
ACCENT CLASSIFICATION: LEARNING

A DISTANCE METRIC OVER

PHONETIC STRINGS

by

Swetha Machanavajhala

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science 

in

Computing

School of Computing

The University of Utah

December 2013



Copyright c© Swetha Machanavajhala 2013

All Rights Reserved



T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l

STATEMENT OF THESIS APPROVAL 

The thesis of Swetha Machanavajhala 

has been approved by the following supervisory committee members: 

Suresh Venkatasubramanian , Chair 06/10/2013 
Date Approved 

Jeffrey M. Phillips , Member 06/07/2013 
Date Approved 

Ellen Riloff , Member 06/07/2013 
Date Approved 

and by Alan Davis , Chair of 

the Department of School of Computing 

and by David B. Kieda, Dean of The Graduate School. 



ABSTRACT

Presently, speech recognition is gaining worldwide popularity in applications like Google

Voice, speech-to-text reporter (speech-to-text transcription, video captioning, real-time

transcriptions), hands-free computing, and video games. Research has been done for several

years and many speech recognizers have been built. However, most of the speech recognizers

fail to recognize the speech accurately. Consider the well-known application of Google Voice,

which aids in users search of the web using voice. Though Google Voice does a good job

in transcribing the spoken words, it does not accurately recognize the words spoken with

different accents. With the fact that several accents are evolving around the world, it is

essential to train the speech recognizer to recognize accented speech. Accent classification

is defined as the problem of classifying the accents in a given language. This thesis explores

various methods to identify the accents. We introduce a new concept of clustering windows

of a speech signal and learn a distance metric using specific distance measure over phonetic

strings to classify the accents. A language structure is incorporated to learn this distance

metric. We also show how kernel approximation algorithms help in learning a distance

metric.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. LITERATURE SURVEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Linguistics Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Computer Science Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Classification on Foreign Accented English . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Classification Based on Vowel Distances . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Classification Based on Distance Metric Learning . . . . . . . . . . . . . . . . . 9
2.2.4 Other Notable Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Foreign Accented English (FAE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 George Mason University (GMU)

Speech Accent Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Data Preprocessing - Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 PLP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Critical-band Spectral Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.4 Equal-loudness Preemphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.5 Intensity-loudness Power Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.6 Autoregressive Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.7 Order of PLP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.8 Description of Each Feature Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



4. CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Supervised Binary and Multiclass Classification . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.1 One Versus All Approach (OVA): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 All Versus All Approach (AVA): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Support Vector Machine - SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1 Learning with Imbalanced Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Gaussian Mixture Models - GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Directed Acyclic Graph SVM - DAGSVM . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5. DISTANCE METRIC LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Distance Metric Learning, with Application

to Side Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Pareto Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Learning Distance Metric from Relative Comparisons . . . . . . . . . . . . . . . . . . 27
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6. RESEARCH CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Existing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.2 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Proposed System: Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.2 Concept of Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.3 Reducing Number of Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.4 Experiment Results - Classification Using LibSVM . . . . . . . . . . . . . . . . 32
6.2.5 Experiment Results - Classification Using

Gaussian Mixture Models (GMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.6 Experiment Results - Comparison between Directed

Acyclic Graph SVM (DAGSVM) and
LibSVM with FAE and GMU Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Proposed System: Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.2 Distance Measure on Phonetic Transcriptions . . . . . . . . . . . . . . . . . . . . 36
6.3.3 Concept of Distance Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3.4 Experiment Results - Comparison between

LibSVM and LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3.5 Applying Distance Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3.6 Experiment Results - Classification Using Proposed

Distance Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4 Proposed System: Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4.1 Kernel System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4.2 Kernel Principal Component Analysis - KPCA . . . . . . . . . . . . . . . . . . . 44
6.4.3 Experiment Results - Classification Using Kernel

Principal Component Analysis (KPCA) . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.4 Rahimi-Recht Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



6.4.5 Experiment Results - Classification Using
Rahimi-Recht Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7. PERFORMANCE AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.1.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3 Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8. FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



LIST OF FIGURES

1.1 Example 1: Accurate transcription of speech using automatic captions in
YouTube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example 2: Inaccurate transcription of speech using automatic captions in
YouTube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Accent classification: Existing architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Phase 1: Reducing number of windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Phase 2: Learning feature transformations - better representation of classifying
accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Phase 3: Kernel approximation - to deal with nonlinear data . . . . . . . . . . . . . . 6

3.1 PLP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Support Vector Machine: Maximum margin principle . . . . . . . . . . . . . . . . . . . . 19

4.2 Assumptions on hyperplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Data representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Gaussian modeling of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Directed Acyclic Graph SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 Existing accent classification system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Proposed accent classification system - Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Phase 2 of the proposed accent classification system . . . . . . . . . . . . . . . . . . . . . 37

6.4 Phonetic transcription of Arabic accent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.5 Phonetic transcription of Portuguese accent . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.6 Illustration of the proposed problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.7 Accent classification system design using kernel approximation prior learning
distance metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



LIST OF TABLES

6.1 Classification of accents using LibSVM. 2-accents (Mandarin and German), 3-
accents (Cantonese, Hindi, and Russian), 12-accents (Portuguese, Cantonese,
Farsi, French, German, Hindi, Hungarian, Italian, Japanese, Mandarin, Rus-
sian, and Swedish) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Classification of accents using GMM. 2-accents (Mandarin and German), 3-
accents (Cantonese, Hindi, and Russian), 12-accents (Portuguese, Cantonese,
Farsi, French, German, Hindi, Hungarian, Italian, Japanese, Mandarin, Rus-
sian, and Swedish) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Comparison between DAGSVM and LibSVM with FAE and GMU accents.
2-accents (Arabic and Brazilian Portuguese), 3-accents (Cantonese, Hindi, and
Russian), 12-accents (Portuguese, Cantonese, Farsi, French, German, Hindi,
Hungarian, Italian, Japanese, Mandarin, Russian, and Swedish) . . . . . . . . . . . 36

6.4 Classified using LibSVM on FAE dataset, with KMeans as clustering technique 37

6.5 Comparison between LibSVM and LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.6 Comparison between LibSVM and learning distance metric over phonetic strings 43

6.7 Comparison between LibSVM, Proposed Distance Metric Learning method,
KPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.8 Comparison between LibSVM, Proposed Distance Metric Learning method,
Rahimi-Recht method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



ACKNOWLEDGMENTS

First, I would like to thank my advisor, Prof. Suresh Venkatasubramanian, for en-

couraging me to explore this new field of Accent Classification. His expertise, patience,

understanding, and constant encouragement has immensely contributed to my graduate

experience. I would also like to express my thanks to my committee, Prof. Jeff Phillips and

Prof. Ellen Riloff, for their assistance and support to my thesis.

I would like to thank Dr. Piyush Rai for his excellent teaching in Machine Learning

that has formed the foundation for starting this thesis, and for his non-academic support.

Many thanks to my friends, Radhika Gupta, Samira Daruki, Chinmayee, Dr. Avishek

Saha, Namrata Dey, Parasaran Raman, and John Moeller, who were there in needful times

and with whom I have shared fun times.

Finally, I thank my family for their continuous support throughout my masters. They

have always encouraged me in all walks of life.



CHAPTER 1

INTRODUCTION

Presently, speech recognition is gaining popularity [1] and is being used in a lot of

applications like Google Voice, speech-to-text reporter (speech-to-text transcription, video

captioning, real-time transcriptions), hands-free computing, and video games. Automatic

speech recognition is a very difficult problem [2] and research has been done for a few decades

[3]. Applications like Google Voice, automatic captions in YouTube videos, Siri, and S-Voice

softwares in mobile phones have been developed to serve the purpose of recognizing the

speech and thereby transcribing them into text. Though these applications do a good job in

recognizing the speech, we found that automatic captions in YouTube videos fail to recognize

the words spoken with different accents. Figure 1.1 shows an example where the speech is

being accurately transcribed while Figure 1.2 shows how inaccurate the transcription could

be when there is a variation in the accent. The University of Birmingham did a study [4]

on the speech recognition technology used by call centers and discovered that speakers with

strong accents were frequently misunderstood when dealing with call centers and concluded

that accents were the main problem behind the performance of voice recognition. Huang et

al. [5] points out that the accuracy of speech recognition fluctuates depending on the speaker

variability, especially when the speaker has a strong accent. It has also been discovered that

Siri, Apple’s personal assistant, is unable to recognize words spoken with different accents

[6, 7].

With the above drawbacks and with the fact that several accents are evolving around

the world [8], it is essential to train the speech recognizer to be a universal one such that

it performs accurately around the globe. This is where the problem of recognizing accents

comes into picture. Accents are one of the most important features that distinguishes

speakers in the way they pronounce the words differently. In order for a speech recognizer

to identify the accented spoken words, the first step is to classify the accents such that a

speech recognizer trained for that particular accent can perform well in transcribing the

accented spoken words. This type of speech recognition is referred to as Accented Speech



2

Figure 1.1: Example 1: Accurate transcription of speech using automatic captions in
YouTube

Recognition (ASR).

The first step in Accented Speech Recognition is to classify the accents using the

features extracted from the speech. Accent classification [9] is defined as the problem

of classifying the accents in a given language. The motivation of this problem is that, if

accent classification is implemented successfully, the accent classifier component can be fed

into a speech recognition engine. This can improve the accuracy of detecting spoken words

and thereby improve the quality of transcription in YouTube videos. This entire software,

if fed into the online videos and real-time captioning systems, can enable the automation

of captions in videos and deliver real-time captions in any surrounding. As a result, this

could avoid the need of costly manual transcriptions.

The first step in classifying accents is to extract meaningful features so that the classifier

can accurately identify the accents. Techniques like Perceptual Linear Prediction (PLP) [10],

Linear Predictive Coding (LPC)[11], and Mel Frequency Cepstral Coefficients (MFCC)[12]

were used to extract feature vectors from the speech.

Next, classifiers like LibSVM [13] and Gaussian Mixture Models (GMM) [14] were run on

the extracted feature vectors to detect the accent of the speech. This is a simple architecture

of accent classification and the above methods were used in previous studies [15, 16, 9, 17].
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Figure 1.2: Example 2: Inaccurate transcription of speech using automatic captions in
YouTube

The architecture is shown in Figure 1.3.

This thesis explores new methods of classifying accents and is described as three phases

in the accent classification architecture. Figures 1.4, 1.5, and 1.6 show the architecture

consisting of three phases as proposed in this thesis and below is a brief description of each

phase.

The first phase involves reducing the number of windows so as to reduce the amount

of data to deal with. This step is done after grouping the samples into windows during

the feature extraction process. At this point, each speaker contains 2046 windows and

each window consists of a set of 39 features. Since 2046 windows per speaker is large and

this makes the classifiers run very slowly, Watanaprakornkul et al. [16] chose 10 windows

randomly to reduce the amount of data. Since choosing the windows randomly might not

be a feasible option, we proposed to reduce the windows using K-Means as a clustering step.

We also experimented sampling the windows using column and random sampling.

In the second phase, after reducing the number of windows, we incorporated a language

structure on every accent. Using this information, we learned a distance metric that pulls

apart different accents by a specific distance measure. This distance measure was found by

determining the edit distance between phonetic strings of accents.
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Figure 1.3: Accent classification: Existing architecture
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Figure 1.4: Phase 1: Reducing number of windows
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Figure 1.5: Phase 2: Learning feature transformations - better representation of
classifying accents

Finally, we also looked at how to deal with nonlinear class boundaries prior to learning

a distance metric and classification of accents. In the case of nonlinear data, we used kernel

approximation algorithms like Kernel Principal Component Analysis (KPCA) [18] and the

Rahimi Recht method [19].

1.1 Thesis Outline

This thesis is organized as follows:

Chapter 2 gives a detailed literature survey on the techniques that have been researched

previously from the perspective of Linguistics as well as Computer Science. Chapter 3

gives an overview on the feature extraction process using Perceptual Linear Prediction

(PLP) and explains the procedure. Chapter 4 describes the various classification techniques

that were experimented. Chapter 5 explains the background and existing methods that

have been researched in the area of Distance Metric Learning. Chapter 6 gives a detailed
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Figure 1.6: Phase 3: Kernel approximation - to deal with nonlinear data

account on the three phases of the proposed methods along with experimental results.

Chapter 7 concludes by giving an overview of the performance of the various techniques

experimented with in this thesis. Chapter 8 talks about the possibilities of improving the

accent classification system and the methods that can be experimented with in future.



CHAPTER 2

LITERATURE SURVEY

Accented Speech Recognition (ASR) is gaining more importance today since accent is

one of the factors that affects the speaker variation. Due to this fact, the presence of accents

in speech could be one of the reasons for degradation of performance in speech recognizers.

Furthermore, since a lot of accents have evolved around the world, extensive research is

being done on this problem so as to make the speech recognizers universal and compatible

with all accents. There has been a lot of study on accent detection in the areas of linguistics

as well as computer science. This chapter gives a detailed description of the research studies

in both linguistics and computer science areas.

2.1 Linguistics Perspective

Ikeno and Hansen [20] proposed a method to distinguish the accents by identifying

the speech characteristics across a variety of native and nonnative English accents. They

conducted experiments on 3 types of listeners: US, British native English, and nonnative

English listeners. As a result, they concluded that listeners who were familiar with accents

could detect the accents more accurately than the listeners who were not familiar with

the accent. In addition to just detecting the accents, the listeners were a given a task to

transcribe the speech samples. This was the road to achieving a benchmark for an automatic

Accented Speech Recognition system.

Adank et al. [21] recorded the haemodynamic responses (response to stimuli such as

exercise, emotional stress, or variation in accent in this study) of the participants in an

MR scanner. They listened to two sentences that were presented in quick succession. Two

hundred and fifty-six sentences were taken from the Speech Reception Threshold corpus

(SRT) where 128 sentences were recorded in standard Dutch and the remaining in the novel

accent that was merely different from the standard accent. It was observed that there was a

relative increase in the areas of temporal, anterior, posterior, and frontal lobes in the brain

in the case of an accent variation.
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Luca Ragnoni [22] claimed that the previous studies [23, 24, 25, 26] did not quantify the

role of prosodic aspects such as intonation patterns, pitch range, rhythm, and speech rate

in foreign accent detection. The dataset was partitioned into 4 sets. One set consisted of

natural speech samples while the other 3 sets contained monontonized-only, monotonized

and PURR (Prosody Unveiling through Restricted Representation)-filtered, and PURR-

filtered sentences. The listeners were presented randomly with the speech samples that

were repeated thrice. The listeners scores were well defined for the sets: PURR-filtered and

monotonized PURR-filtered sentences. This confirmed that prosody was an essential cue

to detect the foreign accent.

2.2 Computer Science Perspective

2.2.1 Classification on Foreign Accented English

Chouiter et al. [9] did an empirical study on the 23 accents and claimed a detection

rate of 32.7% using GMM baseline after cumulative application of Heteroscedastic Lin-

ear Discriminant Analysis (HLDA), Maximum Mutual Information (MMI), and Gaussian

Tokenizer (GT).

Neidert, Chen, and Lee [15] experimented over 2 accents, German and Mandarin, and

extended the classification experiment to 12 accents. The resulting accuracy for 2 accents

was 57.12% using Support Vector Machine (SVM) and Linear Predictive Coding (LPC) as

the feature extraction method. On 12 accents, they obtained an accuracy of 13.32%

Watanaprakornkul, Eksombatchai, and Chien [16] classified 3 foreign accents: Can-

tonese, Hindi, and Russian, using SVM and Gaussian Mixture Models (GMM). The features

were extracted using Mel Frequency Cepstral Coefficients (MFCC) and Perceptual Linear

Prediction (PLP) approaches. Using SVM, they obtained an accuracy of 41.18% and 37.5%

accuracy using GMM. Out of 2000 windows, of each speech utterance that was obtained

after feature extraction, 10 windows were randomly picked for the experiments.

Tang et al. [27] classified accents using Hidden Markov Models (HMM), Directed Acyclic

Graph SVM (DAGSVM), and Support Vector Machines (SVM). They found that DAGSVM

performed similarly to that of HMM but better than SVM, whereas SVM was effective in

classifying different accents.

Novich et al. [28] did a study on accent classification using neural networks where they

extracted the format features from the vowels of the speech utterances.
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2.2.2 Classification Based on Vowel Distances

Huckvale [29] came up with a metric, AccDist, for comparing the similarities among

accents and classified 14 British accents with an accuracy of about 80%. The similarities

were computed by considering the distance among stressed vowels like after , father , cat.

The correlation of these distances across speakers was computed in the AccDist metric.

Ferragne et al. [30] explored another similarity methodology by measuring the dis-

tance between vowels in the 14 British accents. The distance between vowels were mea-

sured among the Mel-cepstrum features of the speech. Hierarchical clustering and Multi-

Dimensional Scaling (MDS) were applied to make the acoustic vowel distances explicit.

The acoustic distance between accents was estimated by correlating the individual vowel

distance matrices.

2.2.3 Classification Based on Distance Metric Learning

Ullah and Karray [31] and [32] employed a distance metric learning approach based on

Mahanalobis distance. Their goal was to maximize the distance between dissimilar pairs

and the similarities between the accents were not considered since they mainly focused on

distinguishing the accents. They classified 2 accents, North midland and Western, and came

up with 74.12% accuracy.

2.2.4 Other Notable Approaches

Zheng et al. [33] built an optimized MAP/MLLR combination and developed new

approaches in detecting the degree of accent in Accented Speech Recognition. Their ap-

proaches were phoneme-based automatic accent detection, formant-augmented acoustic

features for accented speech recognition, and accent-based model selection. They focused

on only one form of Shanghai-Accent and obtained a character error rate of 39% to 49% in

classifying it into more standard and more accented speech.

Vergyri et al. [34] examined the accent variation in English broadcast news data.

They aimed at building multiple models of smaller accent variances. An acoustic level

and Maximum-A-Posteriori (MAP) to refine the acoustic models were used to handle the

accents at the acoustic level. An accent-independent model was first trained on the corpus

and it was found that the performance increased greatly but decreased on some subsets of

data. To improve the performance on these subsets, an accent-dependent model was used

where the accents were classified using 2 GMMs for each accent (one for male and one for

female) since the gender was one of the main factors influencing the variability in accents.
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Lin et al. [35] proposed phoneme-less hierarchical algorithm for classifying accents. In

each utterance of the speech signals, the gender was detected and modeled as female and

male accents. On top of these models, the accents were classified using GMM with the

features extracted using MFCC. They were able to distinguish American and British accent

with an accuracy of 83%.

Biadsy et al. [36] introduced a new approach of recognizing dialects using a Phone-

GMM-supervector-based SVM Kernel. A kernel was designed such that it could compute

the similarities of phones between pairs of utterances. This kernel function was obtained

by recognizing the phones of each utterance using a phone recognizer and extracting the

GMM supervector for each phone. This resulted in a set of vectors needed to design the

kernel function. They were able to achieve an Equal Error Rate (EER) of 4.9% overall.

Furthermore, the performance was improved when compared to existing approaches like

Phone Recognition followed by Language Modeling (PRLM), GMM Universal Background

Model (GMM-UBM) with feature space Maximum Likelihood Linear Regression (fMLLR).

Humphries et al. [37] focused on modeling accent-specific pronunciation variations.

First, accurate phone level transcriptions of accented data were obtained with an assumption

that accent variation is more evident in vowels than consonants. From these aligned

transcriptions, a list of context-dependent phone substitutions, deletions, and insertions

are obtained such that it represented the pronunciation of target accent speakers which

was different from the seed accent speakers. These context-dependent variations were then

clustered in a binary decision tree which built a new pronunciation dictionary for recognizing

the accents. Two accents in England region, London, and South East were considered.

When a sufficient number of pronunciation variants were used, speech recognition word

error rate (WER) decreased by 20%.

2.3 Summary

In this chapter, we did a literature survey of the methods dealing with accent classifica-

tion in linguistic and computer science fields. We saw that research studies in the lingustic

field (Section 2.1) has provided essential clues on identifying the important features to train

a computer in classifying the accents. Section 2.2.1 shows that a lot of statistical classifiers

have been trained in order to get accurate classification of accents. Among them, it was

found that SVM was efficient in identifying different accents. As in a previous study [16],

speech signal windows were randomly sampled before the accents were classified. We feel

that this random sampling of windows might be an infeasible option and we proposed ways
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of reducing the number of windows as explained in Chapter 6. We also saw a new approach

in classifying accents by learning a distance metric in Section 2.2.3 and this could lead us to

find a better way of classifying accents. In Chapter 6, we propose a new method in learning

a distance metric based on phonetic strings.



CHAPTER 3

DATA

3.1 Foreign Accented English (FAE)

This speech corpus contains utterances of American English spoken by non-native speak-

ers of 23 accents. The different accents are: Arabic, Brazilian Portuguese, Cantonese, Czech,

Farsi, French, German, Hindi, Hungarian, Indonesian, Italian, Japanese, Korean, Mandarin,

Malay, Polish, Portuguese, Russian, Swedish, Spanish, Swahili, Tamil, and Vietnam. The

text fragments were different for each speaker where they gave an introduction about

themselves. There are 4925 utterances of telephone quality and were rated as strongly

accented based on three independent judgements on each utterance. Since these utterances

are of telephone quality, the sampling rate was found to be 8KHz and the samples are stored

as 8-bit WAV files. For experimentation, we considered voice samples that had duration of

20 seconds [38]

3.2 George Mason University (GMU)
Speech Accent Archive

We also experimented using another dataset that consisted of accented speakers of over

200 accents. We considered only 22 accents that were similar to the FAE dataset. The

speakers were made to read an elicitation paragraph:

”Please call Stella. Ask her to bring these things with her from the store: Six

spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for

her brother Bob. We also need a small plastic snake and a big toy frog for the

kids. She can scoop these things into three red bags, and we will go meet her

Wednesday at the train station.”

The phonetic trancription of each speaker was done by 2 to 4 English-speaking judges

who were phonetically educated. The voice samples had a sampling rate of 16 KHz and

were stored as 16 bit MOV files. We used a converter to convert the MOV files to WAV

format [39].
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3.3 Data Preprocessing - Feature Extraction

An automatic speech recognition system performs several tasks like speaker recognition,

speech recognition and more recently accent classification. All these tasks perform pattern

recognition for classification or recognition on speech utterances in the form of training and

test sets. We know that a speech utterance consists of several thousands of samples; hence,

it would be essential to provide a stable representation of the signal for the classifier or

machine to perform well in the classification stage. For this reason, the first step in speech

recognition is the front-end or data processing also known as feature extraction.

There are many popular feature extraction techniques in signal processing: Mel-frequency

cepstral coefficients (MFCCs), Linear Predictive Coding (LPC), Perceptual Linear Predic-

tion (PLP). Out of these techniques, we implemented Perceptual Linear Prediction (PLP)

technique [40] as this extracts the phonetic features of the utterances. Furthermore, PLP

is more robust to noisy data compared to MFCC and LPC. [10]

This section is organized as follows: First we illustrate the block diagram of PLP

technique, followed by an explaination of each phase [10] in the feature extraction process.

3.3.1 PLP Block Diagram

The procedure for extracting features using PLP is shown in Figure 3.1

3.3.2 Spectral Analysis

Spectral analysis is the key step in describing the characteristics of a signal. It breaks

down a complex signal to simpler parts. This analysis produces a power spectrum which

has the ability of describing the frequencies which contains the signal’s power. In this step,

the speech segment is weighted by a Hamming window W (n) as follows:

W (n) = 0.54 + 0.46cos

[
2πn

(N − 1)

]
where, N is length of the window; for example, if a signal has a sampling frequency of

10KHz, then the length of the window is 256. The window length is fixed and n is any

number within the range of 0 to 255, more formally in the range of 0 to N-1.

Fast Fourier Transform (FFT) is used to compute a Discrete Fourier Transform (DFT)

which tranforms the windowed segment to the frequency domain. The real and imaginary

parts of the short-term speech spectrum are squared and added to get the power spectrum

P (ω)

P (ω) = Re[S(ω)]2 + Im[S(ω)]2
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Speech Samples

Fast Fourier Transform

Critical Band Integration and Re-sampling

Equal Loudness Curve

Power Law of Hearing

Inverse Discrete Fourier Transform

Solving a set of Linear Equations

Cepstral Recursion

Cepstral Coefficients of PLP model

Figure 3.1: PLP Block Diagram

3.3.3 Critical-band Spectral Resolution

The power spectrum P (ω) obtained in the previous step is converted to the Bark

frequency Ω by using the approximation:

Ω(ω) = 6ln
ω

1200π
+

[( ω

1200π

)2
+ 1

]0.5

where ω here is the angular frequency in rad/s. The bark-scaled spectra is then convolved

with the power spectrum of the critical-band filter. The critical-band curve is given by:

ψ(Ω) =



0, Ω < −1.3,

102.5(Ω+0.5), − 1.3 < Ω < −0.5,

1, − 0.5 < Ω < 0.5,

10−1.0(Ω−0.5), 0.5 < Ω < 2.5,

0, Ω > 2.5

This smoothed Bark scale spectrum is then down-sampled in approximately 1 Bark

interval so that the entrire analysis band is covered by an integral number of spectral

bands.

3.3.4 Equal-loudness Preemphasis

Preemphasis is done based on loudness by simulating the equal-loudness curve:

Ξ[Ω(ω)] = E(ω)Θ[Ω(ω)]
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where Θ[Ω(ω)] is the sampled Bark scale spectrum. Furthermore, the function E(ω) com-

putes the ranges of frequencies that are not well defined to the human ear and approximates

it. This approximation is given as follows:

E(ω) =
[(ω2 + 56.8 ∗ 106)ω4]

[(ω2 + 6.3 ∗ 106)2 ∗ (ω2 + 0.38 ∗ 109)]

This explains that the first frequency sample (Bark) and the last frequency sample (Nyquist

frequency) are not sensitive to the human ear and are made equal to their nearest neigh-

bours. Hence, at the end of this stage, Ξ[Ω(ω)] begins and ends with frequency samples

that are at the same value.

3.3.5 Intensity-loudness Power Law

This step computes the perceived loudness ψ(Ω) by approximately taking the cube root

of the intensity Ξ(Ω)

ψ(Ω) = Ξ(Ω)
1
3

The perceived loudness is a reasonable approximation of hearing the speech and the loudness

is neither too loud or lower than the sensitive levels of hearing.

3.3.6 Autoregressive Modeling

This is the final stage of the PLP technique. Here the perceived loudness ψ(Ω) is

approximated using the auto-correlation method of the all-pole spectral modeling. Inverse

DFT is run on the above result since a few autocorrelation values are needed. Next, a Linear

Predictive Coding (LPC) model is fit in and the autocorrelation coefficients are transformed

to cepstral coefficients.

The cepstral coefficients provide an estimate of short-term energy as a function of

frequency. It describes the changes and speed of change of the feature vector coefficients in

time.

3.3.7 Order of PLP Model

Hermansky [10] says that higher the order of the PLP model, the higher the chances

are that the spectrum of the all-pole PLP model reaches the auditory spectrum. Hence, a

pole order of 8 and above is suitable for experimentaion. We used a pole order of 13 in our

experimentations.

3.3.8 Description of Each Feature Vector

As a result of processing the speech samples using a PLP model of order 13, we obtained

the 1st 13 features where the 1st feature defines the energy of the speech sample and the
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remaining 12 features are the basic PLP parameters. Since, in general, a speech recognizer

uses the format of 39 feature vectors, we extended the 13 features to 39 features. This

extension was done by taking the first- and second-order derivative using the delta function.

Therefore, the next 13 features correspond to the first-order derivative or the velocity of

speech sample. Furthermore, the last 13 features denote the second-order derivative or the

acceleration of the speech sample.

To sum up, each speech sample of a particular accent, after feature extraction, contains

39 features and 2046 windows embedded as number of examples. For an accent group

containing 100 samples, 204600 examples and 39 features are obtained.



CHAPTER 4

CLASSIFICATION

After extracting meaningful features from the speech utterances, the next step is to

classify the accents. Classification can be either supervised or unsupervised. Supervised

classification involves learning from the labeled training data whereas unsupervised classi-

fication refers to the problem of identifying a structure in the unlabeled data.

Previously, in the area of accent classification, several classification techniques like Hid-

den Markov Models (HMM), Support Vector Machines (SVM), Gaussian Mixture Models

(GMM), Artificial Neural Networks (ANN), k-Nearest Neighbors (KNN), decision trees, and

Naive Bayes algorithms have been used. Apart from these statistical classifiers, researchers

have also experimented with classifying accents by modeling acoustic features using a com-

bination of Maximum Likelihood Linear Regression (MLLR), and Maximum-A-Posteriori

(MAP).

We chose to experiment with supervised classification using SVM, GMM, and DAGSVM,

since they were found to improve the performance of classification using phonetic parametric

features. This section provides an overview of Binary and Multiclass classification followed

by an explanation of each of the classification techniques that were used in the experiments.

4.1 Supervised Binary and Multiclass Classification

Binary classification is a problem of classifying items in data into two classes. This

comparison is made by a hyperplane and checking onto which side of the hyperplane the

unseen test data falls.

Multiclass classification is an extension to binary classification, with the difference being

k > 2 choices must be made where k is the number of classes. There are two popular

approaches to multiclass classification: One Versus All (OVA) and All Versus All (AVA).
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4.1.1 One Versus All Approach (OVA):

Given k−classifiers, C1 , C2, C3, . . . , Ck, each classifier Ci sees the entire training data

and gets all the examples with labels belong to class i as positive. The rest of the examples

are seen by this particular classifier as negative. During the testing phase, if a data point is

predicted to belong to class i, then the classifier Ci gets a vote. If it is predicted that this

data point does not belong to class i, then all the other classifiers excluding Ci gets a vote.

4.1.2 All Versus All Approach (AVA):

This approach is also called an all-pairs approach as it considers every pair of classes in

the classification stage. Consider a classifier Cij that classifies data into two classes i and j.

This classifier gets all the examples that belong to class i as positive and all the examples

belonging to class j as negative. This classifier is trained on all pairs of classes and in the

testing phase, for a given test point, Cij determines whether the test point belongs to class

i or class j. If a positive prediction is made, then class i gets a vote else class j gets a

vote. In this process,
(
k
2

)
classifiers are trained and run in the testing phase. Among these

classifiers, the class that has the majority of votes denotes the class to which the test point

belongs.

4.2 Support Vector Machine - SVM

Support Vector Machine is one of the most popular supervised classification algorithms.

It refers to the problem of classifying data into classes by using the hyperplane - maximum

margin principle.

Given training data X = {x1, x2, . . . , xn} and labels Y = {y1, y2, . . . , yn} where Y ∈ {-1
, 1}, and we have a hyperplane linear classifier that is defined by two parameters, weight w

and bias b, as shown in Figure 4.1

The main goal of the SVM is to learn w and b that maximizes the margin between the

two classes. The prediction rule is given by:

y = sign(w>x+ b)

An assumption is made on the hyperplane such that: For yi = +1,

w>xi + b ≥ 1

and for yi = -1,

w>xi + b ≤ −1

The above assumptions can be visualized in Figure 4.2.
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Hyperplane

Class +1

Class -1

Figure 4.1: Support Vector Machine: Maximum margin principle

The assumptions can be rewritten as:

yi(w
>xi + b) ≥ 1 for all 1 ≤ i ≤ n

=⇒ min
i
|w>xi + b| = 1

We want to maximize this margin by some quantity by minimizing the w parameter.

The optimization problem of min ||w|| in (w,b) can be solved by finding the hyperplane’s

margin γ:

γ =
mini |w>xi + b|

||w||

=⇒ γ =
1

||w||
Therefore, SVM classifies the data to classes by finding the maximum margin which is

nothing but minimizing the norm (w).
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Hyperplane

Class +1

Class -1
w>x + b ≤ −1

w>x + b ≥ +1

Figure 4.2: Assumptions on hyperplane

In our experiments, we used LibSVM [13] which is an integrated software for performing

supervised classification using SVM. It also helps in multiclass classification.

4.2.1 Learning with Imbalanced Data

Imbalanced data occurs when the number of data points in classes differ from each other

by a great amount. It can lead to misclassification as the class with a larger number of

data points tends to be the preferred class. This results to an inaccurate classification. The

speech samples that we received were greatly imbalanced among accents. This problem was

solved by using the weights option −w in LibSVM. This follows the concept of the SVM

soft-margin optimization problem [41] which includes minimizing the penalties associated

with misclassifications along with maximizing the margin.

The SVM soft-margin optimization problem is defined as:

min
i

1

2
||w||2 + C

∑
εi

such that

yi(w
>xi + b) ≥ 1− εi
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where ε is a slack variable and if ε is found in the range of 0 to 1, then the data point is on

the correct side of the hyperplane and lies near the margin. Otherwise, if ε is greater than

1, then the data point is misclassified. C is the regularization parameter that is used as a

misclassification cost. In the case of imbalanced classes, Ben-Hur and Weston [42] explained

that the C parameter could be expressed as below:

C
n∑
i=1

εi− > C+

∑
i∈I+

εi + C−
∑
i∈I−

εi

where C+ is the soft-margin constant for the examples that belong to the positive class

and I+ denotes the set of examples in the positive class. Similary, C− is the soft-margin

constant for the examples in the negative class and I− denotes the set of examples in the

negative class.

Ben-Hur and Weston [42] assumed that the number of misclassified examples in each

class is proportional to the number of examples that each class contains. Based on this

assumption, the value of C+ and C− is found by taking the ratio of the number of examples

in each class as follows:
C+

C−
=
n−
n+

where n+ and n− are the number of examples in positive and negative classes, respectively.

4.3 Gaussian Mixture Models - GMM

This is one of the approaches that has been widely used in accent classification and

speech recognition.

A Gaussian Mixture Model is a weighted sum of k-Gaussians denoted by the below

equation:

p(x) =
k∑
i=1

wiN (x|µi,Σi)

where wi is the probability of the ith Gaussian and in general, the weights of all Gaussians

sum up to 1.
k∑
i=1

wi = 1

and X = {x1, x2, . . . , xn} is a D-dimensional data vector drawn from a possible Gaussian

distribution. N (x|µi,Σi) for 1 ≤ i ≤ k are the Gaussian densities of each component i.

Each component density is a Gaussian function of the form:

N (x|µ,Σ) =
1

Σ
√

2π
e−(x−µ)2/2Σ2

where µ is the mean and Σ is the covariance of the Gaussian.
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The goal of a GMM is to estimate the parameters µ and Σ that fit the data. This

estimation is done by training the GMM with the Expectation-Maximization algorithm.

The EM algorithm is initialized with the mean and covariance of the K-Means algorithm.

In our experiments, we used the supervised form of learning. Given labeled data, each

accent is modeled as a Gaussian distribution with parameters of mean (µ) and variance

(σ2). The GMM was created using the diagonal version where the diagonal matrix for each

component was stored as rows of a matrix. For each accent, a Gaussian Mixture Model

(GMM) is trained. The probability of a test example belonging to each accent is calculated

and the GMM that has the highest probability for the test example was found. This can

be visualized in Figures 4.3 and 4.4.

4.4 Directed Acyclic Graph SVM - DAGSVM

We also experimented using DAGSVM for the purpose of comparing with LibSVM. The

training phase of a DAGSVM is similar to one-against-one SVM [43].

The testing phase involves a pairwise decision between accents by constructing a tree.

Starting at the root, given a test point, a pairwise SVM decision is made and either class

is rejected. Depending on the result, it either moves to the left or right of the tree and

continues until it reaches one of the leaves that indicates the predicted class. The testing

process is shown in Figure 4.5
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Labeled Data

Accent 1

Accent 2

Accent 3

Figure 4.3: Data representation

Accent 1

Accent 2

Accent 3

Mean of Gaussian Mixture Model: µi

Variance of Gaussian Mixture Model: Σ2
i

Figure 4.4: Gaussian modeling of data
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1 vs 4

2 vs 4

3 vs 4 2 vs 3

1 vs 3

2 vs 3 1 vs 2

Not 1

Not 2

Not 4

Not 1 Not 3
Not 4

Figure 4.5: Directed Acyclic Graph SVM



CHAPTER 5

DISTANCE METRIC LEARNING

This chapter briefly describes the well-known distance metric learning algorithms, Dis-

tance Metric Learning, with application to side information [44], Pareto Discriminant

Analysis [45], and Learning Distance Metric from Relative Comparisons [46], and explains

the drawbacks and introduces the proposed method that could possibly improve the classi-

fication. First we start by describing the Linear Discriminant Analysis which was used as

a baseline in our experiments in the concept of applying Distance Metric Learning prior to

classifying the accents.

5.1 Linear Discriminant Analysis

We experimented with the multiclass version of LDA which relates to the problem of

finding a subspace that contains the class variability. An assumption is made that each class

Ci has the same covariance Σ and a mean µi. The sample covariance of the class means µ

was used to define the between class variability as:

Σb =
1

C

C∑
i=1

(µi − µ)(µi − µ)>

and the classes were separated by:

S =
~w>Σb ~w

~w>Σ~w

5.2 Distance Metric Learning, with Application
to Side Information

Xing et al. [44] proposed a systematic methods for learning a distance metric using

examples of similar data points. Given a data set {xi}mi=1 ⊆ Rn and a set that contains

pairs of similar data points:

S : (xi, xj) ∈ Sif xiand xj are similar
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They considered learning a mahanalobis distance metric of the form:

d(x, y) = dA(x, y) = ||x− y||A =
√

(x− y)>A(x− y)

where A was required to be positive semidefinite, A ≥ 0. The optimization problem to solve

for A was defined as:

min
A

∑
xi,xj∈S

||xi − xj ||2A

such that
∑

xi,xj∈D
||xi − xj ||A ≥ 1, A ≥ 0

where D denotes the set of dissimilar data points. The optimization problem states that

given a set of similar points, minimize the distance between these similar points such that

they are close to each other while keeping the constraint that the data points belonging to

different classes need to be far from each other. The positive semidefinite A is solved which

denotes the metric that can be learned for transforming the data points to a new feature

space.

Xing et al. [44] experimented with learning diagonal A = diag(A11, A22, . . . , Ann) by

solving the Newtons Raphson method:

g(A) = g(A11, A22, . . . , Ann)

=
∑

xi,xj∈S
||xi − xj ||2A − log

 ∑
xi,xj∈D

||xi − xj ||A



given that A ≥ 0.

They showed that it is efficient to optimize g using the Newtons Raphson method and

that minimizing g is equivalent to solving the optimization problem up to a multiplication

of A by a positive constant.

They also experimented learning a full matrix A by find the gradient descent and

projecting the data iteratively such that the similar points are closer to each other. They

formulated the following optimization problem:

max
A

g(A) =
∑

xi,xj∈D
||xi, xj ||A

such that f(A) =
∑

xi,xj∈S
||xi − xj ||2A ≤ 1

A ≥ 0
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This optimization problem states that the distance between dissimilar data points should

be maximized such that they are far apart while performing iterative projections such that

the distance between similar data points is minimized.

5.3 Pareto Discriminant Analysis

Abou Moustafa et al. [45] proposed Pareto Discriminant Analysis to solve the problems

faced by LDA (Linear Discriminant Analysis). They came up with an idea to separate the

data points in different classes by an equal distance; i.e., the distances between all classes

are equal.

Kullback-Leibler Divergence (KLD) was used as a measure of separating two Gaussians;

based on this, an objective function was formulated to maximize the distance between two

classes. Multimodal Oriented Discriminant Analysis (MODA) [47] formulation based on

symmetric KLD was used to define the appropriate objective function.

They defined the KLD for two classes Ci and Cj as considering the difference in mean

and covariance:

KL(i||j) = tr(ΣiΣ
−1
j + Σ−1

i Σj − 2I) + (µi − µj)>(Σ−1
i + Σ−1

j )(µi − µj)

A linear transformation B is learned using MODA such that the KLD is maximized

between the two classes:

Class Ci with distribution N (µi,Σi) is transformed to N (B>µi, B
>ΣiB)

Class Cj with distribution N (µj ,Σj) is transformed to N (B>µj , B
>ΣjB)

They showed that Pareto Discriminant analysis outperformed the current methods like

LDA.

5.4 Learning Distance Metric from Relative Comparisons

Schultz and Joachims [46] proposed a method for learning a distance metric that uses

the relative information among classes such as: example xi is closer to example xj than to

example xk where xi, xj , xk ∈ Xtrain which is a set of training examples. A parametrized

distance metric is learned by employing kernels which estimates the metric A. If a kernel

is defined as k(x, y) = φ(x)φ(y), and Φ is the feature space where the training example is

projected using the function φ(x)i, then the following is the distance metric in the feature

space.
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dΦ,W (φ(x), φ(y)) =
√

((φ(x)− φ(y))>Φ)W (Φ>(φ(x)− φ(y)))

=

√√√√ n∑
i=1

Wii(K(x, xi)−K(y, xi))2

The idea behind using kernels is to separate the nonlinear data in the feature space

before applying the distance metric learning algorithm.

5.5 Conclusion

Distance metric learning, with side information [44], looks at just maximizing the

distance between data points in different classes and minimizing the data points in the

same class. It does not look at separating the class as a whole and the maximum, minimum

distance is not given in specific terms.

Pareto Discriminant analysis does not look at minimizing the data points in a class.

Instead it concentrates at only maximizing the distance between classes. There are cases

where the data points in a class might not be as close as possible, so the assumption, that

data points in the same class are close to each other, cannot be made. In this case, if

the constraint on minimizing the distance between data points is not considered, then the

classifier might not perform well.

Learning the distance metric from relative comparisons [46] does not explain clearly how

a new test point is transformed to the feature space after applying the kernel function.

As a result, we looked at the missing components of the above existing methods and

proposed a method which considers a refined way of learning a distance metric, taking into

account minimizing the distance between examples within the same class while maximizing

the distance between classes by a specified distance. We also looked at applying distance

metric learning to kernels where we approximate the kernels. The proposed method is

explained in detail in Chapter 6.



CHAPTER 6

RESEARCH CONTRIBUTIONS

This chapter is organized as follows. First, an overview of the existing system is

presented. Next, we explain the proposed system consisting of 3 phases followed by experi-

ments. Finally, a comparison study between the existing and proposed system is explained.

6.1 Existing System

6.1.1 System Design

Most of the accent classification systems are composed of two components wherein

first features are extracted from the raw input speech signal using the feature extraction

techniques, as explained in Chapter 2. These features are then classified using several

classifiers, as described in Chapter 3. See Figure 6.1

6.1.2 Drawbacks

The data after feature extraction, in our case using Perceptual Linear Prediction (PLP),

consist of 2046 windows and 39 features for a single speech utterance. The concept of

windows is explained in the next section. These 2046 windows are embedded into the

examples; thus, a single speaker is comprised of 2046 examples and 39 features, in terms of

machine learning.

For an accent containing 200 speakers, the resulting data would contain 200 * 2046

examples and 39 features. This does not seem like large data but performing multiclass

classification can be time- and memory-consuming. Hence, Watanaprakornkul et al. [16]

experimented by randomly choosing 10 windows for each speaker. We feel that this is not an

optimal solution as windows describe each sample of a speech utterance and it is important

that the description is in a flow in accordance to the speech sample.
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Figure 6.1: Existing accent classification system

6.2 Proposed System: Phase 1

6.2.1 System Design

The first phase of the proposed system design is shown in Figure 6.2. After the features

are extracted from the raw speech input signal, algorithms are applied to reduce the number

of windows. With the reduced amount of speech data, multiclass classification methods are

run to predict the accent.

6.2.2 Concept of Windows

Initially, a raw speech input signal, i.e., the audio of each speaker that we can hear

directly, is made up of a number of samples. In our case, we estimated this number of

samples, for each input signal of 20ms, to be 163890 samples. Now we want to find the

frequency contained in each sample for the purpose of extracting features. Since 163890

samples is really large, it is infeasible to calculate the frequency contained in each sample.

Hence, in the feature extraction stage, a bunch of these samples are taken and the

fourier transform is calculated for each group rather than each sample. This makes the

computation of the transform easier. This group constitutes a frame or Window.

6.2.3 Reducing Number of Windows

In our experiments, after applying Perceptual Linear Prediction feature extraction on

the data, we obtained 2046 windows for each speaker. The drawbacks of classifying accents

with each speaker containing 2046 windows were explained in Subsection 6.2.2. To reduce



31

Multiclass
Classification

Data Preprocessing:
Feature Extraction

Data

Raw Speech Signal

Predicted Accent

Reducing number
of windows

Figure 6.2: Proposed accent classification system - Phase 1

the amount of data that we are dealing with, we proposed two methods: K-Means and

column sampling.

6.2.3.1 K-Means

K-Means is one of the popular clustering algorithms. It takes as input the data X =

{x1, x2, . . . , xn} where xi ∈ {RD} and k which defines the number of groups into which the

data should be partitioned.

Initially, we want to partition the data to k groups, so we define the k-centers as

µ1, µ2, . . . , µk. These k-centers are randomly intialized in RD.

The below steps are repeated until the algorithm converges, i.e., until the cluster centers

remain the same through all the iterations.

Each example xi is assigned to its closest cluster center. Let Ck be the set of examples

closest to the the cluster center µk, then

Ck = argmin||xi − µk||2

The new cluster centers are then computed by taking the mean of the set Ck

µk =
1

|Ck|
∑
i∈Ck

xi

In the feature extraction stage, after extracting the cepstral coefficients and the 2046

windows, K-Means is run to obtain 10 windows for each speaker in a particular accent.
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6.2.3.2 Column Sampling

Column sampling refers to the problem of selecting k columns that represents a subspace

of the input data. Let C = {c1, c2, . . . , c2046} be the set of columns for each speaker, and in

this case, the columns are the windows which we want to sample.

For each column ci for 1 ≤ i ≤ 2046, the squared norm snorm is calculated as:

snorm = norm(ci)
2

Finally, k columns proportional to the value snorm, for each speaker after extracting

the cepstral coefficients, are selected.

6.2.4 Experiment Results - Classification Using LibSVM

The results after applying algorithms to reduce the number of windows and classifying

with 13, 39, and 54 features are shown in Table 6.1. We observed that K-Means as a

clustering method to reduce number of windows gave better results than column and random

sampling. Also we carried out experiments using Perceptual Linear Prediction (PLP) as a

feature extraction method and compared the accuracy with the previous studies which used

Linear Predictive Coding (LPC) as the feature extraction method. Hermansky [10] in his

study of analyzing speech using Perceptual Linear Predictive (PLP) claimed that PLP could

be useful in speaker-independent ASR since it can represent the linguistic information, that

is present in speech, better than LPC. We chose to compare the accuracy obtained using

PLP and LPC to see which method performs better as a feature extraction technique.

6.2.5 Experiment Results - Classification Using
Gaussian Mixture Models (GMM)

The results after applying algorithms to reduce the number of windows and classifying

with GMM using 13, 39, and 54 features are shown in Table 6.2. We observed that the

previous study [16] used 35 Gaussians as the best number of Gaussians for each accent.

We experimented with 40 Gaussians to see if we can achieve a better accuracy. We also

compared the overall accuracy obtained using GMM with the accuracy obtained using

LibSVM. The results show that using GMM, we get a lower accuracy of classifying accents

when compared with LibSVM. The reason we chose 10 windows is just for comparing the

performance of classifiers with the previous study [16] where 10 windows were randomly

sampled.
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Table 6.1: Classification of accents using LibSVM. 2-accents (Mandarin and German),
3-accents (Cantonese, Hindi, and Russian), 12-accents (Portuguese, Cantonese, Farsi,

French, German, Hindi, Hungarian, Italian, Japanese, Mandarin, Russian, and Swedish)

Accents Reduction to 13 39 52 Accuracy
get 10 windows features features features as in previous studies

Kmeans 52.20% 60.61% 60.32% 57.12%
2-accents (using LPC)

Column Sampling 53.21% 52.31% 51.40% [15]

Random 52.91% 51.40% 51.10%

Kmeans 45.28% 45.35% 46.69%
3-accents

Column Sampling 45.28% 45.28% 37.38% 41.18%
[16]

Random 45.28% 44.92% 40.34%

Kmeans 13.11% 15.13% 16.03%
13.32%

12-accents Column Sampling 13.11% 13.36% 9.66% [15]

Random 13.11% 13.19% 10.76%
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Table 6.2: Classification of accents using GMM. 2-accents (Mandarin and German),
3-accents (Cantonese, Hindi, and Russian), 12-accents (Portuguese, Cantonese, Farsi,

French, German, Hindi, Hungarian, Italian, Japanese, Mandarin, Russian, and Swedish)

Accents Reduction to 13 39 52 Accuracy
get 10 windows features features features as in previous studies

Kmeans 54.51% 48.70% 51.30%

2-accents Column Sampling 53.31% 51.20% 52.81%

Random 53.11% 50.00% 52.30%

Kmeans 42.88% 43.79% 39.77%
3-accents 37.5%

Column Sampling 35.90% 45.28% 38.65% for 35 Gaussians
[16]

Random 36.39% 29.48% 27.64%

Kmeans 11.36% 12.38% 11.46%

12-accents Column Sampling 9.38% 10.38% 9.72%

Random 9.93% 8.72% 9.13%
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6.2.6 Experiment Results - Comparison between Directed
Acyclic Graph SVM (DAGSVM) and
LibSVM with FAE and GMU Data

Table 6.3 shows the result of classifying accents using DAGSVM and LibSVM. Here we

chose K-Means as a technique to reduce the number of windows and we experimented with

39 features. We also compared the accuracy of classification on FAE and GMU datasets.

The results show that LibSVM performed with a better accuracy than DAGSVM in the case

of 3-accents and 12-accents, whereas DAGSVM performed better while classifying 2-accents.

6.3 Proposed System: Phase 2

Apart from rating which classifier gives the best performance, we also observed the

behavior among the accents based on their accuracy. We classified certain accents using

LibSVM. Table 6.4 shows the accuracy between pairwise accents. We observed that maybe

the accents that are close to each other had a lesser accuracy than the accents that are far

apart. For example, we know that a speaker with Hindi accent would sound the same as a

speaker with a Tamil accent. These two accents are known to be closer to each other and

we can see from the results that it has the lowest accuracy whereas the speech spoken by an

Arabic accented speaker varies greatly with the speaker of Portuguese accent. According

to the results, these two accents are detected with the highest accuracy. This introduces

the idea of learning new feature transformations applying the principle of distance metric

learning that will be explained in the next Subsection, 6.3.2.

6.3.1 System Design

Figure 6.3 shows the system design that involves the second phase. Based on our

observations explained earlier, we wish to pull apart different accents while keeping the data

points within the same accent closer to each other. This could lead to a better classification

and is described as learning new feature transformations. Once the features are extracted

and the number of windows are reduced, new feature transformations could be learned by

applying the Distance Metric Learning (DML) concept. On the new feature transformations,

multiclass classification methods are run to predict the accent.
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Table 6.3: Comparison between DAGSVM and LibSVM with FAE and GMU accents.
2-accents (Arabic and Brazilian Portuguese), 3-accents (Cantonese, Hindi, and Russian),

12-accents (Portuguese, Cantonese, Farsi, French, German, Hindi, Hungarian, Italian,
Japanese, Mandarin, Russian, and Swedish)

Accents Data LibSVM DAGSVM
Accuracy Accuracy

FAE 70.58% 79.98%
2-accents

GMU 60.83% 60.10%

FAE 44.15% 43.86%
3-accents

GMU 47.18% 52.11%

FAE 14.79% 12.21%
12-accents

GMU 17.09% 9.42%

6.3.2 Distance Measure on Phonetic Transcriptions

The first step in learning new feature transformations was to choose a good distance

measure that would be able to distinguish between accents. Previous studies have shown

that based on geographical locations, accents could be separated. However, we wanted to

define a specific measure that would be able to tell us that accent1 is far from or near to

accent2 by a specific distance.

Charlotte Gooskens [48] has proven phonetic distance to be a reliable source for distin-

guishing between dialects and/or languages. This can be extended in the area of differen-

tiating accents.

With the above reference, we proposed a method to find distance between accents by

estimating the edit-distance between phonetic strings of pairwise accents. This edit distance

is defined as a distance measure by which the accents need to be separated. This problem

has not been researched previously.

The phonetic strings for each accent were taken from the GMU speech accent archive.
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Table 6.4: Classified using LibSVM on FAE dataset, with KMeans as clustering technique

Accents LibSVM

Arabic and Brazilian Portuguese 70.58%

Japanese and Hindi 69.7%

Hindi and Tamil 56.13%

Multiclass
Classification

Data Preprocessing:
Feature Extraction

Data

Raw Speech Signal

Predicted Accent

Learning
Feature

Transformations

Reducing number
of windows

Figure 6.3: Phase 2 of the proposed accent classification system
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The phonetic strings are depicted in Figures 6.4 and 6.5.

The GMU speech accent archive [39] provides phonetic transcription of speech spoken by

males and females. For a pair of foreign accents, the edit distance between their respective

phonetic transcriptions is found. Since the phoneme varies slightly between male and female

accents, we have considered the distance between a pair of accents to be the mean of edit

distance between the male and female phonetic transcriptions of those two accents.

The edit distance dmn for every pair of accents results in a dissimilarity matrix. Let am

and an denote two classes of accents. We wish to learn a distance metric such that distance

between data points belonging to accent ai where i ∈ {m,n} is minimized and the data

points of different accents am and an are separated from each other based on the distance

dmn between am and an. This is illustrated in Figure 6.6.

6.3.3 Concept of Distance Metric Learning

Given a set of pairwise constraints, distance metric learning aims to find a distance

matrix, A, such that the distance between dissimilar pairs is greater and distance between

similar pairs is lesser. There are several distance metric learning algorithms, as explained

in Chapter 5, and among them, we implemented Linear Discriminant Analysis (LDA) as a

baseline to see if it performed better than LibSVM.

6.3.4 Experiment Results - Comparison between
LibSVM and LDA

Table 6.5 shows the results on classifying accents using LibSVM and LDA. Since LDA

has the same principle of maximizing the distance between data points of different classes

while minimizing data points belonging to the same class, we compared LDA with LibSVM

to see if LDA performs better. As per the results, LDA fails to get a higher classification

accuracy and this resulted in finding a transformation matrix that transforms the points as

per the constraints. This is explained in detail in Subsection 6.3.5.

6.3.5 Applying Distance Metric Learning

Given: Edit distance dmn based on phonetic strings between classes (accents). A

labeled data matrix, X of a examples and b features.

To find: transformation matrix A that transforms the data matrix X such that the

interclass distance is equal to the distance in the distance matrix, dmn, and the intraclass

distance is minimized such that it is equal to ε where ε lies between 0 and 1.

Formulation:
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Figure 6.4: Phonetic transcription of Arabic accent

Figure 6.5: Phonetic transcription of Portuguese accent

Let X = {x1, x2, .., xn} be a collection of data points where n is the number of examples

and each xi ∈ RD is a vector of D features.

Let the set of equivalence constraints be denoted by:

S = {(xi, xj) | xi and xj belong to the same class}
D = {(cm, cn) | cm and cn are the centroids belonging to different classes}
We wish to learn a matrix ’A’ such that the below conditions are satisfied

min
AεRDxD

∑
(xi,xjεS)

||xi − xj ||2A

such that ||cm − cn||2A = dmn

and A ≥ 0
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Figure 6.6: Illustration of the proposed problem
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Table 6.5: Comparison between LibSVM and LDA

Accents Data LibSVM LDA
Accuracy Accuracy

Arabic
and FAE 70.58% 65.88%

Brazilian
Portuguese

Cantonese,
Hindi FAE 45.35% 40.41%
and

Russian

12 way
(Portuguese, Cantonese, Farsi,

French, German, Hindi, FAE 14.79% 11.92%
Hungarian, Italian, Japanese,
Mandarin, Russian, Swedish)

A is a positive semidefinite matrix and the above formulation is a semidefinite program-

ming problem.

Let X denote the data points in original space, and A is the positive semidefinite matrix

that transforms the data points in original space to a new feature space based on the above

formulation. Let B denote the data points in the new feature space.

In the training phase, we can depict the above in the following equation:

X ∗A = B

Since A is positive semidefinite, A = U>U , ||xi − xj ||2A can be written as:

||xi − xj ||2A = (xi − xj)A(xi − xj)>

= (xi − xj)U>U(xi − xj)>

= (U>xi − U>xj)(U>xi − U>xj)>

= (bi − bj)(bi − bj)>

= ||bi − bj ||2

where bi = U>xi
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This implies that a new test point can be classified using the above transformation.

Hence, let X ′ be a new test point, then X ′ ∗U = B′, denotes the transformation of the new

test point where B′ is the feature space for the new test point.

The proposed distance metric learning problem was experimented with on the FAE

dataset and binary classification was run using LibSVM. Table 6.6 in Subsection 6.3.6

compares the resulting accuracy of detecting accents using LibSVM and the proposed

method. It can be inferred that in 2 cases, Arabic and Portuguese accents were classified by

a large margin of 8% compared to LibSVM. Hindi and Tamil accents were classified with an

accuracy of 66.25% which is 10% more than the accuracy obtained using LibSVM. However,

there was no change in the accuracy while classifying Japanese and Hindi and there was a

drop of 4% in classifying Mandarin and German accents. We are not sure what led to this

decrease in accuracy.

6.3.6 Experiment Results - Classification Using Proposed
Distance Metric Learning

We experimented classifying accents based on learning a distance metric over phonetic

strings and the results are shown in Table 6.6. We chose to experiment on a FAE dataset

using K-Means to reduce the number of windows. We compared the classification perfor-

mance using the proposed distance metric learning and LibSVM. We found that for some

accents, learning a distance metric over phonetic strings gives better classification results.

6.4 Proposed System: Phase 3

We chose to approximate the kernels in feature space so that a distance metric can be

learned on the data based on equivalent and inequivalent criteria. As described in Chapter

5, equivalent criteria refers to a set of points within the same class and inequivalent criteria

refers to a set of points belonging to different classes.

Xing et al. [44] proposed a method for learning a relative distance metric using kernels.

The main idea behind using kernels is that data could be nonlinearly separable and in such

cases, applying distance metric learning could cause an overlap of classes while trying to

separate them. Kernels help in pulling apart data points towards their classes, thereby

making it easier to separate the classes.

However, [44] does not clearly explain how a new test point is transformed to the feature

space after applying a kernel function and learning a distance metric. Hence, we came up

with another idea to include kernel approximation methods prior to learning a distance met-

ric. The reason is, if a kernel function is applied to the training data X = {x1, x2, . . . , xn}
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Table 6.6: Comparison between LibSVM and learning distance metric over phonetic
strings

Accents Data LibSVM Distance metric over phonetic strings
Accuracy Accuracy

Arabic
and FAE 70.58% 78.18%

Brazilian
Portuguese

Japanese,
and FAE 69.7% 69.36%

Hindi

Hindi
and

Tamil FAE 56.13% 66.25%

Mandarin
and

German FAE 60.61% 56.77%

where X ∈ RD, we get a resulting kernelized data of the form KX ∈ Rn. In other words,

the number of features of the training kernelized data are the same as the number of

training examples. Now consider testing data TX = {tx1, tx2, . . . , txm} where tx ∈ RD;

here the resulting kernelized data would be of the form KTX ∈ Rm. A distance metric

on the training data is learned and is of the form L ∈ Rn; in short L is a square matix of

dimensions nXn. In order to transform the test kernelized data, one would have to use the

distance metric L to perform the matrix multiplication between the test kernelized data

and L. Since the dimensions vary as explained above, it becomes impossible to transform

the test kernelized data to a new feature space using the distance metric.

Therefore, we proposed to use kernel approximation methods that take kernelized data

and approximates the features such that the training and test data contain the same number

of features, KX ∈ Rk and KTX ∈ Rk. Now, L, the distance metric learned from the
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training data, would be a square matrix of dimensions kXk. This would be feasible to

transform the test kernelized data to a new feature space using the learned distance metric.

We considered experimenting with two existing methods, Kernel Principal Component

Analysis (KPCA) and the Rahimi Recht method, which are explained in this section.

This section is organized as follows: First, the system design is presented followed by an

explanation of the two kernel approximation methods and experimental results obtained by

classifying accents using KPCA and the Rahimi Recht method.

6.4.1 Kernel System Design

Figure 6.7 shows the third phase of the system design. Once the features are extracted

and the number of windows are reduced, kernel approximation algorithms are applied to

deal with nonlinear data. On the resulting data which are transformed to the kernel space,

we wish to learn a distance metric over phonetic strings before classifying the accents.

6.4.2 Kernel Principal Component Analysis - KPCA

Kernel PCA [18] is similar to PCA except that the dataset (N × D) is transformed

nonlinearly into a M−dimensional space where M >> D. KPCA takes each example x

and applies nonlinear transformation using C which is given by the following formula:

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

where φ is the lifting map. The examples x live in a D−dimensional space and φ takes x

from D−dimensional space to a higher M−dimensional space with the above mapping. Now

we have mapping φ(x) for each point and based on this, covariance matrix is computed in

the new higher dimensional space and then followed by eigen decomposition of this matrix.

This matrix is not similar to the covariance matrix in PCA and is called the kernel matrix.

The eigenvector decomposition of the kernel matrix is given by:

1

N

N∑
n=1

φxnφxn
>vi = λivi

From the above equation, it can be noticed that φ(xn)>vi is a scalar dot product where

vi is a linear combination of φ(xn). This implies that each of the quantities in the kernel

vector is a scalar quantity; hence, vi can be written as a scalar number of times of φ(xn).

vi =

N∑
n=1

ainφ(xn)
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Figure 6.7: Accent classification system design using kernel approximation prior learning
distance metric

where ain is some coefficient which when combined with φ(xn) gives a linear combination.

Thus, plugging the above equations in ’C’, we get the following eigenvector equation:

1

N

N∑
n=1

k(xl, xn)

N∑
m=1

aimk(xn, xm) = λi

N∑
n=1

aink(xl, xn)

where k(xm, xn) is the NxN kernel matrix.

Using this, top K eigenvectors are retrieved and the projection here is the projection of

the initial kernel matrix along with the eigenvectors of the centered kernel. Thus, KPCA

can be used to nonlinearize a linear dimensionality reduction method and is used when the

projections are assumed to be nonlinear.

6.4.3 Experiment Results - Classification Using Kernel
Principal Component Analysis (KPCA)

We experimented classifying accents using KPCA as the kernel approximation method.

Table 6.7 shows the comparison of classification accuracies among LibSVM, learning a

distance metric over phonetic strings, and KPCA. We wanted to see if KPCA performs
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Table 6.7: Comparison between LibSVM, Proposed Distance Metric Learning method,
KPCA

Accents Data LibSVM Proposed distance metric KPCA
Accuracy Accuracy Accuracy

Arabic
and FAE 70.58% 78.18% 59.81%

Brazilian
Portuguese

Japanese,
and FAE 69.7% 69.36% 68.42%

Hindi

Hindi
and

Tamil FAE 56.13% 66.25% 53.29%

Mandarin
and

German FAE 60.61% 56.77% 49.60%
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better as a kernel approximation method prior to learning a distance metric over phonetic

strings and classification. As per the results, KPCA fails to perform better than LibSVM

and the proposed distance metric.

6.4.4 Rahimi-Recht Method

Rahimi and Recht [19] proposed a feature mapping using Bochner’s theorem and random

sampling to approximate the Radial Basis Function (RBF) kernel. Basically, the input data

are mapped to a randomized low dimensional feature space and then fast linear methods

are applied to approximate the kernel.

According to Bochner’s theorem [49]: A continuous kernel k(x, y) = k(x − y) on Rd is

positive definite if and only if k(δ) is the fourier transform of a non-negative borel measure.

k(x− y) =

∫
Rd

p(ω)ζω(x)

They claimed that if the kernel was scaled properly, then the above could be rewritten

by defining ζω(x) as ejω
′x

k(x− y) =

∫
Rd

p(ω)ejω
′x = Eω[zω(x)zω(y)]

For the purpose of converging the above integral, they replaced the complex exponentials

with cosines so as to get a real-valued mapping. The condition to satisify this mapping:

Eω[zω(x)zω(y)] = k(x, y)

where zω(x) was set to
√

2cos(ω′x + b). ω as drawn from the distribution p(ω) and b was

drawn uniformly from the interval [0, 2π]

The resulting inner product was computed by taking the average of D-randomly chosen

zω and this is the lower variance approximation to the expectation.

z(x)′z(y) =
1

D

D∑
j=1

zωj(x)zωj(y)

6.4.5 Experiment Results - Classification Using
Rahimi-Recht Method

Table 6.8 shows the results of classifying accents using the Rahimi-Recht method as a

kernel approximation method. For experiments, the bandwidth was chosen to be 1 and ρ

which defines the dimension to approximate the kernel was kept as 200. We experimented

with different values of ρ and we did not want the number of features in the low-dimensional

space to be too less or more. Among the different values of ρ, projecting the data to

low-dimensions with ρ as 200, we got a higher accuracy. Hence, we settled with ρ as 200.
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Table 6.8: Comparison between LibSVM, Proposed Distance Metric Learning method,
Rahimi-Recht method

Accents Data LibSVM Proposed distance metric Rahimi Recht Method
Accuracy Accuracy Accuracy

Arabic
and FAE 70.58% 78.18% 77.56%

Brazilian
Portuguese

Japanese,
and FAE 69.7% 69.36% 68.42%

Hindi

Hindi
and

Tamil FAE 56.13% 66.25% 63.88%

Mandarin
and

German FAE 60.61% 56.77% 51.02%



CHAPTER 7

PERFORMANCE AND CONCLUSION

This chapter gives a summary of the performance in each phase of the proposed method.

7.1 Phase 1

After performing feature extraction on the raw input speech signal using PLP, each

speaker is characterized by 2046 windows and 39 features. Classification on such data could

take a long time and consumes more memory; hence, we decided to reduce the number of

windows. We ran algorithms like K-Means, Column Sampling, and Random Sampling and

compared their performances as shown in Table 6.1 in Chapter 6.2.4. From this table, it

was inferred that we obtained higher accuracy with K-Means.

We also compared the performance using various features like 13, 39, and 52 features. On

the speech data that has 39 features, the classifiers detected the accents more accurately

compared to the data that had 13 or 52 features. Similar experiments were run using

GMM and DAGSVM classifiers. The results are shown in Table 6.2 of Section 6.2.5 and in

Table 6.3 of Section 6.2.6. In the case of comparing the performance between LibSVM and

DAGSVM, we also compared the performance on different datasets FAE and GMU.

7.1.1 Conclusion

As per the results, we conclude that K-Means as a clustering step gives better classifi-

cation accuracy when compared with column and random sampling. Among the classifiers,

LibSVM performed better than Gaussian Mixture Models (GMM) and Directed Acyclic

Graph SVM (DAGSVM) and classifiers. Since speech recognition systems in industry uses

39 features, we chose to have 39 features and also for the fact that the performance was

better.

7.2 Phase 2

Based on the observations in Table 6.4 of Section 6.3, the accents that were far apart

had higher accuracy than the ones closer to each other. As a baseline, we experimented
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classifying using Linear Discriminant Analysis (LDA). As shown in the results in Table 6.5

of Section 6.3.4, the accuracy with LDA as classifier was much lower than the accuracy with

LibSVM as classifier.

With this observation, we proposed to learn a distance metric that would bring the

data points in the same class closer and separate the classes by a specific distance. This

specific distance was the edit distance computed over phonetic strings of the accents. We

compared the performance of classification between LibSVM and the proposed method. As

per the results in Table 6.6 of Section 6.3.6, the proposed distance metric learning method

outperformed the LibSVM on most of the pairwise accent classification. In some cases, the

accuracy of the proposed method was found to be slightly decreased and we think it might

be due to the speech data that might not be strongly accented.

7.2.1 Conclusion

Based on results, we conclude that learning a distance metric over phonetic strings gives

better classification results than existing LibSVM. We considered only binary classification

in this case. The advantage of the proposed method is that it requires less computation in

considering the distance between different classes rather than the distance between every

data point in different classes. Incorporating the phonetic distance helps to learn a structure

over the classes. It also gives a more refined way of separating different classes by a specified

distance rather than defining the distance as maximum or minimum.

7.3 Phase 3

Xing et al. [44] proposed a method to learn a distance metric using kernels but did

not clearly explain how to transform a new test point to the feature space. Therefore, we

experimented learning a distance metric using kernels that involved approximating kernels in

order to make it feasible to transfer a new test point to the feature space. We used Kernel

PCA (KPCA) and Rahimi-Recht methods for approximating kernels. Results obtained

using KPCA are shown in Table 6.7 of Section 6.4.3 and the Rahimi-Recht method in Table

6.8 of Section 6.4.5. The accuracy seems to be lower than the proposed distance metric

learning method.

7.3.1 Conclusion

Though both the kernel approximation methods did not yield further benefits when

compared to LibSVM, the Rahimi-Recht method gave an higher accuracy than KPCA.
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With these results, we conclude that incorporating supervision (class information) in ap-

proximating kernels might be an improvement and this could be a possible future work.



CHAPTER 8

FUTURE WORK

Though we have shown that learning a distance metric over phonetic strings can achieve

higher accuracy, we focused on just binary classification. More research needs to be done

to extend this for multiclass classification and also look into simultaneously minimizing

the distance between data points within a class while separating the different classes by a

specified distance.

In the kernel approximation stage, supervision (class information) needs to be considered

to get a better classification accuracy since we are dealing with supervised data. Also,

while learning the kernel transformations since the training and test data are transformed

separately, it needs to be ensured that the transformation is independent of data.

Improvements in creating the accented FAE data should be made like including more

accented data of microphone type with a higher sample rate. Therefore, it would be easier

for the classifier to perform better.
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