2,937 research outputs found

    Fast Predictive Simple Geodesic Regression

    Full text link
    Deformable image registration and regression are important tasks in medical image analysis. However, they are computationally expensive, especially when analyzing large-scale datasets that contain thousands of images. Hence, cluster computing is typically used, making the approaches dependent on such computational infrastructure. Even larger computational resources are required as study sizes increase. This limits the use of deformable image registration and regression for clinical applications and as component algorithms for other image analysis approaches. We therefore propose using a fast predictive approach to perform image registrations. In particular, we employ these fast registration predictions to approximate a simplified geodesic regression model to capture longitudinal brain changes. The resulting method is orders of magnitude faster than the standard optimization-based regression model and hence facilitates large-scale analysis on a single graphics processing unit (GPU). We evaluate our results on 3D brain magnetic resonance images (MRI) from the ADNI datasets.Comment: 19 pages, 10 figures, 13 table

    Quicksilver: Fast Predictive Image Registration - a Deep Learning Approach

    Get PDF
    This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni- / multi- modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software.Comment: Add new discussion

    Bayesian Inference on Matrix Manifolds for Linear Dimensionality Reduction

    Full text link
    We reframe linear dimensionality reduction as a problem of Bayesian inference on matrix manifolds. This natural paradigm extends the Bayesian framework to dimensionality reduction tasks in higher dimensions with simpler models at greater speeds. Here an orthogonal basis is treated as a single point on a manifold and is associated with a linear subspace on which observations vary maximally. Throughout this paper, we employ the Grassmann and Stiefel manifolds for various dimensionality reduction problems, explore the connection between the two manifolds, and use Hybrid Monte Carlo for posterior sampling on the Grassmannian for the first time. We delineate in which situations either manifold should be considered. Further, matrix manifold models are used to yield scientific insight in the context of cognitive neuroscience, and we conclude that our methods are suitable for basic inference as well as accurate prediction.Comment: All datasets and computer programs are publicly available at http://www.ics.uci.edu/~babaks/Site/Codes.htm

    Fast Predictive Multimodal Image Registration

    Get PDF
    We introduce a deep encoder-decoder architecture for image deformation prediction from multimodal images. Specifically, we design an image-patch-based deep network that jointly (i) learns an image similarity measure and (ii) the relationship between image patches and deformation parameters. While our method can be applied to general image registration formulations, we focus on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) registration model. By predicting the initial momentum of the shooting formulation of LDDMM, we preserve its mathematical properties and drastically reduce the computation time, compared to optimization-based approaches. Furthermore, we create a Bayesian probabilistic version of the network that allows evaluation of registration uncertainty via sampling of the network at test time. We evaluate our method on a 3D brain MRI dataset using both T1- and T2-weighted images. Our experiments show that our method generates accurate predictions and that learning the similarity measure leads to more consistent registrations than relying on generic multimodal image similarity measures, such as mutual information. Our approach is an order of magnitude faster than optimization-based LDDMM.Comment: Accepted as a conference paper for ISBI 201

    Fast Predictive Image Registration

    Full text link
    We present a method to predict image deformations based on patch-wise image appearance. Specifically, we design a patch-based deep encoder-decoder network which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-parameterization we retain the desirable theoretical properties of LDDMM, while reducing computation time by orders of magnitude: combined with patch pruning, we achieve a 1500x/66x speed up compared to GPU-based optimization for 2D/3D image registration. Our approach has better prediction accuracy than predicting deformation or velocity fields and results in diffeomorphic transformations. Additionally, we create a Bayesian probabilistic version of our network, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D

    What makes for effective detection proposals?

    Full text link
    Current top performing object detectors employ detection proposals to guide the search for objects, thereby avoiding exhaustive sliding window search across images. Despite the popularity and widespread use of detection proposals, it is unclear which trade-offs are made when using them during object detection. We provide an in-depth analysis of twelve proposal methods along with four baselines regarding proposal repeatability, ground truth annotation recall on PASCAL, ImageNet, and MS COCO, and their impact on DPM, R-CNN, and Fast R-CNN detection performance. Our analysis shows that for object detection improving proposal localisation accuracy is as important as improving recall. We introduce a novel metric, the average recall (AR), which rewards both high recall and good localisation and correlates surprisingly well with detection performance. Our findings show common strengths and weaknesses of existing methods, and provide insights and metrics for selecting and tuning proposal methods.Comment: TPAMI final version, duplicate proposals removed in experiment

    Interpretable statistics for complex modelling: quantile and topological learning

    Get PDF
    As the complexity of our data increased exponentially in the last decades, so has our need for interpretable features. This thesis revolves around two paradigms to approach this quest for insights. In the first part we focus on parametric models, where the problem of interpretability can be seen as a “parametrization selection”. We introduce a quantile-centric parametrization and we show the advantages of our proposal in the context of regression, where it allows to bridge the gap between classical generalized linear (mixed) models and increasingly popular quantile methods. The second part of the thesis, concerned with topological learning, tackles the problem from a non-parametric perspective. As topology can be thought of as a way of characterizing data in terms of their connectivity structure, it allows to represent complex and possibly high dimensional through few features, such as the number of connected components, loops and voids. We illustrate how the emerging branch of statistics devoted to recovering topological structures in the data, Topological Data Analysis, can be exploited both for exploratory and inferential purposes with a special emphasis on kernels that preserve the topological information in the data. Finally, we show with an application how these two approaches can borrow strength from one another in the identification and description of brain activity through fMRI data from the ABIDE project
    • …
    corecore