1,467 research outputs found

    ROBUST SPEAKER RECOGNITION BASED ON LATENT VARIABLE MODELS

    Get PDF
    Automatic speaker recognition in uncontrolled environments is a very challenging task due to channel distortions, additive noise and reverberation. To address these issues, this thesis studies probabilistic latent variable models of short-term spectral information that leverage large amounts of data to achieve robustness in challenging conditions. Current speaker recognition systems represent an entire speech utterance as a single point in a high-dimensional space. This representation is known as "supervector". This thesis starts by analyzing the properties of this representation. A novel visualization procedure of supervectors is presented by which qualitative insight about the information being captured is obtained. We then propose the use of an overcomplete dictionary to explicitly decompose a supervector into a speaker-specific component and an undesired variability component. An algorithm to learn the dictionary from a large collection of data is discussed and analyzed. A subset of the entries of the dictionary is learned to represent speaker-specific information and another subset to represent distortions. After encoding the supervector as a linear combination of the dictionary entries, the undesired variability is removed by discarding the contribution of the distortion components. This paradigm is closely related to the previously proposed paradigm of Joint Factor Analysis modeling of supervectors. We establish a connection between the two approaches and show how our proposed method provides improvements in terms of computation and recognition accuracy. An alternative way to handle undesired variability in supervector representations is to first project them into a lower dimensional space and then to model them in the reduced subspace. This low-dimensional projection is known as "i-vector". Unfortunately, i-vectors exhibit non-Gaussian behavior, and direct statistical modeling requires the use of heavy-tailed distributions for optimal performance. These approaches lack closed-form solutions, and therefore are hard to analyze. Moreover, they do not scale well to large datasets. Instead of directly modeling i-vectors, we propose to first apply a non-linear transformation and then use a linear-Gaussian model. We present two alternative transformations and show experimentally that the transformed i-vectors can be optimally modeled by a simple linear-Gaussian model (factor analysis). We evaluate our method on a benchmark dataset with a large amount of channel variability and show that the results compare favorably against the competitors. Also, our approach has closed-form solutions and scales gracefully to large datasets. Finally, a multi-classifier architecture trained on a multicondition fashion is proposed to address the problem of speaker recognition in the presence of additive noise. A large number of experiments are conducted to analyze the proposed architecture and to obtain guidelines for optimal performance in noisy environments. Overall, it is shown that multicondition training of multi-classifier architectures not only produces great robustness in the anticipated conditions, but also generalizes well to unseen conditions

    Voice Conversion

    Get PDF

    Statistical models for noise-robust speech recognition

    Get PDF
    A standard way of improving the robustness of speech recognition systems to noise is model compensation. This replaces a speech recogniser's distributions over clean speech by ones over noise-corrupted speech. For each clean speech component, model compensation techniques usually approximate the corrupted speech distribution with a diagonal-covariance Gaussian distribution. This thesis looks into improving on this approximation in two ways: firstly, by estimating full-covariance Gaussian distributions; secondly, by approximating corrupted-speech likelihoods without any parameterised distribution. The first part of this work is about compensating for within-component feature correlations under noise. For this, the covariance matrices of the computed Gaussians should be full instead of diagonal. The estimation of off-diagonal covariance elements turns out to be sensitive to approximations. A popular approximation is the one that state-of-the-art compensation schemes, like VTS compensation, use for dynamic coefficients: the continuous-time approximation. Standard speech recognisers contain both per-time slice, static, coefficients, and dynamic coefficients, which represent signal changes over time, and are normally computed from a window of static coefficients. To remove the need for the continuous-time approximation, this thesis introduces a new technique. It first compensates a distribution over the window of statics, and then applies the same linear projection that extracts dynamic coefficients. It introduces a number of methods that address the correlation changes that occur in noise within this framework. The next problem is decoding speed with full covariances. This thesis re-analyses the previously-introduced predictive linear transformations, and shows how they can model feature correlations at low and tunable computational cost. The second part of this work removes the Gaussian assumption completely. It introduces a sampling method that, given speech and noise distributions and a mismatch function, in the limit calculates the corrupted speech likelihood exactly. For this, it transforms the integral in the likelihood expression, and then applies sequential importance resampling. Though it is too slow to use for recognition, it enables a more fine-grained assessment of compensation techniques, based on the KL divergence to the ideal compensation for one component. The KL divergence proves to predict the word error rate well. This technique also makes it possible to evaluate the impact of approximations that standard compensation schemes make.This work was supported by Toshiba Research Europe Ltd., Cambridge Research Laboratory

    Porting concepts from DNNs back to GMMs

    Get PDF
    Deep neural networks (DNNs) have been shown to outperform Gaussian Mixture Models (GMM) on a variety of speech recognition benchmarks. In this paper we analyze the differences between the DNN and GMM modeling techniques and port the best ideas from the DNN-based modeling to a GMM-based system. By going both deep (multiple layers) and wide (multiple parallel sub-models) and by sharing model parameters, we are able to close the gap between the two modeling techniques on the TIMIT database. Since the 'deep' GMMs retain the maximum-likelihood trained Gaussians as first layer, advanced techniques such as speaker adaptation and model-based noise robustness can be readily incorporated. Regardless of their similarities, the DNNs and the deep GMMs still show a sufficient amount of complementarity to allow effective system combination

    Analysis of Speaker Adaptation Algorithms for HMM-based Speech Synthesis and a Constrained SMAPLR Adaptation Algorithm

    Get PDF
    In this paper we analyze the effects of several factors and configuration choices encountered during training and model construction when we want to obtain better and more stable adaptation in HMM-based speech synthesis. We then propose a new adaptation algorithm called constrained structural maximum a posteriori linear regression (CSMAPLR) whose derivation is based on the knowledge obtained in this analysis and on the results of comparing several conventional adaptation algorithms. Here we investigate six major aspects of the speaker adaptation: initial models transform functions, estimation criteria, and sensitivity of several linear regression adaptation algorithms algorithms. Analyzing the effect of the initial model, we compare speaker-dependent models, gender-independent models, and the simultaneous use of the gender-dependent models to single use of the gender-dependent models. Analyzing the effect of the transform functions, we compare the transform function for only mean vectors with that for mean vectors and covariance matrices. Analyzing the effect of the estimation criteria, we compare the ML criterion with a robust estimation criterion called structural MAP. We evaluate the sensitivity of several thresholds for the piecewise linear regression algorithms and take up methods combining MAP adaptation with the linear regression algorithms. We incorporate these adaptation algorithms into our speech synthesis system and present several subjective and objective evaluation results showing the utility and effectiveness of these algorithms in speaker adaptation for HMM-based speech synthesis

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Master of Science

    Get PDF
    thesisPresently, speech recognition is gaining worldwide popularity in applications like Google Voice, speech-to-text reporter (speech-to-text transcription, video captioning, real-time transcriptions), hands-free computing, and video games. Research has been done for several years and many speech recognizers have been built. However, most of the speech recognizers fail to recognize the speech accurately. Consider the well-known application of Google Voice, which aids in users search of the web using voice. Though Google Voice does a good job in transcribing the spoken words, it does not accurately recognize the words spoken with different accents. With the fact that several accents are evolving around the world, it is essential to train the speech recognizer to recognize accented speech. Accent classification is defined as the problem of classifying the accents in a given language. This thesis explores various methods to identify the accents. We introduce a new concept of clustering windows of a speech signal and learn a distance metric using specific distance measure over phonetic strings to classify the accents. A language structure is incorporated to learn this distance metric. We also show how kernel approximation algorithms help in learning a distance metric

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK
    corecore