board. The physical (hexadecimal) address range of this area is OxD00000 - 

OxDF0000 representing the addresses A 23  - A 20 , A 19  - A 16 , A 15  - A l2 , A 11  - A 8 , A 7  - A 4  

and A 3  - A 0 . Address lines A 23  - A 19  are permanently at address OxD ( 1011 2). 

5.2.1. Slave Interface to the VMEbus 

The 3 neural accelerator board RAMs are addressed by the VMEbus. The weight 

RAM requires 12 data lines (as 12 RAM chips are required to store the weights for 

288 neurons) and the neural state RAMs require 27 data lines to load the states (the 

maximum number of data lines is 32), therefore the physical address range in the 

VMEbus address space allocation is split up so that each of the 3 RAMs is addressed 

individually, as is shown in table 5.1. The sectioning of the Address Space Allocation 

allows the address line A 19 —A 16  (ie. the lines signalling address 3,4,5 or 6 to determine 

the accessing of the RAMs) to be gated to form the "chip select" and "read/write" 

control signals to each RAM. Figure 5.3 shows the SLAVE interfacing to the VMEbus 

and how the address lines have been used for the various control signals. 

When the neural accelerator board runs independently of the MASTER while it is 

computing the neural activities, all the VMEbus data and address lines must be 

buffered to allow them to be switched off. The address lines use uni-directional buffers 

and the data lines use bi-directional buffers as data is written to and read from the 

SLAVE. Table 5.1 shows that data is written only over the VMEbus address range 
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/ 
Address RAM 

D6xxxx "RUN" signal to SLAVE to compute activities 

D5FFFF 
to Address and read from "activity" RAM 
D50000 

D4FFFF 
to Address and write to "neural state" RAM 
D40000 

D3FFFF 
to Address and write to "synaptic weight" RAM 
D00000 

Table 5.1 VMEbus address space allocation to the SLAVE RAMs 

OxD00000 - OxD4FFFF. Over the range OxD50000 to OxDSFFFF the activities are read 

back from the SLAVE. In figure 5.3, the signal "read" is active low on address 

OxD5FFFF, which sets the data buffer direction so that data may be read from the 

board only at VMEbus address OxD5XXXX. The VMEbus has its own control lines 

for the Data Transfer Bus which are used in the SLAVE interface design. These are 

given in Appendix C. 

Once the MASTER has written the weights and states to the neural accelerator board, 

the VMEbus address is set to OxD60000, which sets the signal "run" shown in figure 

5.3 to "active low", to enable the accelerator board to compute independently. The 

"run" signal is gated to the interface buffers so that they become disabled at this 

address. When all the activities are computed, the VMEbus switches to address 

OxD50000 to read back the new values. 

5.3. Neural Accelerator Board Architecture 

The VMEbus address OxD60000 allows the SLAVE operation to be controlled 

completely by an 18-bit counter. The frequency of the counter is determined by a 

quartz oscillator. The counter controls the paging architecture of the "patch" giving the 

288 neuron array. It also provides the address lines, chip select and read/write lines to 

the RAMs and the control signals necessary for the neural accelerator chips. Table 5.2 
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shows how the counter controls the "patch" iteration. 

Count or A 17  A 16  A 15  A 34  A 13  A l2 A ll  A 10 A 9  A 8  A., A 6  A 5  A 4  A 3  A 2  A 1  A 0  

Address Line 

Function 5 MSBs count the Next 5 bits count 8 LSBs count 1 

number of columns the number of complete "patch" 

of 32 "patches" "patches" in a of 12 X 9 synapses 

(ie. 0 - 23) to column (ie. 0 - 31) computation 

give 288 neurons to give 288 (0 - 255 ciks) 

synapses per column 

Example: 100112  101102  xxxxxxxX2  

Table 5.2 The function of the SLAVE 18-bit counter 

The example in table 5.2 gives addresses A l2  - A 8  as 101102  = 2210  and addresses A 17  - 

A 13  as -10011 2  = 1910.Therefore, this address implies that the 23rd patch in the 20th 

column is computing the 23rd partial sum of the 20th neuron. Address A., - A 0  counts 

through the patch computation. The paging architecture of the "patch" is given in 

greater detail in section 5.3.2. 

5.3.1. "Patch" Computation 

A "patch" uses the 8 LSBs of the board counter (ie. clocks 0 - 255 ) to compute the 

partial activity, with the remaining 11 bits of the counter being used to count the 

iteration of the "patch" over the whole array, as is described in the section above, to 

achieve 288 neurons. Figure 5.4 gives a flow diagram explaining the 'patch" operation. 

The first 216 clock cycles require that the 8-bit weights for the 27 synapses are loaded 

bit-serially into each accelerator chip. The neural states are applied to the accelerator 

chips on clock cycles 216 - 241 while the activity is being calculated. The shift 

registers are active on clock cycles 217 - 232 to allow the previous partial activity of the 

adjacent "patch" above to be added to the present "patch" partial activity. The LSB of 

the present partial activity exits the accelerator chip on clock cycle 226 and the partial 

activity is loaded to the shift register over the clock cycles 226 - 241, where it is held 
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Board function 	 clock cycle 
for 1 "patch" 

Load 27 8-bit weights 	 0-215 
to accelerator chips 

START ACTIVATION 	 216 
COMPUTATION 

Activate control signals 
LSB, signextendl,2 

Unload neural 
states from RAM 

	

START shift register 	 217 

Unload Partial activation 
of previous "patch" from 
shift registers to top of 

present "patch" 

	

1st bit of new partial 	 226 
activity exits from 

accelerator chips 

	

Load new partial activations 	 226 
to shift register 	(or to 
activation RAM if last 

"patch" in column) 

	

Finish unloading previous 	 233 

partial activations 

from shift registers 

	

Final bit (MSB) of new 	 242 

partial activation in 
shift register 

State RAM, Shift reg's off 	 243 

Ready for next 'patch 

Figure 5.4 Flow diagram explaining the 'patch" operation 
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until it is required for the next adjacent "patch" in the column. There is, therefore, an 

overlap of 7 clock cycles (226 - 232) while the shift registers are unloading the previous 

partial activities and simultaneously loading the new partial activities. If the "patch" is 

the last one in a column, the activities computed will be the total activities for that 

column and hence will be loaded directly to the activity RAM, instead of the shift 

register, to be read back later by the VMEbus. The shift registers are then cleared for 

the start of the next column as the first "patch" in each column does not have any 

previous partial activity to be added in. 

A detailed schematic of the neural board is shown in figure 5.5. The weight RAM 

requires 12 - 64K x 1 data bit RAMs, the state RAM requires 4 - 2K x 8 data bit 

RAMs for 27 state lines (3 lines per state) and the activity RAM requires 2 - 2K x 8 

data bit RAMs for 12 activity lines per "patch". The weight and state RAMs are 

written to and addressed by the VMEbus, and read on being addressed by the board 

counter. The activity RAM is written to on being addressed by the board counter and 

read from, when addressed by the VMEbus. Buffering is therefore required to separate 

the board data and address lines from the VME data and address lines to avoid 

contention. The maximum operating speed of all the RAMs is 45ns. The partial 

activities are stored in 12 16-bit shift registers (2 each x 8-bit shift registers). The 

control circuitry is made up of separate integrated circuits which include 2, 3 or 4 

input NOR, NAND, OR, AND and inverter gates. This provides the signals "load", 

"lsb", "sel", "se2" for the accelerator chips as described in Chapter 4, along with the 

shift register clock signal and the "chip select","read/write" and "output enable" signals 

for the weight, state and activity RAMs. The "load" signal allows the synaptic weights 

to be loaded into the accelerator chips and is active "high" for the clock cycles 0 - 215. 

When the "load" signal is "low" on clock cycles 216 - 255, it allows the weights to be 

shifted around its 8-bit shift register during the activity computation. A waveform 

diagram showing the board control signals is given in figure 5.6. 

5.3.2. Array Computation 

As described earlier in the chapter, the 288 neuron array is achieved by iterating the 

"patch" 32 times down a column across 24 columns. The "patches" in a column are 

counted by the board addresses A l2  - A. and the number of columns is counted by the 

addresses A 17  - A 13  as is shown in figure 5.7. The 12 x 9 synapse array of the "patch" 
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fitted conveniently into a 288 neuron array and could be counted easily with an 18-bit 

counter. 

With each "patch" iteration down a column, the counter address given by A l2  - A 8  

increments by 1, until it reaches the address 11111 2  =3110,at the bottom of a column. 

This address then signals to the activity RAM to read in the total activity values and to 

clear the partial activity shift registers ready for the 1st "patch" in the next column. 

Each column computes the activity for 12 neurons and is iterated 24 times counted by 

the address A 17  - A 13 . Hence, 101112  = 2310  is the last column in the array. Address 

A 17  - A 13  and A l2  - A 8  = 10111111112  signals the final 12 activities of the array are 

ready to be loaded to the activity RAM. The next address 1 1 0 0 0 0 0 0 0 0 has A 17  

and A 16  both equal to 1, which is used to signal to the VMEbus that the board has 

completed its calculations and is ready to unload its activities to the host Sun. This is 

the signal "END" shown in figures 5.3 and 5.5. 

The maximum RAM speed of 45ns would allow the board to run at a maximum speed 

of 22.2 MHz. However, with the control circuitry and buffers incorporated in the 

board level design to support the accelerator chip computation, delays were introduced 

which allowed the circuit to operate at only 8 MHz. Although this speed is slower 

than was originally anticipated, it did not greatly affect the array computation time 

with respect to the speed of operation of the software. This is because the computing 

and loading of the new neural states takes, by far, the majority of time in a complete 

board run cycle of loading weights and states via the VMEbus, computing new 

activities, thresholding the activities to the new states of the network and subsequently 

calculating the new weight set for board updating. 

Figwe 5.8 shows a photo of the neural board and figure 5.9 shows the neural board 

interfaced to the host Sun workstation. 

5.4. Software to Control the VMEbus 

Software controls the function of the VMEbus and transfer of data between the host 

Sun and the neural board. The program in Appendix D shows how this is done. The 

declaration "addr= VME24d32(VME_BASE,VME_SIZE,&fd)" maps the 32 bit data, 

24 bit address VMEbus memory area in the host directly to the addressing on the 
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board. 

The program reads weights from a file "weight—in" and writes them in parallel to the 

appropriate address locations in the 12 integrated circuits of the weight RAM on the 

board. It then readsthe states from a file "state—in" and writes them to the state RAM. 

Line 64, "addr[RUN]O", signals to the board to start running and line 66, 

"check= addr[RUN]", reads back from the board to check if A 17  and A 16 are both at a 

logic "1". When this condition is satisfied, the neural activities are read back to the 

host. 

At this point the board was verified as operating correctly, with all weights in the input 

file identical t and the states for each "patch' identical (states were changed between 

adjacent "patches"). The file "weight—in" was in the form of 3-bit hexadecimal 

numbers (ie. D 11  - D 0), the state file was 7-bit hexadecimal numbers (ie. D 26  - D 0) and 

the activities were read back as 3-bit hexadecimal numbers. This is the form in which 

the VMEbus handles data. This level of format of the input and output data is 

suitable for a low level test of the board. Ideally, the weight file has each weight as an 

8-bit two's complement number in a 288 x 288 byte array with indices corresponding to 

the 288 x 288 synapse array and the state file has each state as + I or -I in a 288 bit 

array corresponding to the 288 neural states. In this form, the data is much easier to 

handle for neural learning simulations. The activities also need reorganising from 24 

blocks of 12 16-bit binary numbers to a decimal number that can be thresholded to one 

of the 5 neural states. Chapter 6 gives details of this along with simulation results of 

the board operating as a pattern associator. 

t Although all the weights in the input file were identical, the weights in each row of synapses in a 'patch be-
come shifted. During computation the weights are shifted around the shift register. Therefore, row I has no shifts, 
row 2 has 1 shift, row 3 has 2 shifts ....... row 8 has 7 shifts and row 9 has 8 shifts (ie. no change) before the weight 
is involved in the multiplication'. Avoidance of this shifting of weights should have been taken into account during 
the integrated circuit design. 
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Chapter 6 

Simulations using the Neural Accelerator Board 

The testing of the neural board described in Chapter 5 verified that it computed the 

287 

neural function 	T1, V successfully and loaded the new activities back to the host 
i ,j =0 

Sun for thresholding to new neural states. At this stage, identical weights and states 

were used for each "patch" to make the testing easier. However, this level of testing 

proved only that the board was loading and unloading data to and from the RAMs 

and shifting and calculating data on the correct clock cycles. Further software was 

required, that incorporated a learning algorithm with the board computing 2Tjj  V1  to 

verify that the 5-state activation function hardware implementation could learn and 

recall patterns. A second software program was required for the same size network as 

the hardware and the same learning algorithm, but which computed 2Tjj VJ  in 

software, in order that the hardware and software versions of the 5-state activation 

could be compared. 

6.1. Software Requirement for the Neural Board 

There are four main requirements for the software to enable simulations using the 

neural accelerator board. 

1. 	The nine neural states for each "patch" are passed by the VMEbus in a 7-bit 

hexadecimal word. To make the handling of the simulations more user friendly, 

the neural states should be written as +1 10  or —1 10  for each state. Therefore, 

software was needed to convert the nine states for each "patch", written as + 1 1 0 

of -1 1 0, into a 7-bit hexadecimal number. For example, if each neural state for a 

"patch" = —1, the hexadecimal number would be 0x2492492, ie., the least 

significant number, 2 1 6 represents 0010 2 , which represents in turn the values for 

rs2, pml, killi, and rsl. Therefore, if the neural state is —1, then rsl=0, 

killll, pmlO and rs2=0. The second least significant number, 9 16 = 1001 2 , 

gives the values for kil13, rs3, pm2 and kilI2 respectively etc.. 
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The weights are calculated in software using floating point numbers. The 

accelerator chips, however, require that the weights are two's complement 

numbers. Therefore, each weight must be converted from a floating point number 

to a two's complement number. Furthermore, the precision of the 8-bit weight 

allows the weight to be in the range —127 to + 128 so weights outside this range 

must be clipped [101] to the permitted maximum and minimum values. 

The weights must also be loaded in the correct order into the accelerator chips. 

Each accelerator chip is a 3 x 9 array, so for example, the 1st chip in "patch" 1 

uses the weights T 0 , 0 —T 0 , 8 , T 10 —T 18  and T 2 , 0 —T 2 , 8 , the 2nd chip in "patch" 1 uses 

weights T 30 —T 38 , T 40 —T 48  and T 5 , 0 —T 5 , 8  and the 1st chip in "patch" 2 uses 

weights T 09 —T 0 , 17 , T 19 —T 117  and T 2 , 9 —T 2 , 17  etc.. If the new weights are 

computed in a 288 x 288 array, ie., 1st column is T 00 —T 0287 , 2nd column is 

T 1 , 0 —T 1 , 287  etc., then the appropriate weights must be taken from the array in the 

correct order for each "patch" and loaded bit-serially into the accelerator chips. 

The total activities are also 16-bit two's complement numbers, which are loaded 

to the host Sun in that form. The software is required to convert these to floating 

point numbers, which can then be thresholded according to the 5-state activation 

function to give the new states of the network. 

The final part of the software is a learning algorithm that uses the new states of 

the network to update the weights. Details of the learning algorithm are given in 

the next section. 

6.2. Neural Accelerator Board as a Pattern Associator 

The Pattern Associator Model 

The simulations run to verify the 5-state hardware learning capabilities used the 

network configured as a pattern associator. This is where a set of input to the units 

will cause a certain pattern on a set of outputs from the units, whenever the input is 

applied. Pattern associators can be implemented as a set of units causing a pattern of 

activation over another set of units without any intervening units. They have been 

widely used in distributed memory modelling with the Hebb rule and the delta rule. A 

pattern associator has a set of input units connected to a set of output units by a single 
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layer of modifiable connections (weights) that are suitable for training with the Hebb 

and the delta rule. It would, for example, be capable of associating a pattern of 

activation of one set of units corresponding to the appearance of an object with a 

pattern on another set corresponding to the aroma of the object, so that when an 

object is presented visually, causing its visual pattern to become active, the model 

produces the pattern corresponding to its aroma. 

Single layer pattern associators, have several properties that make them attractive as 

models of learning and memory. They can learn to act as content addressable 

memories and can generalise the responses they make to novel inputs. Hence, if a new 

pattern on the input units to the network is similar to one of the old ones, it will tend 

to have similar effects and as learning of the interconnections occurs in small 

increments, similar patterns reinforce the strengths of the links they share in common 

with other patterns. Therefore, if the same pair of patterns is presented again and 

again, but each time a small percentage of random noise is added to each pair, the 

system will automatically learn to associate the similarities of the two patterns and will 

learn to ignore the noise. Effectively, an average of the two patterns will be stored with 

the slight variations removed. Conversely, if the network is presented with completely 

uncorrelated patterns, they do not interact with each other. Another property of 

pattern associators is their pattern retrieval performance degrades gracefully with 

damage and noise, in that they do not require a perfect copy of the input to produce 

the correct output, although its strength will be weaker in this case. 

The Delta Rule 

The learning algorithm implemented in the simulations was the delta rule. The delta 

rule involves the presentation of a set of input and target output patterns. The network 

uses the input pattern to produce its own output pattern and then compares this to the 

desired output, or target. It is the difference between the target pattern and the 

obtained pattern that drives learning. If there is no difference, no learning takes place, 

otherwise the weights are changed to reduce the difference. The rule for changing 

weights following the presentation of input/output pair n is given by:- 

= 71(i1 —o,)v 	 (6.1) 

where q is the learning rate, i,, is the target the the ith component of the output 
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pattern for pattern n, o,,i  is the ith element of the actual output pattern produced by 

the presentation of input pattern n, v j  is the jth element of the input pattern and 

A. w is the change to be made to the weight from the jth to the ith unit following 

presentation of pattern n. 

The delta rule also requires that the pattern sum of squares, pss, is measured [102]. The 

pattern sum of squares is the sum of the squared error over all output units, where the 

error for each output unit is the difference between the target and the obtained state of 

the neuron, ie., for an N neuron network:- 

pss = 	(, rn 	
)2 	 (6.2) 

n.j =0 

This quantity is calculated for each pattern processed to give the total sum of squares, 

tss, where:- 

N 

tss = 	pss 	 (6.3) 
n =0 

The total measure of all patterns, tss, gives the error between the target and the actual 

output states. Therefore, on the first iteration, tss will be large (tss> >0). As the 

connections between the input and the output are learned, tss-.0. When tss0, the 

actual output equals the target output and the pattern associator can be deemed to 

have learned the mapping between the input and the output. 

The software for implementing the delta rule is straightforward in that it only requires 

input and target pattern pairs to be read from files, calculation of the actual output 

from the network activation and calculation of Li,, w 1  from equation 6.1. Optimum 

values for the learning rate. 'q, and 'Temperature", T. for the network were found by 

trial and error using a 36 neuron software model with the 5-state activation function; 

The combination of T and i that gave the least number of iterations to learn sets of 

patterns was used. The learning rate is a constant of proportionality that dictates how 

fast the network will learn, and the 'Temperature" controls the sharpness of the 

transition of the 5-state activation function between the states —1 to + 1. 

6.2.1. Performance of the Accelerator Board 

Three programs were used to obtain results to show the performance of the 5-state 

activation function in hardware. The first, given in appendix E, incorporates running 
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the neural accelerator board in a pattern associator network. The main four sections 

described in section 6.1 can be seen. The function "boardrun", declared on line 61 

and called on line 140, allows the board to compute. The length of computation time 

taken by the board to compute can be measured by using the prof command in unix. 

prof (display - profile data) produces an execution profile of the program, which gives 

the number of milliseconds spent on a call to a function. 

The second program in Appendix F has the same number of synapses, weight size and 

activation function as the first, but executes the neural activation computation in 

software with the weights and activations as floating point numbers. The function 

"Actsum", declared on line 19 and called on line 65, computes in software the 

equivalent task of the neural board. Therefore, by using the display - profile data 

command, the run time for the function "Actsum" could be found. The values given 

for "boardrun' and "Actsum" showed the comparative speeds of the hardware and the 

n—I 

software for the computation E T, V 1  for an n-neuron network. 
i,j =0 

The third program is identical to the second, but used a sigmoidal activation function 

instead of the 5-state activation function. The three programs allowed a comparison of 

performance between the 5-state hardware, the 5-state software and the sigmoid 

software activation functions. Comparisons were done on the time to compute 

n —I 

T,3  V and the number of iterations each took to learn the requisite sets of input 
i = 0 

and target patterns. The expected results from these comparisons should show the 

sigmoid activation function to learn patterns using the least number of iterations of the 

three programms. The 5-state activation function in hardware and software should 

learn with the same number of iterations. 

The size of the network chosen to run the simulations was 36 x 36 synapses (36 

neurons). Although the board computes the activation for a 288 neuron network, 

simulation to judge the performance of the three networks alone can be run with 

equivalent results on a smaller network. The main reasons for using a smaller network 

were: 

Software simulations of the 288 neuron network were intolerably lengthy. 

Formatting the input files input for a 288 neuron network was also a long and 
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tedious task. 

3. The ordering and loading of the weights of the 288 neuron network was slow on 

the host Sun 3/110. The Sun's own memory was not large enough to hold the 

array sizes required for the weights and therefore the Sun had to access the file 

server for extra memory. The process of swapping data to and from the file server 

slows down the iteration time of the hardware simulations. This slowness could be 

alleviated by the Sun having more memory of its own. 

Simulation Procedure 

The simulation procedure for each of the 5-state hardware, 5-state software and 

sigmoid software activation function networks was as follows:- 

Six sets of 20 random input and target pair patterns were generated. 

Each of the networks learned each set of patterns in turn. 

The number of iterations taken by each network to learn each set of patterns was 

noted. 

35 

The time taken for each network to compute I T,, V was taken for each set of 
i ,j =0 

patterns (to find the average time over 6 sets). 

For the hardware network only, noise was added to the input patterns and the 

•noise on the corresponding degraded output patterns was measured and compared 

to the target. 

For each network simulation: 

Each input and target pattern pair had 36 elements set either to + 1 or —1, 

'Temperature, T = 50. 

Learning rate, Ti = 5. 

6.2.2. Results 

The results comparing the performance of the 5-state hardware, 5-state software and 

the sigmoid software activation functions are given in table 6.1. The results give the 

times and iterations for each set of 20 patterns and the average values over the six sets. 

A discussion of the results falls into 3 categories. 
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5-state Hardware 5-state Software Sigmoid Software 

number time for number time for number time for number of 

of 
287 

T, V of 
35 

T, V 1  of 
35 

T,, V 1  of 

pattern set 
i,j=O 

in ms iterations 
ij=O 

in ms iterations 
i,j=0 

in ms iterations 

1 25.11 7 33.1 5 34.5 4 

2 24.00 11 34.0 7 34.43 7 

3 25.26 10 34.67 6 33.2 5 

4 25.00 7 33.75 4 33.75 4 

5 25.00 8 33.98 6 33.6 5 

6 24.17 4 33.75 4 33.67 3 

average 24.76 7.8 33.89 5.3 33.86 4.7 

over 6 sets 

Table 6.1 Results comparing the performance of the 5-state hardware, 5-state software 
and sigmoid software activation functions 

1. Activity Computation Times 

The results give the average time for the sigmoid and 5-state software activation 

35 

functions to compute 	T.,V 1  to be 33.86ms and 33.89ms. The results for the 
I ,j =0 

287 

hardware give the time to compute E T.1  V1 , since the design of the board is such that 
I ,j = 0 

it will run for only that size of network. A 36 neuron network is obtained by using a 

36 x 36 synapse array and setting the unused weights and states to 0. From the board 

run times of the 288 neuron network, the times for a 36 neuron network to run can be 

calculated, which can then be compared to the sigmoid and 5-state software results. 

Table 6.2 gives the measured time to compute the activity for 288 neurons at different 

clock frequencies. The results agree with the theoretical ones calculated for the board 

run time. 

The calculation is as follows: 

Time to compute the activity for 288 neurons at clock frequency, f. 

= clock cycles per patch  no. of columns  no. of rows  

= 256x32X24X 
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Neural board run times 

frequency actual time theoretical time 
in MHz in ms in ms 

6.0 33.11 32.77 

7.5 .26.82 26.21 

8.0 24.86 24.58 

20.0 - 9.83 

Table 6.2 Time to compute the activity for 288 neurons at varying clock frequencies 

- 196608 
f 

The time taken to compute the activity for 36 neurons 

= clock cycles per patch  no. of columns  no. of rows  

= 256x3X4X 

3072 
f 

- 3072 
Hence, if frequency = 8MHz, time taken 

- 8x106  

=0.38ms 

Therefore, theoretical time to compute a 36 neuron network = 0.38ms

3072 
From table 6.1, actual time for a 36 neuron network 	= 196608 x 24.76 

= 	x 24.76 

= 0.39ms 

This shows an 87 times acceleration using the hardware. Although the board-run 

times should be the same, the prof command gives varying times for the execution 

of the "boardrun" function. This is due to other processes running in the Sun's 

central processing unit, that will vary the run times of the function. 

These results are accurate enough to show that the board run time at 20MHz 

would be within 2.5% of the theoretical time. This is the maximum difference 
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between the actual and theoretical times in table 6.2. A frequency of 20MHz 

would have given a 220 times acceleration in hardware. A frequency of 20MHz 

was not obtainable owing to timing delays occurring in the board level design. 

These slowed down the maximum clock frequency to 8MHz. 

2. Comparison of Iterations 

The sigmoid activation function required the smallest number of iterations to learn 

the sets of patterns, followed closely by the 5-state software activation function. 

The hardware 5-state activation function takes on average 2.5 more iterations than 

the equivalent software. There are two reasons for this. 

The first reason is due to floating point weights being truncated to integer 

numbers in the conversion to two's complement numbers. For example if a 

floating point weight = 7.75, this becomes truncated to 7 (integer), giving a 

10.7% loss in accuracy. The larger the modulus of the weight the smaller the loss 

in accuracy. 

The second reason is a small change in the value of odd number weights if they 

are right-shifted to be multiplied by 0.5. For example, 

000001112 = 	10 

right-shift by 1-bit 	00000011 2  = 3 	 (instead of 3.5) 

= 14.3% change 

011001112  = 10310  

right-shift by 1-bit 	001100112  = 51 	 (instead of 51.5) 

= 1.0% change 

This change effects small weights more than the large ones, as shown in the 

example, a weight of 3.5 is rounded to 3. 

This implies that the overall effect of a truncated, right-shifted weight will have a 

considerable loss in accuracy. From the examples above, a weight of 7.75 is 

truncated and right-shifted to 3, where its true value should be 3.875, this 

represents a 29% error in the final weight value. 
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3. Degradation of Input 

To observe the robustness of the neural board in a pattern associator network 

under degraded input patterns, the number of degraded elements per output 

pattern was measured, along with the maximum deviation of any element in the 

output from the equivalent element in the target. The results for one set of 

patterns are given in table 6.3. The region where the majority of the numbers of 

degraded elements per pattern fall is also given. 

Number of bits 
changed per 
input pattern 

Percent 
noise 

% 

Max. no. of bits 
degraded in output 

per pattern 

Majority of 
degraded bits 

per pattern 

Maximum 
deviation 
per pattern 

0 0 0 0 

1 2.8 0-11 0-4 0.5 

2 5.6 0-16 2-8 1.0 

3 8.3 2-18 4-12 1.5 

4 11.1 2-19 5-14 2.0 

5 13.8 2-20 6-15 2.0 

Table 6.3 Table showing degradation in the output patterns with degradation in 
the input patterns 

The results show that for 1 element change per pattern in the input, the majority 

of the changes in the output patterns are between 0 and 4 elements and the 

maximum deviation of any output element from the target was 0.5. "Change" 

means either + 1 becomes —1 or —1 becomes + 1. As the noise increases in the 

input patterns, the number of elements degraded in the output patterns and the 

maximum deviation of output elements from the target increases correspondingly. 

Therefore, the strength of the output pattern becomes weaker with the rise in 

noise in the input. The results vary slightly if different elements in the patterns 

are changed or if different sets of patterns are used. 

6.3. Conclusions 

The neural board operated successfully as a pattern associator network and 

accelerated the speed of the activity calculation by 87 times at a derated frequency 
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of 8MHz over an equivalent software calculation. The hardware took, on average, 

2.5 more iterations (ie. 47% more iterations) to learn the weight set for a 36 

neuron network than the software. This was owing to the loss of resolution in the 

weights when they were converted from a floating point number to a two's 

complement number. Finally, the pattern retrieval performance degraded 

gradually with increasing noise added to the input patterns. 
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Chapter 7 

Conclusions and Discussion 

This final chapter draws together the results from the previous sections regarding 

the design, construction and demonstration of the chip set and accelerator board. 

In particular, the successes and the shortcomings of the work are highlighted and 

recommendations are made for future improvements. 

7.1. Conclusions about the Accelerator Board 

The 5-state activation function has been shown to operate correctly as 

implemented by the accelerator chips. The neural board that incorporates the 

accelerator chips has also proved that it can be used as a hardware accelerator in a 

simple pattern associator network for the learning and recall of random patterns. 
n —1 

The neural board accelerated the calculation 	T., V by amost two orders of 
I ,j =0 

magnitude over that possible in equivalent software simulations. The board also 

recalled patterns with the level of degradation in the output following the level of 

degradation in the input. A minor drawback resulted from the inaccuracy of 

changing floating point weights to two's complement weights, which is caused by 

the computer's software rather than the board implementation. The inaccuracy 

was incurred by the "multiplication" of a binary number by 2 (right-shifting the 

number by one bit), as in the examples in Chapter 6, section 6.2.2, is a peculiarity 

of the 5-state activation function. Integer arithmetic would have avoided the 

truncation from floating point to integer numbers, decreasing the total error, but 

an inaccuracy would still occur in right-shifting an odd two's complement number. 

This, for example, would be 14% for the number 111 2 (7)  and 1% for 110011 2  

(51). 

Even though the board accelerated the calculation of the activation, the design of 

both the accelerator chip and the hardware support for the chip is now seen to be 

non-optimal, so that the advantage of the increased speed was lost by the time 

taken to run the software to support the accelerator board. The following successes 
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and shortcomings summarize the operation of the neural board as a hardware 

accelerator. 

Successes 

The neural board accelerated the calculation time of the activity to 87 times 

that of the software. 

There was no marked loss in performance using the hardware 5-state 

activation function compared to equivalent software models. 

The neural board can be used with any learning algorithm. 

Any size of neural network can be used up to a maximum of 288 neurons. 

Shortcomings 

The inaccuracy occurring in small weights due to the conversion of floating 

point numbers to two's complement numbers and in the right-shifting of odd 

two's complement numbers. 

The time taken for the software to run the neural board, which is increased 

by the the calculation and reordering of the weights. 

The run time of the neural board is always that for a 288 neuron network 

regardless of the the actual network size. 

The maximum operating frequency of the board is 8 MHz, although the 

accelerator chips should operate upto 20MHz. 

The major disadvantage is the speed of the software. This is incurred by the 

reordering of the weights, so that they are input in the correct order to the neural 

board weight RAM. Some redesign to the synapse array at the chip level would 

help minimise the software required. Extra circuitry in the integrated circuit would 

also reduce the quantity of support hardware required at the board level. This 

would increase the overall speed of the neural board. Details of this are given in 

the next two sections. 

7.2. Improvements to the Accelerator Chip Design 

There are three areas in the design of the accelerator chip where improvements 

could be made to increase the speed and improve the overall efficiency of the 
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neural accelerator board. These are: changes to the array structure; alterations to 

the weight shift register in the synapse to reduce the software required for weight 

ordering and the addition of extra circuitry on the integrated circuit (separate 

from the synapse array to reduce the complexity and quantity of hardware 

required for the board level design). 

1. Array Structure 

The simplest design of the neural board and the software support required to run 

it, would be achieved if an accelerator chip contained only one column of 

synapses. For example, if 30 synapses formed part of a column of synapses for one 

neuron, and if 5 chips were cascaded, a 30x 5 synapse array would form a "patch", 

allowing the ordering and loading of weights to be much simpler. However, this 

structure loses the parallelism made possible by a VLSI design. 

There are not likely to be optimal array dimensions that will enable a more 

efficient operation of the "patch" in the paging architecture. The best size of the 

array will to some extent depend on the number of chips that are to be cascaded 

to form a "patch". The "patch" size, in turn, will depend on the number of neurons 

to be implemented in the network. It was fortunate with the present 9 x 3 

accelerator chip, that one "patch" could be computed in 256 (2) clock cycles, with 

only the last 12 clock cycles unused. These 12 clock cycles per "patch" represent an 

overall redundancy of 4.5% of the total computation time. The design of the 

integrated circuit would be more efficient if all the clock cycles were used during 

the board computation. 

A useful addition to the synaptic weight as it stands, would be to provide a 

synaptic weight input pin per column of synapses. This would require 2 extra pins, 

which does not create a significant problem, as only 53 of the 68 pins in the 

package are used in the design. This alteration would trade off some of the 

advantages of a bit-serial approach, in order that the loading of the neural weights 

from the RAMs would be faster and would also necessitate less software for the 

ordering of weights. 

2. Alterations to the synaptic weight storage 
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As described in the footnote in chapter 5, section 5.4, the synaptic weights are 

shifted around the weight shift registers while computation proceeds down the 

synaptic columns. This shifting was not taken into account during the integrated 

circuit design and therefore software was used to ensure the bits in each weight 

were in the correct order, ie., while the weights were shifted during computation, 

the LSB of the weight about to be multiplied by the neural state was correctly in 

the LSB of the shift register. This could be overcome by simply tapping off the 

LSB of the weight from the bit in the shift register where it has been shifted to, as 

drawn in figure 7.1, instead of tapping off each weight at the LSB of the shift 

register. 

LSB 
row l,Oshlfts 	18171615141312111 

LSB 	 to state 

row 2, 1 shift 	1 1 1 8 1 7 1 6 1 5 I 4  13 I 2  I 	
multiplexor 

LSB 

row 3,2shifts 	12111817161514131 
1 	 1W 

LSB 

row 4,3shifts 	13121118171615141 

V 	 LSB 

row 8, 7shlfts 	1716151413121 1  181 

LSB 

row 9,8shifts 	I8I7I6I5I 4 I3I 2 I 1 I 
l p. 

Figure 7.1 Alterations to the synaptic weight shift register 

3. Extra Circuitry 

The extra circuitry that could be implemented in the integrated circuit design, but 

separate from the synapse array, would reduce the number of standard small scale 

integrated (SSI) circuits required for the support hardware for the accelerator 

chips. The SSI circuits form, effectively, "glue" logic that enables the functioning 

of the accelerator chips in a neural network system. The circuitry falls into two 



Chapter 7 
	

119 

sections. The first is the inclusion of a 16 bit shift register for each synaptic 

column to hold the partial activation of the neuron before it is required for the 

adjacent "patch" computation in the column. This would increase the area of 

silicon required, but it would reduce by 24, the number of SSI circuits in the 

support hardware. One extra pin on the accelerator chip would be used to control 

the shifting of the registers. 

The second section of extra circuitry would be the addition of the control circuitry 

for the signals load, lsb, sel and se2. At present, the signals are derived by 

connecting NAND, NOR, AND and OR gates to give the desired signal. 

However, each gate incurs a delay and with several gates wired together in series, 

delays became large enough to miss the change time allowed to ensure steady data 

for the single phase clocking scheme, ie., the data must be held steady on the low 

to high transition of the clock. This introduces timing problems in the board 

design and provides one of the reasons for the slower than anticipated operating 

speed for the neural board. The inclusion of the control circuitry would require 8 

extra input pins for the address lines A 0 —A 7 , but the present input pins for the 

signals load, lsb, sel and se2 would no longer be required (however, it is 

recommended that the signal are connected to test pins so the correct timing of the 

signals can be checked). 

It is estimated, based on the fully custom 3iim CMOS integrated circuit design, 

that the partial activation shift registers, the control circuitry and the 3 x 9 synapse 

array would take up approximately double the silicon area that is presently used, 

which is 5.7mm 2 , for the 3x9 synapse array alone. A 1m design would, 

therefore, reduce this area by a factor of 9. Nine extra pins would be needed, but 

there are already fifteen pins unused on the package. On the current board design, 

43 of the 110 SSI circuits used would no longer be required, reducing the total by 

39%. 

7.3. Improvements to the Neural Board Design 

The neural board design and size could be considerably reduced by including the 

shift registers and control circuitry on the accelerator chip, thus leaving only 

RAMs and buffers in the support hardware. This is the ideal solution, but the 
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control circuitry would add complexity to the integrated circuit design. An 

alternative to this would be to use a PLA (programmable logic array) for the 

control, which could then also include the chip select and read/write control logic 

for the weight, state and activity RAMs. 

Larger RAMs than the present weight RAMs (64k each) are now more readily 

available than when the board was designed. Each accelerator chip requires. 0.2 

megabits of RAM, therefore a RAM of this size to supply each accelerator chip 

could be used instead of the the present system of multiplexing 3 RAMs for each 

chip. Also, reorganisation of the VMEbus data lines to the weight RAMs would 

make the design more efficient and simplify the software. 

7.4 Concluding Remarks 

The design stages of the neural accelerator board were done separately in that the 

accelerator chip design took place without anticipating a paging architecture board 

using a VMEbus. The board design took place without full knowledge of how to 

implement a learning algorithm program using the neural board as a neural 

hardware accelerator. With hindsight, a substantially revised design for the 

integrated circuit, to remove the stress from the board and software development 

can be proposed. This would be to keep the present (or approximately the same) 

array size (or a slightly larger array if a smaller design feature size were available) 

with alterations to improve the neural board efficiency and speed. These 

alterations are summarised in the following points:- 

Inclusion of partial activation shift registers in the integrated circuit. 

Inclusion of the control logic in the integrated circuit. 

One weight input pin per synapse column in the integrated circuit. 

Alterations to the synapse weight shift register to avoid weight ordering in 

software. 

Larger weight RAMs at the board level design to avoid multiplexing. 

Better organisation of the VMEbus data lines to the weight RAMs 

A large reduction in software after implementation of the above 6 points. 
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A conclusion of this nature is inevitable when the length of time for the VLSI 

design, fabrication, testing and board building, testing and- - implementing in a 

learning algorithm is so long. Effectively, major decisions about the chip design 

had to be made three years ago and their consequences endured through the 

later board design stages. 
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Carry tree input 

Input for Carry Tree 
*function  carryout 
CH: major(not(xor(sigjml ,pm)) ,b ,and(cl ,lsb)) 
else CO 

Sum tree input 

Input for Sum Tree 
* function sigout 
CH: not(xor(xor(not(xor(sigjml ,pm)) ,b,and(cl ,not(lsb))) ,pm)) 
else CO 

Sign-extend tree input 

Input for Sign Extend 
;Sign extension with RS 
* function SIGNEXT 
* input FB SE1 SE2 TL TLP1 RS 
CO: 000000 000001 000010 000101 001000 001001 001010 001011 001101 001111 

010000 010001 010010 010100 010101 010110 011000 011001 011010 011011 
011100 011101 011110 011111 100000 100001 100010 100101 101000 101010 
110001 110101 

CH: 100011 100100 100110 100111 101001 101011 101100 101101 101110 101111 
110000 110010 110011 110100 110110 110111 111000 111001 111010 111011 
111100 111101 111110 111111 001100 001110 010011 010111 000011 000100 
000110 000111 
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RNL Netlist file, sum.net  

(load "latchlib.net') 
(node top bot intnode out sigjml pm b ci lsb cik N2 N4 N6 N7 N8) 
(ptrans sigjmi top N4 4 3) 
(etrans sigjmi top N2 4 3) 
(ptrans b N4 N8 4 3) 
(etrans b N4 N6 4 3) 
(ptrans ci N8 bot 4 3) 
(etrans lsb N8 bot 4 3) 
(etrans ci N6 N7 4 3) 
(ptrans lsb N7 bot 4 3) 
(ptrans b N2 N6 4 3) 
(etrans b N2 N8 4 3) 
(mu intnode top bot cik) 
(pisolo out intnode cik) 
) 

RNL logic data input file, sum.l 

(load "uwstcl.l") 
(load "icstd.l") 
(read-network "sum_mp. bin") 
(setq inc 100) 
(log-file "sum_mp.out") 
V cik 	lhlhlhlhlhlhlhlhlhlhlhlhlhlhlhlh 
V sigjml llhhllhhllhhllhhllhhllhhllhhllhh 
V b 	llllhhhhllllhhhhllljhhhhllllhhhh 
V ci 	llllllllhhhhhhhhlllhlljlhhhhhhhh 
V lsb llllllllllllIillhhhhhh11Jhhhhhhhh 
w cik sigjmi ci lsb cik top bot intnode out N2 N4 N6 N8 N9 sim-init 
R 

132 
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RNL output file, sum.out 

RNL simulation results: SWITCH LEVEL 

TIME 	cik sigjml ci lsb clk top bot intnode out N2 N4 N6 N8 
(ns) 
0 00 000000 00000 
10000 000000 00000 
20010 001000 00000 
30001 0001 X 0 0 1 X 1 X 
40011 001101 01010 
50000 0001 X  1 X 1 1 X 
60010 001101 10110 
70001 000111 1 1 X X 1 
8001 1 001000 1 OXXO 
90000 1001 X 0 0 X 1 X 1 
100010 101101 00101 
110001 100111 1 1 X 1 X 
120011 101000 1 OXOX 
130000 100110 0 X 1 1 X 
140010 101000 0 XOOX 
150001 1001 X 0 0 1 X X 1 
160011 101101 01001 
170000 010111 1 X 1 X 1 
180010 011000 1 XOXO 
190001 0101 X 0 0 1 X 1 X 
200011 011101 01010 
210000 0 10 1X1 1 X 1 1 X 
220010 011101 10110 
230001 010111 1 lxxi 
240011 011000 1 OXXO 
250000 110110 0 X1X1 
260010 111000 0 XOXO 
270001 1101 X 0 0 1 X 1 X 
280011 111101 01010 
290000 1101 X  1 Xlix 
300010 111101 10110 
310001 110111 1 ixxi 
320011 111000 1 OXXO 
q 
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Address strobe (AS): On its falling edge, AS informs the SLAVE that the 
address is stable and can be captured. 

Data strobes (DSO, DSI): Both DSO and DS  are required for a long word 
(32-bit) data transfer. The first data strobe falling edge indicates when the MAS-
TER has placed valid data on the data bus. 

Long word (LW* ): LW is active when a long word data transfer is in operation. 

Write*: Write is used by the MASTER to indicate the direction of data transfer 
operations. When write*  is low, the data transfer is from the MASTER to the 
SLAVE. When write *  is high, the data transfer direction is from the SLAVE to 
the MASTER. 

Data acknowledge (DTACK'): The SLAVE drives DTACK low to indicate that 
it has successfully received the data on a write cycle. On a read cycle, the 
SLAVE drives DTACK' low to indicate that it has placed data on the data bus. 
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1 #include def.h' 
2 #define VME_BASE 	OxD00000 
3 #define VME_SIZE 	0x80000 
4 #define Tij_syn 	Ox0001C/4 
5 #define Tij_patchend 0x00360/4 
6 #define Tij_colend OxO7COO/4 
7 #define Tij_8colend 0x38000/4 
8 #define STATE—start 0x40060/4 
9 #define STATE—end 	0x400C4/4 
10 #define STATE_colend OxOl F00/4 
11 #define SUM_startcol 0x50000/4 
12 #define SUM_endcol 0x50B80/4 
13 #define SUM_startpatch 0x50008/4 
14 #define SUM_endpatch 0x50048/4 
15 #define RUN 	0x60000/4 
16 
17 extern longword *vME24d32O; 
18 main() 
19 begin 
20 	mt p,q,r,t,u,v,w,x,a; 
21 mt fd,weight,state,check; 
22 longword *addr,1,y,activity; 
23 FILE *fp *fpl ;  
24 
25 addr= VME24d32(VME_BASE,VME_SIZE,&fd); 
26 
27 	/* This section calculates weight address for each synapse and loads weight *1 

28 
29 fp= fopen("weight_in",'r"); 
30 p=0; 
31 for (w= 1; w< = 8; + + w) begin 	/* No of columns/RAM1 chip *1 

32 	q=O; 	 /* reset patch count at col top / 
33 	for (v= 1; v< =32; + +v) begin 	/* no of patches/column *1 

34 	r=0x340/4; 	 /* reset synapse count at patch start *1 

35 	for (u=1; u<27; ++u) begin 	/* synapse count per patch / 
36 	t=0; 	 /* resets weight bit count / 
37 	for (x=0; x<8; + +x) begin 	1*  counts bits per weight *1 

38 	fscanf(fp,'%X",&weight); 
39 	y=p+q+r+t; 
40 	addr[y] = weight; 
41 	t=t+Oxl; 
42 	end 
43 	r= r-0x20/4; 
44 	end 
45 	q=q+0x400/4; 
46 	end 
47 	p=p+0x8000/4; 
48 end 
49 
50 	/* This section calculates the state address and loads it to state RAM / 
51 

/* calulates address */ 

counts synapses per patch */ 

/* counts patches per column */ 

/* counts columns */ 
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52 fp= fopen("state_in" , 
53 for (v=0; v<=STATE_colend; v=v+OxlOO/4) begin 
54 	fscanf(fp,%X",&state); 
55 	for (a= STATE—start; a< = STATE_end; + + a) begin /* Load States to RAM 2 *1 

56 	addr[a+v]= state; 
57 	end 
58 end 
59 fclose(fp); 
60 fclose(fpl); 
61 
62 	/* Board is now loaded and is set to RUN *1 

63 
64 addr[RUN]0; 	 /* Set to D6 for Board Run *1 

65 do begin 
66 	check= addr[RUN]; 
67 end while ((l&Oxl0000000)!Ox10000000); /* Ends board run on A17 = A16 = 1 / 
68 
69 	/* Board has ended and activies are read back to the Sun *1 

70 
71 	fp= fopen('activity.out","w"); 
72 for (a=SUM_startcol; a<=SUM_endcol; a=a+0x20) begin 
73 	for (b= 0x0008/4; b< =0x0044/4; + +b) begin 
74 	activitv=aiidrFa+h1 	 /* reads activities from board */ 
75 

• 

end 
76 end 
77 fclose(fp); 
78 munmap(addr); 
79 close(fd); 
80 end 
81 
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1 #include "def.h" 
2 #include <math.h> 
3 #define VME_BASE 	OxD00000 
4 #define VME_SIZE 	0x80000 
5 #define WEIGHTS—end Ox3FFFF/4 
6 #define STATE—start 0x40060/4 
7 #define STATE—end 	0x400C4/4 
8 #define STATE_colend 0x00300/4 
9 #define SUM_startcol 0x50000/4 
10 #define SUM_endcol 0x50100/4 
11 #define SUM_startpatch 0x50008/4 
12 # define SUM_endpatch 0x50048/4 
13 #define RUN 	0x60000/4 
14 
15 extern longword *vME24d32O; 
16 mt sum[12],totalsum; 
17 mt getweight[36][36][8],order[216]; 
18 mt statenum[]{2,3,0,7,6}; 
19 float status[]{-1 .0,-0.5,0.0,0.5,1 .0); 
20 float temperature; 
21 double xl,x2,x3,x4,xmid0; 
22 float targetstate[720]; 

/ status is assigned to any of the 5-states *1 

23 float newstate[720]; 	1* thresholded activities *1 

24 float stateval[720]; 	1* state input value *1 

25 float delta[720]; 
26 float deltaweight[36][36]; 
27 float newweight[36][36]; 
28 mt trunweight[36][36]; 
29 mt orderweight[36][36][8]; 
30 
31 void Threshold (xmid, temperature) 1* 

32 float temperature; 	 1* 

33 double xmid; 
34 begin 
35 xl = xmid - ( tempera ture * log(8.0)); 
36 x2 = xmid - ( temperature* log(1.75)); 
37 0 = xmid + (temperature * log(1.75)); 
38 x4 = xmid + ( tempera ture* log(8.0)); 
39 end 
40 
41 mt Get—state(data) 	 f* works out which state has been 
42 float data; 	 /* read from "state_in" and returns *1 

43 begin 	 /* t= 1 -> 4 for state -1 -> + 1 	/ 

44 register mt t; 
45 t=O; 
46 while (data != status[t]) 
47 	t++; 
48 return(t); 
49 end 
50 
51 mt Power(base, sup) 

computes the threshold values *1 

to threshold activities 

*1 
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52 mt base, sup; 
53 begin 
54 	mt i,j; 
55 j=1; 
56 for (i=1;i<sup; ++i) 
57 	j=j*l,; 
58 return(j); 
59 end 
60 /* FUNCTION ALLOWS BOARD TO RUN */ 
61 void boardrun(addr) 
62 longword * addr;  
63 begin 
64 longword 1; 
65 addr[RUN]0; 	 /* Set to D6 for Board Run / 
66 do begin 
67 	1=addr[RUN]; 
68 end while ((1&0x10000000)! = Oxl0000000); 
69 end 
70 
71 main() 
72 begin 
73 mt v,a ,b,c,d,f ,g,h,i ,j,k,n,readweight,counter,indexl ,index2; 
74 mt a_col ,a_patch, a_syn ,a_bit ,patchcount,pattcount,count ,icount ,jcount ,syncount; 
75 mt result, pattno ,pattmax ,pp ,MSB ,ord ,ordcount,nop; 
76 float lrate,state_result ,stateinfo,x,m ,ptss,tss; 
77 longword * addr ,1, e , y;  
78 intfd; 
79 void ThresholdQ; 
80 FILE *fp*fpl*fp2*fp3,*fp4,*fp5,*fp6.*fp7; 

81 
82 addr= VME24d32( VME_BASE , VME_SIZE ,&fd); 
83 fp = fopen( "new_weight", "w"); 
84 fpl= fopen("state_in","r"); 
85 fp2= fopen("target_in","r"); 
86 fp3= fopen("temp","r"); 
87 fp4= fopen("learn","r"); 
88 fp5 = fopen("pattern_no","r"); 
89 fscanf(fp3,"%f',&temperature); 
90 fscanf(fp4,"%f',&lrate); 
91 fscanf(fp5 ,"%d",&pattmax); 
92 Threshold(xmid,temperature); 
93 a_col=0; 	 /* lines 93 - 102 initialise weights / 
94 for (g=0; g<=7; g+ +) begin 	 /* No of columnsJRAMl chip *1 

95 	a_patch=0; 	 /* reset patch count at col top *1 

96 	for (n=0; n< =31; n+ +) begin 	 /* no of patches/column *1 

97 	for (a_syn=0x340/4; a_syn>=0; a_syn=a_syn-0x20/4) begin /* 27 synapses *1 

98 	for ( a_bit0; a_bit<7; a_bit+ +) begin 
99 	y= a_col+ a_patch+ a_syn+ a_bit; 

100 	addr[y]=0; 
101 	end 
102 	end 
103 	a_patcha_patch+0x400/4; 	 /* counts patches per column / 
104 	patchcount(g*4)+ n+ 1; 
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105 	end 	 /* end n 

	

106 	a_col= a_col+ 0x8000/4; 	 I counts columns / 
107 end 
108 pattcount=1; 
109 count= 1; 
110 do begin 

	

111 	tss=0; 

	

112 	for (pattno=0; pattno<=pattmax; pattno+ +) begin 

	

113 	ptss=0; 

	

114 	pp=pattno*36; 

	

115 	if (pattno = = 0) 

	

116 	{ fseek(fpl,0,0); 

	

117 	fseek(fp2,0,0); 

	

118 	} 

	

119 	/* SECTION TO READ INPUT STATES */ 

	

120 	 1* Statenum gets the statenumber computed by Get—state then *1 

	

121 	/ * (8 to power i (for i=0 -> 8)) to get the 9 states to *1 

	

122 	/* input to VMEbus 	 *1 

	

123 	for (v=0; v< = STATE_colend; v=v+OxlOO/4) begin /* count 4 patches in a column 

	

124 	result= 0; 

	

125 	for (i=0; i<=8; i++) begin 	1* want 9 states of patt pattno / 

	

126 	fscanf(fpl,"%f',&stateinfo); 	/* reads in a state *1 

	

127 	result= result+ (statenum[Get_state(stateinfo)] *P ower(8 ,i)); 

	

128 	counter pp+(c*9)+i ; 	 /* counts total no of states / 

	

129 	stateval[counter] = stateinfo; 

	

130 	end 

	

131 	for (a= STATE—start; a< = STATE—end; + + a) begin /* Load States to RAM 2 

	

132 	addr[a+v] = result; 	 1* 26 ciks for state / 

	

133 	end 

	

134 	end 

	

135 	for (v= 0x0400/4; v<=OxlFOO/4; v=v+OxlOO/4) begin 

	

136 	for (a= STATE—start; a< =  STATE—end; + +a) begin /* Load States to RAM 2 

	

137 	addr[a+v]0; 

	

138 	end 

	

139 	end 

	

140 	boardrun(addr); 	 / accelerator board runs 
/* SECTION READS STATES BACK FROM BOARD I 

	

141 	for (a= SUM_startcol; a< = SUM_endcol; a= a+ 0x20) begin 

	

142 	for (i=0; i<=11; i++) begin 

	

143 	sum[i]0; 

	

144 	end 

	

145 	for (b= 0x0008/4; b<=0x0044/4; b+ +) begin 

	

146 	e=addr[a+b]; 	/* Unload 16bit activities from RAM3 *1 

	

147 	g= e&Ox00000FFF; 	 /* makes 3 LSB bits only valid *1 

/* SECTION COVERTS HEX TO FLOATING POINT ACTIVITIES *1 

	

148 	for (i=0; i<=11; i++) begin 

	

149 	 sum[i] = (!!(g&(Power(2, 11-i))) *power(2,c)) + sum[i]; 

150 	end 

	

151 	for (i=0; i<=11; i++) begin 
152 	 MSB= !!(sum[i]&Power(2,15)); 
153 	 if ( MSB>0) 
154 	 { 
155 	 sum[i]= (sum[i]+ 1)&0x0000FFFF; 



Appendix E 
	

140 

sum[i] = -1 * sum[i]; 
} 

end 
• end 

/* SECTION THRESHOLDS ACTIVITIES *1 

for (i=0;i<=ll;i++) begin 
x= sum[11-i]; 
if (x < xl) state_result = -1.0; 
if ((x < x2) and (x >= xl)) state-result = -0.5; 
if ((x < x3) and (x > = x2)) state-result = 0.0; 
if ((x < x4) and (x >= x3)) state-result = 0.5; 
if (x >= x4) state,-result = 1.0; 
newstate[pp+ ((d-1) * 12+ i)] = state-result; 

end 
end 	 /* end a= sum-col / 

/* SECTION IMPLEMENTS DELTA RULE / 
for (i=0; i<=35; ++i) begin 

fscanf(fp2 ,"%f',&targetstate[pp+ i]); 
delta[pp+ i]= targetstate[pp+ i]-newstate[pp+ i]; 
ptss= ptss+ delta[pp+ i] *d elta[pp+ i]; /* partial sum sq's for pattno *1 

for (j=0; j<=35; j++) begin 
deltaweight[i][j] = l rate* delta[pp+ i] *stateval[pp+ j]; 

1* computes weight change / 
newweight[i] [j] = newweight[i] [j] + deltaweight[i][j]; /* updates weight */ 
if (newweight[i][j] > 127) newweight[i][j]= 127; /* weight max */ 
if (newweight[i][j] <-127) newweight[i][j]-127; /* weight mm *, 
trunweight[i][j] newweight[i][j]; 	 /* set weight to mt * 
for (h=0; h<=7; h++) begin 	 1* set weight to binary */ 

getweight[i][j][h] = ! ! (trunweight[i][j]&Power(2 ,h)); /* 2's comp / 
end 

end 	 /* end j / 
/* SECTION ORDERS AND LOADS WEIGHTS BACK TO BOARD */ 

ord=0; 
for (nop=0; nop<3; nop++) begin 

ordcount= 0; 
for (j=ord; j<=ord+8; j++) begin 

for (h=0; h<=7; h++) begin 
if (h-ordcount> = 0) 

orderweight[i][j] [h] = getweight[i] [j] [h-ordcount]; 
if (h-ordcount<0) 

orderweight[i][j][h] = getweight[i] [j] [8 + h-ordcount]; 
end 
ordcount= ordcount+ 1; 

end 
ord = ord +9; 

end 
end 
tss= tss+ ptss; 
a_col = 0; 
a=0; 
patchcount = 0; 
for (g=0; g<=2; g++) begin 

a_patch0; 
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168 
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172 
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177 
178 
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183 
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185 
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199 
200 
201 
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204 

/* end i/ 
/* total sum sq's for all patterns *1 

/* No of columns/RAMI chip / 
1* reset patch count at col top / 
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b=0; 
for (n=0; n<=3; n+ +) begin 	/ no of patches/column *1 

for (i=0; i<=215; i++) begin 	/ no of patches/column */ 
order[i] = 0; 

end 
for (k=0; k<=3; k++) begin 

jcount= 0; 
for (j=b; j<=b+8; j++) begin 	1* synapse count per patch / 

icount= 0; 
for (i= a; i<=a+2; i++) begin 

for (h=0; h<=7; h+ +) begin /* counts bits per weight / 
order[ (24 * jcount) + (8*icount)+  h] 
orderweight[i] [j][h] * Power(2 ,3 *k) + 
order[ (24 * jcount) + (8*icount)+  h]; 

end 	 1* reads weights from weight */ 
icount= icount+ 1; 	/* matrix *1 

end 
jcount= jcount+ 1; 

end 	 /* end j / 
a=a+3; 

end 
a=a-12; 
b=b+9; 
syncount= 0; 
for (a_syn= 0x340/4; a_syn> = 0; a_syn a_syn-0x20/4) begin 

for ( a_bit= 0; a_bit< = 7; a_bit+ +) begin 
y= a_col+ a_patch+ a_syn+ a_bit; 
addr[y] = order[(8* syncount) + a_bit]; 

end 
syncount = syncount+ 1; 

end 
a_patch= a_patch+ 0x400/4; 	 /* counts patches per column / 
patchcount (g*4) + n+ 1; 

end 	 /* end n *1 

a=a+12; 
a_col=a_col+Ox8000/4; 	 1* counts columns *1 

end 	 /* end g / 
end 	 /* end pattno *1 

printf("%d %fO,count,tss); 
count= count+ 1; 

end while (tss>0); 
for (i=0; i<=35; i++) begin 

for (j=0; j<=35; j++) begin 
for (h=0; h<=7; h++) begin 

fprintf(fp,"%d ",orderweight[i][j][h]); 
end 
fprintf(fp,'O); 

end 
end 
fclose(fp); 
fclose(fpl); 
fclose(fp2); 
fclose(fp3); 
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229 
230 
231 
232 
233 
234 
235 
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237 
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240 
241 
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258 fclose(fp4); 
259 munmap(addr); 
260 close(fd); 
26lend 
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1 #include def.h" 
2 #include <niath.h> 
3 float weight[36][36] ,deltaweight[36] [36] ,newweight[36] [36]; 
4 float stateval[720] ,target[720] ,recstateval[72O] ,newstate[720] ,sum[36]; 
5 float state_result,tss,ptss; 
6 float xl,x2,x3,x4; 
7 float lrate,xmid=0,temperature; 
8 mt pattno; 
9 

10 void Threshold(xmid,temperatUre) 
11 float temperature,xmid; 
12 begin 
13 xl =xmid(temperature*log(8.0)); 
14 x2= xmid(temperature*log(1 .75)); 
15 0 = xmid ± (temperature*log(1 .75)); 
16 x4=xmid+ (tempera ture *log(8.0)); 
17 end 
18 
19 void Actsum(weight,stateval,sum,pattflO) /* Computes neural activity / 
20 float stateval[72] ,weight[36][36] ,sum[36]; 
21 begin 
22 	mt i,j; 
23 for (i=0; i<=35; i++) begin 
24 	sum[i]0; 
25 	for (j=0; j<=35; j++) begin 
26 	sum[i] = sum[i] + stateval[pattno+ j] *weight[i][j]; 
27 	end 
28 end 
29 end 
30 
31 main() 
32 begin 
33 
34 	mt i,j,k,l,count; 
35 float x,v; 
36 void ThresholdQ; 
37 void ActsumQ; 
38 FILE *fpo,*fp5,*fp,*fpl,*fp2,*fp3,*fp4,*fp6,*fp8; 

39 fpO= fopen("learn","r"); 
40 fp5= fopen('temp","r'); 
41 fp= fopen( "new_weight',"w"); 
42 fpl = fopen("state_in",'r"); 
43 fp2= fopen("target_in","r"); 
44 fscanf(fpO ,"%f',&lrate); 
45 fscanf(fp5 ,"%f,&temperature); 
46 Threshold (xmid ,temperature); 
47 
48 for (i=0; i<=35; i++) begin 
49 	for (j=0;j<35;j++) begin 
50 	weight[i][j]0; 	/* sets weights to 0 / 
51 	end 
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52 end 
53 for (i=0;i<=19;i++) begin 
54 	for (j=0; j<=35; j++) begin 
55 	fscanf(fp1 , %f,&stateval[36*i+j]); 1* reads input patterns *1 

56 	fscanf(fp2 ,"%f' ,&target[36*  j + j]); 	/ reads target patterns *1 

57 	end 
58 end 
59 count= 1; 
60 do begin 
61 	tss=0; 
62 	for (k0; k<19; k++) begin 
63 	pattno=36*k; 
64 	ptss=0; 
65 	Actsum(weight,stateval,sum,pattflo); 
66 	for (i=0; i<=35; i+ +) begin 	/* thresholds activities *1 

67 	x=sum[i]; 
68 	if (x < xl) state—result = -1.0; 
69 	if ((x < x2) and (x > = xl)) state—result = -0.5; 
70 	if ((x < x3) and (x > = x2)) state—result = 0.0; 
71 	if ((x < x4) and (x >= x3)) state—result = 0.5; 
72 	if (x > = x4) state—result = 1.0; 
73 	newstate[pattno+ i] = state—result; 
74 	v= target[pattno+ i]-newstate[pattno+ i]; 
75 	for (j= 0; j< = 35; j+ +) begin 	/* for loop calculates new weights / 
76 	deltaweight[i][j] = Irate* v*  stateval[pattno + fl; 
77 	weight[i][j] = deltaweight[i][j] + weight[i][j]; 
78 	if (weight[i][j] > 127) weight[i][j] 127; 
79 	if (weight[i][j] < -127) weight[i][j]-127; 
80 	end 
81 	ptss= ptss+ (v*v); 	/* calculates error in output patern I 

82 	end 
83 	tss=tss+ptss; 
84 	end 
85 	printf("%d %fO,count,tss); 
86 	countcount+1; 
87 end while (tss>O); 
88 for (i=O;i<35;i++) begin 
89 	for (j=0;j<35;j++) begin 
90 	fprintf(fp, "%fO ,weight[i] [j]); 
91 	end 
92 end 
93 fclose(fp); 
94 fclose(fpl); 
95 fclose(fp2); 
96 fclose(fp3); 
97 fclose(fp5); 
98 fclose(fp0); 
99 end 
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BIT - SERIAL NEURAL NETWORKS 

Alan F. Murray, Anthony V. W. Smith and Zoe F. Butler. 
Department of Electrical Engineering, University of Edinburgh, 

The King's Buildings, Màyfield Road, Edinburgh, 
Scotland, EH9 3JL. 

ABSTRACT 

A bit - serial VLSI neural network is described from an initial architecture for a 
synapse array through to silicon layout and board design. The issues surrounding bit 
- serial computation, and analog/digital arithmetic are discussed and the parallel 
development of a hybrid analog/digital neural network is outlined. Learning and 
recall capabilities are reported for the bit - serial network along with a projected 
specification for a 64 - neuron, bit - serial board operating at 20 MHz. This tech-
nique is extended to a 256 (2562  synapses) network with an update time of 3ms, 
using a "paging" technique to time - multiplex calculations through the synapse 
array. 

1. INTRODUCTION 
The functions a synthetic neural network may aspire to mimic are the ability to con-
sider many solutions simultaneously, an ability to work with corrupted data and a 
natural fault tolerance. This arises from the parallelism and distributed knowledge 
representation which gives rise to gentle degradation as faults appear. These func-
tions are attractive to implementation in VLSI and WSL For example, the natural 
fault - tolerance could be useful in silicon wafers with imperfect yield, where the 
network degradation is approximately proportional to the non-functioning silicon 
area. 

To cast neural networks in engineering language, a neuron is a state machine that is 
either "on" or "off', which in general assumes intermediate statas as it switches 
smoothly between these extrema. The synapses weighting the signals from a 
transmitting neuron such that it is more or less excitatory or inhibitory to the. receiv-
ing neuron. The set of synaptic weights determines the stable states and represents 
the learned information in a system. 
The neural state, V,, is related to the total neural activity stimulated by inputs to 
the neuron through an activation function, F. Neural activity is the level of excita-
tion of the neuron and the activation is the way it reacts in a response to a change 
in activation. The neural output state at time t, VJ, is related to x' by 

v: = F(x) 	 (1) 

The activation function is a "squashing" function ensuring that (say) V 1  is 1 when 
x1  is large and -1 when x, is small. The neural update function is therefore straight-
forward: 

jn-1 

xi, ' = X, . ..... + 6 	7', VJ 	 (2) 
j =0 

where & represents the rate of change of neural activity, Tq  is the synaptic weight 
and n is the number of terms giving an n - neuron array [1]. 
Although the neural function is simple enough, in a totally interconnected n - neu- 
ron network there are n 2  synapses requiring n 2  multiplications and summations and 



a large number of interconnects. The challenge in VLSI is therefore to design a sim-
ple, compact synapse that can be repeated to build a VLSI neural network with 
manageable interconnect. In a network with fixed functionality, this is relatively 
straightforward. If the network is to be able to learn, however, the synaptic weights 
must be programmable, and therefore more complicated. 

2. DESIGNING A NEURAL NETWORK IN VLSI 
There are fundamentally two approaches to implementing any function in silicon - 
digital and analog. Each technique has its advantages and disadvantages, and these 
are listed below, along with the merits and demerits of bit - serial architectures in 
digital (synchronous) systems. 

Digital vs. analog: The primary advantage of digital design for a synapse array is 
that digital memory is well understood, and can be incorporated easily. Learning 
networks are therefore possible without recourse to unusual techniques or technolo-
gies. Other strengths of a digital approach are that design techniques are advanced, 
automated and well understood and noise immunity and computational speed can 
be high. Unattractive features are that digital circuits of this complexity need to be 
synchronous and all states and activities are quantised, while real neural networks 
are asynchronous and unquantised. Furthermore, digital multipliers occupy a large 
silicon area, giving a low synapse count on a single chip. 
The advantages of analog circuitry are that asynchronous behaviour and smooth 
neural activation are automatic. Circuit elements can be small, but noise immunity 
is relatively low and arbitrarily high precision is not possible. Most importantly, no 
reliable analog, non - volatile memory technology is as yet readily available. For 
this reason, learning networks lend themselves more naturally to digital design and 
implementation. 

Several groups are developing neural chips and boards, and the following listing 
does not pretend to be exhaustive. It is included, rather, to indicate the spread of 
activity in this field. Analog techniques have been used to build resistor I opera-
tional amplifier networks [2,3] similar to those proposed by Hopfleld and Tank [4]. 
A large group at Caltech is developing networks implementing early vision and 
auditory processing functions using the intrinsic nonlinearities of MOS transistors in 
the subthreshold regime [5,6]. The problem of implementing analog networks with 
electrically programmable synapses has been addressed using CCD!MNOS technol-
ogy [7]. Finally, Garth [8] is developing a digital neural accelerator board ("Net-
sim") that is effectively a fast SIMD processor with supporting memory and com-
munications chips. 
Bit - serial vs. bit - parallel: Bit - serial arithmetic and communication is efficient 
for computational processes, allowing good communication within and between 
VLSI chips and tightly pipelined arithmetic structures. It is ideal for neural net-
works as it minimises the interconnect requirement by eliminating multi - wire 
busses. Although a bit - parallel design would be free from computational latency 
(delay between input and output), pipelining makes optimal use of the high bit - 
rates possible in serial systems, and makes for efficient circuit usage. 
2.1 An asynchronous pulse stream VLSI neural network: 
In addition to the digital system that forms the substance of this paper, we are 
developing a hybrid analog/digital network family. This work is outlined here, and 
has been reported in greater detail elsewhere [9, 10, 11]. The generic (logical and 
layout) architecture of a single network of n totally interconnected neurons is shown 



schematically in figure 1. Neurons are represented by circles, which signal their 
states, V, upward into a matrix of synaptic operators. The state signals are con-
nected to a n - bit horizontal bus running through the synaptic array, with a con-
nection to each synaptic operator in every column. All columns have 11 operators 
(denoted by squares) and each operator adds its synaptic contribution, T1  V1 , to the 
running total of activity for the neuron i at the foot of the column. The synaptic 
function is therefore to multiply the signalling neuron state, V, by the synaptic 
weight, T1 ,, and to add this product to the running total. This architecture is com-
mon to both the bit - serial and pulse - stream networks. 

Synaps 

States {V,} 

irons 

Figure 1. Generic architecture for a network of n totally interconnected neurons. 

This type of architecture has many attractions for implementation in 2 - dimensional 
j =n —1 

silicon as the summation 7, T j V, is distributed in space. The interconnect 
j=0 

requirement (n inputs to each neuron) is therefore distributed through a column, 
reducing the need for long - range wiring. The architecture is modular, regular and 
can be easily expanded. 
In the hybrid analog/digital system, the circuitry uses a "pulse stream" signalling 
method similar to that in a natural neural system. Neurons indicate their state by 
the presence or absence of pulses on their outputs, and synaptic weighting is 
achieved by time - chopping the presynaptic pulse stream prior to adding it to the 
postsynaptic activity summation. It is therefore asynchronous and imposes no fun-
damental limitations on the activation or neural state. Figure 2 shows the pulse 
stream mechanism in more detail. The synaptic weight is stored in digital memory 
local to the operator. Each synaptic operator has an excitatory and inhibitory pulse 
stream input and output. The resultant product of a synaptic operation, T11  V, is 
added to the running total propagating down either the excitatory or inhibitory 
channel. One binary bit (the MSBit) of the stored T11  determines whether the con-
tribution is excitatory or inhibitory. 

The incoming excitatory and inhibitory pulse stream inputs to a neuron are 
integrated to give a neural activation potential that varies smoothly from 0 to 5 V. 
This potential controls a feedback loop with an odd number of logic inversions and 
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Figure 2. Pulse stream arithmetic. Neurons are denoted by 0 and synaptic operators 
by 0. 

thus forms a switched "ring - oscillator". If the inhibitory input dominates, the feed-
back loop is broken. If excitatory spikes subsequently dominate at the input, the 
neural activity rises to 5V and the feedback loop oscillates with a period determined 
by a delay around the loop. The resultant periodic waveform is then converted to a 
series of voltage spikes, whose pulse rate represents the neural state, V 1 . Interest-
ingly, a not dissimilar technique is reported elsewhere in this volume, although the 
synapse function is executed differently [12]. 

3. A 5 - STATE BIT - SERIAL NEURAL NETWORK 

The overall architecture of the 5 - state bit - serial neural network is identical to 
that of the pulse stream network. It is an array of n 2  interconnected synchronous 
synaptic operators, and whereas the pulse stream method allowed V1  to assume all 
values between "off" and "on", the 5 - state network V1  is constrained to 0, ±0.5 or 
±1. The resultant activation function is shown in Figure 3. Full digital multiplica-
tion is costly in silicon area, but multiplication of T,1  by V1  = 0.5 merely requires 
the synaptic weight to be right - shifted by 1 bit. Similarly, multiplication by 0.25 
involves a further right - shift of T1 , and multiplication by 0.0 is trivially easy. V1  
< 0 is not problematic, as a switchable adder/subtractor is not much more complex 
than an adder. Five neural states are therefore feasible with circuitry that is only 
slightly more complex than a simple serial adder. The neural state expands from a 1 
bit to a 3 bit (5 - state) representation, where the bits represent "add/subtract?", 
"shift?" and "multiply by 0?". 

Figure 4 shows part of the synaptic array. Each synaptic operator includes an 8 bit 
shift register memory block holding the synaptic weight, T,. A 3 bit bus for the 5 
neural states runs horizontally above each synaptic row. Single phase dynamic 
CMOS has been used with a clock frequency in excess of 20 MHz [13]. Details of 
a synaptic operator are shown in figure 5. The synaptic weight Tq  cycles around the 
shift register and the neural state V is present on the state bus. During the first 
clock cycle, the synaptic weight is multiplied, by the neural state and during the 
second, the most significant bit (MSBit) of the resultant Tq  V1  is sign - extended for 
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Figure 3. "Hard - threshold", 5 - state and sigmoid activation functions. 
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Figure 4. Section of the synaptic array of the 5 - state activation function neural net-
work. 

8 bits to allow for word growth in the running summation. A least significant bit 
(LSBit) signal running down the synaptic columns indicates the arrival of the LSBit 
of the x running total. If the neural state is ± 0.5 the synaptic weight is right 
shifted by 1 bit and then added to or subtracted from the running total. A multipli-
cation of ±1 adds or subtracts the weight from the total and multiplication by 0 
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Figure 5. The synaptic operator with a 5 - state activation function. 

does not alter the running summation. 

The final summation at the foot of the column is thresholded externally according 
to the 5 - state activation function in figure 3. As the neuron activity x,, increases 
through a threshold value x,, ideal sigmoidal activation represents a smooth switch 
of neural state from -1 to 1. The 5 - state "staircase" function gives a superficially 
much better approximation to the sigmoid form than a (much simpler to imple-
ment) threshold function. The sharpness of the transition can be controlled to 
"tune" the neural dynamics for learning and computation. The control parameter is 
referred to as temperature by analogy with statistical functions with this sigmoidal 
form. High "temperature" gives a smoother staircase and sigmoid, while a tempera-
ture of 0 reduces both to the "Hopfleld' - like threshold function. The effects of 
temperature on both learning and recall for the threshold and 5 - state activation 
options are discussed in section 4. 

4. LEARNING AND RECALL WITH VLSI CONSTRAINTS 

Before implementing the reduced - arithmetic network in VLSI, simulation experi-
ments were conducted to verify that the S - state model represented a worthwhile 
enhancement over simple threshold activation. The "benchmark" problem was 
chosen for its ubiquitousness, rather than for its intrinsic value. The implications 
for learning and recall of the 5 - state model, the threshold (2 - state) model and 
smooth sigmoidal activation 

( 
oo - state) were compared at varying temperatures 

with a restricted dynamic range for the weights Tq . In each simulation a totally 
interconnected 64 node network attempted to learn 32 random patterns using the 
delta rule learning algorithm (see for example [14]). Each pattern was then cor-
rupted with 25% noise and recall attempted to probe the content addressable 
memory properties under the three different activation options. 

During learning, individual weights can become large (positive or negative). When 
weights are "driven" beyond the maximum value in a hardware implementation, 



which is determined by the size of the synaptic weight blocks, some limiting 
mechanism must be introduced. For example, with eight bit weight registers, the 
limitation is -128 f=-  127. With integer weights, this can be seen to be a prob-
lem of dynamic range, where it is the relationship between the smallest possible 
weight (±1) and the largest (+ 127/-128) that is the issue. 

Results: Fig. 6 shows examples of the results obtained, studying learning using 5 - 
state activation at different temperatures, and recall using both 5 - state and thres-
hold activation. At temperature T=O, the 5 - state and threshold models are 
degenerate, and the results identical. Increasing smoothness of activation (tempera-
ture) during learning improves the quality of learning regardless of the activation 
function used in recall, as more patterns are recognised successfully. Using 5 - state 
activation in recall is more effective than simple threshold activation. The effect of 
dynamic range restrictions can be assessed from the horizontal axis, where Tfn is 
shown. The results from these and many other experiments may be summarised as 
follows:- 

S - State activation vs. threshold: 
Learning with 5 - state activation was protracted over the threshold activation, 
as binary patterns were being learnt, and the inclusion of intermediate values 
added extra degrees of freedom. 
Weight sets learnt using the 5 - state activation function were 'better" than 
those learnt via threshold activation, as the recall properties of both 5 - state 
and threshold networks using such a weight set were more robust against 
noise. 
Full sigmoidal activation was better than 5 - state, but the enhancement was 
less significant than that incurred by moving from threshold - 5 - state. This 
suggests that the law of diminishing returns applies to addition of levels to the 
neural state V. This issue has been studied mathematically [15], with results 
that agree qualitatively with ours. 

Weight Saturation: 
Three methods were tried to deal with weight saturation. Firstly, inclusion of a 
decay, or "forgetting" term was included in the learning cycle [1]. It is our view 
that this technique can produce the desired weight limiting property, but in the time 
available for experiments, we were unable to "tune" the rate of decay sufficiently 
well to confirm it. Renormalisation of the weights (division to bring large weights 
back into the dynamic range) was very unsuccessful, suggesting that information 
distributed throughout the numerically small weights was being destroyed. Finally, 
the weights were allowed to "clip" (ie any weight outside the dynamic range was set 
to the maximum allowed value). This method proved very successful, as the learn-
ing algorithm adjusted the weights over which it still had control to compensate for 
the saturation effect. It is interesting to note that other experiments have indicated 
that Hopfield nets can "forget" in a different way, under different learning control, 
giving preference to recently acquired memories [16]. The results from the satura-
tion experiments were:- 

For the 32 pattern/64 node problem, integer weights with a dynamic range 
greater than ±30 were necessary to give enough storage capability. 
For weights with maximum values Tijl = 50-70, "clipping" occurs, but net-
work performance is not seriously degraded over that with an unrestricted 
weight set. 
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Figure 6. Recall of patterns learned with the 5 - state activation function and subse-
quently restored using the 5-state and the hard - threshold activation functions. 
T is the "temperature", or smoothness of the activation function, and "limit" the value 
of T8 '. 

These results showed that the 5 - state model was worthy of implementation as a 
VLSI neural board, and suggested that 8 - bit weights were sufficient. 

5. PROJECTED SPECIFICATION OF A HARDWARE NEURAL BOARD 

The specification of a 64 neuron board is given here, using a 5 - state bit - serial 64 
x 64 synapse array with a derated clock speed of 20 MHz. The synaptic weights are 
8 bit words and the word length of the running summation x1  is 16 bits to allow for 
growth. A 64 synapse column has a computational latency of 80 clock cycles or 
bits, giving an update time of 4p.s for the network. The time to load the weights 
into the array is limited to 60s by the supporting RAM, with an access time of 
120ns. These load and update times mean that the network is executing 1 x iO 
operations/second, where one operation is ± Taj  Vj . This is much faster than a 
natural neural network, and much faster than is necessary in a hardware accelera-
tor. We have therefore developed a "paging" architecture, that effectively "trades - 
off' some of this excessive speed against increased network size. 
A "moving -- patch"  neural board: An array of the 5 - state synapses is currently 
being fabricated as a VLSI integrated circuit. The shift registers and the 
adder/subtractor for each synapse occupy a disappointingly large silicon area, allow-
ing only a 3 x 9 synaptic array. To achieve a suitable size neural network from this 
array, several chips need to be included on a board with memory and control circu-
itry. The "moving patch" concept is shown in figure 7, where a small array of 
synapses is passed over a much larger n x n synaptic array. 

Each time the array is "moved" to represent another set of synapses, new weights 
must be loaded into it. For example, the first set of weights will be T 11  ... T,, ... T 21  

T2  to T1 , the second set T111  to T,, etc.. The final weight to be loaded will be 
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Figure 7. The "moving patch" concept, passing a small synaptic "patch" over a larger 
nxn synapse array. 	 - 

T. Static, off - the - shelf RAM is used to store the weights and the whole opera-
tion is pipelined for maximum efficiency. Figure 8 shows the board level design for 
the network. 

{Tu}RAM fX 	Icontrol 

Synaptic Accelerator Chips 

{V} 
Partial 
Sum 

Bus interface 
	

RAM 

HOST 

Figure 8. A "moving patch" neural network board. 

The small "patch" that moves around the array to give n neurons comprises 4 VLSI 
synaptic accelerator chips to give a 6 x 18 synaptic array. The number of neurons to 
be simulated is 256 and the weights for these are stored in 0.5 Mb of RAM with a 
load time of 8ms. For each "patch" movement, the partial running summation, i1, 



calculated for each column, is stored in a separate RAM until it is required to be 
added into the next appropriate summation. The update time for the board is 3ms 
giving 2 x iO operations/second. This is slower than the 64 neuron specification, 
but the network is 16 times larger, as the arithmetic elements are being used more 
efficiently. To achieve a network of greater than 256 neurons, more RAM is 
required to store the weights. The network is then slower unless a larger number of 
accelerator chips is used to give a larger moving "patch". 

6. CONCLUSIONS 

A strategy and design method has been given for the construction of bit - serial 
VLSI neural network chips and circuit boards. Bit - serial arithmetic, coupled to a 
reduced arithmetic style, enhances the level of integration possible beyond more 
conventional digital, bit - parallel schemes. The restrictions imposed on both synap-
tic weight size and arithmetic precision by VLSI constraints have been examined 
and shown to be tolerable, using the associative memory problem as a test. 
While we believe our digital approach to represent a good compromise between 
arithmetic accuracy and circuit complexity, we acknowledge that the level of 
integration is disappointingly low. It is our belief that, while digital approaches 
may be interesting and useful in the medium term, essentially as hardware accelera-
tors for neural simulations, analog techniques represent the best ultimate option in 2 
- dimensional silicon. To this end, we are currently pursuing techniques for analog 
pseudo - static memory, using standard CMOS technology. In any event, the full 
development of a nonvolatile analog memory technology, such as the MNOS tech-
nique [7], is key to the long - term future of VLSI neural nets that can learn. 
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NEURAL NETWORKS. 

Murray, Z. F. Butler and A. V. W. Smith 

TRODUCTION 

Letic neurons are simple computational units operating in massively parallel arrays, that capture 
of the functionality and computational strengths of the brain. In engineering terms, a biological 

)fl (for example, member i of a network of n neurons) is a unit that signals its state V., by the 
nce ("on") or absence ("off") of voltage pulses on its output, or axon. Neuron i decides its state 
imputing its activity x•, which can be altered by direct stimulation of the neuron from outside the 
Drk and by contributions from other neurons in the network. The neuron state, V 1 , is related to 
an activation function, f. Neural activity is the level of excitation of the neuron and the activa-

function describes its response to a change in activation. The contributions from other neurons 
ieighted by interneural synaptic weights {T}.  The state of neuron i in a n - neuron array [1] is 
given by:- 
 j =11-1 

V1 = f (x,) = f ( I T, V + J) 	 (1) 
j=o 

activation function f (x1 ) defines the range and resolution of V1 , and the smoothness with which 
iron moves between the "off" and "on" states and ensures that (say) V1  is 1 when xi  is large and 
ien x, is small. I is a direct input that may be arbitrarily strong to force a value on V 1 . Synaptic 
ts {T,} may be positive (excitatory) or negative (inhibitory) and any neuron may tend to turn 
er neuron "on" or "off' respectively. Information is encoded in or "learnt" by the network by 

.ng the long term memory storage elements {T q }. Recall or computation is performed as the net-
moves around the n - dimensional space defined by the {V,} with the {T, 1 } constant. This is 

Went to a recursive and asynchronous evaluation of eqn. (1) until equilibrium is reached. The 
al function is straightforward, but in a totally interconnected n - neuron array, eqn. (1) requires 
ultiplications and a large number of interconnections for each network update cycle. Therefore, 
hallenge in VLSI is to design a simple, compact synapse with minimal inter-synapse connections 
can be easily implemented in silicon. This is relatively simple for a network with fixed functional-
However if the network is to be able to learn, it becomes more complicated as the synaptic 
hts must be programmable. 

EURAL NETWORK ARCHITECTURE 

e are fundamentally two approaches to implementing any function in silicon - digital and analo-
The two neural systems designed here use a hybrid analogue/digital method and a bit-serial digi-
iethod. The general architecture (logical and layout), used by both designs is shown schemati-
in figure 1. This is a single network of a totally interconnected neurons. Neurons are 

sented by circles, that signal their states, V. upward into a matrix of synaptic operators. The state 
Is are connected to a a bit horizontal bus running across the synaptic array, with a connection to 
laptic operator in every column. Each column has n operators (denoted by squares) that add 
synaptic contribution Tq  V1 , to the running total of activity for the neuron i at the end of the 

nn. The synaptic function is therefore to mu1tipv the signalling neuron state, V1 , by the synaptic 
ht, T,1  and to add this product to the running total. 

type of architecture has many attractions for implementation in 2 - dimensional silicon as the 
nation is distributed in space. The interconnect requirement is distributed through a column, 
cing the need for long-range wiring. The architecture is modular, regular and easily expanded. 

hybrid analogue/digital system: This uses a "pulse stream" method similar to that in a natural 
in. Neurons indicate their state by the presence or absence of pulses on their outputs and synaptic 
hting is achieved by time-chopping the presynaptic pulse stream prior to adding it to the post 
ptic activity summation. It is therefore asynchronous and imposes no fundamental limitations on 
ictivation or neural state. Figure 2 shows the pulse stream mechanism in more detail. The synap-
eight is stored in digital memory local to the synapse. Each synaptic operator has an excitatory 



thibitory pulse stream output. The resultant product of the operation, T1, V, is added to the run-
total propagating down either the excitatory or the inhibitory channel. One binary bit (the 
:) of the stored Tq  determines whether the contribution is excitatory or inhibitory. The incom-
citatory and inhibitory pulse stream inputs to a neuron are integrated to give a neural activation 
ial that varies smoothly from 0 to 5 V. This potential controls a feedback loop with an odd 
er of logic inversions and thus forms a switched "ring-oscillator". If the inhibitory input dom-

the feedback loop is broken. If excitatory spikes subsequently dominate at the input, the neural 
y rises to 5 V and the feedback loop oscillates with a period determined by a delay around the 
The resultant periodic waveform is then converted to a series of voltage spikes, whose pulse rate 
ents the neural state, V. A 64 synapse array using this method has been fabricated in 311. 
S technology. The work outlined here has been reported in greater detail elsewhere [2, 3, 4]. 

 

Exc. 	Inh. 	Exc. 	Inh. 
..., 	___J -UXUWIL  

yua 
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e 1. Generic architecture for a network 	Figure 2. Pulse stream arithmetic. Neurons are 

wally interconnected neurons. 	 denoted by 0 and synaptic operators by 0. 

)it-serial digital system: This system again comprises an array of a 2  interconnected synchronous 
tic operators. The major difference between the two, is that the pulse stream method allows V 
;ume all values between "off' and "on", whereas the bit-serial network is constrained to 5-states 
i are V = 0, ± 0.5 or ± 1. The resultant activation functions for the pulse stream and 5-state 
)rks are shown in figure 3. Multiplication of T1  by {V = 0.5} simply requires that T1  be right- 
d by 1 bit and multiplication by 0 requires the product to be set to 0. V < 0 is implemented in 
tchable adder/subtractor. Figure 4 shows details of synaptic operators in the array. Each operator 
n 8-bit shift register memory block holding the synaptic weight, which is "multiplied" by the 
I state, V, signalled on a 3-bit bus. The running summation T1  V is 16 bits to allow for word 
:h down the column. A least significant bit (LSBit) signal running down the synaptic columns 
ites the arrival of the LSBit of the x 1 . running total. 

inal value of the activity arriving at the neuron in each column is thresholded externally accord- 
the 5-state activation function in figure 3. As the neuron activity increases through a threshold 

x,, the ideal activation represents a smooth switch of neural state from -1 to + 1. The 5-state 
ase" function gives a superficially much better approximation to the form than the (simpler to 

ment) threshold function. The sharpness of the transition affects the neural ability for learning 
omputation. The control parameter is referred to as "temperature" by analogy to statistical func-
with this form. High temperature gives a smoother staircase and sigmoid and zero temperature 
es the sigmoid to the threshold function. 

EARNING AND RECALL CAPABILITIES WITH VLSI CONSTRAINTS 

iing and recall capabilities of the 5-state function were simulated in software against those of the 
e threshold model and the sigmoidal activation, at varying temperatures with a restricted 
mc range for the weights, T,. In each simulation a totally interconnected 64 node network 
•pted to learn 32 patterns using the delta rule algorithm [5]. Each pattern was then corrupted 
25 % noise. The results showed that weight sets learnt using the 5-state activation function were 
r" than those learnt via the threshold activation. Recall of the patterns was also more effective 
the 5-state model. Full sigmoid activation was superior to the 5-state, but the enhancement was 



THRESHOLD 
e 

	

Vj 	

- Activity Xi 
Xt 

	

:e V 	
" STATEJJ 	

> "Sharper" 

"Smoother" 

x' 	/7 	
CtIVItyX3 

SIGM011D/D.1 
eV 

Activity x• 
x 	 3 

re 3. "Hard - threshold", 5 - stare and 
roid activation functions. 

i: 

Figure 4. Section of the synaptic array of the 

5 - state activation function neural network. 

ignificant than that incurred by moving from threshold to 5-state. The best method to deal with 
it saturation during learning was to permit any weight outside the dynamic range to be set to its 
mum allowed value. These results showed that the 5-state model was worthy of fabrication at a 
[level and implementation on a neural board. A full discussion of the results can be found in [6]. 

HARDWARE NEURAL BOARD 

ecification has been calculated for a 64 neuron board using a 5-state bit-serial 64 x 64 synapse 
The weight set is stored in supporting RAM with an access time of 120 ns. This limits the 

it loading time to the RAM to 60 u.s. These load and access times enable the network to operate 
x iO operations/second, where one operation is ± T. V. This is much faster than a natural 
al network and faster than is necessary in a hardware accelerator. A "paging" architecture has 
fore been developed to "trade-off' some of this excessive speed for increased network size. 

wving-patch" neural board: An array of the 5 - state synapses is currently being fabricated as a 
[integrated circuit using singe phase 3i  CMOS technology. [ 7]. The full custom layout for each 
se occupies a disappointingly large silicon area, allowing only a 3 x 9 synaptic array. To achieve 
table size neural network from this array, several chips need to be included on a board with 
ory and control circuitry. The "moving patch" concept is shown in figure 5, where a small array 
-napses is passed over a much larger n x n synaptic array. Each time the array is "moved" to 
sent another set of synapses, new weights must be loaded into it. For example, the first set of 
[its will be T 11  ... 	... T 21  ... T 21  to T11 , the second set T11 , 1  to T,5  etc.. The final weight to be 
d will be 	Static, off-the-shelf RAM is used to store the weights and the whole operation is 
med for maximum efficiency. Figure 6 shows the board level design for the network. The small 
:h" that moves around the array comprises four VLSI synaptic accelerator chips to give a 6 x 18 
tic array. The number of neurons to be simulated is 256 and the weights for these are stored in 

v[b of RAM with a load time of 8ms. For each "patch" movement, the partial running summa-
i, calculated for each column, is stored in a separate RAM until it is required to be added into 
next appropriate summation. The update time for the board is 3ms giving 2 x iø 
itions/second. This is slower than the 64 neuron specification, but the network is 16 times larger, 
e arithmetic elements are being used more efficiently. To achieve a network of greater than 256 
Dns, more RAM is required to store the weights. The network is then slower unless a larger 
)er of accelerator chips is used to give a larger moving "patch". 

DNCLUSIONS 

egies and design methods have been given for the construction of a hybrid analogue/digital VLSI 
al network chip and a bit-serial VLSI network and board. Bit-serial and "reduced-style" arith- 

enhances the level of integration beyond more conventional digital, bit-parallel schemes. The 
ctions imposed on both synaptic weight size and arithmetic precision by VLSI constraints have 
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board. 

examined and shown to be tolerable, using the associative memory problem as a test. 
e we believe our digital approach to represent a good compromise between arithmetic accuracy 
circuit complexity, we acknowledge that the level of integration is disappointingly low. It is our 
f that, while digital approaches may be interesting and useful in the medium term, essentially as 
ware accelerators for neural simulations, analogue techniques represent the best ultimate option 
- dimensional silicon. To this end, we are currently pursuing techniques for analogue pseudo - 
memory, using standard CMOS technology. In any event, the full development of a nonvolatile 
gue memory technology, such as the MNOS technique [8], is key to the long - term future of 

I neural nets that can learn. 
authors acknowledge the support of the Science and Engineering Research Council (UK) in the 
Lition of this work. 
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VLSI BIT - SERIAL NEURAL NETWORKS 

Zoe F. Butler, Alan F. Murray and Anthony V.W. Smith 

INTRODUCTION 

A synthetic neural network can be viewed as a large parallel array of n 2  synaptic 
operators, (for n neurons) that is able to model some of the brain's characteristics. 
The VLSI neural network described, functions with bit-serial, two's complement 
arithmetic and uses a single phase clocking technique operating at a minimum of 20 
MHz (McGregor et a! 1987). 
A synthetic neuron is a state machine that is either "on" or "off', assuming inter -
mediate states as it switches smoothly between these extrema. A synapse weights the 
signal from a transmitting neuron such that it is more or less excitatory or inhibitory 
to the receiving neuron. The total level of activation of a neuron is represented by 
its activity, x1 . This is related to the state of the receiving neuron by an activation 
function, f, that describes its response to a change in activation. Biologically, this 
function is sigmoidal, but in our synthetic network it is simplified so that V, = 1 
when x 1  is large and -1 when x, is small, with 3 states in between. The interneural 
synaptic weights, T. 1 . are the contributions from other neurons, that are weighted by 
the receiving neuron. Therefore, the state of neuron i in an n - neuron array is 
given by:- 

1=" -1 	- 

V, 	f (x1) = f ( 	T 1  V1  + 1.) 	 (1) 
jO 

Synaptic weights may be positive (excitatory) or negative (inhibitory) and any neu-
ron may tend to turn any other neuron "on" or "off' respectively. i is a direct input 
that may be arbitrarily strong to force some value on V.. The synaptic weights, 
determine the stable states and represent the information learned by the network. 
Learning is therefore, a controlled modification of the {T, } to adjust the stable states. 
Recall or computation is performed as the network moves around the n - dimen-
sional space defined by the neural states v,, with the {T, 1  } constant. 
The neural architecture is based on eqn. (1). It involves n 2  digital multiplications and 
summations in an array of n totally interconnected neurons. This is relatively 
straight forward in a network with fixed functionality. However, if the network is to 
be able to learn patterns, the synaptic weights must be programmable, thus making it 
more complicated. 



Syna 
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NETWORK COMPUTATION AND DESIGN 

An advantage of bit-serial arithmetic in a neural network is it minimises the inter-
connect requirement by eliminating multi-wire busses. Pipelining makes optimal use 
of the high bit-rates possible in serial systems allowing good communication within 
and between VLSI chips. The primary advantage of using digital CMOS circuitry is 
that on-chip digital memory design is more easy to implement than any analogue 
counterpart and can be easily incorporated for the programming and storage of the 
synaptic weights. Design techniques are advanced, automated and well understood, 
and noise immunity and computational speed can be high. 
Architecture 
The general neural architecture in figure 1 shows a single network of a totally inter-
connected neurons. A neuron is represented by a circle, with its column of n 
synapses (shown by squares) communicating with all other neurons in the array. 
Each synaptic operator adds the weighted contributions from other neurons down the 
column. When the total summation reaches the foot of the column, the neuron 
thresholds it according to the 5-state activation function shown in figure 2. The new 
state of the neuron is then signalled back to the array. The state signals are con-
nected to a a bit bus running across the synaptic array, with a connection to a 
synaptic operator in every column. Therefore, the two functions of a synaptic opera-
tor are to multiply the signalling neuron state V, by the synaptic weight, T, and to 
add the product to the running total of activity. For example, in figure 1, neuron 3 
signals its state v 3 , to neuron 1 along the dark path shown, and the product T 1 , 3 V 3  is 
added to the running total in column 1. 

Neural States { 
V } 

/ V4  

Figure 1 Generic Architecture for a totally interconnected 
n - neuron network. 
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Reduced Arithmetic 

Full digital multiplication can be expensive in silicon area, but the 5-state activation 
function allows reduced arithmetic to be used. Hence, multiplication of a synaptic 
weight by v = 0.5 simply requires the synaptic weight to be right-shifted by 1 bit. 
Likewise, multiplication by 0.25 involves two right-shifts of { T11  }, and multiplication 
)y 0.0 is easy. A negative (inhibitory) neuron state is not problematic, as a switch-
thie adder/subtractor is only slightly more complicated than than an adder. Hence, 5 
ieural states can be easily obtained from circuitry a little more complex than the 
;imple adder required for 2 states (Hopfield, 1982). The neural state bus expands 
rom a 1 bit to a 3 bit representation, where the 3 control bits are add/subtract?, 
;hift? and multiply by zero? 

Details of a synaptic operator are given in figure 3. Each operator has an 8 bit 
hift register memory holding its synaptic weight. During computation, the synaptic 
veight cycles round the register while the neural state is signalled on the 3 bit bus 
tinning horizontally above each synaptic row. A complete synapse computation 
equires two complete shift register cycles (16 clock cycles). During, the first cycle 
he synaptic weight is multiplied by the neural state and during the second, the 
vISBit of the resultant T4  V, is sign-extended for the remainder of the shift register 
ycle. This allows a maximum 8 bit word growth in the running summation. The 
£Bit of each neuron's running summation is indicated by an LSBit signal running 
[own the synaptic column. 

The final 16 bit summation at the foot of the column is thresholded according 
D its activation function. As the neuron activity x,, increases through threshold 
alue x, (figure 2), the ideal activation represents a smooth switch of neural state 
rom -1 to +1. The 5-state "staircase" function gives a better approximation to this 
an the 2-state threshold function. Control of the sharpness of this transition can 

tune" the neural dynamics for learning and computation. The control parameter is 



Figure 3 Synaptic Operator with a 5-state activation function. 

eferred to as temperature by analogy to statistical functions with this form. Higher 
:emperatures give the staircase and sigmoid a lower gradient. 

LEARNING AND RECALL OF THE ACTIVATION FUNCTIONS 

oftware simulations of learning and recall capabilities of the 5-state model were 
ompared with those of the 2-state and sigmoid activation functions at varying tern-
eratures with a restricted dynamic range for the synaptic weights. A 64 node net-
vork in each simulation attempted to learn 32 patterns using the delta rule algorithm 
:Rumelhai-t 1986). Results showed that the 5-state activation function learned the 
'eight sets "better" than the 2-state activation function. The sigrnoid activation was 

;till superior to the 5-state, but the discrepancy was noticeably less than between the 
5-state and the 2-state activations. The best method to deal with weight saturation 
luring learning was to permit any weight outside the dynamic range to be set to its 
naximum value. A full discussion of these results can be found in Murray et al, 
1987.   

IARDWARE NEURAL BOARD 

. 5-state synaptic operator array is being fabricated in 3pm CMOS technology. Full 
ustom layout allowed a 12 x 9 synaptic array in a 64 pin package and figure 4 shows 
)art of the design. Several chips, therefore, need to be wired together with memory 
Cs and control circuitry to achieve a suitable size network for simulations. 

eural Paging Architecture 

neural board has been designed with 4 synaptic chips wired together giving a 12 x 
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Figure 4 Silicon Layout of a Synapse in the Array. 

9 synaptic array. The small array will be used in a paging architecture to give a net-
work of 256 neurons that will act as a neural accelerator to a host computer. The 
paging architecture can be thought of as a "moving patch", where the small array or 
patch will simulate a small number of synapses in a large array, and then pass onto 
the adjacent patch to repeat the computation until all 256 synapses have been simu-
lated. This idea is shown in figure 5. Each time the array is moved to represent 
another set of synapses, the weights for that patch must be loaded into it. For exam- 
ple, the first set of weights to be loaded will be T 1 , 1 . . . T 1 , 12 . . . T 2 , 1 . . . T 2 , 12 .. .T 9 , 1  to T 9 , 12 , 

the second set to be loaded will be T 10 , 1  . . . T 10 , 12 ......T 18 , 1  to T 18 , 12 . The final weight to 
be loaded is r2566  etc.. The memory required for 256 neurons is 0.5 Mbits of static 
RAM. A RAM speed of 70ns will allow the weights to be loaded in 9ms. A larger 
number of neurons can be simulated by simply loading the extra synaptic weights 
into more memory. 

The "patch" will move down the 1st set of 12 columns to compute the complete 
running activities. It will then compute the 2nd set, 3rd set etc., until each set has 
been computed. For each "patch" simulation in the array, the emerging partial run-
ning summations of the 12 partial column blocks, are synchronised to coincide with 
the top of the running summation of the new patch. This ensures that each column 
has a contribution (excitatory or inhibitory) from each synapse. As the total sum-
mations occur for each block, they are stored in an on - board static RAM as indi-
cated in the board design in figure 6. 

When the total summation has been completed in each column, the neurons' 
activities are thresholded off - board according to the 5 - state activation function. 
The new neural states are signalled back to the synaptic accelerator chips for the next 
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Figure 5 'Paging Architecture" of passing a small synaptic "patch" 
over a larger n x n synaptic array. 
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Figure 6 'Paging Architecture" for a Neural Network Board. 

array computation. Once the states become stable, the synaptic weights are adjusted 
ccordingIy until learning is complete. 



Control Circuitry 

vIicrocode control circuitry operates all RAM loading and accessing and control sig-
lals to the synaptic accelerators. The flow diagram in figure 7 shows the small con-
trol overhead required, along with the timing of all operations for a complete update 
Df 256 neurons. The calculated update time for the board is ims giving 6 x iO 
Dperations/second. The number of synaptic accelerators determines the operating 
;peed. A faster speed or more neurons and the same speed would require more 
accelerators. Hence, the design is versatile in that any specification for network size 
and speed can be met easily. 

load synaptic weights and 
neural states to RAMs. 

for each new patch, 	Clock cycle 
load 27 weights to each 
svnaDtic accelerator 

set controls signals, LSB 
sign extend and 3-bit neu- 
ral state for accelerators 	217 

insert previous partial 
sums from RAM to top 
of accelerator 	1 	217 

start computation I 	218 

new partial sum LSB 
exit from accelerators 	228 
(count = 10) 

start load of new 
partial sum to RAM 	228 

parriai sum 
computation end 	234 
(count = 6) 

Figure 7 Flow Diagram of the Control Operation. 



ONCLUSIONS 

[he design method has been given for the construction of a VLSI neural hardware 
iccelerator and its implementation in a neural board. Bit-serial, reduced arithmetic 
mproved the level of integration compared to more conventional digital, bit-parallel 
chemes. The restrictions on synaptic weight size and arithmetic precision by VLSI 
onstraints have been examined and proved to be tolerable, using the associative 

memory problem as a test. 
The digital design gives a good compromise between arithmetic accuracy and 

circuit complexity, but the level of integration is disappointingly low. This has been 
somewhat overcome by the paging architecture of the neural board. to enable the 
simulation of a large number of neurons. It is our belief that, while digital 
approaches are useful in the medium term, especially as hardware accelerators, 
analogue techniques represent the best ultimate option in 2 - dimensional silicon. 
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References 

Hopfield, J. J., "Neural Networks with Emergent Collective Computational 
Abilities", Proceedings of the National Academy of Science, USA, vol. 79, pp. 
2554-2558, 1982. 

McGregor, M.S., Denyer, P.B. and Murray, A.F., "A Single - Phase Clocking 
Scheme for CMOS VLSI," Advanced Research in VLSI Proceedings of the 1987 
Stanford Conference, 1987. 

Murray, A.F., Smith, A.V.W. and Butler, Z. F., "Bit-serial Neural Networks," 
IEEE Conf. on Neural Infomation Processing Systems - Natural and Synthetic, 
Denver, 1987. 

Rumeihart, D.E., Hinton, G.E. and Williams, R.J., 'teaming Internal 
Representations by Error Propagations", Parallel Distributed Processing : 
Explorations in the Microstructure of Cognition, vol. 1, pp.  318-362, 1986. 



S77tf

--nY iAJc To
MIMI NEYWC'K OF 7H 

WW iYa4) (i?/cw 41 La 

4] 

('7v4rr 7u,. (TELL lol, r 
VF  074 fyE1\1)/icI'E. 


