1,548 research outputs found

    A proximal iteration for deconvolving Poisson noisy images using sparse representations

    Get PDF
    We propose an image deconvolution algorithm when the data is contaminated by Poisson noise. The image to restore is assumed to be sparsely represented in a dictionary of waveforms such as the wavelet or curvelet transforms. Our key contributions are: First, we handle the Poisson noise properly by using the Anscombe variance stabilizing transform leading to a {\it non-linear} degradation equation with additive Gaussian noise. Second, the deconvolution problem is formulated as the minimization of a convex functional with a data-fidelity term reflecting the noise properties, and a non-smooth sparsity-promoting penalties over the image representation coefficients (e.g. â„“1\ell_1-norm). Third, a fast iterative backward-forward splitting algorithm is proposed to solve the minimization problem. We derive existence and uniqueness conditions of the solution, and establish convergence of the iterative algorithm. Finally, a GCV-based model selection procedure is proposed to objectively select the regularization parameter. Experimental results are carried out to show the striking benefits gained from taking into account the Poisson statistics of the noise. These results also suggest that using sparse-domain regularization may be tractable in many deconvolution applications with Poisson noise such as astronomy and microscopy

    Expectation Propagation for Poisson Data

    Get PDF
    The Poisson distribution arises naturally when dealing with data involving counts, and it has found many applications in inverse problems and imaging. In this work, we develop an approximate Bayesian inference technique based on expectation propagation for approximating the posterior distribution formed from the Poisson likelihood function and a Laplace type prior distribution, e.g., the anisotropic total variation prior. The approach iteratively yields a Gaussian approximation, and at each iteration, it updates the Gaussian approximation to one factor of the posterior distribution by moment matching. We derive explicit update formulas in terms of one-dimensional integrals, and also discuss stable and efficient quadrature rules for evaluating these integrals. The method is showcased on two-dimensional PET images.Comment: 25 pages, to be published at Inverse Problem

    Bayesian Robust Tensor Factorization for Incomplete Multiway Data

    Full text link
    We propose a generative model for robust tensor factorization in the presence of both missing data and outliers. The objective is to explicitly infer the underlying low-CP-rank tensor capturing the global information and a sparse tensor capturing the local information (also considered as outliers), thus providing the robust predictive distribution over missing entries. The low-CP-rank tensor is modeled by multilinear interactions between multiple latent factors on which the column sparsity is enforced by a hierarchical prior, while the sparse tensor is modeled by a hierarchical view of Student-tt distribution that associates an individual hyperparameter with each element independently. For model learning, we develop an efficient closed-form variational inference under a fully Bayesian treatment, which can effectively prevent the overfitting problem and scales linearly with data size. In contrast to existing related works, our method can perform model selection automatically and implicitly without need of tuning parameters. More specifically, it can discover the groundtruth of CP rank and automatically adapt the sparsity inducing priors to various types of outliers. In addition, the tradeoff between the low-rank approximation and the sparse representation can be optimized in the sense of maximum model evidence. The extensive experiments and comparisons with many state-of-the-art algorithms on both synthetic and real-world datasets demonstrate the superiorities of our method from several perspectives.Comment: in IEEE Transactions on Neural Networks and Learning Systems, 201

    Restoration of Poissonian Images Using Alternating Direction Optimization

    Full text link
    Much research has been devoted to the problem of restoring Poissonian images, namely for medical and astronomical applications. However, the restoration of these images using state-of-the-art regularizers (such as those based on multiscale representations or total variation) is still an active research area, since the associated optimization problems are quite challenging. In this paper, we propose an approach to deconvolving Poissonian images, which is based on an alternating direction optimization method. The standard regularization (or maximum a posteriori) restoration criterion, which combines the Poisson log-likelihood with a (non-smooth) convex regularizer (log-prior), leads to hard optimization problems: the log-likelihood is non-quadratic and non-separable, the regularizer is non-smooth, and there is a non-negativity constraint. Using standard convex analysis tools, we present sufficient conditions for existence and uniqueness of solutions of these optimization problems, for several types of regularizers: total-variation, frame-based analysis, and frame-based synthesis. We attack these problems with an instance of the alternating direction method of multipliers (ADMM), which belongs to the family of augmented Lagrangian algorithms. We study sufficient conditions for convergence and show that these are satisfied, either under total-variation or frame-based (analysis and synthesis) regularization. The resulting algorithms are shown to outperform alternative state-of-the-art methods, both in terms of speed and restoration accuracy.Comment: 12 pages, 12 figures, 2 tables. Submitted to the IEEE Transactions on Image Processin

    Deconvolution under Poisson noise using exact data fidelity and synthesis or analysis sparsity priors

    Get PDF
    In this paper, we propose a Bayesian MAP estimator for solving the deconvolution problems when the observations are corrupted by Poisson noise. Towards this goal, a proper data fidelity term (log-likelihood) is introduced to reflect the Poisson statistics of the noise. On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms such as wavelets or curvelets. Both analysis and synthesis-type sparsity priors are considered. Piecing together the data fidelity and the prior terms, the deconvolution problem boils down to the minimization of non-smooth convex functionals (for each prior). We establish the well-posedness of each optimization problem, characterize the corresponding minimizers, and solve them by means of proximal splitting algorithms originating from the realm of non-smooth convex optimization theory. Experimental results are conducted to demonstrate the potential applicability of the proposed algorithms to astronomical imaging datasets
    • …
    corecore